第3讲---数学规划模型

合集下载

数学建模中的优化模型ppt课件

数学建模中的优化模型ppt课件

2
3
4
• 制订月生产计划,使工厂的利润最大.
• 如果生产某一类型汽车,则至少要生产80辆,
那么最优的生产计划应作何改变? 15
汽车厂生产计划
模型建立
设每月生产小、中、大型 汽车的数量分别为x1, x2, x3
小型 钢材 1.5 时间 280 利润 2
中型 3
250 3
大型 5
400 4
现有量 600 60000
p(t)w(t) p(t)w(t) 4
每天利润的增值 每天投入的资金
保留生猪直到利润的增值等于每天的费用时出售
由 S(t,r)=3 若 1.8 w 2.2(10%), 则 7 t 13(30%) 建议过一周后(t=7)重新估计 p, p, w, w, 再作计算。
13
研究 r, g变化时对模型结果的影响 估计r=2, g=0.1
• 设r=2不变
t 3 20 g , 0 g 0.15 g
t 对g的(相对)敏感度 30
t
S(t, g) Δ t / t dt g 20 Δ g / g dg t
S(t, g) 3 3 3 20 g
7
常用优化软件
1. LINGO软件 2. MATLAB优化工具箱 3. EXCEL软件的优化功能 4. SAS(统计分析)软件的优化功能 5. 其他
8
2.简单的优化模型
——生猪的出售时机
问 饲养场每天投入4元资金,用于饲料、人力、设 题 备,估计可使80千克重的生猪体重增加2公斤。
市场价格目前为每千克8元,但是预测每天会降 低 0.1元,问生猪应何时出售。
均为整数,重新求解. 17
模型求解 整数规划(Integer Programming,简记IP)

什么是几何?什么是线性规划

什么是几何?什么是线性规划

有影响的数学家Marianne Freiberger关键词:数学家引言作为一门学科,数学有简朴之美的声誉——它对某些人产生共鸣,就像美丽的日出日落、动听的交响乐或漂亮的图画可能对其他人产生共鸣一样。

然而,数学也有其应用的一面。

如果没有20世纪发展的数学,我们不会有正在从根本上改变我们21世纪初生活方式的手机。

与数学的美感及适用性双重背景相比较的是这样的感觉:数学前沿与非数学使用者能掌握的东西越走越远。

数学证明已经变得越来越长、越来越复杂,并且在某些情况下,重要定理已经整体上需要计算机的帮助。

这方面的例子有Wolfgang Haken和Kenneth Appel计算机证明了四色定理这一猜想以及Thomas Hale计算机证实球体可以挤进三维空间并能达到最大密度。

由于许多数学家的工作以及他们对数学的热爱,以及清晰的洞察,使我们可以更清楚地看到数学的美感与适用性这两方面。

在这方面做出杰出贡献的数学家很多,在这里,我想介绍前几年去世的美国几何学家Victor Klee的工作。

Victor Klee是美国最杰出的几何学家之一。

他的去世(2007年8月)是数学界的重大损失。

他出版的作品包括几本书和超过240篇的研究论文。

Klee于1925年出生在旧金山,在Pomona学院修了数学和化学两个专业。

虽然20世纪之前,几乎所有的数学家(如牛顿、高斯、欧拉、拉普拉斯等)不仅在数学,而且在物理或一些其他科学分支均有贡献,但由于专业化的压力,现在这很难得了。

虽然Klee的工作大部分集中在几何上,出于理论与应用的考虑,他的工作横跨的兴趣广泛。

他在弗吉尼亚大学跟随著名的拓扑学家Edward McShane学习,获得博士学位。

他1949年的博士论文题目是“线性空间中的凸集”。

Klee的早期训练和研究是在拓扑学领域——这个学科关注几何对象属性的研究,它超越了角度、距离和与欧几里得几何有关的领域的传统。

因此,从拓扑的观点看,直线段和曲线段是一样的,正方形和(欧几里得)椭圆也是一样的,但线段和圆不是一样的。

第三章线性规讲义划模型

第三章线性规讲义划模型
➢ 对偶问题的对偶是原问题。
Min W= Yb
YA - YS= C Y,YS≥0
➢ 若两个互为对偶问题之一有最优解,则另一个必有最优解, 且目标函数值相等(Z*=W*),最优解满足CX*=Y*b。
第三章 线性规划模型
▪ 线性规划问题的提出 ▪ 线性规划问题的建模 ▪ 典型特征和基本条件 ▪ 一般模型和标准模型 ▪ 线性规划的图解方法 ▪ 影子价格与敏感分析 ▪ 线性规划模型的应用
第三章 线性规划模型
• 对偶问题的提出
某厂生产甲、乙两 种产品,消耗A、B两 种原材料 。生产一件 甲产品可获利2元,生 产乙产品获利3元。问 在 以 下条件下如何安 排生产?
设备 A 设备 B 设备 C 利润(元/件)
产品 产品 产品 产品 甲乙丙丁 1.5 1.0 2.4 1.0 1.0 5.0 1.0 3.5 1.5 3.0 3.5 1.0 5.24 7.30 8.34 4.18
设备能力 (小时)
2000 8000 5000
第三章 线性规划模型
▪ 建立的模型如下:
z=12737.06(元)
▪ 请注意最优解中利润率最高的产品丙在最优生产计 划中不安排生产。说明按产品利润率大小为优先次 序来安排生产计划的方法有很大局限性。尤其当产 品品种很多,设备类型很多的情况下,用手工方法 安排生产计划很难获得满意的结果。另外,变量是 否需要取整也是需要考虑的问题。
第三章 线性规划模型
用线性规划制订使总利润最大的生产计划。
每件产品占用的 产品 产品 产品 产品 设备能力
机时数(小时/件) 甲 乙 丙 丁 (小时)
设备 A
1.5 1.0 2.4 1.0
2000
设备 B
1.0 5.0 1.0 3.5

