七年级数学上册基础练习题50

合集下载

七年级上册100道计算题

七年级上册100道计算题

七年级上册100道计算题作为一名老师或家长,帮助七年级上册学生巩固数学计算能力是非常重要的。

为了帮助学生更好地掌握基础计算能力,我准备了一份包含100道计算题的练习题。

以下是具体的练习内容:一、加法计算1. 15 + 24 = _________2. 36 + 12 = _________3. 50 + 28 = _________4. 83 + 19 = _________5. 97 + 41 = _________6. 62 + 96 = _________7. 125 + 75 = _________8. 184 + 72 = _________9. 205 + 91 = _________10. 249 + 103 = _________二、减法计算11. 85 - 29 = _________12. 137 - 63 = _________13. 82 - 17 = _________15. 124 - 89 = _________16. 178 - 47 = _________17. 200 - 103 = _________18. 214 - 69 = _________19. 259 - 186 = _________20. 311 - 204 = _________三、乘法计算21. 6 × 9 = _________22. 8 × 7 = _________23. 9 × 5 = _________24. 12 × 4 = _________25. 7 × 9 = _________26. 6 × 13 = _________27. 11 × 8 = _________28. 9 × 15 = _________29. 14 × 12 = _________30. 16 × 11 = _________四、除法计算32. 72 ÷ 8 = _________33. 45 ÷ 9 = _________34. 81 ÷ 9 = _________35. 63 ÷ 7 = _________36. 72 ÷ 6 = _________37. 56 ÷ 8 = _________38. 99 ÷ 11 = _________39. 100 ÷ 10 = _________40. 168 ÷ 12 = _________五、混合运算41. 10 + 6 - 4 = _________42. 9 + 12 - 7 = _________43. 14 - 6 + 2 = _________44. 15 - 7 + 9 = _________45. 8 × 7 + 3 = _________46. 9 × 5 - 4 = _________47. 12 ÷ 6 + 3 = _________48. 8 ÷ 2 + 4 = _________50. 30 - 9 × 2 = _________六、括号计算51. (8 + 4) × 3 = _________52. 6 + (12 - 3) = _________53. (10 - 2) × 4 = _________54. 5 × (9 + 3) = _________55. (15 + 6) - 9 = _________56. 12 - (5 - 2) = _________57. 8 + 6 × (15 - 9) = _________58. (9 + 3) × 4 + 2 = _________59. 7 + 6 × (15 + 4) - 8 = _________60. (11 + 8) - (5 - 3) = _________七、带小数计算61. 1.5 + 0.8 = _________62. 2.7 - 1.3 = _________63. 3.6 × 0.4 = _________64. 4.2 ÷ 0.7 = _________65. 1.2 + 0.6 × 1.5 = _________67. 0.8 × (2.5 + 1.5) = _________68. 1.6 + 0.3 × (4.2 - 1.4) = _________69. 1.2 - 0.4 × (2.4 - 0.3) = _________70. (3.3 + 1.5) ÷ (1.1 - 0.3) = _________八、整数运算71. 12 × 3 ÷ 4 = _________72. 7 - 3 + 6 = _________73. 15 + 16 - 8 = _________74. 14 ÷ 7 × 6 = _________75. 24 - 12 + 9 = _________76. 18 + 14 - 11 = _________77. 40 ÷ 5 × 4 = _________78. 36 - 15 + 8 = _________79. 42 × 7 ÷ 6 = _________80. 32 ÷ 8 × 3 = _________九、分数计算81. 1/4 + 1/6 = _________82. 2/5 - 1/3 = _________83. 3/8 × 1/4 = _________84. 2/3 ÷ 3/5 = _________85. 1/2 + 3/4 - 1/8 = _________86. 3/5 - 1/2 + 1/10 = _________87. 2/3 × 3/4 + 1/5 = _________88. 1/4 ÷ 1/2 × 2/3 = _________89. 5/6 + 2/3 × 1/2 = _________90. 3/8 - 1/4 ÷ 1/2 = _________十、应用题91. 一箱苹果有32斤,小明买了4箱,他一共买了多少斤的苹果?92. 3个相同的书架一共有27本书,每个书架上有几本书?93. 若一根绳子长5/6米,若要将其等分为3段,每段长多少米?94. 李华去买东西,一共花了50元。

人教版初中七年级数学上册第四章《几何图形初步》经典练习题(含答案解析)

人教版初中七年级数学上册第四章《几何图形初步》经典练习题(含答案解析)

