数字图像处理 课程设计报告 matlab

合集下载

matlab 数字图像处理实验报告(五份)

matlab 数字图像处理实验报告(五份)

《数字图像处理实验报告》实验一图像的增强一.实验目的1.熟悉图像在MATLAB下的读写、输出;2.熟悉直方图;3.熟悉图像的线性指数等;4.熟悉图像的算术运算和几何变换。

二.实验仪器计算机、MATLAB软件三.实验原理图像增强是指根据特定的需要突出图像中的重要信息,同时减弱或去除不需要的信息。

从不同的途径获取的图像,通过进行适当的增强处理,可以将原本模糊不清甚至根本无法分辨的原始图像处理成清晰的富含大量有用信息的可使用图像。

其基本原理是:对一幅图像的灰度直方图,经过一定的变换之后,使其成为均匀或基本均匀的,即使得分布在每一个灰度等级上的像素个数.f=H等或基本相等。

此方法是典刑的图像空间域技术处理,但是由于灰度直方图只是近似的概率密度函数,因此,当用离散的灰度等级做变换时,很难得到完全平坦均匀的结果。

频率域增强技术频率域增强是首先将图像从空间与变换到频域,然后进行各种各样的处理,再将所得到的结果进行反变换,从而达到图像处理的目的。

常用的变换方法有傅里叶变换、DCT变换、沃尔什-哈达玛变换、小波变换等。

假定原图像为f(x,y),经傅立叶变换为F(u,v)。

频率域增强就是选择合适的滤波器H(u,v)对F(u,v)的频谱成分进行处理,然后经逆傅立叶变换得到增强的图像。

四.实验内容及步骤1.图像在MATLAB下的读写、输出;实验过程:>> I = imread('F:\image\624baf9dbcc4910a.jpg');figure;imshow(I);title('Original Image');text(size(I,2),size(I,1)+15, ...'IMG_20170929_130307.jpg', ...'FontSize',7,'HorizontalAlignment','right');Warning: Image is too big to fit on screen; displaying at 25% > In imuitools\private\initSize at 86In imshow at 196Original Image2.给定函数的累积直方图。

数字图像处理matlab版实验报告

数字图像处理matlab版实验报告

数字图像处理实验报告(matlab版)一.实验目的:熟悉数字图像处理中各种椒盐噪声的实质,明确各种滤波算法的的原理。

进一步熟悉matlab的编程环境,熟悉各种滤波算法对应的matlab函数。

实验结果给以数字图像处理课程各种算法处理效果一个更直观的印象。

二.实验原理:1.IPT(图像处理工具箱)基本函数介绍1. imread函数该函数用于从图形文件中读出图像。

格式A=IMRAED(FILENAME,FMT)。

该函数把FILENAME 中的图像读到A中。

若文件包含一个灰度图,则为二维矩阵。

若文件包含一个真彩图(RGB),则A为一三维矩阵。

FILENAME指明文件,FMT指明文件格式。

格式[X,MAP]=IMREAD(FILENAME,FMT).把FILENAME中的索引图读入X,其相应的调色板读到MAP中.图像文件中的调色板会被自动在范围[0,1]内重新调节。

FMT的可能取值为jpg 或jpeg,tif或tiff,bmp,png,hdf,pcx,xwd。

2.imwrite函数该函数用于把图像写入图形文件中。

格式IMWRITE(A,FILENAME,FMT)把图像A写入文件FILENAME中。

FILENAME指明文件名, FMT指明文件格式。

A既可以是一个灰度图,也可以是一个真彩图像。

格式IMWRITE(X,MAP,FILENAME,FMT)把索引图及其调色板写入FILENAME中。

MAP必须为合法的MATLAB调色板,大多数图像格式不支持多于256色的调色板。

FMT的可能取值为tif或tiff,jpg或jpeg,bmp,png,hdf,pcx,xwd。

3. imshow函数显示图像。

格式IMSHOW(I,N).用N级离散灰度级显示灰度图象I。

若省略N,默认用256级灰度显示24位图像,64级灰度显示其他系统。

格式IMSHOW(I,[LOW HIGH]),把I 作为灰度图显示。

LOW值指定为黑色,HIGH指定为白色,中间为按比例分布的灰色。

matlab数字图像课程设计

matlab数字图像课程设计

matlab数字图像课程设计一、教学目标本课程的教学目标是使学生掌握MATLAB在数字图像处理方面的基本理论和应用技能。

通过本课程的学习,学生应能理解数字图像处理的基本概念,熟练使用MATLAB进行数字图像的处理和分析。

具体来说,知识目标包括:1.掌握数字图像处理的基本概念和原理。

2.了解数字图像处理的基本算法和应用。

3.熟悉MATLAB数字图像处理工具箱的使用。

技能目标包括:1.能够使用MATLAB进行数字图像的基本处理,如图像读取、显示、转换等。

2.能够运用MATLAB实现数字图像的增强、滤波、边缘检测等算法。

3.能够利用MATLAB进行数字图像处理的实际应用,如图像分割、特征提取等。

情感态度价值观目标包括:1.培养学生的创新意识和实践能力,使他们能够运用所学知识解决实际问题。

2.培养学生团队合作精神,提高他们的问题解决能力。

3.培养学生对科学研究的兴趣和热情,提高他们的学术素养。

二、教学内容本课程的教学内容主要包括MATLAB的基本操作、数字图像处理的基本概念和算法,以及MATLAB在数字图像处理方面的应用。

具体来说,教学大纲如下:1.MATLAB基本操作:包括MATLAB的安装和界面熟悉,基本语法和函数的使用。

2.数字图像处理基本概念:包括数字图像的定义、表示方法和基本属性。

3.数字图像处理基本算法:包括图像增强、滤波、边缘检测等算法的学习和实现。

4.MATLAB数字图像处理应用:包括图像分割、特征提取等实际应用案例的分析和解题方法。

三、教学方法本课程采用多种教学方法,包括讲授法、讨论法、案例分析法和实验法等,以激发学生的学习兴趣和主动性。

具体来说,教学方法如下:1.讲授法:通过讲解和演示,使学生掌握MATLAB的基本操作和数字图像处理的基本概念。

2.讨论法:通过小组讨论和问题解答,培养学生的思考和问题解决能力。

3.案例分析法:通过分析实际案例,使学生掌握数字图像处理的基本算法和应用。

4.实验法:通过实验操作,使学生熟练使用MATLAB进行数字图像处理的应用。

数字图像处理课程报告(matlab)

数字图像处理课程报告(matlab)

