Matlab最优化编程例子
完整版优化设计Matlab编程作业
化设计hl4HU©0⑥ 3 hlu 凹内r d X1州fci-rU-fFF卢F ♦ 忡下¥为+1 —*— S-ll-« F41:Si —MATLABoftiHMirjirCfiffliiiiJ PHI■1**■ 温不平?」11,・—喜M - 〜FT 文词一时y 片 34ml 3F*L9TR0i. Jill!-LkftLgWf 1S1CSI掰f 1 ■ >A A A »W I % :k Dnfl w I ■ J k^lXMprfaMk tjn nn Alflhw初选 x0=[1,1] 程序:Step 1: Write an Mfle objfunl.m.function f1=objfun1(x)f1=x(1)人2+2*x(2)入2-2*x(1)*x(2)-4*x(1);Step 2: Invoke one of the unconstrained optimization routinesx0=[1,1];>> options = 0Ptimset('LargeScale','off);>> [x,fval,exitflag,output] = fminunc(@objfun1,x0,options)运行结果: x =4.0000 2.0000 fval = -8.0000exitflag =1 output = iterations: 3 funcCount: 12 stepsize: 1 firstorderopt: 2.3842e-007algorithm: 'medium-scale: Quasi-Newton line search message: [1x85 char]非线性有约束优化1. Min f(x)=3 x : + x 2+2 x 1-3 x 2+5 Subject to:g 2(x)=5 X 1-3 X 2 -25 < 0 g (x)=13 X -41 X 2 < 0 3 12g 4(x)=14 < X 1 < 130无约束优化 min f(x)=X 2 + x 2-2 x 1 x 2-4 x 1g5 (x)=2 < X 2 < 57初选x0=[10,10]Step 1: Write an M-file objfun2.mfunction f2=objfun2(x)f2=3*x(1)人2+x(2)人2+2*x(1)-3*x(2)+5;Step 2: Write an M-file confunl.m for the constraints. function [c,ceq]=confun1(x) % Nonlinear inequality constraints c=[x(1)+x(2)+18;5*x(1)-3*x(2)-25;13*x(1)-41*x(2)人2;14-x(1);x(1)-130;2-x(2);x(2)-57];% Nonlinear inequality constraints ceq=[];Step 3: Invoke constrained optimization routinex0=[10,10]; % Make a starting guess at the solution>> options = optimset('LargeScale','off);>> [x, fval]=...fmincon(@objfun2,x0,[],[],[],[],[],[],@confun1,options)运行结果:x =3.6755 -7.0744 fval =124.14952.min f (x) =4x2 + 5x2s.t. g 1(x) = 2X] + 3x2- 6 < 0g (x) = x x +1 > 0初选x0=[1,1]Step 1: Write an M-file objfun3.m function f=objfun3(x) f=4*x(1)人2 + 5*x(2)人2Step 2: Write an M-file confun3.m for the constraints. function [c,ceq]=confun3(x) %Nonlinear inequality constraints c=[2*x(1)+3*x(2)-6;-x(1)*x(2)-1];% Nonlinear equality constraints ceq口;Step 3: Invoke constrained optimization routinex0=[1,1];% Make a starting guess at the solution>> options = optimset('LargeScale','off);>> [x, fval]=...fmincon(@objfun,x0,[],[],[],[],[],[],@confun,options)运行结果:Optimization terminated: no feasible solution found. Magnitude of search direction less than2*options.TolX but constraints are not satisfied.x =11fval =-13实例:螺栓连接的优化设计图示为一压气机气缸与缸盖连接的示意图。
Matlab优化算法及应用案例
Matlab优化算法及应用案例一、引言优化算法在科学和工程领域中起着重要的作用。
Matlab作为一款强大的科学计算软件,提供了丰富的优化算法工具箱,为用户提供了广泛的优化应用场景。
本文将介绍Matlab优化算法的基本原理,并通过实际案例来展示其在实际问题中的应用。
二、优化算法的基本原理优化算法的目标是求解一个函数的最优解,通常包括最大化或最小化目标函数。
Matlab中的优化算法主要基于以下两种类型:局部搜索算法和全局优化算法。
1. 局部搜索算法局部搜索算法是在当前解的附近搜索最优解的一类算法。
其中最为常见的是梯度下降法和牛顿法。
梯度下降法是一种迭代方法,通过沿着目标函数的负梯度方向不断调整参数,以逐步接近最优解。
具体步骤如下:(1)计算目标函数在当前解的梯度。
(2)根据梯度方向和步长系数进行参数调整。
(3)重复以上步骤直到满足停止准则。
牛顿法是一种基于二阶导数的优化方法,相比梯度下降法更为高效,但也更为复杂。
其基本思想是通过泰勒展开近似目标函数,然后解析求解导数为零的方程,得到下一次迭代的参数值。
2. 全局优化算法全局优化算法是通过全局搜索空间来找到最优解的方法。
Matlab提供了一些全局优化算法工具箱,其中最常用的是遗传算法和模拟退火算法。
遗传算法是一种模拟自然进化的优化方法,通过不断迭代生成新的解并选择适应度高的个体,并模拟自然选择、交叉和变异等操作来优化目标函数。
遗传算法在搜索空间较大且复杂的问题上有很好的表现。
模拟退火算法是一种以某种概率接受劣解的搜索算法,通过模拟金属退火过程来逐渐降低目标函数的值。
它能够避免局部最优解,并在一定程度上探索全局最优解。
三、Matlab优化算法的应用案例1. 机器学习中的参数调优在机器学习中,模型的性能很大程度上取决于参数的选择。
Matlab提供了优化工具箱,可以帮助用户选择合适的参数以提高模型的性能。
以支持向量机(SVM)为例,通过调整核函数类型、惩罚项系数和软间隔参数等参数,可以提高模型的分类准确度。
matlab优化算法100例
matlab优化算法100例1. 线性规划问题的优化算法:线性规划问题是一类目标函数和约束条件都是线性的优化问题。
Matlab中有很多优化算法可以解决线性规划问题,如单纯形法、内点法等。
下面以单纯形法为例介绍线性规划问题的优化算法。
单纯形法是一种迭代算法,通过不断改变基础解来寻找问题的最优解。
它的基本思想是从一个可行解出发,通过改变基本变量和非基本变量的取值来逐步逼近最优解。
2. 非线性规划问题的优化算法:非线性规划问题是一类目标函数和约束条件至少有一个是非线性的优化问题。
Matlab中有很多优化算法可以解决非线性规划问题,如拟牛顿法、共轭梯度法等。
下面以拟牛顿法为例介绍非线性规划问题的优化算法。
拟牛顿法是一种逐步逼近最优解的算法,通过近似目标函数的二阶导数信息来构造一个二次模型,然后通过求解该二次模型的最优解来更新当前解。
3. 全局优化问题的优化算法:全局优化问题是一类目标函数存在多个局部最优解的优化问题。
Matlab中有很多优化算法可以解决全局优化问题,如遗传算法、模拟退火算法等。
下面以遗传算法为例介绍全局优化问题的优化算法。
遗传算法是一种模拟生物进化过程的优化算法,通过基因编码、选择、交叉和变异等操作来不断迭代演化一组个体,最终找到全局最优解。
4. 多目标优化问题的优化算法:多目标优化问题是一类存在多个目标函数并且目标函数之间存在冲突的优化问题。
Matlab中有很多优化算法可以解决多目标优化问题,如多目标粒子群优化算法、多目标遗传算法等。