人教版初中七年级数学上册第四章《几何图形初步》经典练习题(含答案解析)一、选择题1.如图所示的四个几何体中,从正面、上面、左面看得到的平面图形都相同的有()A.1个B.2个C.3个D.4个B解析:B【分析】分别找出每个图形从三个方向看所得到的图形即可得到答案.【详解】解:①正方体从上面、正面、左侧三个不同方向看到的形状都是正方形,故此选项正确;②球从上面、正面、左侧三个不同方向看到的形状都是圆,故此选项正确;③圆锥,从左边看是三角形,从正面看是三角形,从上面看是圆,故此选项错误;④圆柱从左面和正面看都是矩形,从上边看是圆,故此选项错误;故选B.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.2.观察下列图形,其中不是正方体的表面展开图的是()A.B.C.D. B解析:B【分析】利用正方体及其表面展开图的特点解题.【详解】解:A、C、D均是正方体表面展开图;B、是凹字格,故不是正方体表面展开图.故选:B.【点睛】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.3.一副三角板按如图方式摆放,且1∠的度数比2∠的度数小20︒,则2∠的度数为( )A .35︒B .40︒C .45︒D .55︒D解析:D【分析】 根据题意结合图形列出方程组,解方程组即可.【详解】解:由题意得,1290,2120∠+∠︒⎧⎨∠-∠︒⎩==,解得135,255.∠︒⎧⎨∠︒⎩==. 故选:D .【点睛】本题考查的是余角和补角的概念和性质,两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.4.如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF m =,CD n =,则AB =( )A .m n -B .m n +C .2m n -D .2m n + C解析:C【分析】由条件可知EC+DF=m-n ,又因为E ,F 分别是AC ,BD 的中点,所以AE+BF=EC+DF=m-n ,利用线段和差AB=AE+BF+EF 求解.【详解】解:由题意得,EC+DF=EF-CD=m-n∵E 是AC 的中点,F 是BD 的中点,∴AE=EC ,DF=BF ,∴AE+BF=EC+DF=m-n ,∵AB=AE+EF+FB ,∴AB=m-n+m=2m-n故选:C【点睛】本题考查中点性质及线段和差问题,利用中点性质转化线段之间的倍分关系和灵活运用线段的和、差转化线段之间的数量关系是解答此题的关键.5.已知∠AOB=40°,∠BOC=20°,则∠AOC的度数为( )A.60°B.20°C.40°D.20°或60°D解析:D【分析】考虑两种情形①当OC在∠AOB内部时,∠AOC=∠AOB-∠BOC=40°-20°=20°,②当OC’在∠AOB外部时,∠AOC’=∠AOB+∠BOC=40°+20°=60°.【详解】解:如图当OC在∠AOB内部时,∠AOC=∠AOB-∠BOC=40°-20°=20°,当OC’在∠AOB外部时,∠AOC’=∠AOB+∠BOC=40°+20°=60°,故答案为20°或60°,故选D.【点睛】本题考查角的计算,解决本题的关键是学会正确画出图形,根据角的和差关系进行计算. 6.体育课上,小悦在点O处进行了四次铅球试投,铅球分别落在图中的M,N,P,Q四个点处,则表示他最好成绩的点是()A.M B.N C.P D.Q C解析:C【分析】根据点和圆的位置关系,知最好成绩在P点.【详解】P点与O点距离最长,且在有效范围内,所以最好成绩在P点.【点睛】考查了点和圆的位置关系.7.已知线段AB=6cm,反向延长线段AB到C,使BC=83AB,D是BC的中点,则线段AD的长为____cmA.2 B.3 C.5 D.6A 解析:A【分析】由BC =83AB 可求出BC 的长,根据中点的定义可求出BD 的长,利用线段的和差关系求出AD 的长即可.【详解】∵BC =83AB ,AB=6cm , ∴BC=6×83=16cm , ∵D 是BC 的中点,∴BD=12BC=8cm , ∵反向延长线段AB 到C ,∴AD=BD-AB=8-6=2cm ,故选A.【点睛】本题考查了比较线段的长短,理解线段中点的概念,利用中点的性质转化线段之间的倍分关系是解题关键.8.22°20′×8等于( ).A .178°20′B .178°40′C .176°16′D .178°30′B解析:B【分析】根据角的换算关系即可求解.【详解】22°×8=176°,20′×8=160′=2°40′,故22°20′×8=176°+2°40′=178°40′故选B.【点睛】本题考查了角的度量单位以及单位之间的换算,掌握'160︒=,''160'=是解题的关键. 9.如图,从A 地到C 地,可供选择的方案是走水路、走陆路、走空中,从A 地到B 地有三条水路、两条陆路,从B 地到C 地有4条陆路可供选择,走空中,从A 地不经B 地直线到C 地,则从A 地到C 地可供选择的方案有( )A .10种B .20种C .21种D .626种C解析:C【分析】本题只需分别数出A 到B 、B 到C 、A 到C 的条数,再进一步分析计算即可.【详解】观察图形,得:A到B有5条,B到C有4条,所以A到B到C有5×4=20条,A到C一条.所以从A地到C地可供选择的方案共21条.故选C.【点睛】解决本题的关键是能够有顺序地数出所有情况.10.下列说法不正确的是()A.两条直线相交,只有一个交点B.两点之间,线段最短C.两点确定一条直线D.过平面上的任意三点,一定能作三条直线D解析:D【解析】【分析】根据直线公理、线段公理进行逐一分析判断.【详解】A. 根据直线公理“两点确定一条直线”,则两条直线相交,只有一个交点,故该选项正确;B.两点之间,线段最短,是线段公理,故该选项正确;C. 两点确定一条直线,是直线公理,故该选项正确;D. 当三点共线时,则只能确定一条直线,故该选项错误.故选 D.【点睛】此题考查直线、射线、线段,直线的性质:两点确定一条直线,线段的性质:两点之间线段最短,解题关键在于掌握各性质定义.二、填空题11.如图,点C、D在线段AB上,D是线段AB的中点,AC=13AD ,CD=4cm ,则线段AB的长为_____cm【分析】根据AC=ADCD=4cm求出再根据是线段的中点即可求得答案【详解】∵AC=ADCD=4cm∴∴∵是线段的中点∴∴故答案为【点睛】本题考查了线段中点的几何意义以及求线段的长根据题目中的几何语解析:12【分析】根据AC=13AD ,CD=4cm ,求出AD,再根据D是线段AB的中点,即可求得答案.【详解】∵AC=13AD ,CD=4cm ,∴12433CD AD AC AD AD AD =-=-== ∴6AD =,∵D 是线段AB 的中点,∴212AB AD ==∴12AB cm =故答案为12【点睛】 本题考查了线段中点的几何意义以及求线段的长,根据题目中的几何语言列出等式,是解题的关键.12.线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC =__________.4【分析】根据线段的和差关系即可求解【详解】∵线段在线段的延长线上截取则AB+BC=4cm 故填:4【点睛】此题主要考查线段的长度解题的关键是熟知线段的和差关系解析:4【分析】根据线段的和差关系即可求解.【详解】∵线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC =AB+BC=4cm ,故填:4.【点睛】此题主要考查线段的长度,解题的关键是熟知线段的和差关系.13.如图是一个正方体的表面展开图,已知正方体的每个面上都是一个有理数,且相对面上的两个数互为倒数,那么代数式a b c-的值是_________. 【解析】【分析】将此正方体的表面展开图折叠成正方体观察abc 分别对应的值即可得出答案【详解】将图中所示图形折叠成正方体后a 与4相对应b 与2相对应c 与-1相对应∴∴【点睛】由平面图形的折叠及立体图形的解析:34- 【解析】【分析】将此正方体的表面展开图折叠成正方体,观察a ,b ,c 分别对应的值,即可得出答案.【详解】将图中所示图形折叠成正方体后,a 与4相对应,b 与2相对应,c 与-1相对应, ∴1a 4=,1b 2=,c 1=- ∴3=-4a b c - 【点睛】由平面图形的折叠及立体图形的表面展开图的特点解题.14.下午3:40时,时钟上分针与时针的夹角是_________度.130【分析】分别求出时针走过的度数和分针走过的度数用分针走过的度数减去时针走过的度数即可得出答案【详解】时针每小时走30°分针每分钟走6°∴下午3:40时时针走了3×30°+×30°=110°分针解析:130【分析】分别求出时针走过的度数和分针走过的度数,用分针走过的度数减去时针走过的度数,即可得出答案.【详解】时针每小时走30°,分针每分钟走6°∴下午3:40时,时针走了3×30°+4060×30°=110° 分针走了40×6°=240°∴夹角=240°-110°=130°【点睛】本题考查的是钟面角问题,易错点在于计算时针走过的度数时,往往大部分人只计算了前面3个小时时针走过的度数,容易忽略后面40分钟时针也在走.15.看图填空.(1)AC =AD -_______=AB +_______,(2)BC +CD =_______=_______-AB ,(3)AD =AC+___.CDBCBDADCD 【分析】根据线段之间的和差关系进行解答即可得答案【详解】(1)AC=AD-CD=AB+BC (2)BC+CD=BD=AD-AB (3)AD=AC+CD 故答案为:CD ;BC ;BD ;AD解析:CD BC BD AD CD【分析】根据线段之间的和差关系进行解答即可得答案.【详解】(1)AC=AD-CD=AB+BC ,(2)BC+CD=BD=AD-AB,(3)AD=AC+CD,故答案为:CD;BC;BD;AD;CD【点睛】本题主要考查线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.16.如图所示,∠BOD=45°,那么不大于90°的角有___个,它们的度数之和是____.450°【分析】(1)∠AOE=90°故图中所有的角都是不大于90°的角;(2)将所有的角相加发现有的角相加等于∠EOA即和为90°而有的角相加等于∠BOD即和为45°将这样的角凑在一起计算即可求出解析:450°【分析】(1)∠AOE=90°,故图中所有的角都是不大于90°的角;(2)将所有的角相加,发现有的角相加等于∠EOA,即和为90°,而有的角相加等于∠BOD,即和为45°,将这样的角凑在一起计算,即可求出所有角的度数.【详解】不大于 90°的角有∠EOD,∠EOC,∠EOB,∠EOA,∠DOC,∠DOB,∠DOA,∠COB,∠COA,∠BOA共10个;它们的度数之和是(∠EOD+∠DOA)+(∠EOC+∠COA)+(∠ EOB+∠BOA)+[(∠DOC+∠COB)+∠DOB]+∠EOA=90°+90°+90°+(45°+45°)+90°=450°.故答案为10;450°.【点睛】此题主要考查角的表示与和差关系,解题的关键是熟知角的定义运算法则.17.如图,点C是线段AB的中点,点D,E分别在线段AB上,且ADDB=23,AEEB=2,则CDCE的值为____.【分析】由线段中点的定义可得AC=BC=AB根据线段的和差关系及==2可得出CDCE与AB的关系进而可得答案【详解】∵点C是线段AB的中点∴AC=BC=AB∵==2BD=AB-ADAE=AB-BE∴解析:3 5【分析】由线段中点的定义可得AC=BC=12AB,根据线段的和差关系及ADDB=23,AEEB=2,可得出CD、CE与AB的关系,进而可得答案.【详解】∵点C是线段AB的中点,∴AC=BC=12AB,∵ADDB =23,AEEB=2,BD=AB-AD,AE=AB-BE,∴AD=25AB,BE=13AB,∵CD=AC-AD,CE=BC-BE,∴CD=12AB-25AB=110AB,CE=12AB-13AB=16AB,∴CDCE=11016ABAB=35,故答案为3 5【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.18.(1)比较两条线段的长短,常用的方法有_________,_________.(2)比较两条线段a和b的大小,结果可能有种情况,它们是_______________.(1)度量比较法叠合比较法;(2)3a>ba=ba<b【分析】(1)比较两条线段长短的方法有两种:度量比较法叠合比较法依此即可求解;(2)两条线段a和b的大小有三种情况【详解】(1)比较两条线段的大解析:(1)度量比较法,叠合比较法;(2)3,a>b、a=b、a<b【分析】(1)比较两条线段长短的方法有两种:度量比较法、叠合比较法.依此即可求解;(2)两条线段a和b的大小有三种情况.【详解】(1)比较两条线段的大小通常有两种方法,分别是度量比较法、重合比较法.(2)比较两条线段a和b的大小,结果可能有3种情况,它们是a>b、a=b、a<b.故答案为度量比较法,重合比较法;3,a>b、a=b、a<b.【点睛】本题考查了比较线段的长短,是基础题型,是需要识记的知识.19.如图所示,能用一个字母表示的角有________个,以点A为顶点的角有________个,图中所有大于0°小于180°的角有________个.37【分析】根据角的概念和角的表示方法依题意求得答案【详解】能用一个字母表示的角有2个:∠B∠C;以A为顶点的角有3个:∠BAD∠BAC∠DAC;大于0°小于180°的角有7个:∠BAD∠BAC∠D解析:3 7【分析】根据角的概念和角的表示方法,依题意求得答案.【详解】能用一个字母表示的角有2个:∠B,∠C;以A为顶点的角有3个:∠BAD,∠BAC,∠DAC;大于0°小于180°的角有7个:∠BAD,∠BAC,∠DAC,∠B,∠C,∠ADB,∠ADC.故答案为2,3,7.【点睛】利用了角的概念求解.从一点引出两条射线组成的图形就叫做角.角的表示方法一般有以下几种:1.角+3个大写英文字母;2.角+1个大写英文字母;3.角+小写希腊字母;4.角+阿拉伯数字.20.已知∠A=67°,则∠A的余角等于______度.23【解析】∵∠A=67°∴∠A的余角=90°﹣67°=23°故答案为23解析:23【解析】∵∠A=67°,∴∠A的余角=90°﹣67°=23°,故答案为23.三、解答题21.如图所示,已知射线OC将∠AOB分成1∶3的两部分,射线OD将∠AOB分成5∶7的两部分,若∠COD=15°,求∠AOB的度数.解析:90°【分析】设∠AOB的度数为x,根据题意用含x的式子表示出∠AOC,∠AOD,根据角的关键列出方程即可求解.【详解】解:设∠AOB的度数为x.因为射线OC将∠AOB分成1∶3两部分,所以∠AOC=14 x.因为射线OD将∠AOB分成5∶7两部分,所以∠AOD=512x.又因为∠COD=∠AOD-∠AOC,∠COD=15°,所以15°=512x-14x.解得x=90°,即∠AOB的度数为90°.【点睛】本题考查了角的和差,设出未知数,表示出∠AOC,∠AOD,列出方程是解题关键.22.如图,点C是AB的中点,D,E分别是线段AC,CB上的点,且AD=23AC,DE=35AB,若AB=24 cm,求线段CE的长.解析:CE=10.4cm.【分析】根据中点的定义,可得AC、BC的长,然后根据题已知求解CD、DE的长,再代入CE=DE-CD即可.【详解】∵AC=BC=12AB=12cm,CD=13AC=4cm,DE=35AB=14.4cm,∴CE=DE﹣CD=10.4cm.23.如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,射线OE是射线OB的反向延长线.(1)求射线OC的方向角;(2)求∠COE的度数;(3)若射线OD平分∠COE,求∠AOD的度数.解析:(1)射线OC的方向是北偏东70°;(2)∠COE=70°;(3)∠AOD=90°.【分析】(1)先求出∠AOC=55°,再求得∠NOC的度数,即可确定OC的方向;(2)根据∠AOC=55°,∠AOC=∠AOB,得出∠BOC=110°,进而求出∠COE的度数;(3)根据射线OD平分∠COE,即可求出∠COD=35°再利用∠AOC=55°求出答案即可.【详解】(1)∵射线OA的方向是北偏东15°,射线OB的方向是北偏西40°即∠NOA=15°,∠NOB=40°,∴∠AOB=∠NOA+∠NOB=55°,又∵∠AOB=∠AOC,∴∠AOC=55°,=°,∴∠NOC=∠NOA+∠AOC=15°+ 55°70∴射线OC的方向是北偏东70°.(2)∵∠AOB=55°,∠AOB=∠AOC,∴∠BOC=∠AOB+∠AOC=55°+55°=110°,又∵射线OD是OB的反向延长线,∴∠BOE=180°,∴∠COE=180°-110°=70°,(3)∵∠COE=70°,OD平分∠COE,∴∠COD=35°,∴∠AOD=∠AOC+∠COD=55°+35°=90°.【点睛】此题主要考查了方向角的表达即方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)多少度.24.如图,点C为线段AD上一点,点B为CD的中点,且6cmBD=.AC=,2cm(1)图中共有多少条线段?(2)求AD的长.解析:(1)6条;(2)10cm【分析】(1)根据线段的定义,即可得到答案;(2)由点B 为CD 的中点,即可求出CD 的长度,然后求出AD 的长度.【详解】解:(1)根据题意,图中共有6条线段,分别是AC ,AB ,AD ,CB ,CD ,BD . (2)因为点B 是CD 的中点,2cm BD =,所以24cm CD BD ==,所以10cm AD AC CD =+=.【点睛】本题考查了线段中点的有关计算,以及线段的定义,解题的关键是熟练掌握线段有关的计算问题.25.如图,直线AB 与CD 相交于点O ,∠AOE=90°.(1)如图1,若OC 平分∠AOE,求∠AOD 的度数;(2)如图2,若∠BOC=4∠FOB ,且OE 平分∠FOC ,求∠EOF 的度数.解析:(1)135°;(2)54°【分析】(1)利用OC 平分∠AOE ,可得∠AOC =12∠AOE =12×90°=45°,再利用∠AOC+∠AOD=180°,即可得出.(2)由∠BOC=4∠FOB ,设∠FOB=x°,∠BOC=4x°,可得∠COF=∠COB-∠BOF=3x°,根据OE 平分∠COF ,可得∠COE=∠EOF=12∠COF=32x°,即可得出. 【详解】(1)∵∠AOE=90°,OC 平分∠AOE ,∴∠AOC =12∠AOE =12×90°=45°, ∵∠AOC+∠AOD=180°,∴∠AOD=180°-∠AOC=180°-45°=135°,即∠AOD的度数为135°.(2)∵∠BOC=4∠FOB,∴设∠FOB=x°,∠BOC=4x°∴∠COF=∠COB-∠BOF=4x°-x°=3x°∵OE平分∠COF∴∠COE=∠EOF=12∠COF=32x°∵32x+x=90°∴x=36,∴∠EOF=32x°=32×36°=54°即∠EOF的度数为54°.【点睛】本题考查了角平分线的性质、方程思想方法、数形结合方法,考查了推理能力与计算能力.26.如图,∠AOC:∠COD:∠BOD=2:3:4,且A,O,B三点在一条直线上,OE,OF分别平分∠AOC和∠BOD,OG平分∠EOF,求∠GOF的度数。