南京理工大学实验报告课程:数字图像处理学生姓名:周一鸣学号:912106840640实验摘要:输入一个图像和一个尺度小的水印图像,对两幅图像求加运算,设置不同透明度,显示加水印的图像。

关键字:图像相加、透明度。

一、实验目的:输入一幅图像,再输入一幅水印图像,水印图像尺寸较小。

之后将两幅图像相加,添加水印到第一幅图像中,之后设置水印图像的透明度,将水印图像显示出来。

二、基本原理:首先,将较小的水印图片进行重采样,使之尺寸与第一幅图像相同,之后两图相加,相加后得到添加水印后的图像,水印可以设置多种透明度。

重采样:水印与图像相加:三、实验算法流程图及算法简介:图像的显示:Matlab显示语句 imshow(I,[low high]) %图像正常显示I为要显示的图像矩阵。

,[low high]为指定显示灰度图像的灰度范围。

高于high 的像素被显示成白色;低于low的像素被显示成黑色;介于high和low之间的像素被按比例拉伸后显示为各种等级的灰色。

subplot(m,n,p)打开一个有m行n列图像位置的窗口,并将焦点位于第p个位置上。

获取图像的尺寸:[m,n]=size(IMG1);重新设置图像的尺寸:IMG2=imresize(IMG2,[m,n]);图像相加运算:IMG3(i,j,1) = IMG1(i,j,1)*ALPHA_PARAM + IMG2(i,j,1)*(1-ALPHA_PARAM);透明度设置:ALPHA_PARAM = 0.85;四、实验结果与分析(该部分是重点,1000字)过程1:程序代码:IMG1 = imread('F:\ronghe\1.jpg'); % 读取RGB文件,小姑娘IMG2 = imread('F:\ronghe\2.jpg'); % 读取RGB文件,水印logo结果:读取了原图像和水印图像。

过程2:程序代码:[m,n]=size(IMG1);IMG2=imresize(IMG2,[m,n]);结果:对较小的水印图片重采样,使之与原图像尺寸相同,才可以相加运算。

数字图像处理matlab课程设计

数字图像处理matlab课程设计

数字图像处理matlab课程设计一、课程目标知识目标:1. 理解数字图像处理的基本概念,掌握图像的表示和存储方式;2. 学会使用MATLAB软件进行数字图像处理,掌握相关函数和工具箱的使用方法;3. 掌握图像增强、滤波、边缘检测等基本图像处理技术;4. 了解图像分割、特征提取等高级图像处理技术。

技能目标:1. 能够运用MATLAB进行图像读取、显示和保存操作;2. 能够独立完成图像的增强、滤波等基本处理操作;3. 能够运用边缘检测算法对图像进行处理,提取关键特征;4. 能够根据实际需求选择合适的图像处理技术,解决实际问题。

情感态度价值观目标:1. 培养学生对数字图像处理技术的兴趣,激发其学习热情;2. 培养学生的团队合作意识,使其学会在团队中分享和交流;3. 培养学生严谨的科学态度,使其注重实验数据的真实性;4. 培养学生的创新思维,鼓励其探索新方法,提高解决问题的能力。

本课程旨在通过数字图像处理MATLAB课程设计,使学生在掌握基本理论知识的基础上,运用MATLAB软件进行图像处理实践。

课程注重理论与实践相结合,培养学生具备实际操作能力,并能运用所学知识解决实际问题。

针对学生的年级特点,课程目标既注重知识技能的传授,又关注情感态度价值观的培养,为学生今后的学习和工作奠定基础。

二、教学内容1. 数字图像处理基础- 图像表示与存储(RGB、灰度、二值图像)- 图像类型转换- MATLAB图像处理工具箱介绍2. 图像增强- 直方图均衡化- 伽玛校正- 图像锐化3. 图像滤波- 均值滤波- 中值滤波- 高斯滤波- 双边滤波4. 边缘检测- 索贝尔算子- 拉普拉斯算子- Canny边缘检测5. 图像分割- 阈值分割- 区域生长- 分水岭算法6. 特征提取与描述- 霍夫变换- SIFT算法- ORB算法教学内容根据课程目标进行选择和组织,注重科学性和系统性。

教学大纲明确分为六个部分,分别对应数字图像处理的基础知识、图像增强、滤波、边缘检测、图像分割和特征提取与描述。

matlab数字图像处理实验报告

matlab数字图像处理实验报告

重庆交通大学学生实验报告实验课程名称《数字图像处理》课程上机实验开课实验室河海学院仿真实验室学院河海学院年级专业08级地理信息系统学生姓名学号********时间2011 至2012 学年第 1 学期实验一图像显示【实验内容】1)使用 MATLAB图像读取函数imread读取图像。

2)使用 MATLAB图像显示函数imshow显示图像。

3)使用 MATLAB添加色带函数colorbar为图像添加色带。

【实验目的】1)掌握MATLAB图像读取和显示函数的应用方法。

2)了解如何为图像添加色带。

【实验结果】(放置处理前图像)(放置处理后图像)2-1 2-5-3 2-10 【程序说明】a=imread('yq.jpg');a=double(a);%a=uint8(a);imshow(a);%save saturn.dat a-ascii;save yu.text a -ascii; %结果图2-1 e=imread('yq.jpg');imshow(e);iptsetpref('ImshowTruesize','manual');figure,imshow(e);iptsetpref('ImshowTruesize','auto');bw1=zeros(20,20);bw1(2:2:18,2:2:18)=1;figure,imshow(bw1,'notruesize');bw1whos%结果图2-5-3%使用一个调色板来显示一副二进制图像figure,imshow(bw,[1 00;0 0 1]);%结果图2-10本次实验得分实验二图像运算【实验内容】1)使用 MATLAB滑动邻域操作函数nlfilter对图像进行处理。