下面以多目标粒子群优化算法为例介绍多目标优化问题的优化算法。
多目标粒子群优化算法是一种基于粒子群优化算法的多目标优化算法,通过在粒子的速度更新过程中考虑多个目标函数来实现多目标优化。
5. 其他优化算法:除了上述提到的优化算法,Matlab还提供了很多其他的优化算法,如模拟退火算法、蚁群算法等。
这些算法可以根据具体的问题选择合适的算法进行求解。
综上所述,Matlab提供了丰富的优化算法,可以解决不同类型的优化问题。
Matlab中的优化问题求解方法与示例分析
Matlab中的优化问题求解方法与示例分析介绍在科学与工程领域,优化问题是一个常见且重要的研究方向。
优化问题的目标是在给定的约束条件下,找到使得目标函数取得最优值的变量取值。
Matlab作为一个著名的科学计算软件,提供了丰富的优化问题求解方法。
本文将介绍Matlab中常用的优化问题求解方法,并通过实例分析来展示其应用。
一、线性规划问题的求解方法线性规划问题(Linear Programming)是一类目标函数与约束条件均为线性关系的优化问题。
Matlab中提供了线性规划问题求解的函数“linprog”和“intlinprog”。
1. linprog函数linprog函数用于求解线性规划问题,其使用方法如下:```[x, fval, exitflag, output] = linprog(f, A, b, Aeq, beq, lb, ub)```其中,f为目标函数的系数向量,A和b为不等式约束的系数矩阵和常数向量,Aeq和beq为等式约束的系数矩阵和常数向量,lb和ub为变量的下界和上界。
2. intlinprog函数intlinprog函数用于求解整数线性规划问题,即变量取值为整数的线性规划问题。
其使用方法与linprog类似,但需要添加一个参数“options”,用于设置求解器的选项。
二、非线性规划问题的求解方法非线性规划问题(Nonlinear Programming)是一类目标函数或约束条件存在非线性关系的优化问题。
Matlab中提供了多种非线性规划问题求解的函数,包括“fminunc”、“fmincon”和“lsqnonlin”。
1. fminunc函数fminunc函数用于求解没有约束条件的非线性规划问题,其使用方法如下:```[x, fval, exitflag, output] = fminunc(fun, x0)```其中,fun为目标函数的句柄,x0为变量的初始猜测值。
2. fmincon函数fmincon函数用于求解带约束条件的非线性规划问题,其使用方法如下:```[x, fval, exitflag, output, lambda] = fmincon(fun, x0, A, b, Aeq, beq, lb, ub)```参数的含义与linprog函数中的相对应参数相似,但需要注意的是,A、b、Aeq 和beq都是针对不等式约束和等式约束的系数矩阵和常数向量;lb和ub为变量的下界和上界。
matlab优化函数的使用方法
三.举例例1:求解线性规划问题:max f=2x1+5x2s.t先将目标函数转化成最小值问题:min(-f)=- 2x1-5x2程序:f=[-2 -5];A=[1 0;0 1;1 2];b=[4;3;8];[x,fval]=linprog(f,A,b)f=fval*(-1)结果:x = 23fval = -19.0000maxf = 19例2:minf=5x1-x2+2x3+3x4-8x5s.t –2x1+x2-x3+x4-3x5≤62x1+x2-x3+4x4+x5≤70≤x j≤15 j=1,2,3,4,5程序:f=[5 -1 2 3 -8];A=[-2 1 -1 1 -3;2 1 -1 4 1];b=[6;7];lb=[0 0 0 0 0];ub=[15 15 15 15 15];[x,fval]=linprog(f,A,b,[],[],lb,ub)结果:x =0.00000.00008.00000.000015.0000minf =-104例3:求解线性规划问题:minf=5x1+x2+2x3+3x4+x5s.t –2x1+x2-x3+x4-3x5≤12x1+3x2-x3+2x4+x5≤-20≤x j≤1 j=1,2,3,4,5程序:f=[5 1 2 3 1];A=[-2 1 -1 1 -3;2 3 -1 2 1];b=[1;-2];lb=[0 0 0 0 0];ub=[1 1 1 1 1];[x,fval,exitflag,output,lambda]=linprog(f,A,b,[],[],lb,ub) 运行结果:Exiting: One or more of the residuals, duality gap, or total relative errorhas grown 100000 times greater than its minimum value so far: the primal appears to be infeasible (and the dual unbounded).(The dual residual < TolFun=1.00e-008.)x = 0.00000.00001.19870.00000.0000fval =2.3975exitflag =-1output =iterations: 7cgiterations: 0algorithm: 'lipsol'lambda =ineqlin: [2x1 double]eqlin: [0x1 double]upper: [5x1 double]lower: [5x1 double]显示的信息表明该问题无可行解。
Matlab最优化编程例子
题目:分别用最速下降法、FR 共轭梯度法、DFP 法和BFGS 法求解问题:22112212min f (x)x 2x x 4x x 3x =-++-取初始点(1)T x (1,1)=,通过Matlab 编程实现求解过程。
公用函数如下:1、function f= fun( X )%所求问题目标函数f=X(1)^2-2*X(1)*X(2)+4*X(2)^2+X(1)-3*X(2); end2、function g= gfun( X )%所求问题目标函数梯度g=[2*X(1)-2*X(2)+1,-2*X(1)+8*X(2)-3]; end3、function He = Hess( X )%所求问题目标函数Hesse 矩阵n=length(X);He=zeros(n,n);He=[2,-2;-2,4];End解法一:最速下降法function [ x,val,k ] = grad( fun,gfun,x0 )%功能:用最速下降法求无约束问题最小值%输入:x0是初始点,fun 和gfun 分别是目标函数和梯度%输出:x 、val 分别是最优点和最优值,k 是迭代次数maxk=5000;%最大迭代次数rho=0.5;sigma=0.4;k=0;eps=10e-6;while (k<maxk)g=feval(gfun,x0);%计算梯度d=-g;%计算搜索方向if (norm(d)<eps)break ;endm=0;mk=0;while (m<20)if (feval(fun,x0+rho^m*d)<feval(fun,x0)+sigma*rho^m*g'*d) mk=m;break ;endm=m+1;endx0=x0+rho^mk*d;k=k+1;endx=x0;val=feval(fun,x0);end解法二:FR共轭梯度法function [ x,val,k ] = frcg( fun,gfun,x0 ) %功能:用FR共轭梯度法求无约束问题最小值%输入:x0是初始点,fun和gfun分别是目标函数和梯度%输出:x、val分别是最优点和最优值,k是迭代次数maxk=5000;%最大迭代次数rho=0.5;sigma=0.4;k=0;eps=10e-6;n=length(x0);while(k<maxk)g=feval(gfun,x0);%计算梯度itern=k-(n+1)*floor(k/(n+1));itern=itern+1;%计算搜索方向if(itern==1)d=-g;elsebeta=(g*g')/(g0*g0');d=-g+beta*d0;gd=g'*d;if(gd>=0.0)d=-g;endendif(norm(g)<eps)break;endm=0;mk=0;while(m<20)if(feval(fun,x0+rho^m*d)<feval(fun,x0)+sigma*rho^m*g'*d) mk=m;break;endm=m+1;endx0=x0+rho^mk*d;val=feval(fun,x0);g0=g;d0=d;k=k+1;endx=x0;val=feval(fun,x0);end解法三:DFP法function [ x,val,k ] = dfp( fun,gfun,x0 )%功能:用DFP法求无约束问题最小值%输入:x0是初始点,fun和gfun分别是目标函数和梯度%输出:x、val分别是最优点和最优值,k是迭代次数maxk=5000;%最大迭代次数rho=0.5;sigma=0.4;k=0;eps=10e-6;n=length(x0);Hk=inv(feval('Hess',x0));while(k<maxk)gk=feval(gfun,x0);if(norm(gk)<eps)break;enddk=-Hk*gk';dk=dk';m=0;mk=0;while(m<20)if(feval(fun,x0+rho^m*dk)<feval(fun,x0)+sigma*rho^m*gk'*dk) mk=m;break;endm=m+1;end%DFP校正x=x0+rho^mk*dk;sk=x-x0;yk=feval(gfun,x)-gk;if(sk'*yk>0)Hk=Hk-(((Hk*yk')*yk)*Hk)/(yk*Hk*yk')+(sk'*sk)/(sk*yk');endk=k+1;x0=x;endval=feval(fun,x0);end解法四:BFGS法function [ x,val,k ] = bfgs( fun,gfun,x0 )%功能:用BFGS法求无约束问题最小值%输入:x0是初始点,fun和gfun分别是目标函数和梯度%输出:x、val分别是最优点和最优值,k是迭代次数maxk=5000;%最大迭代次数rho=0.5;sigma=0.4;k=0;eps=10e-6;n=length(x0);Bk=eye(n);while(k<maxk)gk=feval(gfun,x0);if(norm(gk)<eps)break;enddk=-Bk*gk';m=0;mk=0;while(m<20)new=sigma*rho^m*gk*dk;old=feval(fun,x0);if(feval(fun,x0+rho^m*dk')<feval(fun,x0)+sigma*rho^m*gk*dk) mk=m;break;endm=m+1;end%BFGS校正x=x0+rho^mk*dk';sk=x-x0;yk=feval(gfun,x)-gk;if(yk'*sk>0)Bk=Bk-(((Bk*sk')*sk)*Bk)/(sk*Bk*sk')+(yk'*yk)/(yk*sk');endk=k+1;x0=x;endval=feval(fun,x0);end。
Matlab在最优化问题中的应用举例
在企业生产和日常生活中,人们总是希望用最少的人力、物力、财力和时间去办更多的事,这就是所谓的最优化问题。
线性规划方法是解决最优化问题的有效方法之一,因此受到人们的普遍关注。
在企业生产过程中,生产计划安排直接影响到企业的经济效益,而生产计划本质就是在目标一定时,对于人力、时间和物质资源的优化配置问题。
1。
综述了最优化方法,归纳了最优化闯题中线性规划和非线性规划模型的解法,并给出了相应的matlab求解代码。
2。
提出了基于信息增益率的用电客户指标选择方法,根据信息增益率的大小选择对分类有贡献的指标。
关键词:Matlab,最优化方法,应用举例In enterprise production and daily life, people always hope with the least amount of human, material and financial resources and time to do more things, this is the so-called optimization problem. Linear programming method is to solve the optimal problem, so one of the effective method by people's attention. In enterprise production process, production plan directly affect the enterprise economic benefit, but in essence is the production plan for the target certain human, time and material resources optimization allocation problem.1·Studying the optimization,summing up the solutions ofoptimization problem for both linear and non-linear programming model and proposing the matlabcode.2·Proposing a new way based on information-gain-ratio to choose the powercustomer indices,selecting the indices which are more contributive to theclassification,in order to avoid over learning。
第6讲+MATLAB在最优化中的运用
3、 如果求解目标函数的最大值,可将目标函数改为负值来求解最小值,解 出后再将目标函数的符号改回来。若不等式约束是大于等于形式,则可 以在不等式两端乘上负号,改变不等式方向。 4、 函数 linprog 的书写格式如下: 最优解: x=linprog(f,A,b) %用于不等式约束,使目标函数为最小的解。 %用于具有等式约束和不等式约束,使
第六讲 MATLAB 在最优化中的应用
MATLAB 常用的优化函数见下表: 函数名 fminbnd fminunc fminsearch linprog quadprog fmincon fgoalattain fminmax fseminf lsqlin 说明 有边界的标量最小化 无约束非线性最小化 无约束非线性最小化搜索 线性规划,具有等式约束或不等式约束 二次规划,具有等式约束或不等式约束 条件约束非线性最小化 多目标达到课题 最大最小化 半无限最小化 有约束线性最小二乘解
options=optimset(options,'largescale','off')
[x,fval,exitflag,output]=fminunc(fun,0.5,options)
5、 注:fminsearch 也是解决无约束非线性极小化问题的函数。 (自学) fminsearch 用 Nelder-Mead 单纯形法求多变量函数极小值点,用于多维 无约束非线性最小化。 (fminunc 用 Quasi-Newton 拟牛顿法求多变量函 数局部极小值点 )
min f T x
x
Ax b
Aeq x=beq
lb x ub
其中,f、x、b、beq、lb、ub 为向量,而 A、Aeq 为矩阵。f 为目标函数 的系数向量, x 为决策变量。 b 为不等式约束表达式右端的常数向量。 beq 为等式约束表达式右端的常数向量。lb、ub 为 x 的下界和上界。
最优化实例和matlab源程序
最优化平时作业一、目标规划1、题目:见书中例题P110例42、解题方法:利用Lingo求解3、具体步骤(1).对应于第一优先等级,建立线性规划问题:model:min=-d1;5*x1+10*x2<=60;x1-2*x2+d1_-d1=0;end运行结果:-d1=0(2)对应于第二优先等级,将-d1=0作为约束条件,建立线性规划问题:min=d2_;5*x1+10*x2<=60;x1-2*x2+d1_-d1=0;4*x1+4*x2+d2_-d2=36;-d1=0;end运行结果:d2=0;(3).对应于第三优先等级,将-d1=0, -d1=0作为约束条件,建立线性规划问题:min=d3_;5*x1+10*x2<=60;x1-2*x2+d1_-d1=0;4*x1+4*x2+d2_-d2=36;6x1+8*x2+d3_-d3=48;-d1=0;d2=0;end运行结果:d3=0;X1 4.800000X2 2.400000二、动态规划之0-1背包问题1、题目:给定n种物品和一背包。
物品i的重量是Wi,其价值为Vi,背包的容量是c,问应如何选择装入背包中的物品,使得装入背包中物品的总价值最大。
2、解题方法与思路:利用java求解,.思想方法是回溯思想3、需求分析对于给定n种物品和一背包。