人教版数学七年级上册 第2章2.1 ---2.2基础练习含答案

人教版数学七年级上册 第2章2.1 ---2.2基础练习含答案

人教版数学七年级上册第2章2.1 ---2.2基础练习含答案2.1整式一.选择题1.若代数式2x|m|﹣(m+3)x+7是关于x的三次二项式,那么m的值为()A.﹣3B.3C.±3D.02.若(a﹣2)x3+x2(b+1)+1是关于x的二次多项式,则a,b的值可以是()A.0,0B.0,﹣1C.2,0D.2,﹣1 3.下列代数式:0,﹣π,3x﹣2,a,,,,.多项式有()个.A.4B.3C.2D.14.下列说法正确的是()A.2x2﹣2x+35是五次三项式B.不是单项式C.的系数是D.﹣22xab2的次数是65.多项式2x5+4xy3﹣5x2﹣1的次数和常数项分别是()A.5,﹣1B.5,1C.10,﹣1D.4,﹣1 6.关于整式的概念,下列说法正确的是()A.的系数是B.32x3y的次数是6C.的常数项是D.﹣x2y+xy﹣7是5次三项式7.下列说法中,正确的为()A.单项式﹣的系数是﹣2,次数是3B.单项式a的系数是0,次数是1C.是二次单项式D.单项式﹣的系数是﹣,次数是38.单项式﹣x2y的系数和次数分别是()A.﹣1和2B.﹣1和3C.0和2D.0和39.下列说法正确的是()①的相反数是﹣3;②a3b的次数是3;③多项式﹣5x+6x2﹣1是二次三项式;④﹣6.1是负分数;⑤的系数是﹣.A.1个B.2个C.3个D.4个10.下列说法正确的是()A.是单项式B.﹣πx的系数为﹣1C.﹣3是单项式D.﹣27a2b的次数是10二.填空题11.多项式3x2y﹣7x4y2﹣xy4﹣10是次项式.12.把多项式5xy﹣3x3y2﹣8+x2y3按x的降幂排列为.13.单项式﹣8x2y5的系数是,次数是.14.单项式的系数是,多项式xy2﹣2xy﹣1的次数是,二次项是.15.单项式的系数是;次数是.多项式3x2y﹣xy3+5xy﹣1是次多项式.三.解答题16.若关于x,y的多项式3x2﹣nx m y﹣x是一个三次三项式,且最高次项的系数是﹣3,求m ﹣n的值.17.多项式a2x3+ax2﹣4x3+2x2+x+1是关于x的二次三项式,求a2++a的值.18.若关于x、y的多项式(a﹣4)x a y+(4﹣a)x a﹣1y+(2﹣b)xy a﹣2+5a a﹣3y2是一个四次三项式,求a、b的值,并写出此三项式.19.已知关于x.y的多项式(m﹣1)x3y﹣(n+4)x3y n﹣1+6xy﹣2.(1)当m,n满足什么条件时.此多项式是四次三项式?(2)当m,n满足什么条件时.此多项式是三次三项式?参考答案与试题解析一.选择题1.【解答】解:由题意得:|m|=3,且m+3=0,解得:m=﹣3,故选:A.2.【解答】解:由题意得:a﹣2=0,b+1≠0,解得:a=2,b≠﹣1,故选:C.3.【解答】解:在代数式:0,﹣π,3x﹣2,a,,,,中,多项式有3x﹣2,,共2个;故选:C.4.【解答】解:A、2x2﹣2x+35是二次三项式,原说法错误,故此选项不符合题意;B、不是单项式,原说法正确,故此选项符合题意;C、﹣πxy2的系数是﹣π,原说法错误,故此选项不符合题意;D、﹣22xab2的次数是4,原说法错误,故此选项不符合题意;故选:B.5.【解答】解:多项式2x5+4xy3﹣5x2﹣1的次数和常数项分别是5,﹣1.故选:A.6.【解答】解:A、﹣的系数是﹣;B、32x3y的次数是4;C、﹣的常数项是﹣;D、﹣x2y+xy﹣7是三次三项式;故选:C.7.【解答】解:A、单项式﹣的系数是﹣,次数是3,故原题说法错误;B、单项式a的系数是1,次数是1,故原题说法错误;C、是二次多项式,故原题说法错误;D、单项式﹣的系数是﹣,次数是3,故原题说法正确;故选:D.8.【解答】解:单项式﹣x2y的系数和次数分别是:﹣1,3.故选:B.9.【解答】解:①的相反数是﹣;②a3b的次数是4;③多项式﹣5x+6x2﹣1是二次三项式;④﹣6.1是负分数;⑤的系数是﹣,其中正确的③④,共2个;故选:B.10.【解答】解:A、是多项式,原说法错误,故此选项不符合题意;B、﹣πx的系数为﹣π,原说法错误,故此选项不符合题意;C、﹣3是单项式,原说法正确,故此选项符合题意;D、﹣27a2b的次数是3,原说法错误,故此选项不符合题意;故选:C.二.填空题(共5小题)11.【解答】解:多项式3x2y﹣7x4y2﹣xy4﹣10是六次四项式;故答案为:六、四.12.【解答】解:多项式5xy﹣3x3y2﹣8+x2y3的各项为5xy,﹣3x3y2,﹣8,x2y3,按x的降幂排列为:﹣3x3y2+x2y3﹣5xy﹣8.故答案为:﹣3x3y2+x2y3﹣5xy﹣8.13.【解答】解:根据单项式系数、次数的定义,单项式﹣8x2y5的数字因数是﹣8,所有字母的指数和为2+5=7.故答案为:﹣8,7.14.【解答】解:的系数是﹣,多项式xy2﹣2xy﹣1的次数是3,二次项是﹣2xy;故答案为:﹣,3,﹣2xy.15.【解答】解:单项式的系数是:﹣;次数是:3.多项式3x2y﹣xy3+5xy﹣1是四次多项式.故答案为:﹣,3,四.三.解答题(共4小题)16.【解答】解:∵关于x,y的多项式3x2﹣nx m y﹣x是一个三次三项式,且最高次项的系数是﹣3,∴m+1=3,﹣n=﹣3,解得:n=3,m=2,故m﹣n=2﹣3=﹣1.17.【解答】解:∵a2x3+ax2﹣4x3+2x2+x+1是关于x的二次多项式,∴,解得:a=2,∴a2++a=22++2=.18.【解答】解:∵关于x、y的多项式(a﹣4)x a y+(4﹣a)x a﹣1y+(2﹣b)xy a﹣2+5a a﹣3y2是一个四次三项式,∴2﹣b=0,a+1=4,解得:a=3,b=2,∴此三项式为:(a﹣4)x a y+(4﹣a)x a﹣1y+(2﹣b)xy a﹣2+5a a﹣3y2=﹣x3y+x2y+5y2.19.【解答】解:(1)①依题意得:n﹣1=1,且m﹣1﹣n﹣4≠0,解得n=2,m≠7;②依题意得:m﹣1=0,n﹣1=1,解得n=2,m=1;③依题意得:n+4=0,且m﹣1≠02.2整式的加减一.选择题1.下列选项中,不是同类项的是()A.42和π3B.n3和33n3C.3xy和﹣xy D.﹣2x2y和xy2 2.若﹣3a2b x与﹣3a y b是同类项,则y x的值是()A.1B.2C.3D.43.下列各式中,错误的是()A.a+b=b+a B.C.a+(﹣a)=0D.0+(﹣a)=04.下列运算中,正确的是()A.﹣(a﹣b)=﹣a﹣b B.﹣2(x﹣3y)=﹣2x+3yC.2(a+b)=2a+b D.5x2﹣2x2=3x25.下列运算正确的是()A.3a+2a=5a2B.3a﹣a=3C.2a3+3a2=5a5D.﹣0.25ab+ab=06.﹣2x﹣2x合并同类项得()A.﹣4x2B.﹣4x C.0D.﹣47.化简2a﹣a的结果是()A.3a B.2a C.a D.﹣a8.下列变形正确的是()A.﹣(a+2)=a﹣2B.﹣(2a﹣1)=﹣2a+1C.﹣a+1=﹣(a﹣1)D.1﹣a=﹣(a+1)9.下列各式计算正确的是()A.m+n=mn B.2m﹣(﹣3m)=5mC.3m2﹣m=2m2D.=m﹣2n10.如图,把六张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为7cm,宽为6cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是()A.16cm B.24cm C.28cm D.32cm二.填空题11.已知单项式﹣a n b3与单项式﹣2a2b m﹣2是同类项,则m﹣n=.12.若x+y=3,xy=2,则(x+2)+(y﹣2xy)=.13.添括号:﹣x﹣1=﹣().14.有理数a,b,c在数轴上的位置如图所示:则代数式|a+c|﹣2|a﹣b|+|b﹣c|化简后的结果为.15.若单项式2x2a+b y2与的和是单项式,则a﹣b=.三.解答题16.化简求值(﹣x2+4x﹣5)﹣2(x2+2x﹣3),其中x=2.17.先化简,再求值:3(4a2+2a)﹣(2a2+3a﹣5),其中a=﹣2.18.先化简,再求值:2ab2﹣[a3b+2(ab2﹣a3b)]﹣5a3b,其中a=﹣2,b=.19.数学老师给出这样一个题目:□﹣2×△=﹣x2+2x.(1)若“□”与“△”相等,求“△”(用含有x的代数式表示)(2)若“□”为﹣3x2﹣2x+6,当x=1时,请你求出“△”的值.参考答案与试题解析一.选择题(共10小题)1.【解答】解:A.42和π3都是数字,是同类项;B.n3和33n3所含字母相同且相同字母指数相同,是同类项;C.3xy和﹣xy所含字母相同且相同字母指数相同,是同类项;D.2x2y和xy2所含字母相同,但相同字母指数不相同,不是同类项;故选:D.2.【解答】解:∵﹣3a2b x与﹣3a y b是同类项,∴x=1,y=2,∴y x=21=2.故选:B.3.【解答】解:A、a+b=b+a,正确,不合题意;B、,正确,不合题意;C、a+(﹣a)=0,正确,不合题意;D、0+(﹣a)=﹣a,原式计算错误,符合题意.故选:D.4.【解答】解:A、﹣(a﹣b)=﹣a+b,故此选项错误;B、﹣2(x﹣3y)=﹣2x+6y,故此选项错误;C、2(a+b)=2a+2b,故此选项错误;D、5x2﹣2x2=3x2,正确.故选:D.5.【解答】解:A.2a+3a=5a,故本选项不合题意;B.3a﹣a=2a,故本选项不合题意;C.2a3与3a2不是同类项,所以不能合并,故本选项不合题意;D.﹣0.25ab+ab=0,故本选项符合题意.故选:D.6.【解答】解:﹣2x﹣2x=(﹣2﹣2)x=﹣4x.故选:B.7.【解答】解:2a﹣a=(2﹣1)a=a.故选:C.8.【解答】解:A、原式=﹣a﹣2,故本选项变形错误.B、原式=﹣a+,故本选项变形错误.C、原式=﹣(a﹣1),故本选项变形正确.D、原式=﹣(a﹣1),故本选项变形错误.故选:C.9.【解答】解:A、m+n,不是同类项,无法合并,故此选项错误;B、2m﹣(﹣3m)=5m,正确;C、3m2﹣m,不是同类项,无法合并,故此选项错误;D、=m,故此选项错误;故选:B.10.【解答】解:设小长方形的长为xcm,宽为ycm(x>y),则根据题意得:3y+x=7,阴影部分周长和为:2(6﹣3y+6﹣x)+2×7=12+2(﹣3y﹣x)+12+14=38+2×(﹣7)=24(cm)故选:B.二.填空题(共5小题)11.【解答】解:∵单项式﹣a n b3与单项式﹣2a2b m﹣2是同类项,∴n=2,m﹣2=3,解得:m=5,∴m﹣n=5﹣2=3,故答案为:3.12.【解答】解:(x+2)+(y﹣2xy)=x+y﹣2xy+2∵x+y=3,xy=2,∴原式=3﹣4+2=1.故答案为:1.13.【解答】解:﹣x﹣1=﹣(x+1).故答案为:x+1.14.【解答】解:根据数轴得a<b<0<c且|a|>|b|>|c|,则a+c<0,a﹣b<0,b﹣c<0,则|a+c|﹣2|a﹣b|+|b﹣c|=﹣(a+c)+2(a﹣b)﹣(b﹣c)=﹣a﹣c+2a﹣2b﹣b+c=a﹣3b.故答案为:a﹣3b.15.【解答】解:由题意得:,解得:,则a﹣b=0,故答案为:0.三.解答题(共4小题)16.【解答】解:原式=﹣x2+4x﹣5﹣2x2﹣4x+6=﹣3x2+1,当x=2时,原式=﹣3×22+1=﹣12+1=﹣11.17.【解答】解:原式=12a2+6a﹣2a2﹣3a+5=10a2+3a+5.当a=﹣2时,原式=10×(﹣2)2+3×(﹣2)+5=40﹣6+5=39.18.【解答】解:2ab2﹣[a3b+2(ab2﹣a3b)]﹣5a3b=2ab2﹣a3b﹣2(ab2﹣a3b)﹣5a3b=2ab2﹣a3b﹣2ab2+a3b﹣5a3b=﹣5a3b,当a=﹣2,b=时,原式=﹣5×(﹣2)3×=8.19.【解答】解:(1)由题意得:□﹣2×△=﹣x2+2x,∴﹣△=﹣x2+2x,∴△=x2﹣2x。