2)使用 MATLAB分离邻域操作函数blkproc对图像进行处理。

【实验目的】1)掌握滑动邻域操作函数的应用方法。

图像处理matlab的课程设计

图像处理matlab的课程设计

图像处理matlab的课程设计一、教学目标本课程的教学目标是使学生掌握图像处理的基本原理和方法,能够使用MATLAB软件进行图像处理和分析。

具体目标如下:1.了解图像处理的基本概念和常用算法。

2.掌握MATLAB图像处理工具箱的使用。

3.理解图像处理在实际应用中的重要性。

4.能够使用MATLAB进行图像读取、显示和保存。

5.能够使用MATLAB进行图像滤波、边缘检测、图像增强等基本操作。

6.能够运用所学知识解决实际图像处理问题。

情感态度价值观目标:1.培养学生的创新意识和实践能力。

2.培养学生的团队合作精神和沟通协调能力。

3.培养学生的科学思维和解决问题的能力。

二、教学内容根据课程目标,教学内容主要包括以下几个方面:1.图像处理基本概念:图像的定义、图像的表示、图像的属性等。

2.MATLAB图像处理工具箱:MATLAB图像处理工具箱的介绍、常用函数和工具的使用方法等。

3.图像处理基本算法:图像滤波、边缘检测、图像增强、图像分割等。

4.图像处理应用案例:图像处理在实际应用中的案例分析,如医学影像处理、工业检测等。

三、教学方法为了达到课程目标,将采用多种教学方法相结合的方式进行教学。

包括:1.讲授法:通过讲解图像处理的基本概念和原理,使学生掌握基本知识。

2.案例分析法:通过分析实际图像处理案例,使学生了解图像处理的应用和实际意义。

3.实验法:通过实验操作,使学生掌握MATLAB图像处理工具箱的使用和基本算法。

4.讨论法:通过小组讨论和交流,促进学生思考和解决问题,培养团队合作精神。

四、教学资源为了支持教学内容和教学方法的实施,将准备以下教学资源:1.教材:《图像处理matlab教程》等。

2.参考书:《数字图像处理》、《MATLAB图像处理》等。

3.多媒体资料:PPT课件、实验演示视频等。

4.实验设备:计算机、MATLAB软件、图像处理相关硬件设备等。

通过以上教学资源的支持,将能够丰富学生的学习体验,提高学生的学习效果。

数字图像处理-课程设计报告-matlab

数字图像处理-课程设计报告-matlab

数字图像处理课程设计报告姓名:学号:班级: .net设计题目:图像处理教师:赵哲老师提交日期:12月29日一、设计内容:主题:《图像处理》详细说明:对图像进行处理(简单滤镜,模糊,锐化,高斯模糊等),对图像进行处理(上下对称,左右对称,单双色显示,亮暗程度调整等),对图像进行特效处理(反色,实色混合,色彩平衡,浮雕效果,素描效果,雾化效果等),二、涉及知识内容:1、二值化2、各种滤波3、算法等三、设计流程图插入图片对图片进行处理二值化处理重复输出两幅图结束四、实例分析及截图效果:运行效果截图:第一步:读取原图,并显示close all;clear;clc;% 清楚工作窗口clc 清空变量clear 关闭打开的窗口close all I=imread('1.jpg');% 插入图片1.jpg 赋给Iimshow(I);% 输出图II1=rgb2gray(I);%图片变灰度图figure%新建窗口subplot(321);% 3行2列第一幅图imhist(I1);%输出图片title('原图直方图');%图片名称一,图像处理模糊H=fspecial('motion',40);%% 滤波算子模糊程度40 motion运动q=imfilter(I,H,'replicate');%imfilter实现线性空间滤波函数,I图经过H滤波处理,replicate反复复制q1=rgb2gray(q);imhist(q1);title('模糊图直方图');二,图像处理锐化H=fspecial('unsharp');%锐化滤波算子,unsharp不清晰的qq=imfilter(I,H,'replicate');。