在容量最大值固定的情况下,要求装入的物品价值最大化4、java源程序及运行结果BackTrace.java* To change this template, choose Tools | Template Manager* and open the template in the editor.*/package sunfa;import java.util.Date;public class BackTrace {/*** @param args*/public static void main(String[] args) {double w[]={2,2,6,5,4};double v[]={6,3,5,4,6};int n=5;double c=10;knapsack(v,w,c);System.out.println(bestp);}//比较两个元素大小的类private static class Element implements Comparable{ int id;double d;private Element(int idd,double dd){id=idd;d=dd;}public int compareTo(Object x){double xd=((Element)x).d;if(d<xd)return -1;if(d==xd)return 0;return 1;}public boolean equals(Object x){return d==((Element)x).d;}}static double c; //背包容量static int n;//物品数static double[]w;//物品重量数组static double[]p; //物品价值数组static double cw;//当前重量static double cp;//当前价值static double bestp; //当前最优值static int [] x;//解static int [] sortX;//排好序之后的解static int [] bestX;//最有解static Date date = null; // @jve:decl-index=0:public static double knapsack(double[]pp,double[]ww,double cc){ c=cc;n=pp.length-1;cw=0.0;cp=0.0;bestp=0.0;Element[]q=new Element[n];//q为单位重量价值数组for(int i=1;i<=n;i++)q[i-1]=new Element(i,pp[i]/ww[i]);MergeSort.mergeSort(q);p=new double[n+1];w=new double[n+1];x=new int[n+1];sortX=new int[n+1];bestX=new int[n+1];for(int i=1;i<=n;i++){p[i]=pp[q[n-i].id];w[i]=ww[q[n-i].id];sortX[i]=q[n-i].id;}backtrack(1);//回溯搜索return bestp;}private static void backtrack(int i){if(i>=n){if(cp>bestp){bestp=cp;for(int j=1;j<=n;j++){bestX[j]=x[j];}}return;}//搜索子树if(cw+w[i]<=c){//进入左子树x[sortX[i]]=1;cw+=w[i];cp+=p[i];backtrack(i+1);cw-=w[i];cp-=p[i];}if(bound(i+1)>bestp)x[sortX[i]]=0;backtrack(i+1);//进入右子树}//计算上界private static double bound(int i){double cleft=c-cw;double bound=cp;//以物品重量价值递减顺序装入物品while(i<=n&&w[i]<=cleft){cleft-=w[i];bound+=p[i];i++;}//装满背包if(i<=n)bound+=p[i]/w[i]*cleft;return bound;}public static String getX(){String solution=String.valueOf(bestX[1]);for(int i=2;i<bestX.length;i++){solution+=",";solution+=String.valueOf(bestX[i]);}return solution;}public static double getBestValue(){return bestp;}}三、最短路径问题:给定距离矩阵,求第一点到其它点的最短距离1、题目:给定下列矩阵,求第一点到其余各点的最短路径552525105501020252510010204020100152520150501025405002、解题方法:利用matlab 求解3、具体步骤:源程序及运行结果clear; clc;M=10000;a(1,:)=[0,50,M,40,25,10];a(2,:)=[zeros(1,2),15,20,M,25]; a(3,:)=[zeros(1,3),10,20,M]; a(4,:)=[zeros(1,4),10,25]; a(5,:)=[zeros(1,5),55]; a(6,:)=zeros(1,6); a=a+a';pb(1:length(a))=0;pb(1)=1;d(1:length(a))=M;d(1)=0;temp=1; while sum(pb)<length(a)tb=find(pb==0);d(tb)=min(d(tb),d(temp)+a(temp,tb));tmpb=find(d(tb)==min(d(tb)));temp=tb(tmpb(1));pb(temp)=1;end运行输出,第一个点到其它各点的最短路径长度,即:d = 0 35 45 35 25 10四、关键路径问题1.题目要求:某工程由下表作业组成,计算出其关键路径。
最优化方法matlab作业
实用最优化方法——matlab编程作业初值为[-1;1]其中g0、g1分别为不同x值下得导数,f0、f1为函数值MATLAB程序:x0=[-1;1];s0=[1;1];c1=0.1;c2=0.5;a=0;b=inf;d=1;n=0;x1=x0+d*s0;g0=[-400*(x0(2)-x0(1)^2)*x0(1)-2*(1-x0(1));200*(x0(2)-x0(1) ^2)];g1=[-400*(x1(2)-x1(1)^2)*x1(1)-2*(1-x1(1));200*(x1(2)-x1(1) ^2)];f1=100*(x1(2)-x1(1)^2)^2+(1-x1(1))^2;f0=100*(x0(2)-x0(1)^2)^2+(1-x0(1))^2;while((f0-f1<-c1*d*g0'*s0)||(g1'*s0<c2*g0'*s0))if ((f0-f1)<(-c1*d*g0'*s0))b=d;d=(d+a)/2;x1=x0+d*s0;g0=[-400*(x0(2)-x0(1)^2)*x0(1)-2*(1-x0(1));200*(x0 (2)-x0(1)^2)];g1=[-400*(x1(2)-x1(1)^2)*x1(1)-2*(1-x1(1));200*(x1 (2)-x1(1)^2)];f1=100*(x1(2)-x1(1)^2)^2+(1-x1(1))^2;f0=100*(x0(2)-x0(1)^2)^2+(1-x0(1))^2;elseif (((g1')*s0)<(c2*(g0')*s0))a=d;if(2*d<=(d+b)/2)d=2*d;elsed=(d+b)/2;endx1=x0+d*s0;g0=[-400*(x0(2)-x0(1)^2)*x0(1)-2*(1-x0(1));200*(x0(2) -x0(1)^2)];g1=[-400*(x1(2)-x1(1)^2)*x1(1)-2*(1-x1(1));200*(x1(2 )-x1(1)^2)];f1=100*(x1(2)-x1(1)^2)^2+(1-x1(1))^2;f0=100*(x0(2)-x0(1)^2)^2+(1-x0(1))^2;endx1df1=100*(x1(2)-x1(1)^2)^2+(1-x1(1))^2 计算结果:最优点:x1 = -0.99611.0039步长: d = 0.0039最优解:f1 = 3.9981目标函数:function f = fun2( x )f=x(1)^2-2*x(1)*x(2)+2*x(2)^2+x(3)^2-x(2)*x(3)+2*x(1)+3*x(2 )-x(3);end目标函数梯度:function g = gfun2( x )g=[2 -2 0;-2 4 -1;0 -1 2]*x+[2;3;-1];end源代码:(以初值为为(0;0;0))x0=[0;0;0]; %初始值eps=1.0e-5; %精度g0=gfun2(x0);s0=-g0;n=0;syms