数学建立模型知识点总结

数学建立模型知识点总结

数学建立模型知识点总结一、数学建立模型的基本概念1. 模型的定义模型是对于特定对象或系统的数学表达式或描述。

它是一个用来代表真实事物、预测未来情况或解决实际问题的简化抽象。

模型可以是数学方程、图表、图形或者计算机程序等形式。

2. 模型的分类根据模型的形式和特点,可以将模型分为不同的类别,主要包括数学模型、物理模型、统计模型、仿真模型等。

3. 建立模型的目的建立模型的目的是为了更好地理解现实世界中的复杂问题,预测未来的发展趋势,进行决策分析和问题求解等。

二、数学建立模型的方法1. 建立模型的一般步骤通常建立模型的一般步骤包括问题分析、模型建立、模型求解、模型验证和结果分析等。

2. 建立模型的数学方法建立数学模型的数学方法主要包括差分方程模型、微分方程模型、优化模型、概率模型和统计模型等。

三、数学模型的应用1. 数学模型在自然科学领域的应用数学模型在物理学、化学、生物学等领域都有着广泛的应用,例如在物理学中用来研究物体的运动规律、在生物学中用来研究生物体的生长和繁殖规律等。

2. 数学模型在社会科学领域的应用数学模型在经济学、管理学、社会学等领域也有很多应用,例如在经济学中用来研究市场供求关系、在管理学中用来研究企业运营规律等。

3. 数学模型在工程技术领域的应用数学模型在工程技术领域中常常用来研究工程结构、流体力学、材料科学等诸多问题,例如在建筑工程中用来研究房屋结构的稳定性、在交通工程中用来研究交通流量规律等。

四、数学建立模型的典型案例1. 鱼群扩散模型鱼群扩散模型是用来研究在外界环境条件下鱼群扩散的问题,通常采用微分方程模型进行描述。

2. 物体自由落体模型物体自由落体模型是用来研究物体在重力作用下的运动规律,通常采用差分方程模型进行描述。

3. 经济增长模型经济增长模型常用来研究经济系统的增长规律,通常采用优化模型进行描述。

五、数学建立模型的发展趋势1. 多学科交叉融合数学建立模型的发展趋势是多学科交叉融合,即将数学模型与物理、化学、生物、经济、管理等学科相结合,以更好地解决现实世界中的复杂问题。

数学规划模型——线性规划问题

数学规划模型——线性规划问题

数学规划模型——线性规划问题title: 数学规划模型——线性规划问题date: 2020-02-26 20:08:59categories: 数学建模tags: [MATLAB, 数学规划模型]Matlab 中线性规划的标准型标准型min C T X s .t . AX <=b 不等式约束Aeg ∗x =beg 等式约束lb <=x <=ub 上下界约束(也可以当成不等式约束)向量的内积 ,c =C 1C 2...C n x =x 1x 2...x n ,n 是决策变量的个数练习题min->maxm 加负号不等式约束的标准是<=,>=需要转换变量如果不在约束条件,⽤inf 与-inf 巧妙转换Matlab 求解线性规划 的函数[x ,fval] = linprog [ c, A, b, Aeq, beq, lb, ub, X0]① X0 表⽰给定Matlab迭代求解的初始值 ( ⼀般不⽤给)② c, A, b, Aeq, beq, lb, ub的意义和 标准型中的意义⼀致③ 若不存在不等式约束, 可⽤ " [ ] " 替代 A和b④ 若不存在等式约束, 可⽤ " [ ] "替代 Aeq 和 beq⑤ 苦某个 x⽆下界或上界, 则设置lb(i)=-inf,ub(i)=+inf⑥ 返回的 x表⽰⼩值处的 x取值 ; fval表⽰优解处时取得的最⼩值7.不是所有的线性规划都有唯⼀解,可能⽆解或有⽆穷多的解。

8.如果求的是最⼤值,别忘在最后给fval加⼀个负号。

上⾯三个题的代码 :[x, fval]=linprog[c, A, b, [], [], lb][x, fval]=linprog[c, A, b,Aeg, beg, lb][x, fval]=linprog[c, A, b,Aeg, beg, lb]fval=-fval代码%% Matlab 求解线性规划% [x fval] = linprog(c, A, b, Aeq, beq, lb,ub, x0)% c 是⽬标函数的系数向量,A 是不等式约束Ax<=b 的系数矩阵,b 是不等式约束Ax<=b 的常数项% Aeq 是等式约束Aeq x=beq 的系数矩阵,beq 是等式约束Aeq x=beq 的常数项% lb 是X 的下限,ub 是X 的上限,X 是向量[x1,x2,...xn]' , 即决策变量。

最优化问题数学模型

最优化问题数学模型
• 飞机飞行的方向角调整幅度不应超过30 ; • (因飞机飞行的速度变化不大)所有飞机的飞行 速度 v 均为800km/h;