数字图像处理课程设计报告matlab

数字图像处理课程设计报告matlab

数字图像处理课程设计报告姓名:号:学级: .net班设计题目:图像处理教师:赵哲老师12:提交日期月29日一、设计内容:《图像处理》主题:详细说明:对图像进行处理(简单滤镜,模糊,锐化,高斯模糊等),对图像进行处理(上下对称,左右对称,单双色显示,亮暗程度调整等),对图浮雕效果,素描效果,雾化色彩平衡像进行特效处理(反色,实色混合,,效果等),二、涉及知识内容:1、二值化2、各种滤波3、算法等三、设计流程图插入图对图片进行处二值化处理重复输出两幅图结束四、实例分析及截图效果:运行效果截图:第一步:读取原图,并显示close all;clear;clc;close all 关闭打开的窗口clear % 清楚工作窗口clc 清空变量I=imread('1.jpg'); I赋给1.jpg 插入图片%I输出图imshow(I);%I1=rgb2gray(I);%图片变灰度图新建窗口%figuresubplot(321);% 3行2列第一幅图输出图片%imhist(I1);title('原图直方图');%图片名称一,图像处理模糊H=fspecial('motion',40);运动40 motion 模糊程度%% 滤波算子q=imfilter(I,H,'replicate');%imfilter实现线性空间滤波函数,I图经过H滤波处理,反复复制replicate q1=rgb2gray(q);imhist(q1););模糊图直方图'title('二,图像处理锐化不清晰的锐化滤波算子,unsharp'unsharp');%H=fspecial();qq=imfilter(I,H,'replicate'qq1=rgb2gray(qq);imhist(qq1););'title('锐化图直方图三,图像处理浮雕(来源网络)浮雕图%);'1.jpg'l=imread(变灰度图%f0=rgb2gray(l);f1=imnoise(f0,'speckle',0.01);%高斯噪声加入密度为0.01的高斯乘性噪声 imnoise噪声污染图像函数 speckle斑点把图像数据类型转换为双精度浮点类型f1=im2double(f1);%h3=1/9.*[1 1 1;1 1 1;1 1 1];进行卷积滤波f2对图像%采用h3);'same'f4=conv2(f1,h3,滤波sobel%进行);'sobel'h2=fspecial(相同的卷积和多项式相乘 same g3=filter2(h2,f1,'same');%实现图像矩阵的归一化操作% k=mat2gray(g3);四,图像处理素描(来源网络) );f=imread('1.jpg'[VG,A,PPG] = colorgrad(f);ppg = im2uint8(PPG);ppgf = 255 - ppg;[M,N] = size(ppgf);T=200;ppgf1 = zeros(M,N);ii = 1:M for jj = 1:N for ppgf(ii,jj)<T if ppgf1(ii,jj)=0; elseppgf1(ii,jj)=235/(255-T)*(ppgf(ii,jj)-T);endendend ppgf1 = uint8(ppgf1););'unsharp' H=fspecial();'replicate'Motionblur=imfilter(ppgf1,H,figure;imshow(ppgf1);调用[VG, A, PPG] = colorgrad(f, T)function (ndims(f)~=3) ||(size(f,3)~=3)if);'Input image must be RGB' error(end);'sobel'sh = fspecial(sv = sh';);Rx = imfilter(double(f(:,:,1)), sh, 'replicate');Ry = imfilter(double(f(:,:,1)), sv, 'replicate');Gx = imfilter(double(f(:,:,2)), sh, 'replicate');'replicate'Gy = imfilter(double(f(:,:,2)), sv,);'replicate'Bx = imfilter(double(f(:,:,3)), sh,);'replicate'By = imfilter(double(f(:,:,3)), sv,gxx = Rx.^2 + Gx.^2 + Bx.^2;gyy = Ry.^2 + Gy.^2 + By.^2;gxy = Rx.*Ry + Gx.*Gy + Bx.*By; A = 0.5*(atan(2*gxy./(gxx-gyy+eps)));G1 = 0.5*((gxx+gyy) +(gxx-gyy).*cos(2*A) + 2*gxy.*sin(2*A)); A = A + pi/2;G2 = 0.5*((gxx+gyy) + (gxx-gyy).*cos(2*A) + 2*gxy.*sin(2*A));G1 = G1.^0.5;G2 = G2.^0.5;VG =mat2gray(max(G1, G2));RG = sqrt(Rx.^2 + Ry.^2);GG = sqrt(Gx.^2 + Gy.^2);BG = sqrt(Bx.^2 + By.^2);PPG = mat2gray(RG + GG + BG); nargin ==2if VG =(VG>T).*VG; PPG = (PPG>T).*PPG;endf1=rgb2gray(f);imhist(f1););素描图直方图''title(五,图像处理实色混合(来源网络)实色混合%0127,置I(I<=127)=0; %对像素进行处理,若值小于等于255127,置I(I>127)=255; %对像素进行处理,若值大于imshow(I););'像素图title('I1=rgb2gray(f);imhist(I1););'title('像素图直方图六,图像处理反色图);'1.jpg'f=imread(q=255-q;imshow(q););''反色图title(imhist(q1););反色图直方图'title('七,图像处理上下对称A=imread('1.jpg');B=A;[a,b,c]=size(A); a1=floor(a/2); b1=floor(b/2); c1=floor(c/2);B(1:a1,1:b,1:c)=A(a:-1:a-a1+1,1:b,1:c); figureimshow(B));''上下对称title( A=rgb2gray(A);figure imhist(A));上下对称直方图' title('八,图像处理类左右对称);'1.jpg' C=imread( A=C;C(1:a,1:b1,1:c)=A(1:a,b:-1:b+1-b1,1:c); figure imshow(C));'左右对称title(' A=rgb2gray(A);figureimhist(A););''左右对称直方图title(九,图像处理单双色显示); '1.jpg'a=imread( a1=a(:,:,1);a2=a(:,:,2); a3=a(:,:,3); aa=rgb2gray(a); a4=cat(3,a1,aa,aa); a5=cat(3,a1,a2,aa); figure subplot(121);imshow(a4););'' title(单色显示 subplot(122); imshow(a5););''双色显示title( a4=rgb2gray(a4); a5=rgb2gray(a5); figure subplot(121);imhist(a4););' title('单色显示直方图 subplot(122); imhist(a5); title('双色显示直方图');十,图像处理亮暗度调整);a=imread('1.jpg' a1=0.8*a;a2=2*a;figure subplot(121);imshow(a1););''暗图title(subplot(122);imshow(a2);)亮图'title('q3=rgb2gray(a1);q4=rgb2gray(a2);figure)暗图直方图'subplot(121);mhist(q3);title('subplot(122);imhist(q4);)亮图直方图'title('十一,图像处理雾化处理);'1.jpg'q=imread(m=size(q,1);n=size(q,2);r=q(:,:,1);g=q(:,:,2);b=q(:,:,3); i=2:m-10 for j=2:n-10for产生一个随机数作为半径% k=rand(1)*10;得到随机横坐标% di=i+round(mod(k,33));得到随机纵坐标% dj=j+round(mod(k,33));将原像素点用随机像素点代替%r(i,j)=r(di,dj); g(i,j)=g(di,dj); b(i,j)=b(di,dj);endend a(:,:,1)=r;a(:,:,2)=g;a(:,:,3)=b;imshow(a));''title(雾化处理图q=rgb2gray(a);figure imhist(q););''雾化处理图直方图title(十二,图像处理高斯滤波);I = imread('1.jpg', [5 5], 2);'gaussian'G =fspecial(生成一个高斯滤波器% fspecial);Ig =imfilter(I,G,'same'使用该滤波器处理图片%imfilterimshow(Ig););''title(高斯滤波I1=rgb2gray(Ig);figure imhist(I1););'title('高斯滤波直方图十三,图像处理色彩平衡(来自网络));'1.jpg'im=imread(存储元图像%im2=im;im1=rgb2ycbcr(im);是蓝色分量和一个参考值得差 Cb Y亮度信息。

数字图像处理matlab课程设计

数字图像处理matlab课程设计

数字图像处理matlab课程设计一、教学目标本课程的教学目标是使学生掌握数字图像处理的基本理论和方法,学会使用MATLAB软件进行图像处理和分析。

通过本课程的学习,学生应达到以下具体目标:1.理解数字图像处理的基本概念、原理和算法。

2.熟悉MATLAB图像处理工具箱的使用。

3.能够运用数字图像处理的基本算法解决实际问题。

4.能够使用MATLAB进行图像处理和分析,撰写相关的程序代码。

情感态度价值观目标:1.培养学生的创新意识和团队协作精神。

2.培养学生对数字图像处理技术的兴趣,提高其综合素质。

二、教学内容根据课程目标,本课程的教学内容主要包括以下几个部分:1.数字图像处理基本概念:图像处理的基本概念、图像数字化、图像表示和图像变换。

2.图像增强和复原:图像增强、图像去噪、图像复原。

3.图像分割和描述:图像分割、图像特征提取和描述。

4.图像形态学:形态学基本运算、形态学滤波、形态学重建。

5.MATLAB图像处理工具箱的使用:MATLAB图像处理工具箱的基本功能、常用图像处理函数。

6.图像处理实例分析:结合实际案例,分析数字图像处理技术的应用。

三、教学方法为了实现课程目标,本课程将采用以下教学方法:1.讲授法:通过讲解图像处理的基本概念、原理和算法,使学生掌握图像处理的基本知识。

2.案例分析法:通过分析实际案例,使学生了解数字图像处理技术在实际中的应用。

3.实验法:通过上机实验,使学生熟练掌握MATLAB图像处理工具箱的使用,提高学生的实际操作能力。

4.讨论法:学生进行课堂讨论,激发学生的思维,培养学生的创新意识和团队协作精神。

四、教学资源为了支持教学内容和教学方法的实施,本课程将采用以下教学资源:1.教材:《数字图像处理(MATLAB版)》。

2.参考书:相关领域的经典教材和论文。

3.多媒体资料:教学PPT、视频教程等。

4.实验设备:计算机、MATLAB软件、图像处理相关硬件设备。

五、教学评估本课程的评估方式包括平时表现、作业、考试等多个方面,以全面、客观、公正地评价学生的学习成果。

数字图像处理实验1 MATLAB图像处理编程基础 实验报告

数字图像处理实验1  MATLAB图像处理编程基础 实验报告

实验报告课程名称数字图像处理实验项目MATLAB图像处理编程基础指导教师学院光电信息与通信工程__专业电子信息工程班级/学号学生姓名______ __________实验日期______ _成绩______________________实验1 MATLAB图像处理编程基础一、实验目的1.了解MATLAB产品体系和了解MATLAB图像处理工具箱。