d1;while norm(g0)>epsif n<3g=gfun2(x0+d1*s0);d= double(solve(s0'*g));x1=x0+d*s0;g1=gfun2(x1);if norm(g1)<epsn=n+1;x0=x1;breakelses0=-g1+(norm(g1)^2/norm(g0)^2)*s0;x0=x1;g0=g1;endelseif n==3x0=x1;g0=gfun2(x0);s0=-g0;n=0;endn=n+1;x0nfun2(x0)计算结果:最优点:x0 = -4 -3 -1 迭代次数: n = 3 最优值: ans = -8(1)最速下降法:目标函数:function f= fun3_1(x )f=x(1)+2*x(2)^2+exp(x(1)^2+x(2)^2);end目标函数的梯度:function g= gfun3_1(x)g=[1+2*x(1)*exp(x(1)^2+x(2)^2);4*x(2)+2*x(2)*exp(x(1)^2+x(2 )^2)];end源代码(初值为(1;0)):x0=[1;0];%初始值eps=1.0e-5;%精度n=0;g0=gfun3(x0);syms d1;while norm(g0)>=epss0=-g0;g=gfun3(x0+d1*s0);d= double(solve(s0'*g));x1=x0+d*s0;g1=gfun3(x1);if( norm(g1)<eps)n=n+1;x0=x1;break;elsex0=x1;g0=gfun3(x0);endn=n+1;endf0=fun3(x0)x0n计算结果:最优值: f0 = 0.7729 最优点:x0 = -0.4194 0迭代次数:n = 1(2)牛顿法目标函数:function f= fun3_1(x )f=x(1)+2*x(2)^2+exp(x(1)^2+x(2)^2);end目标函数梯度:function g= gfun3_1(x)g=[1+2*x(1)*exp(x(1)^2+x(2)^2);4*x(2)+2*x(2)*exp(x(1)^2+x(2 )^2)];end目标函数的Hesse阵:function g2 = g2fun3(x)g2=[2*exp(x(1)^2+x(2)^2)+4*x(1)^2*exp(x(1)^2+x(2)^2),4*x(1) *x(2)*exp(x(1)^2+x(2)^2)4*x(1)*x(2)*exp(x(1)^2+x(2)^2),4+2*exp(x(1)^2+x(2)^2)+4*x(2 )^2*exp(x(1)^2+x(2)^2)];end源代码(初值为(1;0)):x0=[1;0];%初始值eps=1.0e-5;%精度n=0;g0=gfun3(x0);g20=g2fun3(x0);while norm(g0)>=epsd=-g20\g0;x1=x0+d;g1=gfun3(x1);if( norm(g1)<eps)n=n+1;x0=x1;break;elsex0=x1;g0=gfun3(x0);endn=n+1;endf0=fun3(x0)x0n计算结果:最优值:f0 = 0.7729最优点:x0 = -0.4194迭代次数:n = 63(3)利用BGFS法:目标函数:function f= fun3_1(x )f=x(1)+2*x(2)^2+exp(x(1)^2+x(2)^2);end目标函数梯度function g= gfun3_1(x)g=[1+2*x(1)*exp(x(1)^2+x(2)^2);4*x(2)+2*x(2)*exp(x(1)^2+x(2 )^2)];end源代码(初值为(1;0)):x0=[1;0];%初始值eps=1.0e-5;%精度n=0;g0=gfun3(x0);syms d1;h0=eye(2);while norm(g0)>=epss0=-h0*g0;g=gfun3(x0+d1*s0);d= double(solve(s0'*g));x1=x0+d*s0;g1=gfun3(x1);if( norm(g1)<eps)n=n+1;x0=x1;break;elseh0=h0-(h0*(g1-g0)*(g1-g0)'*h0)/((g1-g0)'*h0*(g1-g0))+...((x1-x0)*(x1-x0)')/((x1-x0)'*(g1-g0))+...((g1-g0)'*h0*(g1-g0))*((x1-x0)*(x1-x0)');x0=x1;g0=gfun3(x0);endn=n+1;endf0=fun3(x0)x0n计算结果:最优值:f0 = 0.7729最优点:x0 = -0.4194迭代次数:n = 1题四:求解子程序:function [x,lambda]=qsubp(H,c,Ae,be) ginvH=pinv(H);[m,n]=size(Ae);if(m>0)rb=Ae*ginvH*c + be;lambda=pinv(Ae*ginvH*Ae')*rb;x=ginvH*(Ae'*lambda-c);elsex=-ginvH*c;lambda=0;endend源代码:H=[2 0;0 2];%目标函数的hesse阵c=[-2,-4];Ae=[0 0];be=[0;0];Ai=[1/2 0;-1 3];bi=[1;2];x0=[-1;0];%初始值内部点eps=1.0e-9; %µ±ax-b=epsʱµ±×öax-b=0´¦Àíerr=1.0e-6;k=0;x0(1)=x0(1)+x0(2);x=x0;n=length(x);max=1.0e3;ne=length(be);ni=length(bi);lamk=zeros(ne+ni,1);index=ones(ni,1);for i=(1:ni)if(bi(i)-Ai(i,:)*x>eps)index(i)=0;。
matlab十个简单案例编写
matlab十个简单案例编写1. 求解线性方程组线性方程组是数学中常见的问题之一,而MATLAB提供了用于求解线性方程组的函数。
例如,我们可以使用"linsolve"函数来求解以下线性方程组:2x + 3y = 74x - 2y = 2代码如下所示:A = [2, 3; 4, -2];B = [7; 2];X = linsolve(A, B);disp(X);解释:上述代码定义了一个2x2的矩阵A和一个2x1的矩阵B,分别表示线性方程组的系数矩阵和常数向量。
然后,使用linsolve函数求解线性方程组,结果存储在X中,并通过disp函数打印出来。
运行代码后,可以得到x=2和y=1的解。
2. 求解非线性方程除了线性方程组外,MATLAB还可以用于求解非线性方程。
例如,我们可以使用"fzero"函数求解以下非线性方程:x^2 + 2x - 3 = 0代码如下所示:fun = @(x) x^2 + 2*x - 3;x0 = 0;x = fzero(fun, x0);disp(x);解释:上述代码定义了一个匿名函数fun,表示非线性方程。
然后,使用fzero函数传入fun和初始值x0来求解非线性方程的根,并通过disp函数打印出来。
运行代码后,可以得到x=1的解。
3. 绘制函数图像MATLAB提供了强大的绘图功能,可以帮助我们可视化函数的形状和特征。
例如,我们可以使用"plot"函数绘制以下函数的图像:y = cos(x)代码如下所示:x = linspace(0, 2*pi, 100);y = cos(x);plot(x, y);解释:上述代码首先使用linspace函数生成一个从0到2π的100个等间距点的向量x,然后计算对应的cos值,并存储在向量y中。
最后,使用plot函数将x和y作为横纵坐标绘制出函数图像。
运行代码后,可以看到cos函数的周期性波动图像。
matlab最优化问题的经典例题
matlab最优化问题的经典例题MATLAB最优化问题的经典例题之一是线性规划问题。
线性规划是一种数学优化方法,用于寻找一组给定线性约束条件下使得目标函数达到最大或最小值的变量值。
假设有以下线性规划问题:最大化目标函数:Z = c1*x1 + c2*x2 + ... + cn*xn在满足约束条件:A*x <= bx >= 0下,求解变量x1, x2, ..., xn的最优解。
使用MATLAB求解该线性规划问题的代码如下:```% 定义目标函数系数向量cc = [c1; c2; ...; cn];% 定义不等式约束条件系数矩阵A和右侧常数向量bA = [A11, A12, ..., A1n;A21, A22, ..., A2n;...,Am1, Am2, ..., Amn];b = [b1; b2; ...; bm];% 定义变量的下界和上界lb = zeros(n, 1); % 下界为0,即 x >= 0ub = Inf(n, 1); % 上界为无穷大,即无上界% 求解线性规划问题[x, fval] = linprog(-c, A, b, [], [], lb, ub);% 输出最优解和最优值disp('最优解:')disp(x)disp('最优值:')disp(-fval)```在上述代码中,我们将目标函数系数向量c、不等式约束条件系数矩阵A和右侧常数向量b、变量的下界和上界lb、ub传递给linprog函数进行求解。