• 进入该区域的飞机在到达区域边缘时,与区域内 飞机的距离应在60km以上;
根据当年竞赛题目给出的数据,可以验证 新进入的飞机与区域内的飞机的距离超过 60公里。
• 最多需考虑六架飞机;
cij xij 表示该队员的成 目标函数:当队员i入选泳姿j时, 绩,否则 cij xij 0 。于是接力队的成绩可表示为
f cij xij .
j 1 i 1
4
5
约束条件:根据接力队要求, xij 满足约束条件
a. 每人最多只能入选4种泳姿之一,即
x
j 1
4
ij
1.
b. 每种泳姿必须有1人而且只能有一人入选,即
分析,对实际问题进行合理的假设、简化,首先考虑用
线性规划模型,若线性近似误差较大时,则考虑用非线 性规划.
例题讲解
例1 1995年全国数学建模A题:飞行管理问题 在约1万米的高空的某边长为160km的正方 形区域内,经常有若干架飞机作水平飞行,区 域内每架飞机的位置和速度向量均由计算机记 录其数据,以便进行飞行管理。当一架欲进入 该区域的飞机到达区域边缘时,计算机记录其 数据后,要立即计算并判断是否会发生碰撞。 若会发生碰撞,则应计算如何调整各架飞机 (包括新进入的飞机)飞行的方向角,以避免 碰撞,且使飞机的调整的幅度尽量小,
目标:求函数极值或最值,求取得极值时变量的取值。
x
1.线性规划
问题:某工厂在计划期内要安排生产I、II两种产品,已 知生产单位产品所需的设备台时及A、B两种原材料的消 耗,如下表所示
I 设备 1 II 2 8台时

线性规划

线性规划
1.3 线性规划问题的标准型式
M1 : 目标函数: max z c 1 x 1 c 2 x 2 c n x n a 11 x 1 a 12 x 2 a 1 n x n b1 a x a 22 x 2 a 2 n x n b 2 21 1 约束条件: a x a x a x b m2 2 mn n n m1 1 x 1 , x 2 , , x n 0
24
第2节 应用举例

最终计算表(第3次计算)
c j→ CB 0.1 -0.3 0 XB x2 x4 x1 c j -z j b 10 50 30 0 x1 0 0 1 0 0.1 x2 1 0 0 0 0.2 x3 -1 1 1 0 0.3 x4 0 1 0 0 0.8 x5 -9/10 1/3 13/10 -0.74 -M x6 3/5 0 -1/5 -M + 0.06 -M x7 -3/10 1/3 1/10 -M + 0.12 -M x8 -1/5 0 2/5 -M -0.02 θ
27
第2节 应用举例

表1-7表明这些原材料供应数量的限额。加入到产品A、 B、D的原材料C总量每天不超过100kg,P的总量不超过 100kg,H总量不超过60kg。
表1-7
原材料名称 C P H 每 天 最 多 供 应 量 ( kg) 100 100 60 单 价 /(元 /kg) 65 25 35
29

第2节 应用举例

约束条件可表示为:
1 2 1 4 x1 x1 1 2 3 4 x2 x2 1 2 1 4 x3 x3 x1 x2 x3 x1 , , x 9 0 3 4 1 2 x4 x4 1 4 1 2 x5 x5 1 4 1 2 x6 x6 x7 x5 x6 x8 0 0 0 0 100 100 x 9 60

第三讲 线性规划(二)

第三讲 线性规划(二)
i 1
定理:若检验数全小于等于零,且某一个非基变量 的检验数为0,则线性规划问题有无穷多最优解。 (无穷多最优解情况) 证明:设通过迭代已得最优解 X 0
按前述规则将非基变量 xm k 换入基变量中, 得到新基可行解 ,可知 仍为最优解。于是 X X 与 X 0连线上所有的点都是最优解。 X 命题成立。
B=(P3,P4 ,P5 )=
1 0 0
0
0
1 0
0 1
x3, x4 , x5是基变量,x1,
x2,是非基变量。
用非基变量表示的方程: x3 = 8- x1 - 2x2 x4 = 16- 4x1 (I) x5 = 12 - 4x2 S = 0+ 2x1 +3x2 称(I) 为消去系统,
令非基变量 ( x1 , x2)T=(0,0) T 得基础可行解: x(1)=(0,0,8,16,12) T S1=0 经济含义:不生产产品甲乙,利润为零。 分析:S = 0+ 2x1 + 3x2 (分别增加单位产品甲、乙,目标函数 分别增加2、3,即利润分别增加2百元、 3百元。) 增加单位产品对目标函数的贡献, 这就是检验数的概念。
x1 = 2-x3+(1/2)x5 x4 = 8+ 4x3 -2 x5 x2 =3-(1/4) x5 S = 13-2x3+(1/4)x5
令新的非基变量( x3,x5 )=(0,0)T 得到新的基础可行解: x(3)=(2,3,0, 16 , 0) T S3=13 经济含义:生产甲产品2个,乙产品3个, 获得利润1300元。
增加单位产品甲(x2)比乙对目标函数 的贡献大(检验数最大),把非基变量 x2换成基变量,称x2为换入基变量,而 把基变量x5换成非基变量,称x5为换出 基变量。 (在选择出基变量时,一定保证消去系 统为正消去系统)(最小比值原则)

数学建模教学大纲

数学建模教学大纲

数学建模教学大纲【课程编码】 JSZB0240【适用专业】 信息与计算科学【课 时】 78【学 分】 4【课程性质、目标和要求】数学建模是信息与计算科学专业的一专业课。