2.掌握MATLAB的基本应用方法。

3.掌握MATLAB图像存储/图像数据类型/图像类型。

4.掌握图像文件的读/写/信息查询。

5.掌握图像显示--显示多幅图像、4种图像类型的显示方法、特殊图像的显示技术6.编程实现图像类型间的转换和图像算术操作。

二、实验的硬件、软件平台硬件:计算机软件:操作系统:Windows XP应用软件:MATLAB 7.0.1三、MATLAB图像处理工具箱的功能图像处理工具箱是一个函数的集合,它扩展了matlab数值计算环境的能力。

这个工具箱支持了大量图像处理操作,包括:空间图像变换 Spatial image transformations形态操作 Morphological operations邻域和块操作 Neighborhood and block operations线性滤波和滤波器设计 Linear filtering and filter design格式变换 Transforms图像分析和增强 Image analysis and enhancement图像登记 Image registration清晰化处理 Deblurring兴趣区处理 Region of interest operations四、说明使用MATLAB进行图像处理所需函数调用步骤在Command Window中,以命令行单句调用某一函数只需写xxx(函数名)xxxxxxx)这样就可以调用了.五、给出MATLAB图像处理工具箱的数据类型和4种基本图像类型工具箱里的函数都是M文件,可以通过type function_name来查看代码,也可以通过写自己的matlab函数来扩展工具箱。

matlab数字图像处理课程设计

matlab数字图像处理课程设计

matlab数字图像处理课程设计一、课程目标知识目标:1. 学生能理解数字图像处理的基本概念,掌握图像的表示方法和存储格式。

2. 学生能掌握MATLAB软件的基本操作,并运用其进行数字图像处理。

3. 学生能掌握图像的灰度变换、图像滤波、边缘检测等基本图像处理技术。

4. 学生能了解频域图像处理的基本原理,并运用MATLAB进行频域滤波。

技能目标:1. 学生能够运用MATLAB软件进行数字图像的读取、显示和保存。

2. 学生能够运用MATLAB实现基本的图像处理算法,如灰度变换、滤波等。

3. 学生能够分析图像处理算法的效果,并进行相应的参数调整。

4. 学生能够运用所学知识解决实际问题,如图像增强、边缘检测等。

情感态度价值观目标:1. 学生对数字图像处理产生兴趣,培养主动学习和探究的精神。

2. 学生通过实践操作,培养团队合作意识和解决问题的能力。

3. 学生能够认识到数字图像处理在科技、医疗、安全等领域的广泛应用,增强社会责任感。

4. 学生能够遵循学术道德,尊重他人成果,树立正确的价值观。

课程性质:本课程为数字图像处理相关学科的教学实践,旨在通过MATLAB软件的使用,使学生掌握数字图像处理的基本方法和技能。

学生特点:学生具备一定的数学基础和编程能力,对图像处理有一定了解,但实践经验不足。

教学要求:结合课本内容,注重理论与实践相结合,强调学生的动手实践能力,培养解决实际问题的能力。

通过课程目标的具体分解,使学生在学习过程中能够达到预期的学习成果,为后续深入学习打下坚实基础。

二、教学内容本课程教学内容围绕以下几部分展开:1. 数字图像处理基础理论- 图像的表示与存储格式- 图像处理的基本操作(读取、显示、保存)2. MATLAB软件操作- MATLAB界面与基本操作- MATLAB图像处理工具箱的使用3. 灰度变换与图像增强- 灰度变换函数及其应用- 直方图均衡化与规定化4. 图像滤波- 空域滤波器设计- 频域滤波器设计- 常用滤波算法(如高斯滤波、中值滤波等)5. 边缘检测- 基本边缘检测算法(如Sobel、Prewitt)- 高级边缘检测算法(如Canny)6. 频域图像处理- 频域变换(傅里叶变换、DCT等)- 频域滤波(低通、高通、带通滤波器)教学大纲安排如下:1. 基础理论(1课时)2. MATLAB软件操作(2课时)3. 灰度变换与图像增强(2课时)4. 图像滤波(2课时)5. 边缘检测(2课时)6. 频域图像处理(2课时)教学内容与教材章节紧密关联,通过以上安排,使学生系统掌握数字图像处理的基本概念、方法和技能。

数字图像处理实验报告(matlab)

数字图像处理实验报告(matlab)

学院:自动化学院班级:电081班姓名:***学号:********2011年10月实验一直方图均衡化一、实验目的:1. 熟悉图像数据在计算机中的存储方式;2. 掌握图像直方图均衡化这一基本处理过程。