linprog函数返回最优解x和最优值-fval(由于linprog默认求解最小化问题,我们使用-c作为目标函数系数向量,将最大化问题转化为最小化问题)。
通过以上代码,我们可以求解线性规划问题的最优解和最优值,并使用MATLAB进行验证和分析。
这个例题可以帮助我们理解和掌握MATLAB中最优化问题的求解方法。
matlab编程实现求解最优解
《现代设计方法》课程关于黄金分割法和二次插值法的Matlab语言实现在《现代设计方法》的第二章优化设计方法中有关一维搜索的最优化方法的一节里,我们学习了黄金非分割法和二次插值法。
它们都是建立在搜索区间的优先确定基础上实现的。
为了便于方便执行和比较,我将两种方法都写进了一个程序之内,以选择的方式实现执行其中一个。
下面以《现代设计方法》课后习题为例。
见课本70页,第2—7题。
原题如下:求函数f(x)=3*x^2+6*x+4的最优点,已知单谷区间为[-3,4],一维搜索精度为0.4。
1、先建立函数f(x),f(x)=3*x^2+6*x+4。
函数文件保存为:lee.m源代码为:function y=lee(x)y=3*x^2+6*x+4;2、程序主代码如下,该函数文件保存为:ll.mclear;a=input('请输入初始点');b=input('请输入初始步长');Y1=lee(a);Y2=lee(a+b);if Y1>Y2 %Y1>Y2的情况k=2; Y3=lee(a+2*b);while Y2>=Y3 %直到满足“大,小,大”为止k=k+1;Y3=lee(a+k*b);endA=a+b;B=a+k*b;elseif Y1<Y2 %Y1<Y2的情况k=1;Y3=lee(a-k*b);while Y1>=Y3 %直到满足“大,小,大”为止k=k+1;Y3=lee(a-k*b);endA=a-k*b;B=a;elseA=a;B=a+b; %Y1=Y2的情况enddisp(['初始搜索区间为',num2str([A,B])])%输出符合的区间xuanze=input('二次插值法输入0,黄金分割法输入1');%选择搜索方式T=input('选定一维搜索精度');if xuanze==1while B-A>T %一维搜索法使精度符合要求C=A+0.382*(B-A);D=A+0.618*(B-A); %黄金分割法选点if lee(C)>=lee(D); %缩小区间A=C;elseB=D;endendelsewhile B-A>T %二次插值法是精度符合要求C=(A+B)/2;W=[1,A,A^2;1,B,B^2;1,C,C^2];w=[lee(A);lee(B);lee(C)];x=W\w; %求线性方程组解,求拟合曲线xx=perms(x)';for n=1:(factorial(3)); %使解得值与a0,a1,a2一一对应t=1+(n-1)*3;a0=xx(t);a1=xx(t+1);a2=xx(t+2);if a0+a1*A+a2*A^2~=lee(A)||a0+a1*B+a2*B^2~=lee(B)...||a0+a1*C+a2*C^2~=lee(C);continueendbreakendxp=-a1/(2*a2); %拟合直线的最低点if lee(C)>=lee(xp); %缩小区间if C>=xp; %xp与C大小不定,导致缩小方式不同B=C;elseA=C;endelseif C>=xp;A=xp;elseB=xp;endendendendX=(A+B)/2;Y=lee(X);disp(['极小值点为',num2str(X),'极值为',num2str(Y)]);%输出结果3、由于我编的程序,其搜索区间是自定的。
matlab 最优化方法
s
利用F(x)的一组离散数据作函数分解(3),可以利用最小二 乘拟合处理。设给定F(x)的一组数据(光盘中数据文件 data1.dat 中的数据xdata ydata),将其分解成三个不同 峰函数的叠加
相应的程序为 c=ones(7,1); A=-[60*eye(4),[zeros(1,3);65*eye(3)]]; b=-[10000-65*120;11500;12000;8500]; Aeq=[0.85*eye(3),[0,-1,0,0;0,0.85,1,0;0,0,0.85,-1]]; beq=[-0.85*120;0;0]; z=linprog(c,A,b,Aeq,beq,zeros(7,1)) 运行结果:z = 36.6667 47.4028 33.7256 0.0000 133.1667 153.4840 159.1282
例:求解以下最优化问题:
min st.
解:
4 0 0 Q 0 2 0 0 0 2
2 x2 y 2 z 2 x y z 1
Aeq 1 1 1 beq 1
程序:Q=[4,0,0;0,2,0;0,0,2]; Aeq=[1 1 1]; beq=1; R=quadprog(Q,[],[],[],Aeq,beq);
y的目标值(记作y0为1.50。当y偏离 时,产品为次品,质量损失为1, 000(元); 当y偏离 时,产品为废品,损失为9,000(元)。 零件参数的标定值有一定的容许变化范围;容差分为A、B、C三个等级, 用与标定值的相对值表示,A等为 ,B等为 ,C等为 。7个零件参数标定 值的容许范围,及不同容差等级零件的成本(元)如下表(符号/表示无 此等级零件):
其中 c,A,b,Aeq,beq,l,u是模型中对应的矩阵和向量,x 是输出的数值解,f是对应的最优目标函数值。 注:当缺少后面几个输入参数时,可以直接略去,如
matlab优化算法 100例
matlab优化算法 100例Matlab是一种非常强大的数学软件,其中内置了许多实用的优化算法。
本文将围绕“Matlab优化算法100例”这个话题,分享一些基本的优化算法的应用实例。
第一步:优化函数的定义在使用Matlab优化算法之前,我们首先需要定义一个优化函数。
我们可以使用Matlab中的符号计算工具箱来定义优化函数,或者直接在脚本中定义一个函数。
下面是一个函数的例子:```function f = myfun(x)f = 0.26*(x(1)^2+x(2)^2)-0.48*x(1)*x(2);end```其中,这个函数计算了二次函数$f(x_1,x_2)=0.26(x_1^2+x_2^2)-0.48x_1x_2$ 的值。
这个函数的最小值可以通过优化算法来求解。
第二步:使用Matlab中的优化算法Matlab中提供了许多实用的优化算法,包括:梯度下降法、共轭梯度法、拟牛顿法、遗传算法、粒子群算法等等。
这些算法可以通过调用相关的函数来使用。
这里以fminunc函数为例,展示如何使用Matlab中的优化算法来求解前面定义的函数myfun的最小值。
```[x,fval,exitflag,output] = fminunc(@myfun, [0.3 0.3])```其中,@myfun是一个函数句柄,[0.3 0.3]是参数的初始值。
此函数将返回优化的最小值,以及一些其他的输出。
第三步:分析结果并优化我们可以使用Matlab中的 plot 函数来将优化结果可视化,以便更好地理解问题。
通过这个可视化,我们可以分析结果并进行优化。
```[X,Y]=meshgrid(-10:0.1:10,-10:0.1:10);Z=0.26*(X.^2+Y.^2)-0.48*X.*Y;figurecontour(X,Y,Z,50);hold onplot(x(1), x(2), 'ro')hold off```这里,我们使用 meshgrid 函数生成一个平面,并计算出函数的值。
matlab程序优化的常用方法
matlab程序优化的常用方法Matlab程序优化是提高程序效率和性能的重要手段,可以使程序运行更快、更稳定、更节省内存。
本文将介绍一些常用的Matlab 程序优化方法,并给出相应的实例。
1. 向量化向量化是Matlab程序优化中最基本的方法之一。
通过使用矩阵和向量运算,可以将多重循环转换为单重循环或者不需要循环的运算。
这样可以大大减少程序运行的时间和占用的内存。