它是研究如何将数学方法和计算机知识结合起来用于解决实际问题的一门边缘交叉学科,是集经典数学、现代数学和实际问题为一体的一门新型课程,是应用数学解决实际问题的重要手段和途径。

本课程主要介绍数学建模的概述、初等模型、简单优化模型、微分方程模型、差分方程模型、概率统计模型、图论模型、线性规划模型等模型的基本建模方法及求解方法.数学建模是继本科生高等数学、工程数学之后为了进一步提高运用数学知识解决实际问题的基本技能,培育和训练综合能力所开设的一门新学科。

通过具体实例的引入使学生掌握数学建模基本思想、基本方法、基本类型,学会进行科学研究的一般过程,并能进入一个实际操作的状态。

通过数学模型有关概念、特征的学习和数学模型应用实例的介绍,培养学生数学推导计算和简化分析能力,熟练运用计算机能力;培养学生联想、洞察能力,综合分析能力;培养学生应用数学方法解决实际问题的能力。

【教学时间安排】本课程计4学分,78学时(理论学时54,实验学时24) 学时分配如下:序号课程内容课时备注(教学形式)1建立数学模型4课堂讲授 作业 辅导2初等模型4课堂讲授 作业 辅导3简单的优化模型4课堂讲授 作业 辅导4数学规划模型8课堂讲授 作业 辅导5微分方程模型6课堂讲授 作业 辅导6差分方程模型4课堂讲授 作业辅导7离散模型6课堂讲授 作业 辅导8概率统计模型8课堂讲授 作业 辅导9动态优化模型6课堂讲授 作业 辅导10大作业讲评:露天矿生产的车辆安排4课堂讲授 课堂讨论11实验1:LINDO软件的使用方法4上机练习 12实验2:LINGO软件的使用方法4上机练习13实验3:用LINDO/LINGO软件包求解部分优化建模赛题4上机练习14实验4:用Matlab进行统计回归分析4上机练习15实验5:用Matlab作散点插值4上机练习16实验6:用Matlab作数据拟合4上机练习合 计78【教学内容要点】第一章 建立数学模型一、学习目的要求 使学生正确了解数学描述和数学建模不同于常规数学理论的思维特征,了解数学模型的意义及分类,掌握建立数学模型的一般方法及步骤。

数学模型第五版姜启源课件

数学模型第五版姜启源课件

数学模型第五版姜启源课件1. 引言数学模型是一种以数学方法描述、分析和解决实际问题的工具。

它是现代科学、工程和社会学科中不可或缺的一部分。

姜启源的《数学模型》是国内外广泛采用的教材之一,这份课件是对第五版《数学模型》的经典章节进行概要的总结和讲解。

2. 背景与目的数学模型的研究对象可以是自然界的现象、社会经济问题或工程技术等。

通过建立数学模型,我们可以更好地理解问题的本质,并探索解决问题的方法。

数学模型的建立需要一定的理论基础和技巧,本课件旨在帮助读者快速掌握数学模型的基本概念和建模方法。

3. 数学模型的基本概念数学模型是对实际问题进行抽象和描述的数学形式。

它由问题的假设、变量、关系和约束等要素组成。

本部分介绍了数学模型的基本概念,包括:3.1 假设与逼近数学模型的建立需要对实际问题进行适当的假设和逼近。

假设是对问题中不确定因素的简化和规定,而逼近是对问题中不精确因素的近似和描述。

3.2 变量与参数变量是数学模型中描述问题状态的符号,它可以是数值、向量、矩阵等。

参数是数学模型中的固定值,它们可以是已知的或未知的。

3.3 关系与方程关系是数学模型中描述变量之间相互关系的数学表达式。

方程是关系中等号左右两边相等的表达式。

3.4 约束条件与目标函数约束条件是数学模型中描述问题限制条件的不等式或等式。

目标函数是数学模型中描述问题目标的数学表达式。

4. 常见的数学模型本部分介绍了一些常见的数学模型及其应用场景,包括:4.1 线性模型线性模型是最简单的数学模型之一,它的关系和约束条件可以表示为线性方程或线性不等式。

线性模型广泛应用于经济学、管理学、物理学、工程学等领域。

4.2 非线性模型非线性模型是一类不满足线性关系的数学模型。

它的关系和约束条件可以表示为非线性方程或非线性不等式。

非线性模型常用于生物学、化学、地球物理学等领域的研究。

4.3 动态模型动态模型是描述系统随时间变化的数学模型。

它可以采用微分方程、差分方程或积分方程等形式进行建模。

第三讲 DPS应用(4、数学模型模拟分析)

第三讲 DPS应用(4、数学模型模拟分析)