二、实验条件:PC微机一台和MATLAB软件。

三、实验内容:1.读入图像数据到内存中,并显示读入的图像;2.实现直方图均衡化处理,显示处理前后图像的直方图。

3.显示并保存处理结果。

四、实验步骤:1.打开Matlab编程环境;2.获取实验用图像。

用’imread’函数将图像读入Matlab;用’imshow’函数显示读入的图像。

3.获取输入图像的直方图:用’imhist’函数处理图像。

4.均衡化处理:用’histeq’函数处理图像即可。

5.获取均衡化后的直方图并显示图像:用’imhist’和’imshow’函数。

6.保存实验结果:用’imwrite’函数处理。

五、实验程序及结果:1、实验程序subplot(6,2,1);i=imread('test1-1.jpg');imhist(i);title('test1-1 hist');subplot(6,2,2);i=im2double(i);imshow(i);title('test1-1 Ô-ͼÏñ');subplot(6,2,3);s=histeq(i);imhist(s);title('test1-1 balancedhist');subplot(6,2,4);imshow(s);title('test1-1 ¾ùºâ»¯ºóµÄͼÏñ');subplot(6,2,5);i=imread('test1-2.jpg');imhist(i);title('test1-2 hist');subplot(6,2,6);i=im2double(i);imshow(i);title('test1-2 Ô-ͼÏñ');subplot(6,2,7);s=histeq(i);imhist(s);title('test1-2 balancedhist'); subplot(6,2,8);imshow(s);title('test1-2 ¾ùºâ»¯ºóµÄͼÏñ');subplot(6,2,9);i=imread('test1-3.jpg');imhist(i);title('test1-3 hist');subplot(6,2,10);i=im2double(i);imshow(i);title('test1-3 Ô-ͼÏñ');subplot(6,2,11);s=histeq(i);imhist(s);title('test1-3 balancedhist'); subplot(6,2,12);imshow(s);title('test1-3 ¾ùºâ»¯ºóµÄͼÏñ');2、实验结果test1-1 hist050100150200250test1-1 原图像test1-1 balancedhist00.10.20.30.40.50.60.70.80.91test1-1 均衡化后的图像test1-2 hist050100150200250test1-2 原图像test1-2 balancedhist00.10.20.30.40.50.60.70.80.91test1-2 均衡化后的图像0test1-3 hist050100150200250test1-3 原图像test1-3 balancedhist00.10.20.30.40.50.60.70.80.91test1-3 均衡化后的图像六、实验思考1.数字图像直方图均衡化之后直方图为什么不是绝对平坦的?答:直方图均衡化是将一已知灰度概率密度分布的图像,经过某种变换,变成一幅具有均匀灰度概率密度分布的新图像。

matlab图像处理课程设计

matlab图像处理课程设计

matlab图像处理课程设计一、课程目标知识目标:1. 理解并掌握Matlab软件在图像处理领域的基本功能与操作方法。

2. 学习并掌握图像处理的基本概念,包括图像的表示、类型转换、灰度变换、滤波等。

3. 掌握图像处理中常用的算法,如边缘检测、图像增强、图像分割等。

技能目标:1. 能够独立使用Matlab软件进行图像读取、显示、保存等基本操作。

2. 能够运用Matlab进行图像的灰度变换、滤波处理,实现图像增强。

3. 能够运用边缘检测、图像分割等方法对图像进行处理,解决实际问题。

情感态度价值观目标:1. 培养学生对图像处理领域的兴趣,激发其探索精神,使其乐于学习、主动探究。

2. 培养学生的团队协作意识,使其在课程实践过程中学会与他人合作、共同解决问题。

3. 引导学生认识到图像处理技术在现实生活中的广泛应用,提高学生的技术应用意识。

课程性质分析:本课程为高中年级的选修课程,以实践操作为主,理论讲解为辅。

课程内容紧密联系实际,注重培养学生的动手能力和解决实际问题的能力。

学生特点分析:高中年级学生具备一定的数学基础和编程能力,对新鲜事物充满好奇,但学习时间有限,需要在课程设计中充分考虑学生的学习负担。

教学要求:1. 确保课程内容与教材紧密关联,注重实用性和操作性。

2. 课程设计要符合学生特点,难度适中,注重激发学生的学习兴趣。

3. 教学过程中要注重理论与实践相结合,引导学生将所学知识应用于实际问题。

二、教学内容1. 图像处理基础知识:- 图像的表示与类型转换- 图像的读取、显示与保存2. 图像灰度变换与滤波:- 灰度变换方法(线性、对数、幂次)- 图像滤波(低通、高通、带通滤波器)3. 图像增强:- 直方图均衡化- 自适应直方图均衡化- 图像锐化4. 边缘检测:- 索贝尔算子- 拉普拉斯算子- Canny边缘检测5. 图像分割:- 阈值分割- 区域生长- 水平集方法6. 实践案例分析:- 选择具有代表性的图像处理案例,如车牌识别、人脸识别等,结合所学的理论知识进行实践操作。

《数字图像处理基础》课程实验报告-1-Matlab工具熟悉

《数字图像处理基础》课程实验报告-1-Matlab工具熟悉
Offset: 3361318
Predictor: 'Horizontal differencing'
UnknownTags: [2x1 struct]
>> imwrite(I,'flower.jpg','quality',50);
>> imwrite(I,'flower.bmp');
>> L=imread('Lenna.jpg');
2.利用whos命令提取该读入图像flower.tif的基本信息;
语法:whosvariable_list
3.利用imshow()函数来显示这幅图像;
4.利用imfinfo函数来获取图像文件的压缩,颜色等等其他的详细信息;
语法:info = imfinfo(filename,fmt)
info = imfinfo(filename)
imwrite(I,'flower50.jpg','quality',50);q为50时图像如下:
imwrite(I,'flower100.jpg','quality',100);q为100时图像如下:
综上,q越大图像越细腻。
2.熟悉常用的数字图像文件格式与格式转换(灰度、索引、黑白、彩色)。在MATLAB环境下完成不同文件格式数字图像的格式转换。
二、实验原理
1.数字图像的矩阵表示。
2.数字图像的读、写和显示。
3.数据类和图像类型及其转化。
三、实验内容和步骤
1.利用imread( )函数读取一幅RGB图像,图像名为flower.tif,存入一个图像数组中;

Matlab图像处理课程设计报告

Matlab图像处理课程设计报告

《基于MATLAB的图像处理》—制作自己的Photoshop课程设计学生姓名:学号:专业班级:指导教师:二○一○年四月十三日目录一、课程设计目的 (3)二、课程设计描述 (3)三、课程设计要求 (3)四、总体设计 (3)五、按钮功能 (4)5.1、Scan(浏览) (6)5.2、Back(上一张) (6)5.3、Next(下一张) ................................... .. (7)5.4、Mark(添加水印) (7)5.5、Magnify(以鼠标点击为中心放大) (7)5.6、R90°CW(顺时针旋转90度) (8)5.7、R90°CCW(逆时针旋转90度) (8)5.8、Exit(退出) .... (8)六、菜单功能 (8)6.1、文件..................................... .. (8)6.1.1、打开 (9)6.1.2、保存 (9)6.1.3、退出 (9)6.2、编辑............................... ... . (9)6.2.1、放大 (9)6.2.2、缩小 (10)6.2.3、灰度 (10)6.2.4、亮度 (11)6.2.5、旋转 (12)6.2.6、截图 (13)6.3、变换 (13)6.3.1、傅里叶变换 (13)6.3.2、离散余弦变换 (14)6.3.3、Radom变换 (14)6.4、噪声.......................................................... . (15)6.4.1、高斯噪声 (15)6.4.2、椒盐噪声 (15)6.4.3、斑点噪声 (16)6.4.4、泊松噪声 (16)6.5、滤波 (16)6.5.1、高通滤波 (17)6.5.2、低通滤波 (17)6.5.3、平滑滤波(线性) (17)6.5.4、平滑滤波(非线性) (18)6.5.5、锐化滤波(线性) (18)6.5.6、锐化滤波(非线性) (19)6.6、直方图统计................................. . (19)6.6.1、R直方图 (20)6.6.2、G直方图 (20)6.6.3、B直方图 (21)6.7、图像增强..................................................... . (21)6.7.1、伪彩色增强 (21)6.7.2、真彩色增强........................ . ... . .. (22)6.7.3、直方图均衡................................. . ........ .. (22)6.7.4、NTSC颜色模型 (23)6.7.5、YCbCr颜色模型........................... .. (23)6.7.6、HSV颜色模型............... ....... ....... .. ... .. (24)6.8、阈值分割.................................... ....... . ... . (24)七、程序调试及问题分析 (26)八、心得体会 (28)九、参考文献 (29)十、附录 (29)一、课程设计目的综合运用MATLAB工具箱实现图像处理的GUI程序设计。