例如,下面是一个使用循环的卷积运算:```matlabx = rand(1, 10000);h = rand(1, 10);y = zeros(1, length(x)-length(h)+1);for n = 1:length(y)y(n) = sum(x(n:n+length(h)-1).*h);end```可以使用Matlab内置函数conv()实现同样的卷积运算:```matlaby = conv(x, h, ‘valid’);```这个简单的例子展示了向量化的优势:代码更为简洁,运行速度更快。
2. 预分配空间在程序中经常需要创建新的变量。
如果变量的空间没有预分配好,每次创建变量时都需要重新分配内存,这会影响程序的运行速度和内存使用。
例如,下面的代码使用循环创建一个矩阵:```matlabn = 1000;m = 1000;A = zeros(n, m);for i = 1:nfor j = 1:mA(i, j) = i*j;endend```可以通过预分配矩阵的空间来提高程序的效率:```matlabn = 1000;m = 1000;A = zeros(n, m);for i = 1:nfor j = 1:mA(i, j) = i*j;endend```3. 减少变量的使用在程序中使用的变量越多,程序的效率就越低。
因此,减少变量的使用可以提高程序的运行速度和内存使用。
例如,下面的代码使用了两个矩阵A和B来计算矩阵C:```matlabn = 100;m = 100;A = rand(n, m);B = rand(n, m);C = zeros(n, m);for i = 1:nfor j = 1:mC(i, j) = A(i, j)*B(i, j);endend```可以通过直接使用矩阵乘法运算来减少变量的使用:```matlabn = 100;m = 100;A = rand(n, m);B = rand(n, m);C = A.*B;```在这个简单的例子中,使用矩阵乘法运算可以减少变量的使用,从而提高程序的效率。
最优化课程设计matlab
作业:1.用薄钢板制造一体积5m 3,长度不小于4m ,无上盖的货箱,要求钢板耗量最小。
确定货箱的长x 1、宽x 2和高x 3。
试列出问题的数学模型。
解:假设钢板为单位厚度,不考虑钢板焊接或连接耗钢量及相关劳工费用。
设y 为货箱的钢板消耗量,则此问题的数学模型如下:min y= x 1 x 2+2 x 1 x 3+2 x 2 x 3s.t. x 1 x 2 x 3=5x 1>4 x 1 ,x 2 ,x 3>02.将下面的线性规划问题表示为标准型并用单纯形法求解max f=x 1+2x 2+x 3s .t .2x 1+x 2-x 3≤2 -2x 1+x 2-5x 3≥-6 4x 1+x 2+x 3≤6 x i ≥0 i=1,2,3 解:先化为标准型:首先,将第二个约束条件两边乘以(-1),再分别对三个约束不等式添加非负的松弛变量654,,x x x ,即可化为如下标准型:3212min x x x f ---=⎪⎪⎩⎪⎪⎨⎧=≥=+++=++-=+-+6,5,4,3,2,1,06465222..632153214321i x x x x x x x x x x x x x t s i 列成表格:2 ○1 -1 1 0 0 2 2 -1 5 0 1 0 6 4 1 1 0 0 1 6 -1 -2* -1 0 0 0 0可见此表已具备1、2、3三个特点。
首先从底行中选元素-2,再在第二列三个元素中,由2/1,6/1,6/1最小者决定选第一行第二列的元素1,标以记号,迭代一次得2 1 -1 1 0 0 2 4 0 ④ 1 1 0 8 2 0 2 -1 0 1 43 0 -3* 2 0 0 4再从底行中选元素-34再迭代一次得3 1 0 5/4 1/4 0 4 1 0 1 1/4 1/4 0 2 0 0 0 -3/2 -1/2 1 0 6 0 0 11/4 3/4 0 10此时,所有的检验数均为正,停止迭代,最优解为:()0,0,0,2,4,0*=x ,最优值为:102142*-=⨯-+⨯-=Z ;3. 试用DFP 变尺度法求解下列无约束优化问题。
最优化方法的Matlab实现【范本模板】
最优化方法的Matlab实现在生活和工作中,人们对于同一个问题往往会提出多个解决方案,并通过各方面的论证从中提取最佳方案。
最优化方法就是专门研究如何从多个方案中科学合理地提取出最佳方案的科学。
由于优化问题无所不在,目前最优化方法的应用和研究已经深入到了生产和科研的各个领域,如土木工程、机械工程、化学工程、运输调度、生产控制、经济规划、经济管理等,并取得了显著的经济效益和社会效益。
用最优化方法解决最优化问题的技术称为最优化技术,它包含两个方面的内容:1)建立数学模型即用数学语言来描述最优化问题。
模型中的数学关系式反映了最优化问题所要达到的目标和各种约束条件。
2)数学求解数学模型建好以后,选择合理的最优化方法进行求解.最优化方法的发展很快,现在已经包含有多个分支,如线性规划、整数规划、非线性规划、动态规划、多目标规划等。
9.1 概述利用Matlab的优化工具箱,可以求解线性规划、非线性规划和多目标规划问题。
具体而言,包括线性、非线性最小化,最大最小化,二次规划,半无限问题,线性、非线性方程(组)的求解,线性、非线性的最小二乘问题.另外,该工具箱还提供了线性、非线性最小化,方程求解,曲线拟合,二次规划等问题中大型课题的求解方法,为优化方法在工程中的实际应用提供了更方便快捷的途径。
9.1。
1 优化工具箱中的函数优化工具箱中的函数包括下面几类:1.最小化函数表9—1 最小化函数表2.方程求解函数表9—2 方程求解函数表3.最小二乘(曲线拟合)函数表9—3 最小二乘函数表4.实用函数表9—4 实用函数表5.大型方法的演示函数表9-5 大型方法的演示函数表6.中型方法的演示函数表9—6 中型方法的演示函数表9。
1.3 参数设置利用optimset函数,可以创建和编辑参数结构;利用optimget函数,可以获得options优化参数.● optimget函数功能:获得options优化参数。
语法:val = optimget(options,'param’)val = optimget(options,'param’,default)描述:val = optimget(options,’param’)返回优化参数options中指定的参数的值。
遗传算法优化的matlab案例
遗传算法(Genetic Algorithm,GA)是一种模拟生物进化过程的搜索和优化算法,通过模拟生物的遗传、交叉和变异操作来寻找问题的最优解。
它以一种迭代的方式生成和改进解决方案,并通过评估每个解决方案的适应度来选择下一代解决方案。
在Matlab中,遗传算法优化工具箱提供了方便的函数和工具,可以帮助用户快速开发和实现遗传算法优化问题。
下面,我们以一个简单的最优化问题为例,演示在Matlab中如何使用遗传算法优化工具箱进行优化。
假设我们要优化一个简单的函数f(x),其中x是一个实数。
我们的目标是找到使得f(x)取得最小值的x值。
具体来说,我们将优化以下函数: f(x) = x² - 4x + 4首先,我们在Matlab中定义目标函数f(x)的句柄(用于计算函数值)和约束条件(如果有的话)。
代码如下:function y = testfunction(x)y = x^2 - 4*x + 4;end接下来,我们需要使用遗传算法优化工具箱的函数ga来进行优化。
我们需要指定目标函数的句柄、变量的取值范围和约束条件(如果有的话),以及其他一些可选参数。
以下是一个示例代码:options = gaoptimset('Display', 'iter'); % 设置显示迭代过程lb = -10; % 变量下界ub = 10; % 变量上界[x, fval] = ga(@testfunction, 1, [], [], [], [], lb, ub, [], options);在上面的代码中,gaoptimset函数用于设置遗传算法的参数。
在这里,我们使用了可选参数'Display',它的值设置为'iter',表示显示迭代过程。
变量lb和ub分别指定了变量的取值范围,我们在这里将其设置为-10到10之间的任意实数。
横线[]表示没有约束条件。
最优化问题的matlab求解
x13
x
2 2
x3
80
2个不等式约束,
2个等式约束
3个决策变量x1,x2,x3 如果nonlcon以‘mycon1’作为参数值,则程序 mycon1.m如下
(4) x=fmincon(‘fun’,X0,A,b,Aeq,beq,VLB,VUB,’nonlcon’) (5)x=fmincon(‘fun’,X0,A,b,Aeq,beq,VLB,VUB,’nonlcon’,options)
输出极值点 M文件 迭代的初值 变量上下限 参数说明
(6) [x,fval]= fmincon(...) (7) [x,fval,exitflag]= fmincon(...) (8)[x,fval,exitflag,output]= fmincon(...)