一、非线性回归模型
一元非线性回归模型
实例:
先输入数据:行为样本, 列为变量;定义数据块时 要注意一元非线性回归只 允许定义2 列数据:第一 列为自变量,第二列为因 变量。
以测定的某种肉鸡在良好 生长条件下生长过程数据, 建立Logistic 生长方程为 例。
定义数据块(图阴影区)。
一、非线性回归模型
如果拟合效果不好,可选用其它的曲线类型,或 更改参数的初始值后重新拟合,并从中选择一个 较优的模型。
一、非线性回归模型
非线性回归分析
(1)普通非线性模型 例:研究“岱字棉”自播种至齐苗(以80%出苗
为准)期的天数(Y)和日平均土温(X,℃)的关系,
经试验得到数据后欲建非线性经验模型(莫惠栋 984)。 根据有效积温模型,描述自播种至齐苗期 天数和日平均土温相互关系最直观的回归方程的 数学表达形式为:
分析结果可以作出如下解释:
二、数学模型模拟与优化 第1 阶段,灵敏度大于1,这时的边际产量大于平均效应产量,且平均产量
效应是增加的,当肥料投入量达到10 个单位时,平均效应产量达到最高点。
该点的x 值约为10。
第2 阶段,灵敏度小于1 但仍大于0,目标函数在该阶段的终点达到最大值,
而边际效应值下降到0。这时的投入x 约为14。
第3 阶段,灵敏度小于0,目标函数趋于下降,平均效应虽为正值,但边际 效应为负。
二、数学模型模拟与优化
模型优化
所谓数学模型优化,就是寻求在什么条件下,模型的 目标函数达到最大(或最小),即求函数的极值问题。
生产实践中的所谓优化问题,只要经验模型的目标函 数有明显的表达式,一般可用微分法、变分法、最大 (最小)值原理等方法求解,叫做间接寻优。如果目标 函数表达式过于复杂甚至根本没有明显的表达式,则 用数值方法或“试验最优化”等直接方法求解,叫做 直接寻优。

《数学建模》教学大纲

《数学建模》教学大纲

《数学模型》课程教学大纲一、《数学模型》课程说明(一)课程编号:07251105(二)英文名称:Mathmatic Modeling(三)开课对象:数学与应用数学专业(四)课程的性质:数学建模是为数学与应用数学专业开设的一门学科基础课,其先修课程有数学分析、高等代数、概率论与数理统计、数学实验等。

它是研究如何将数学方法和计算机知识结合起来用于解决实际生活中存在问题的一门边缘交叉学科,是集经典数学、现代数学和实际问题为一体的一门新型课程,是应用数学解决实际问题的重要手段和途径。

(五)教学目的:数学建模是继本科生学习数学分析、高等代数、概率论与数理统计之后进一步提高运用数学知识解决实际问题,培育和训练综合能力所开设的一门新学科。

通过具体实例引入使学生掌握数学建模基本思想、基本方法、基本类型。

学会进行科学研究的一般过程,并能进入一个实际操作的状态.通过数学模型有关的概念、特征的学习和数学模型应用实例的介绍,培养学生数学推导计算和简化分析能力、熟练运用计算机能力;培养学生联想、洞察能力、综合分析能力;培养学生应用数学解决实际问题的能力。

(六)教学要求和方法1.教学要求本课程主要介绍在数学应用中已经比较完善的数学模型,包括初等模型、简单优化模型、线性规划模型、离散模型、离散模型、微分方程模型、差分方程、概率统计模型等内容。

要求学生了解数学建摸的基本概念及基本方法,学会将学过的数学方法和知识同周围的现实世界联系起来,甚至和真正的实际问题联系起来。

不仅应使学生知道数学有用、怎么用,更要使学生体会到在真正的应用中还需要继续学习。

2.教学方法本课程将课堂讲授与上机实习结合起来,以课堂讲授为主。

课堂讲授旨在教学生如何建立模型,讲授中穿插各类数模实例,与现实中的各类实际问题相结合,启发学生自主思考和研究问题,找寻解决问题的数学模型和实际方法。

除此外,还会讲解数学建模论文的书写方法,以论文的形式完成建模和研究工作。

上机旨在教学生如何求解模型,以学生自主学习为主,结合课堂学习内容完成课堂布置的作业,利用数学软件求解模型结果。

规划数学对偶理论

规划数学对偶理论
原问题的每个决策变量对应于对偶问题的一个约束条 件,且决策变量的价值系数为相应约束条件的右端常 数项
对偶问题中的系数矩阵为原问题中的系数矩阵的转置 原问题约束条件中的小于等于符号对应于对偶问题中
的对偶变量取非负约束,原问题中决策的对偶问题非 负约束在对偶问题中体现为相应的约束条件取大于等 于符号
目标函数由 max 型变为 min 型
对应原问题每个约束行有一个对偶变量 yi,i=1,2,…,m 对偶问题约束为 型,有 n 行 原问题的价值系数 C 变换为对偶问题的右端项 原问题的右端项 b 变换为对偶问题的价值系数 原问题的技术系数矩阵 A 转置后成为对偶问题的技术系
CXYb
第2部分:证明有相同的目标函数值
设 为Xˆ 原问题的最优解 它所对应的基矩阵是B,
Xˆ B1b 则其检验数满足 C CBB1A 0
令 Y ˆ C B 1 ,Y ˆ A 则 C , Y ˆ 有 0 B
显然Yˆ为对偶问题的可行解。
因此有对偶问题目标函数值 Y ˆbCB 1b B
min 20 y1 10 y 2 5 y3

s.t.