matlab数字图像处理课程设计

matlab数字图像处理课程设计

matlab 数字图像处理课程设计一、课程目标知识目标:1. 掌握Matlab中数字图像处理的基本概念和常用算法;2. 学习并理解数字图像处理中的图像增强、边缘检测和图像分割等关键技术;3. 了解数字图像处理在实际应用中的发展及其在各领域的应用。

技能目标:1. 能够运用Matlab软件进行数字图像的读取、显示和保存等基本操作;2. 熟练运用Matlab实现图像增强、边缘检测和图像分割等算法;3. 能够运用所学知识解决实际问题,对图像进行处理和分析。

情感态度价值观目标:1. 培养学生对数字图像处理的兴趣,激发学生的学习热情;2. 培养学生的团队合作意识和创新精神,使其在学习和实践中不断探索新知识;3. 使学生认识到数字图像处理技术在科技发展和国防建设中的重要作用,增强学生的社会责任感和使命感。

课程性质:本课程为选修课,适用于高年级本科生或研究生。

课程内容紧密结合实际,强调实践操作和动手能力。

学生特点:学生已具备一定的编程基础和数学知识,对数字图像处理有一定了解,但实践能力有待提高。

教学要求:注重理论与实践相结合,强调学生的主体地位,鼓励学生积极参与讨论和动手实践。

通过课程学习,使学生能够将所学知识应用于实际问题中,提高解决实际问题的能力。

二、教学内容1. 数字图像处理基础- 图像的基本概念、类型和表达方式- Matlab中图像的读取、显示和保存- 图像的数学变换:灰度变换、几何变换2. 图像增强- 线性滤波和非线性滤波- 图像锐化技术- 频域滤波:低通滤波、高通滤波3. 边缘检测- 边缘检测的基本原理- 常用边缘检测算子:Sobel、Prewitt、Roberts、Canny4. 图像分割- 阈值分割法- 区域分割法- 边缘分割法5. 应用案例分析- 图像增强在医学图像处理中的应用- 边缘检测在机器视觉中的应用- 图像分割在目标识别中的应用教学内容安排与进度:1. 数字图像处理基础(2周)2. 图像增强(3周)3. 边缘检测(2周)4. 图像分割(3周)5. 应用案例分析(2周)本教学内容基于教材章节进行组织,涵盖数字图像处理的核心知识点,注重理论与实践相结合,旨在提高学生的实际操作能力。