人教版七年级上册数学复习练习卷:整式的加减之去括号(附答案)

人教版七年级上册数学复习练习卷:整式的加减之去括号(附答案)

七年级上册数学人教版整式的加减之去括号一、选择题1.李老师做了个长方形教具,其中一边长为2a+b,另一边为a-b,则该长方形周长为()A. 6a+bB. 6aC. 3aD. 10a-b2.如图,两个正方形的面积分别为9、4,两个阴影部分的面积分别为S1、S2,(S1>S),则S1-S2的值为()2A. 5B. 4C. 3D. 23.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+2xy)-(2x2+4xy)=-x2□,此空格的地方被钢笔水弄污了,那么空格中的一项是()A. -2xyB. 6xyC. -6xyD. 2xy4.一种商品每件进价为a元,按进价增加40%定出售价,后因库存积压降价,按售价的八折出售,每件还盈利()A. 0.15a元B. 0.12a元C. 1.25a元D. 0.32a元,n=−1时,代数式3mn-2m2+(2m2-2mn)-(3mn-n2)的值是()5.当m=32A. 3B. 4C. 5D. 66.已知A=2a2-3a,B=2a2-a-1,当a=-4时,A-B等于()A. 8B. 9C. -9D. -77.已知a+b=5,ab=4,则代数式(3ab+5a+8b)+(3a-4ab)的值为()A. 36B. 40C. 44D. 468.若(a+1)2+|b-2|=0,化简a(x2y+xy2)-b(x2y-xy2)的结果为()A. 3x2yB. -3x2y+xy2C. -3x2y+3xy2D. 3x2y-xy29.已知多项式(2ax2+3x-1)-(3x-2x2-3)的值与x的取值无关,试求2a3-[a2-2(a+1)+a]-2的值()A. 2B. 0C. -2D. -410.多项式2x3-8x2+x-1与多项式3x3+2mx2-5x+3的和不含二次项,则m为()A. 2B. -2C. 4D. -411.有理数a、b在数轴上的位置如图所示,则化简|a-b|+|a+b|的结果为()A. -2aB. 2aC. 2bD. -2b二、填空题12.三个小队植树,第一队种x棵,第二队种的树比第一队种的树的2倍还多8棵,第三队种的树比第二队种的树的一半少6棵,三队共种树___________棵.13.如图是小明家的楼梯示意图,其水平距离(即:AB的长度)为(2a+b)米,一只蚂蚁从A点沿着楼梯爬到C点,共爬了(3a-b)米.问小明家楼梯的竖直高度(即:BC的长度)为___________米.14.某便民超市原有蒙牛牛奶(5a2+8a)箱,上午卖出(7a-5)箱,中午休息时又购进同样的牛奶(a2-a)箱,中午过后卖出牛奶(6a2-a).则超市下午满仓时有该种牛奶___________箱(用含有a的式子表示).15.如果代数式(3x2+mx-2y+4)-(3nx2-2x+6y-3)的值与字母x的取值无关,代数式m+n的值为___________.16.a 、b 在数轴上的位置如图所示,化简:|a +b |-2|b -a |=___________.17、当2,1p q ==时,分别求出下列各式的值.(1)221()2()()3()3p q p q q p p q -+-----;(2)2283569p q q p -+--18、已知关于x ,y 的代数式2213383x kxy y xy ----中不含xy 项,求k 的值.三、解答题19、已知:2263A x x =+-,213B x x =--,2451C x x =--,当32x =-时,求代数式32A B C -+的值.20、计算下式的值:其中114x ,y ,==-甲同学把14x =错抄成14x =-,但他计算的结果也是正确的,你能说明其中的原因吗?)4()2()242(33432242234y y x x y y x x y x y x x -+-++----答案解析1.【答案】B【解析】根据题意,长方形周长=2[(2a+b)+(a-b)]=2(2a+b+a-b)=2×3a=6a.2.【答案】A【解析】设空白部分的面积是S,因为两个正方形的面积分别为9,4,所以S1=9-S,S2=4-S,所以S1-S2=(9-S)-(4-S)=9-S-4+S=5.3.【答案】A【解析】左边=x2+2xy-2x2-4xy=-x2-2xy.4.【答案】B【解析】因为每件进价为a元,按进价增加40%定出售价,所以每件的售价为(1+40%)a元,所以按售价的八折出售时的价格是(1+40%)a×80%,所以每件盈利=(1+40%)a×80%-a=1.12a-a=0.12a(元).5.【答案】B【解析】3mn-2m2+(2m2-2mn)-(3mn-n2)=3mn-2m2+2m2-2mn-3mn+n2=-2mn+n2=-2×3×(-1)+(-1)22=4.6.【答案】B【解析】A-B=2a2-3a-(2a2-a-1)=2a2-3a-2a2+a+1=-2a+1,把a=-4代入原式,得-2a+1=-2×(-4)+1=9.7.【答案】A【解析】因为a+b=5,ab=4,所以原式=3ab+5a+8b+3a-4ab=8(a+b)-ab=40-4=36.8.【答案】B【解析】因为(a+1)2+|b-2|=0,所以a+1=0,b-2=0,即a=-1,b=2,则原式=-(x2y+xy2)-2(x2y-xy2)=-x2y-xy2-2x2y+2xy2=-3x2y+xy2.9.【答案】D【解析】(2ax2+3x-1)-(3x-2x2-3)=2ax2+3x-1-3x+2x2+3=2ax2+2x2+2=(2a+2)x2+2,多项式(2ax2+3x-1)-(3x-2x2-3)的值与x的取值无关,得2a+2=0.解得a=-1,2a3-[a2-2(a+1)+a]-2=2a3-(a2-2a-2+a)-2=2a3-a2+a,当a=-1时,原式=-2-1-1=-4.10.【答案】C【解析】因为多项式2x3-8x2+x-1与多项式3x3+2mx2-5x+3相加后不含x的二次项,所以-8x2+2mx2=(2m-8)x2,所以2m-8=0,解得m=4.11.【答案】A【解析】根据数轴上点的位置得a<-1<0<b<1,所以a-b<0,a+b<0,则原式=b-a-a-b=-2a.12.【答案】4x+6【解析】依题意得:第二队种的树的棵数为2x+8,(2x+8)-6=x-2,第三队种的树的棵数为12所以三队共种树x+(2x+8)+(x-2)=(4x+6)棵.13.【答案】a-2b【解析】(3a-b)-(2a+b)=3a-b-2a-b=(a-2b)米.故小明家楼梯的竖直高度(即:BC的长度)为(a-2b)米.14.【答案】a+5【解析】由题意得(5a2+8a)-(7a-5)+(a2-a)-(6a2-a)=5a2+8a-7a+5+a2-a-6a2+a=a+5.15.【答案】-1【解析】原式=3x 2+mx -2y +4-3nx 2+2x -6y +3=(3-3n )x 2+(m +2)x -8y +7,由结果与x 取值无关,得到3-3n =0,m +2=0, 解得m =-2,n =1,则m +n =-2+1=-1.16.【答案】-3a +b【解析】通过数轴可以得出结论:a >0,b <0,且|a |<|b |,则原式=-(a +b )-2(a -b )=-a -b -2a +2b=-3a +b .17、【答案与解析】(1)把()p q -当作一个整体,先化简再求值: 解:22221()2()()3()31(1)()(23)()32()()3p q p q q p p q p q p q p q p q -+-----=--+--=---- 又 211p q -=-=所以,原式=22222()()111333p q p q ----=-⨯-=- (2)先合并同类项,再代入求值.解:2283569p q q p -+-- 2(86)(35)9p q =-+-+-2229p q =+-当p =2,q =1时,原式=22229222191p q +-=⨯+⨯-=.18、【解析】解: 222222111338(3)38(3)38333x kxy y xy x kxy xy y x k xy y ----=+----=+---- 因为不含xy 项,所以此项的系数应为0,即有:1303k --=,解得:19k =-. ∴19k =-.19.【解析】解:∵222263,31,45 1.A x x B x x C x x ⎧=+-⎪=--+⎨⎪=--⎩ ∴ 222263,3393,2810 2.A x x B x x C x x ⎧=+-⎪⎪-=+-⎨⎪=--⎪⎩∴2321358A B C x x -+=+- 当32x =-时,32A B C -+33915117303213()5()81388132242444=⨯-+⨯--=⨯--=--=. 20. 【解析】解:∵化简结果与x 无关∴将x 抄错不影响最终结果.43224223433432242234333(242)(2)(4)242242y x x y x y x x y y x x y y x x y x y x x y y x x y y ----++-+-----+-- =+- = 。