1、解析解法和图解法
f
f
f
x1
|xx0
0, x2
|xx0
0,...,
xn
|xx0
0
例:用解析法求解以下函数的最小值
z e3t sin(4t 2) 4e0.5t cos 2t 0.5
>>syms t; y=exp(-3*t)*sin(4*t+2)+4*exp(-0.5*t)*cos(2*t)-0.5; ezplot(y,[0 4]) y1=diff(y); ezplot(y1,[0 4]) t0=solve(y1) y2=diff(y1); b=subs(y2,t,t0)
>> c=[-2,-1,-4,-3,-1]; A=[0 2 1 4 2;3 4 5 -1 -1]; b=[54;62]; Ae=[];Be=[]; xm=[0,0,3.32,0.678,2.57]; ff=optimset; rgeScale=‘off’;%是否采用大规模算法 ff.TolX=1e-15;%解的控制精度 ff.Display=‘iter’;%显示信息的级别 [X,f,flag,c]=linprog(c,A,b,Ae,Be,xm,[],[],ff)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题目:分别用最速下降法、FR 共轭梯度法、DFP 法和BFGS 法求解问题:
22112212min f (x)x 2x x 4x x 3x =-++-
取初始点(1)T x (1,1)=,通过Matlab 编程实现求解过程。
公用函数如下:
1、function f= fun( X )
%所求问题目标函数
f=X(1)^2-2*X(1)*X(2)+4*X(2)^2+X(1)-3*X(2); end
2、function g= gfun( X )
%所求问题目标函数梯度
g=[2*X(1)-2*X(2)+1,-2*X(1)+8*X(2)-3]; end
3、function He = Hess( X )
%所求问题目标函数Hesse 矩阵
n=length(X);
He=zeros(n,n);
He=[2,-2;
-2,4];
End
解法一:最速下降法
function [ x,val,k ] = grad( fun,gfun,x0 )
%功能:用最速下降法求无约束问题最小值
%输入:x0是初始点,fun 和gfun 分别是目标函数和梯度
%输出:x 、val 分别是最优点和最优值,k 是迭代次数
maxk=5000;%最大迭代次数
rho=0.5;sigma=0.4;
k=0;eps=10e-6;
while (k<maxk)
g=feval(gfun,x0);%计算梯度
d=-g;%计算搜索方向
if (norm(d)<eps)
break ;
end
m=0;mk=0;
while (m<20)
if (feval(fun,x0+rho^m*d)<feval(fun,x0)+sigma*rho^m*g'*d) mk=m;break ;
end
m=m+1;
end
x0=x0+rho^mk*d;
k=k+1;
end
x=x0;
val=feval(fun,x0);
end
解法二:FR共轭梯度法
function [ x,val,k ] = frcg( fun,gfun,x0 ) %功能:用FR共轭梯度法求无约束问题最小值
%输入:x0是初始点,fun和gfun分别是目标函数和梯度%输出:x、val分别是最优点和最优值,k是迭代次数maxk=5000;%最大迭代次数
rho=0.5;sigma=0.4;
k=0;eps=10e-6;
n=length(x0);
while(k<maxk)
g=feval(gfun,x0);%计算梯度
itern=k-(n+1)*floor(k/(n+1));
itern=itern+1;
%计算搜索方向
if(itern==1)
d=-g;
else
beta=(g*g')/(g0*g0');
d=-g+beta*d0;
gd=g'*d;
if(gd>=0.0)
d=-g;
end
end
if(norm(g)<eps)
break;
end
m=0;mk=0;
while(m<20)
if(feval(fun,x0+rho^m*d)<feval(fun,x0)+sigma*rho^m*g'*d) mk=m;break;
end
m=m+1;
end
x0=x0+rho^mk*d;
val=feval(fun,x0);
g0=g;d0=d;
k=k+1;
end
x=x0;
val=feval(fun,x0);
end
解法三:DFP法
function [ x,val,k ] = dfp( fun,gfun,x0 )
%功能:用DFP法求无约束问题最小值
%输入:x0是初始点,fun和gfun分别是目标函数和梯度
%输出:x、val分别是最优点和最优值,k是迭代次数
maxk=5000;%最大迭代次数
rho=0.5;sigma=0.4;
k=0;eps=10e-6;
n=length(x0);
Hk=inv(feval('Hess',x0));
while(k<maxk)
gk=feval(gfun,x0);
if(norm(gk)<eps)
break;
end
dk=-Hk*gk';
dk=dk';
m=0;mk=0;
while(m<20)
if(feval(fun,x0+rho^m*dk)<feval(fun,x0)+sigma*rho^m*gk'*dk) mk=m;break;
end
m=m+1;
end
%DFP校正
x=x0+rho^mk*dk;
sk=x-x0;
yk=feval(gfun,x)-gk;
if(sk'*yk>0)
Hk=Hk-(((Hk*yk')*yk)*Hk)/(yk*Hk*yk')+(sk'*sk)/(sk*yk');
end
k=k+1;
x0=x;
end
val=feval(fun,x0);
end
解法四:BFGS法
function [ x,val,k ] = bfgs( fun,gfun,x0 )
%功能:用BFGS法求无约束问题最小值
%输入:x0是初始点,fun和gfun分别是目标函数和梯度
%输出:x、val分别是最优点和最优值,k是迭代次数
maxk=5000;%最大迭代次数
rho=0.5;sigma=0.4;
k=0;eps=10e-6;
n=length(x0);
Bk=eye(n);
while(k<maxk)
gk=feval(gfun,x0);
if(norm(gk)<eps)
break;
end
dk=-Bk*gk';
m=0;mk=0;
while(m<20)
new=sigma*rho^m*gk*dk;
old=feval(fun,x0);
if(feval(fun,x0+rho^m*dk')<feval(fun,x0)+sigma*rho^m*gk*dk) mk=m;break;
end
m=m+1;
end
%BFGS校正
x=x0+rho^mk*dk';
sk=x-x0;
yk=feval(gfun,x)-gk;
if(yk'*sk>0)
Bk=Bk-(((Bk*sk')*sk)*Bk)/(sk*Bk*sk')+(yk'*yk)/(yk*sk');
end
k=k+1;
x0=x;
end
val=feval(fun,x0);
end。