数字图像matlab课程设计

数字图像matlab课程设计

数字图像matlab课程设计一、课程目标知识目标:1. 学生能理解数字图像处理的基本概念,掌握图像的表示方法。

2. 学生能掌握MATLAB软件的基本操作,并运用其进行数字图像处理。

3. 学生能掌握数字图像处理的基本算法,如图像增强、滤波、边缘检测等。

技能目标:1. 学生能运用MATLAB软件读取、显示和保存图像。

2. 学生能运用MATLAB实现基本的数字图像处理算法,并对图像进行处理。

3. 学生能分析处理结果,优化算法,提高图像处理效果。

情感态度价值观目标:1. 学生通过学习数字图像处理,培养对图像信息处理的兴趣,提高学习积极性。

2. 学生通过动手实践,培养解决问题的能力和团队合作精神。

3. 学生能够认识到数字图像处理在科技领域的广泛应用,增强对科技创新的认识。

课程性质:本课程为实践性较强的课程,侧重于数字图像处理技术的应用。

学生特点:学生具备一定的计算机操作基础,对图像处理有一定了解,但实践经验不足。

教学要求:结合课本内容,注重理论与实践相结合,充分调动学生的主观能动性,提高学生的动手能力和创新能力。

通过本课程的学习,使学生能够达到上述课程目标,并为后续相关课程打下坚实基础。

二、教学内容1. 数字图像处理基础知识:- 图像的表示方法:像素、灰度、颜色空间。

- 图像的基本属性:分辨率、对比度、亮度。

- MATLAB软件入门:安装、界面、基本操作。

2. 图像读取、显示与保存:- 使用MATLAB读取、显示和保存图像。

- 图像类型转换:灰度图像、二值图像、彩色图像。

3. 数字图像处理基本算法:- 图像增强:直方图均衡化、伽马校正。

- 图像滤波:低通滤波、高通滤波、带阻滤波。

- 边缘检测:Sobel算子、Canny算子。

4. 实践项目:- 图像增强处理:对给定的图像进行增强处理,观察并分析处理效果。

- 图像滤波应用:使用不同滤波器处理图像,比较滤波效果。

- 边缘检测实践:对图像进行边缘检测,评价检测结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

欢迎阅读数字图像处理课程设计报告姓名:学号:班级: .net设计题目:图像处理教师:赵哲老师提交日期: 12月29日一、设计内容:主题:《图像处理》详细说明:对图像进行处理(简单滤镜,模糊,锐化,高斯模糊等),对图像进行处理(上下对称,左右对称,单双色显示,亮暗程度调整等),对图像进行特效处理(反色,实色混合,色彩平衡,浮雕效果,素描效果,雾化效果等),二、涉及知识内容:1、二值化2、各种滤波3、算法等三、设计流程图插入图片对图片进行处理二值化处理重复输出两幅图结束四、实例分析及截图效果:运行效果截图:第一步:读取原图,并显示close all;clear;clc;% 清楚工作窗口clc 清空变量clear 关闭打开的窗口close allI=imread('1.jpg');% 插入图片1.jpg 赋给Iimshow(I);% 输出图II1=rgb2gray(I);%图片变灰度图figure%新建窗口subplot(321);% 3行2列第一幅图imhist(I1);%输出图片title('原图直方图');%图片名称一,图像处理模糊H=fspecial('motion',40);%% 滤波算子模糊程度40 motion运动q=imfilter(I,H,'replicate');%imfilter实现线性空间滤波函数,I图经过H滤波处理,replicate反复复制q1=rgb2gray(q);imhist(q1);title('模糊图直方图');二,图像处理锐化H=fspecial('unsharp');%锐化滤波算子,unsharp不清晰的qq=imfilter(I,H,'replicate');qq1=rgb2gray(qq);imhist(qq1);title('锐化图直方图');三,图像处理浮雕(来源网络)%浮雕图l=imread('1.jpg');f0=rgb2gray(l);%变灰度图f1=imnoise(f0,'speckle',0.01);%高斯噪声加入密度为0.01的高斯乘性噪声 imnoise噪声污染图像函数 speckle斑点f1=im2double(f1);%把图像数据类型转换为双精度浮点类型h3=1/9.*[1 1 1;1 1 1;1 1 1];%采用h3对图像f2进行卷积滤波f4=conv2(f1,h3,'same');%进行sobel滤波h2=fspecial('sobel');g3=filter2(h2,f1,'same');%卷积和多项式相乘 same相同的k=mat2gray(g3);% 实现图像矩阵的归一化操作四,图像处理素描(来源网络)f=imread('1.jpg');[VG,A,PPG] = colorgrad(f);ppg = im2uint8(PPG);ppgf = 255 - ppg;[M,N] = size(ppgf);T=200;ppgf1 = zeros(M,N);for ii = 1:Mfor jj = 1:Nif ppgf(ii,jj)<Tppgf1(ii,jj)=0;elseppgf1(ii,jj)=235/(255-T)*(ppgf(ii,jj)-T);endendendppgf1 = uint8(ppgf1);H=fspecial('unsharp');Motionblur=imfilter(ppgf1,H,'replicate');figure;imshow(ppgf1);调用function [VG, A, PPG] = colorgrad(f, T)if (ndims(f)~=3) || (size(f,3)~=3)error('Input image must be RGB');endsh = fspecial('sobel');sv = sh';Rx = imfilter(double(f(:,:,1)), sh, 'replicate');Ry = imfilter(double(f(:,:,1)), sv, 'replicate');Gx = imfilter(double(f(:,:,2)), sh, 'replicate');Gy = imfilter(double(f(:,:,2)), sv, 'replicate');Bx = imfilter(double(f(:,:,3)), sh, 'replicate');By = imfilter(double(f(:,:,3)), sv, 'replicate');gxx = Rx.^2 + Gx.^2 + Bx.^2;gyy = Ry.^2 + Gy.^2 + By.^2;gxy = Rx.*Ry + Gx.*Gy + Bx.*By;A = 0.5*(atan(2*gxy./(gxx-gyy+eps)));G1 = 0.5*((gxx+gyy) + (gxx-gyy).*cos(2*A) + 2*gxy.*sin(2*A));A = A + pi/2;G2 = 0.5*((gxx+gyy) + (gxx-gyy).*cos(2*A) + 2*gxy.*sin(2*A)); G1 = G1.^0.5;G2 = G2.^0.5;VG = mat2gray(max(G1, G2));RG = sqrt(Rx.^2 + Ry.^2);GG = sqrt(Gx.^2 + Gy.^2);BG = sqrt(Bx.^2 + By.^2);PPG = mat2gray(RG + GG + BG);if nargin ==2VG = (VG>T).*VG;PPG = (PPG>T).*PPG;endf1=rgb2gray(f);imhist(f1);title('素描图直方图');五,图像处理实色混合(来源网络)%实色混合I(I<=127)=0; %对像素进行处理,若值小于等于127,置0 I(I>127)=255; %对像素进行处理,若值大于127,置255 imshow(I);title('像素图');I1=rgb2gray(f);imhist(I1);title('像素图直方图');六,图像处理反色图f=imread('1.jpg');q=255-q;imshow(q);title('反色图');imhist(q1);title('反色图直方图');七,图像处理上下对称A=imread('1.jpg');B=A;[a,b,c]=size(A);a1=floor(a/2); b1=floor(b/2); c1=floor(c/2);B(1:a1,1:b,1:c)=A(a:-1:a-a1+1,1:b,1:c);figureimshow(B)title('上下对称');A=rgb2gray(A);figureimhist(A)title('上下对称直方图');八,图像处理类左右对称C=imread('1.jpg');A=C;C(1:a,1:b1,1:c)=A(1:a,b:-1:b+1-b1,1:c);figureimshow(C)title('左右对称');A=rgb2gray(A);figureimhist(A);title('左右对称直方图');九,图像处理单双色显示a=imread('1.jpg');a1=a(:,:,1);a2=a(:,:,2); a3=a(:,:,3);aa=rgb2gray(a);a4=cat(3,a1,aa,aa); a5=cat(3,a1,a2,aa);figuresubplot(121);imshow(a4);title('单色显示');subplot(122);imshow(a5);title('双色显示');a4=rgb2gray(a4);a5=rgb2gray(a5);figuresubplot(121);imhist(a4);title('单色显示直方图');subplot(122);imhist(a5);title('双色显示直方图');十,图像处理亮暗度调整a=imread('1.jpg');a1=0.8*a;a2=2*a;figuresubplot(121);imshow(a1);title('暗图');subplot(122);imshow(a2);title('亮图')q3=rgb2gray(a1);q4=rgb2gray(a2);figuresubplot(121);mhist(q3);title('暗图直方图') subplot(122);imhist(q4);title('亮图直方图')十一,图像处理雾化处理q=imread('1.jpg');m=size(q,1);n=size(q,2);r=q(:,:,1);g=q(:,:,2);b=q(:,:,3);for i=2:m-10for j=2:n-10k=rand(1)*10;%产生一个随机数作为半径di=i+round(mod(k,33));%得到随机横坐标dj=j+round(mod(k,33));%得到随机纵坐标r(i,j)=r(di,dj);%将原像素点用随机像素点代替 g(i,j)=g(di,dj);b(i,j)=b(di,dj);endenda(:,:,1)=r;a(:,:,2)=g;a(:,:,3)=b;imshow(a)title('雾化处理图');q=rgb2gray(a);figureimhist(q);title('雾化处理图直方图');十二,图像处理高斯滤波I = imread('1.jpg');G =fspecial('gaussian', [5 5], 2);% fspecial生成一个高斯滤波器Ig =imfilter(I,G,'same');%imfilter使用该滤波器处理图片imshow(Ig);title('高斯滤波');I1=rgb2gray(Ig);figureimhist(I1);title('高斯滤波直方图');十三,图像处理色彩平衡(来自网络)im=imread('1.jpg');im2=im;%存储元图像im1=rgb2ycbcr(im);%将im RGB图像转换为YCbCr空间。

相关文档
最新文档