七年级数学第一章整式的运算练习题及答案

七年级数学第一章整式的运算练习题及答案

第一章《整式的运算》一、知识点填空:1、只有数与字母的 的代数式叫做单项式(单独的一个数或一个字母也是单项式);几个单项式的和叫做多项式;单项式和多项式统称整式。

下列代数式中,单项式共有 个,多项式共有 个。

-231a , 52243b a -, 2, ab ,)(1y x a +, )(21b a +, a ,712+x , x y π+ 2、一个单项式中,所有 的指数和叫做这个单项式的次数;一个多项式中,次数 的项的次数叫做这个多项式的次数。

(单独一个非零数的次数是0)(1)单项式232z y x -的系数是 ,次数是 ;(2)π的次数是 。

(3)22322--+ab b a c ab 是单项式 和,次数最高的项是 ,它是 次 项式,二次项是 ,常数项是 .3、整式的乘法:(1)单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

如:()=⎪⎭⎫ ⎝⎛-xy z xy 3122。

(2)单项式与多项式相乘:()b a ab ab 22324+= 。

(3)多项式与多项式相乘:()()=-+y x y x 22。

4、平方差公式:两数和与这两数差的积,等于它们的平方差。

即:()()______a b a b +-=。

公式逆用:22_________a b -= 计算:(1)()()=-+x x 8585,(2)()()33_________x y x y -++=, (3)_______5.175.3722=-。

5、完全平方公式:()2222b ab a b a ++=+,()2222b ab a b a +-=-。

公式变形:(1)22_____________a b += (2)()22()______a b a b +--=。

公式推广:(3)()2__________________a b c ++= (4)()3_________a b +=。

人教版初中七年级数学上册第二章《整式的加减》经典练习题(含答案解析)

人教版初中七年级数学上册第二章《整式的加减》经典练习题(含答案解析)