3 y1 4 y2 y3 4 2 y1 3 y2 y3 5
y1 0, y 2 0, y3 不限
化为 (max, )型标准问题
max z 4 x 1 5 x 2 5 x 2
原问题和对偶问题都有最优解
一个问题具有无界解,另一个问题无可行解
原问题和对偶问题都无可行解
(5)互补松弛定理
设Xˆ, 分Yˆ 别是原问题和对偶问题的可行解, 为X 原S
问题的松弛变量的值,为Y 对偶问题剩余变量的值 S

线性规划问题及其数学模型

线性规划问题及其数学模型
就代表一个具体方案一般这些变量取值是非负 且连续的;
2要有各种资源和使用有关资源的技术数据 创造新价值的数据;
a i; jcj(i1 , m ;j1 , n)
共同的特征继续
3 存在可以量化的约束条件这些约束条件可 以用一组线性等式或线性不等式来表示;
4 要有一个达到目标的要求它可用决策变量 的线性函数称为目标函数来表示按问题的 不同要求目标函数实现最大化或最小化
约束条件:
a
21
x1
a22
x
2
a2n xn
b2
a
m
1
x1
am 2 x2
a mn xn
bn
x1 , x2 , , xn 0
线性规划问题的几种表示形式
M
' 1
:
n
目标函数:max z c j x j
j 1
约束条件:
n
aij x j
j 1
bi ,
i 1,2, ,m
x
j
0,
j 1,2, ,n
弛变量x6; 3 在第二个约束不等式≥号的左端减去剩
余变量x7; 4 令z′= -z把求min z 改为求max z′即可得到
该问题的标准型
例4的标准型
max z ' x1 2 x 2 3( x 4 x5 ) 0 x6 0 x7
x1 x2 ( x4 x5 ) x6
7
x1 x2 ( x4 x5 )
经第2工厂后的水质要求:
[0.8(2x1)(1.4x2 )] 2
700
1000
数学模型
目标函数 约束条件
min z 1000 x1 800 x2 x1 1
0.8 x1 x2 1.6 x1 2 x2 1.4 x1 , x2 0

线性规划模型 ppt课件

线性规划模型 ppt课件

例:求解线性规划问题的最优解
maxz2x23x3x4
x1x2x35 s.t. 2x2x246x3x3x4x5624
x1,x2,x3,x4,x5 0
1 1 1 0 0 0 1 4 1 0
0 2 6 0 1
解:(1)构造初始单纯单纯形表(第1、4 、5列构成的矩阵可逆)所以可取
x0(5,0,0,6,24)
分析和建立模型
(1)确定决策变量:设 x( i i 1, 2, 3, 4)
为第i种矿石的选取的数量(单位10kg) ; (2)确定目标函数:
目标应该是使得总费用最小,即
f 1 0 x 1 1 5 x 2 3 0 x 3 2 5 x 4
达到最小;
(3)确定约束条件:选定的四种矿石的数量 应该满足铸件对三种成分的需求量,并且矿石数 量应该是非负的,即
精品资料
• 你怎么称呼老师?
• 如果老师最后没有总结一节课的重点的难点,你 是否会认为老师的教学方法需要改进?
• 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭
• “不怕太阳晒,也不怕那风雨狂,只怕先生骂我 笨,没有学问无颜见爹娘 ……”
• “太阳当空照,花儿对我笑,小鸟说早早早……”
例 (配料问题)某铸造厂生产铸件 ,每件需要20千克铅,24千克铜和30 千克铁。现有四种矿石可供选购,它们 每10千克含有成分的质量(千克)和 价格(元)如图。问:对每个铸件来说 ,每种矿石各应该选购多少,可以使总 费用最少?试建立数学模型。
x( i i 1, 2, 3, 4)
具有以上结构特点的模型就是线性规划模型
,记为LP(Linear Programming),具有以 下一般形式:
s.t.
max(or min) f c1x1 c2 x2 cn xn

数学规划方法

数学规划方法

数学规划法数学规划法就是依据调查提供的基础资料,建立数学模型,反映土地利用活动与其他经济因素之间的相互关系,借助计算机技术求解,获得多个可供选择的解式,揭示土地利用活动对各项政策措施的反应,从而得到数个供选方案。

在土地利用系统中许多因素的发展既受客观因素的制约,又受决策者主观因素的影响,确定科学的土地利用结构,就是具体确定土地利用结构系统中最优的主观控制变量,使总体目标优化。

常用的数学规划法就是线性规划。

线性规划是数学规划中的基本方法,它的出现和应用早在20世纪30年代之前,而到1947年,丹茨基(George B. Dantzig ) 提出求解这类问题的有效算法一—单纯形法之后,它在理论上才得到了完善,应用上得到了迅速的发展和推广。

尤其是随着电了计算机的应用和发展,使它的运用领域更为厂泛,成千上万个约束条件和变量的大规模线性规划问题都可以求解。

无论从理论的成熟性看,还是从应用的广泛性看,线性规划都已成为运筹学的一个重要分支。

应用线性规划法进行土地利用结构优化的主要优点是用完全定量的纯数学的方法进行优化,且有明确的目标函数来衡量优化模型,因而从理论上讲,优化方案相对原方案是最优的。

1.单目标线性规划线性规划就是求一组非负变量,在满足一组线性等式或线性不等式的前提下,使一个线性函数取得最大值或最小值。

线性规划问题数学模型的一般形式是:求一组变量X1,X2,…X n的值,使它们满足a11X1 + a12X2 + ……+ a1n X n≤b1(或≧b1 ,或=b1)a21X1 + a22X2 + ……+ a2n X n≤b2(或≧b2 ,或=b2)约束条件………………………………a m1X1 + a m2X2 + ……+ a mn X n≤b m(或≧b m,或=b m)X1≧0, X2≧0,……,Xn≧0并且使目标函数S=C1X1 + C2X2 + ……+ C n X n的值最小(或最大)。