一、选择题1.(0分)下面用数学语言叙述代数式1a ﹣b ,其中表达正确的是( ) A .a 与b 差的倒数B .b 与a 的倒数的差C .a 的倒数与b 的差D .1除以a 与b 的差C 解析:C【分析】根据代数式的意义,可得答案.【详解】 用数学语言叙述代数式1a ﹣b 为a 的倒数与b 的差, 故选:C .【点睛】此题考查了代数式,解决问题的关键是结合实际,根据代数式的特点解答.2.(0分)下列对代数式1a b -的描述,正确的是( ) A .a 与b 的相反数的差B .a 与b 的差的倒数C .a 与b 的倒数的差D .a 的相反数与b 的差的倒数C解析:C【分析】根据代数式的意义逐项判断即可.【详解】解:A. a 与b 的相反数的差:()a b --,该选项错误;B. a 与b 的差的倒数:1a b-,该选项错误; C. a 与b 的倒数的差:1a b-;该选项正确; D. a 的相反数与b 的差的倒数:1a b --,该选项错误. 故选:C .【点睛】此题主要考查列代数式,注意掌握代数式的意义.3.(0分)如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1B解析:B【详解】 ∵观察可知:左边三角形的数字规律为:1,2,…,n ,右边三角形的数字规律为:2,22,…,2n ,下边三角形的数字规律为:1+2,222+,…,2n n +,∴最后一个三角形中y 与n 之间的关系式是y=2n +n.故选B .【点睛】考点:规律型:数字的变化类.4.(0分)某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( )A .100(1+x )B .100(1+x )2C .100(1+x 2)D .100(1+2x )B 解析:B【解析】试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x ),五月份的产量是100(1+x )2.故答案选B.考点:列代数式.5.(0分)已知-25a 2m b 和7b 3-n a 4是同类项,则m +n 的值是( )A .2B .3C .4D .6C 解析:C【分析】本题根据同类项的性质求解出m 和n 的值,代入求解即可.【详解】由已知得:2431m n =⎧⎨-=⎩,求解得:22m n =⎧⎨=⎩, 故224m n +=+=;故选:C .【点睛】本题考查同类项的性质,按照对应字母指数相同原则列式求解即可,注意计算仔细. 6.(0分)一列数123,,n a a a a ⋅⋅⋅,其中11a =-,2111a a =- ,3211a a =- ,……,111n n a a -=- ,则1232020a a a a ⨯⨯⋅⋅⋅⨯=( )A .1B .-1C .2020D .2020- A解析:A【分析】 首先根据11a =-,可得()21111,1112a a ===---32112,1112a a ===--43111112a a ===---,…,所以这列数是-1、12、2、−1、12、2…,每3个数是一个循环;然后用2020除以3,求出一共有多少个循环,还剩下几个数,从而可得答案.【详解】 解: 11a =-,()21111,1112a a ===--- 32112,1112a a ===-- 43111112a a ===---, 所以这列数是-1、12、2、−1、12、2…,发现这列数每三个循环, 由202036731,÷= 且()1231121,2a a a ⨯⨯=-⨯⨯=- 所以:()()123206732011 1.a a a a =-⨯-⨯⨯⋅⨯=⋅⋅故选A .【点睛】 本题主要考查了探寻数列规律问题,同时考查了有理数的加减乘除乘方的运算,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:这列数是-1、12、2、−1、12、2…,每3个数是一个循环. 7.(0分)已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( ) A .3B .﹣3C .1D .﹣1D 解析:D【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值.【详解】 解:单项式3122m x y +与133n x y +的和是单项式,3122m x y +∴与133n x y +是同类项,则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩, 121m n ∴-=-=-故选:D .【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m ,n 的值是解题的关键.8.(0分)下列各式中,符合代数书写规则的是( )A .273x B .14a ⨯ C .126p - D .2y z ÷ A解析:A 【分析】 根据代数式的书写要求判断各项.【详解】A 、273x 符合代数书写规则,故选项A 正确. B 、应为14a ,故选项B 错误; C 、应为136p -,故选项C 错误; D 、应为2y z,故选项D 错误; 故选:A .【点睛】此题考查代数式,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.9.(0分)若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( )A .17B .67C .-67D .0B解析:B【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题.【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项,∴6﹣7m =0, 解得m =67. 故选:B .【点睛】 本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0. 10.(0分)一列数:0,1,2,3,6,7,14,15,30,___,___,___这串数是由小能按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数可能是下面的 A .31,63,64B .31,32,33C .31,62,63D .31,45,46C解析:C【分析】本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1.由此可写出最后的3个数.【详解】解:本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1,所以这串数最后的三个数为31,62,63.故选:C .【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的. 二、填空题11.(0分)在同一平面中,两条直线相交有一个交点,三条直线两两相交最多有3个交点,四条直线两两相交最多有6个交点……由此猜想,当相交直线的条数为n 时,最多可有的交点数m 与直线条数n 之间的关系式为:m =_____.(用含n 的代数式填空)【分析】根据题意3条直线相交最多有3个交点4条直线相交最多有6个交点5条直线相交最多有10个交点而3=1+26=1+2+310=1+2+3+4故可猜想n 条直线相交最多有1+2+3+…+(n-1)=个解析:()12n n - 【分析】根据题意,3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点.而3=1+2,6=1+2+3,10=1+2+3+4,故可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12n n-个交点.【详解】解:∵3条直线相交最多有3个交点,4条直线相交最多有6个交点.而3=1+2,6=1+2+3,10=1+2+3+4,∴可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12 n n-个交点.即()12n nm-=故答案为:()12n n-.【点睛】本题主要考查了相交线,图形的规律探索,此题着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊向一般猜想的方法.12.(0分)观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,按此规律第4个图中共有点的个数比第3个图中共有点的个数多 ________________ 个;第20个图中共有点的个数为________________ 个.【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点从而得出结论【详解】解:第2个图形比第1个图形多2×3个点第3个图形比第2个图形多3×3个点…即每个图形比前一个图形多序号×3个点∴第4个解析:12631【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点,从而得出结论.【详解】解:第2个图形比第1个图形多2×3个点,第3个图形比第2个图形多3×3个点,…,即每个图形比前一个图形多序号×3个点.∴第4个图中共有点的个数比第3个图中共有点的个数多4×3=12个点.第20个图形共有4+2×3+3×3+…+19×3+20×3=4+3×(2+3+…+19+20)=4+627=631(个).故答案为:12;631.【点睛】本题考查了图形的变化,解题的关键是:发现“每个图形比前一个图形多序号×3个点”.本题属于中档题型,解决形如此类题型时,将射线上的点算到同一方向,即可发现规律. 13.(0分)用代数式表示:(1)甲数与乙数的和为10,设甲数为y ,则乙数为____;(2)甲数比乙数的2倍多4,设甲数为x ,则乙数为____;(3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为____cm ;(4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为____%;(5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是______km/h .(1)10-y(2)(3)(4)(5)【分析】(1)乙数=和-甲数y 据此解答;(2)甲数x=2个乙数+4从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b )÷2据此解答;(4)利用:含盐率=解析:(1)10-y (2)42x - (3)2a b + (4)100a a b + (5)52y - 【分析】(1)乙数=和-甲数y ,据此解答;(2)甲数x=2个乙数+4,从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b )÷2,据此解答;(4)利用:含盐率=100%⨯盐的质量盐水的质量,据此解答, (5) 利用顺行速度-逆水速度=12水流速度列出式子即可. 【详解】(1) 甲数与乙数的和为10,设甲数为y ,则乙数为:10y -;(2)甲数比乙数的2倍多4,设甲数为x ,则乙数为:42x -; (3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为:2a b +cm ; (4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为:100a a b+%; (5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是:52y - km/h . 故答案为:(1)1?0y -; (2) 42x -; (3) 2a b + ;(4) 100a a b +; (5) 52y -.本题考查了列代数式,比较简单,列代数式时,要先认真审题,抓住关键词语,并注意书写的规范性.14.(0分)观察下列式子:1×3+1=22;7×9+1=82;25×27+1=262;79×81+1=802;…可猜想第2 019个式子为__________.(32019-2)×32019+1=(32019-1)2【分析】观察等式两边的数的特点用n 表示其规律代入n =2016即可求解【详解】解:观察发现第n 个等式可以表示为:(3n-2)×3n +1=(3n-解析:(32 019-2)×32019+1=(32 019-1)2【分析】观察等式两边的数的特点,用n 表示其规律,代入n =2016即可求解.【详解】解:观察发现,第n 个等式可以表示为:(3n -2)×3n +1=(3n -1)2,当n =2019时,(32019-2)×32019+1=(32019-1)2,故答案为:(32019-2)×32019+1=(32019-1)2.【点睛】此题主要考查数的规律探索,观察发现等式中的每一个数与序数n 之间的关系是解题的关键.15.(0分)观察下面的单项式:234,2,4,8,,a a a a 根据你发现的规律,第8个式子是____.【分析】根据题意给出的规律即可求出答案【详解】由题意可知:第n 个式子为2n-1an ∴第8个式子为:27a8=128a8故答案为:128a8【点睛】本题考查单项式解题的关键是正确找出题中的规律本题属于解析:8128a【分析】根据题意给出的规律即可求出答案.【详解】由题意可知:第n 个式子为2n-1a n ,∴第8个式子为:27a 8=128a 8,故答案为:128a 8.【点睛】本题考查单项式,解题的关键是正确找出题中的规律,本题属于基础题型.16.(0分)如果关于x 的多项式42142mx x +-与多项式35n x x +的次数相同,则2234n n -+-=_________.【分析】根据多项式的次数的定义先求出n 的值然后代入计算即可得到答案【详解】解:∵多项式与多项式的次数相同∴∴;故答案为:【点睛】本题考查了求代数式的值以及多项式次数的定义解题的关键是正确求出n 的值解析:24-【分析】根据多项式的次数的定义,先求出n 的值,然后代入计算,即可得到答案.【详解】解:∵多项式42142mx x +-与多项式35n x x +的次数相同, ∴4n =,∴22234243443212424n n -+-=-⨯+⨯-=-+-=-;故答案为:24-.【点睛】本题考查了求代数式的值,以及多项式次数的定义,解题的关键是正确求出n 的值. 17.(0分)如图,有一种飞镖游戏,将飞镖圆盘八等分,每个区域内各有一个单项式,现假设你的每支飞镖均能投中目标区域,如果只提供给你四支飞镖且都要投出,那么要使你投中的目标区域内的单项式之和为a+2b ,共有_____种方式(不考虑投中目标的顺序). 2【分析】根据整式的加减尝试进行即可求解【详解】解:当投中的目标区域内的单项式为ab ﹣b2b 时a+b ﹣b+2b =a+2b ;当投中的目标区域内的单项式为﹣a2a02b 时﹣a+2a+0+2b =a+2b 故解析:2【分析】根据整式的加减尝试进行即可求解.【详解】解:当投中的目标区域内的单项式为a 、b 、﹣b 、2b 时,a+b ﹣b+2b =a+2b ;当投中的目标区域内的单项式为﹣a 、2a 、0、2b 时,﹣a+2a+0+2b =a+2b .故答案为2.【点睛】本题考查了整式的加减,解题的关键是尝试进行整式的加减.18.(0分)已知()()2420b k k a k =--≠,用含有b 、k 的代数式表示a ,则a =______.【分析】将已给的式子作恒等式进行变形表示a由于k≠0先将式子左右同时除以(-4k)再移项系数化1即可表示出a【详解】∵k≠0∴原式两边同时除以(-4x)得∴∴故答案为【点睛】本题考查的是代数式的表示解析:2248b kk+【分析】将已给的式子作恒等式进行变形表示a,由于k≠0,先将式子左右同时除以(-4k),再移项、系数化1,即可表示出a.【详解】∵k≠0,∴原式两边同时除以(-4x)得,22 4bk a k=--∴224ba kk=+,∴2224828b k b kak k+=+=,故答案为2248b kk+.【点睛】本题考查的是代数式的表示,能够进行合理变形是解题的关键.19.(0分)随着计算机技术的迅猛发展,电脑价格不断降低,某品牌的电脑按原价降低m 元后,又降价25%,现售价为n元,那么该电脑的原售价为______.【分析】根据题意列出代数式解答即可【详解】解:该电脑的原售价故填:【点睛】此题考查了列代数式关键是读懂题意找出题目中的数量关系列出代数式解析:43n m+【分析】根据题意列出代数式解答即可.【详解】解:该电脑的原售价4125%3nm n m+=+-,故填:43n m+.【点睛】此题考查了列代数式,关键是读懂题意,找出题目中的数量关系,列出代数式.20.(0分)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7;则上图中m+n+p=_________;4【分析】根据约定的方法求出mnp 即可【详解】解:根据约定的方法可得:;∴;∴∴故答案为4【点睛】本题考查了列代数式和代数式求值解题的关键是掌握列代数式的约定方法解析:4【分析】根据约定的方法求出m ,n ,p 即可.【详解】解:根据约定的方法可得:18n -+= ,81m +=- ;∴7n = ,9m =- ;∴()716p =+-=∴9764m n p ++=-++=故答案为4.【点睛】本题考查了列代数式和代数式求值,解题的关键是掌握列代数式的约定方法.三、解答题21.(0分)已知31A B x ,且3223A x x ,求代数式B .解析:2322x x -++【分析】将A 代入A-B=x 3+1中计算即可求出B .【详解】解:∵A-B=x 3+1,且A=-2x 3+2x+3,∴B=A-(x 3+1)=-2x 3+2x+3-x 3-1=-3x 3+2x+2.【点睛】本题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解题的关键.22.(0分)观察下列单项式:x -,23x ,35x -,47x ,…1937x -,2039x ,…写出第n 个单项式,为了解这个问题,特提供下面的解题思路.()1这组单项式的系数的符号,绝对值规律是什么?()2这组单项式的次数的规律是什么?()3根据上面的归纳,你可以猜想出第n 个单项式是什么?()4请你根据猜想,请写出第2014个,第2015个单项式.解析:()1 (1)n -(或:负号正号依次出现;),21n -(或:从1开始的连续奇数);()2从1开始的连续自然数;()3第n 个单项式是:()(1)21n n n x --;()4?2014个单项式是20144027x ;第2015个单项式是20154029x -.【分析】(1)根据已知数据得出单项式的系数的符号规律和系数的绝对值规律;(2)根据已知数据次数得出变化规律;(3)根据(1)和(2)中数据规律得出即可;(4)利用(3)中所求即可得出答案.【详解】()1数字为1-,3,5-,7,9-,11,…,为奇数且奇次项为负数,可得规律:()(1)21n n --;故单项式的系数的符号是:(1)n-(或:负号正号依次出现;),绝对值规律是:21n -(或:从1开始的连续奇数); ()2字母因数为:x ,2x ,3x ,4x ,5x ,6x ,…,可得规律:n x ,这组单项式的次数的规律是从1开始的连续自然数.()3第n 个单项式是:()(1)21n n n x --.()4把2014n =、2015n =直接代入解析式即可得到:第2014个单项式是20144027x ;第2015个单项式是20154029x -.【点睛】此题主要考查了数字变化规律,得出次数与系数的变化规律是解题关键.23.(0分)已知多项式-13x 2y m +1+12xy 2-3x 3+6是六次四项式,单项式3x 2n y 2的次数与这个多项式的次数相同,求m 2+n 2的值.解析:13【解析】 试题分析:根据多项式次数的定义,可得2+m+1=6,从而可求出m 的值,根据单项式的次数的定义结合题意可得2n+2=6,求解即可得到n 的值,把m ,n 的值代入到m 2+n 2中,计算即可得到求解.试题根据题意得2+m +1=6,2n +2=6解得:m =3, n =2,所以m 2+n 2=13.点睛:此题考查多项式,解题的关键是弄清多项式的次数是多项式中次数最高的项的次数,还要弄清有几项.24.(0分)已知a+b =2,ab =2,求32231122a b a b ab ++的值. 解析:4根据因式分解,首先将整式提取公因式12ab ,在采用完全平方公式合,在代入计算即可. 【详解】 解:原式=12a 3b +a 2b 2+12ab 3 =12ab (a 2+2ab +b 2) =12ab (a +b )2, ∵a +b =2,ab =2, ∴原式=12×2×4=4. 【点睛】本题主要考查因式分解的代数计算,关键在于整式的因式分解.25.(0分)已知多项式2x 2+4xy ﹣3y 2+x 2+kxy+5y 2,当k 为何值时,它与多项式3x 2+6xy+2y 2是相等的多项式.解析:k=2.【分析】根据两个多项式是相同的多项式,可以直接列等式根据各项前对应系数相等直接列式计算.【详解】解:2x 2+4xy ﹣3y 2+x 2+kxy+5y 2,=3x 2+(4+k )xy+2y 2,因为它与多项式3x 2+6xy+2y 2是相等的多项式,所以4+k=6,解得:k=2.【点睛】本题考查了带系数多项式与已知多项式相等求未知系数,掌握多项式的概念是解决此题的关键.26.(0分)已知2223,A x xy y B x xy()1若()2230x y ++-=,求2A B -的值()2若2A B -的值与y 的值无关,求x 的值解析:(1)-9;(2)x=-1【分析】(1)根据去括号,合并同类项,可得答案;(2)根据多项式的值与y 无关,可得y 的系数等于零,根据解方程,可得答案.【详解】(1)A-2B=(2x 2+xy+3y )-2(x 2-xy )=2x 2+xy+3y-2x 2+2xy∵(x+2)2+|y-3|=0,∴x=-2,y=3.A-2B=3×(-2)×3+3×3=-18+9=-9.(2)∵A-2B 的值与y 的值无关,即(3x+3)y 与y 的值无关,∴3x+3=0.解得x=-1.【点睛】此题考查整式的加减,解题关键在于掌握去括号,括号前是正数去括号不变号,括号前是负数去括号都变号.27.(0分)化简下列各式:(1)32476x y y -+--+;(2)4(32)3(52)x y y x ----.解析:(1)352x y --+;(2)67x y --【分析】(1)根据合并同类项的法则解答即可;(2)先去括号,再合并同类项.【详解】解:(1)原式3(27)(46)352x y x y =-+-+-+=--+;(2)原式12815667x y y x x y =-+-+=--.【点睛】本题考查了整式的加减运算,属于基础题型,熟练掌握整式加减运算的法则是关键. 28.(0分)如图,已知等腰直角三角形ACB 的边AC BC a ==,等腰直角三角形BED 的边BE DE b ==,且a b <,点C 、B 、E 放置在一条直线上,联结AD .(1)求三角形ABD 的面积;(2)如果点P 是线段CE 的中点,联结AP 、DP 得到三角形APD ,求三角形APD 的面积;(3)第(2)小题中的三角形APD 与三角形ABD 面积哪个较大?大多少?(结果都可用a 、b 代数式表示,并化简)解析:(1)ab (2)()24a b +(3)三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【分析】(1)由题意知//AC DE (同旁内角互补,两条直线平行),所以四边形ACED 是梯形,再由梯形面积减去两个等腰直角三角形面积即可求得;(2)与题(1)思路完全一样,由梯形面积减去两个直角三角形面积即可求得; (3)将所求的两个面积作差,化简并与0比较大小即可.【详解】(1)()()22111222ABD ABC BDE ACED S S S S a b a b a b ab ∆∆∆=--=++--=四边形 (2)()()()2111222224APD APC PDE ACED a b a b a b S S S S a b a b a b ∆∆∆+++=--=++-⨯-⨯=四边形(3)()()2244APD ABDa b b a S S ab ∆∆+--=-=,∵b a >,∴()204APD ABD b a S S ∆∆--=>,即三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【点睛】 本题是一道综合题,考查了三角形的面积公式12S =⨯底⨯高,多项式的化简.。