为了讨论与计算上的方便,我们把线性规划问题化为标准形式,为此:(1)如果第k个式子为:a k1X1 + a k2X2 + ……+ a kn X n≤b k则加入变量X n+ k≧0,改为:a k1X1 + a k2X2 + ……+ a kn X n + X n + k =b k如果第e个式子为:a e1X1 + a e2X2 + ……+ a en X n ≧b e则减去变量X n + e≧0,改为:ae1X1 + ae2X2 + ……a en X n - X n + e= beX n + k、X n + e称为松驰变量,松驰变量在目标函数中的系数为零。

规划理论及模型

规划理论及模型
m
n
若其中各产地的总产量等于各销地的总销量, 若其中各产地的总产量等于各销地的总销量, 即 ∑ ai = ∑ b j ,则称该问题为平衡的运输问题 则称该问题为平衡的运输问题.
i =1 i =1 m n
否则,称为不平衡的运输问题,包括: 否则,称为不平衡的运输问题,包括: 总产量>总销量和总产量 总销量 总产量 总销量和总产量<总销量 总销量和总产量 总销量. 类似与将一般的线性规划问题转化为其标准 形式,我们总可以通过引入假想的销地或产地, 形式,我们总可以通过引入假想的销地或产地, 将不平衡的运输问题转化为平衡的运输问题. 将不平衡的运输问题转化为平衡的运输问题 从 而,我们的重点就是解决平衡运输问题的求解. 我们的重点就是解决平衡运输问题的求解
数学模型: 数学模型:
min s .t .
z = ∑ ∑ cij xij
i = 1 j =1
m
n
∑ xij = ai , i = 1,2,, m j =1 ∑ xij = b j , j = 1,2,, n i =1
xij ≥ 0, i = 1,2,, m; j = 1,2,, n
上述食谱问题就是一个典型的线性规划问题, 上述食谱问题就是一个典型的线性规划问题, 它是指在一组线性的等式或不等式的约束条件下, 它是指在一组线性的等式或不等式的约束条件下, 寻求以线性函数的最大( 寻求以线性函数的最大(小)值为目标的数学模 型.
线性规划模型的三种形式
⑴ 一般形式 T min(max) z = c1 x1 + + cn xn A i b1 a 系 x +11 x a12+ + a1nx = b , ain i = 1,, p s.t . ai1 1 ai 2 2 n i b= 数 a21 a22 a2n s aiA = + ai 2 x2 + + ain xn ≥ bi , i = p + 1,, x1 1 b 矩 m a a s + 1,, m + 2 阵 i1 x1 a ai 2 xa + +a in xn ≤ bi , i = 右端向量 mn m1 m2 x j ≥ 0, j = 1,, q 非负约束 Aj > 自由变量 x j < 0, j = q + 1, n
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1) 3360.000 VALUE 20.000000 30.000000 REDUCED COST 0.000000 0.000000 DUAL PRICES
结果解释
最优解下“资源”增加 1单位时“效益”的增 量
VARIABLE X1 X2
ROW SLACK OR SURPLUS
影子价格
2)
3) 4)
线性规划模型
A1,A2每公斤的获利是与各 自产量无关的常数 每桶牛奶加工出A1,A2的数量 和时间是与各自产量无关的常 数 A1,A2每公斤的获利是与相 互产量无关的常数 每桶牛奶加工出A1,A2的数量和 时间是与相互产量无关的常数 加工A1,A2的牛奶桶数是实数
模型求解
x1 x2 50
图解法
0.000000
0.000000 40.000000
48.000000
2.000000 0.000000
原料增加1单位, 利润增长48
时间增加1单位, 利润增长2 加工能力增长不影响利润
NO. ITERATIONS=
2
• 35元可买到1桶牛奶,要买吗?
35 <48, 应该买!
• 聘用临时工人付出的工资最多每小时几元? 2元!
T
规划问题包含3个组成要素: f(x)~目标函数 决策变量个数n和 多元函数 约束条件个数m较大 条件极值 最优解在可行域 的边界上取得 x~决策变量 gi(x)0~约束条件 数 学 规 划 线性规划 非线性规划 整数规划
当目标函数和约束条件都是决策变量的线性函数时,称为线性规划 问题, 否则称为非线性规划问题。
4.1 奶制品的生产与销售
企业生产计划 空间层次 工厂级:根据外部需求和内部设备、人力、原料等 条件,以最大利润为目标制订产品生产计划; 车间级:根据生产计划、工艺流程、资源约束及费 用参数等,以最小成本为目标制订生产批量计划。 时间层次 若短时间内外部需求和内部资源等不随时间变化,可 制订单阶段生产计划,否则应制订多阶段生产计划。 本节课题
x1 x5 100
原料 供应
劳动 时间
x3 0.8x5
2 x5 2 x6 480
非负约束
x4 0.75x6 x1 , x6 0
OBJECTIVE FUNCTION VALUE 软件实现 LINDO 6.1 1) 3460.800 VARIABLE VALUE REDUCED COST x1 x5 x2 x6 2) 50 X1 0.000000 1.680000 3 4 X2 168.000000 0.000000 X3 19.200001 0.000000 2) 4x1 3x2 4x5 3x6 600 X4 0.000000 0.000000 X5 24.000000 0.000000 3) 4( x1 x5 ) 2( x2 x6 ) X6 0.000000 1.520000 ROW SLACK OR SURPLUS DUAL PRICES 2 x5 2 x6 480 2) 0.000000 3.160000 3) 0.000000 3.260000 3) 4x1 2x2 6x5 4x6 480 4) 76.000000 0.000000 5) 0.000000 44.000000 DO RANGE 6) 0.000000 32.000000 (SENSITIVITY) NO. ITERATIONS= 2
0.000000 0.000000
ROW SLACK OR SURPLUS DUAL PRICES
2) 3) 0.000000 0.000000 48.000000 2.000000
4)
40.000000
2
0.000000
NO. ITERATIONS=
20桶牛奶生产A1, 30桶生产A2,利润3360元。
第四章
4.2
数学规划模型
4.1 奶制品的生产与销售
自来水输送与货机装运
4.3
4.4 4.5
汽车生产与原油采购
接力队选拔 饮料厂的生产(自学)
4.6 钢管下料
y
优化问题:
与最大、最小、最长、最短等等有关的问题。 解决最优化问题的数学方法: 运筹学
运筹学主要分支:
线性规划、非线性规划、动态规划、 图与网络分析、存贮论、排队伦、 对策论、决策论。
Max z 72x1 64x2
z=c (常数) ~等值线
0
l5
Z=0
x1 D Z=2400
在B(20,30)点得到最优解 最优解一定在凸多边 形的某个顶点取得。
目标函数和约束条件是线性函数 可行域为直线段围成的凸多边形 目标函数的等值线为直线
模型求解
Max=72*x1+64*x2; x1+x2<50;
最优解不变时目标函 (约束条件不变)
X1 X2 ROW
72.000000
24.000000
8.000000
x1系数范围(64,96)
64.000000 8.000000 16.000000 x2系数范围(48,72) RIGHTHAND SIDE RANGES CURRENT ALLOWABLE ALLOWABLE RHS INCREASE DECREASE
原料最多增加10
时间最多增加53
• 35元可买到1桶牛奶,每天最多买多少? 最多买10桶!
例2 奶制品的生产销售计划
1桶 牛奶 或 12小时 3千克A1 1千克
在例1基础上深加工
获利44元/千克
获利24元/公斤
0.8千克B1
2小时,3元 获利16元/公斤 8小时 4公斤A2 50桶牛奶, 480小时 1千克 获利32元/千克 0.75千克B2 2小时,3元
(目标函数不变)
X2
ROW 2 3 4
64.000000 8.000000 16.000000 RIGHTHAND SIDE RANGES CURRENT ALLOWABLE ALLOWABLE RHS INCREASE DECREASE
50.000000 480.000000 100.000000 10.000000 53.333332 INFINITY 6.666667 80.000000 40.000000
例 家具生产的安排
一家具公司生产桌子和椅子,用于生产的全部劳力共 计450个工时,共有4立方的木材。 每张桌子要使用15个工时,0.2立方木材,售价80元。 每张椅子使用10个工时,0.05立方木材,售价45元。 问为达到最大的收益,应如何安排生产?
• 分析: • 1. 求什么? • 生产多少桌子? • 生产多少椅子? • 2. 优化什么? • 收益最大 • 3. 限制条件? • 原料总量 • 劳力总数
1)
软件实现
OBJECTIVE FUNCTION VALUE 3360.000
12*x1+8*x2<480;
3*x1<100; end DO RANGE (SENSITIVITY) ANALYSIS? No
VARIABLE
X1 X2
VALUE
20.000000 30.000000
REDUCED COST
x1 x2 50
12x1 8x2 480
约束条件
劳动时间 加工能力 非负约束
3x1 100 x1 , x2 0
线性 规划 模型 (LP)
模型分析与假设
比 xi对目标函数的 例 “贡献”与xi取值 性 成正比 xi对约束条件的 “贡献”与xi取值 成正比 xi对目标函数的 可 “贡献”与xj取值 加 无关 性 xi对约束条件的 “贡献”与xj取值 无关 连续性 xi取值连续
至多100公斤A1
制订生产计划,使每天净利润最大
• 30元可增加1桶牛奶,3元可增加1小时时间,应否投 资?现投资150元,可赚回多少?
1桶 牛奶 或
12小时
3千克 A1 1千克
获利24元/千克
0.8千克 B1
2小时,3元 获利16元/kg 8小时 4千克 A2
1千克
获利44元/千克
决策 变量 目标 函数 约束 条件
例1 加工奶制品的生产计划
1桶 牛奶 或 12小时 8小时 3公斤A1 获利24元/公斤
4公斤A2
获利16元/公斤
每天: 50桶牛奶
时间480小时 至多加工100公斤A1
制订生产计划,使每天获利最大 • 35元可买到1桶牛奶,买吗?若买,每天最多买多少? • 可聘用临时工人,付出的工资最多是每小时几元? • A1的获利增加到 30元/公斤,应否改变生产计划?
DO RANGE(SENSITIVITY) ANALYSIS?
Yes
RANGES IN WHICH THE BASIS IS UNCHANGED: 数系数允许变化范围 OBJ COEFFICIENT RANGES VARIABLE CURRENT ALLOWABLE ALLOWABLE
COEF INCREASE(增加量) DECREASE(较少量)
ROW SLACK OR SURPLUS DUAL PRICES
2) 3) 0.000000 0.000000 48.000000 2.000000
4)
40.000000
2
0.000000
NO. ITERATIONS=
“资源” 剩余为零的约束为紧约束(有效约束)
OBJECTIVE FUNCTION VALUE
结果解释
max 72x1+64x2
st 2)x1+x2<50
OBJECTIVE FUNCTION VALUE 1) 3360.000
VARIABLE
X1 X2
VALUE
20.000000 30.000000
相关文档
最新文档