七年级数学上册第一单元《有理数》-填空题专项基础练习(含答案)

七年级数学上册第一单元《有理数》-填空题专项基础练习(含答案)

一、填空题1.一个班有45个人,其中45是_____数;大门约高1.90 m ,其中1.90是_____数.准确近似【分析】根据准确数和近似数的定义对数据进行判断【详解】一个班有45个人其中45是准确数;大门约高190m 其中190是近似数故答案为:准确;近似【点睛】本题考查了近似数近似数与精确数的接近程度解析:准确 近似【分析】根据准确数和近似数的定义对数据进行判断.【详解】一个班有45个人,其中45是准确数;大门约高1.90 m ,其中1.90是近似数. 故答案为:准确;近似.【点睛】本题考查了近似数. 近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位.2.(1)圆周率π=3.141 592 6…,取近似值3.142,是精确到____位;(2)近似数2.428×105精确到___位;(3)用四舍五入法把3.141 592 6精确到百分位是____,近似数3.0×106精确到____位.(1)千分(2)百(3)314十万【分析】(1)根据精确到哪位就是对它后边的一位进行四舍五入即可解答;(2)根据一个数精确到了哪一位应当看这个数的末位数字实际在哪一位解答即可;(3)根据精确到哪位就解析:(1)千分 (2)百 (3)3.14 十万【分析】(1)根据精确到哪位,就是对它后边的一位进行四舍五入即可解答;(2)根据一个数精确到了哪一位,应当看这个数的末位数字实际在哪一位解答即可; (3)根据精确到哪位,就是对它后边的一位进行四舍五入以及科学记数法的精确方法解答即可.【详解】解:(1)圆周率π=3.141 592 6…,取近似值3.142,是精确到千分位;(2)近似数2.428×105中,2.428的小数点前面的2表示20万,则这一位是十万位,因而2.428的最后一位8应该是在百位上,因而这个数是精确到百位;(3)用四舍五入法把3.141 592 6精确到百分位是3.14,近似数3.0×106精确到十万位. 故答案为: (1)千分; (2)百; (3)3.14、十万.【点睛】本题考查了近似数,掌握确定近似数精确的位数和科学记数法的精确方法是解答本题的关键.3.若2(1)20a b -+-=,则2015()a b -= _______________.-1【分析】直接利用偶次方的性质以及绝对值的性质得出ab 的值进而得出答案【详解】由题意得:a -1=0b ﹣2=0解得:a =1b =2故=(1﹣2)2015=-1故答案为-1【点睛】本题考查了非负数的性质解析:-1【分析】直接利用偶次方的性质以及绝对值的性质得出a ,b 的值,进而得出答案.【详解】由题意得:a -1=0,b ﹣2=0,解得:a =1,b =2,故2015()a b -=(1﹣2)2015=-1.故答案为-1.【点睛】本题考查了非负数的性质,正确得出a ,b 的值是解题的关键.4.在数轴上,与表示-2的点的距离是4个单位的点所对应的数是___________.2或-6【分析】分在-2的左边和右边两种情况讨论求解即可【详解】解:如图在-2的左边时-2-4=-6在-2右边时-2+4=2所以点对应的数是-6或2故答案为-6或2【点睛】本题考查了数轴难点在于分情解析:2或-6【分析】分在-2的左边和右边两种情况讨论求解即可.【详解】解:如图,在-2的左边时,-2-4=-6,在-2右边时,-2+4=2,所以,点对应的数是-6或2.故答案为-6或2.【点睛】本题考查了数轴,难点在于分情况讨论,作出图形更形象直观.5.已知4a a =>,6b =,则+a b 的值是________.2或-10【分析】利用绝对值的代数意义确定出a 与b 的值即可求出所求【详解】解:∵|a|=4>a|b|=6∴a=-4b=6或-6当a=-4b=6时a+b=-4+6=2;当a=-4b=-6时a+b=-4 解析:2或-10【分析】利用绝对值的代数意义确定出a 与b 的值,即可求出所求.【详解】解:∵|a|=4>a ,|b|=6,∴a=-4,b=6或-6,当a=-4,b=6时,a+b=-4+6=2;当a=-4,b=-6时,a+b=-4-6=-10.故答案为:2或-10.【点睛】此题考查了有理数的加法,以及绝对值,熟练掌握绝对值的代数意义是解本题的关键. 6.点A ,B 表示数轴上互为相反数的两个数,且点A 向左平移8个单位长度到达点B ,则这两点所表示的数分别是____________和___________.-4【解析】试题解析:-4【解析】试题两点的距离为8,则点A 、B 距离原点的距离是4,∵点A ,B 互为相反数,A 在B 的右侧,∴A 、B 表示的数是4,-4.7.绝对值小于100的所有整数的积是______.0【分析】先找出绝对值小于100的所有整数再求它们的乘积【详解】:绝对值小于100的所有整数为:0±1±2±3…±100因为在因数中有0所以其积为0故答案为0【点睛】本题考查了绝对值的性质要求掌握绝解析:0【分析】先找出绝对值小于100的所有整数,再求它们的乘积.【详解】:绝对值小于100的所有整数为:0,±1,±2,±3,…,±100,因为在因数中有0所以其积为0.故答案为0.【点睛】本题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.8.A ,B ,C 三地的海拔高度分别是50-米,70-米,20米,则最高点比最低点高______米.90【分析】先根据有理数的大小比较法则得出最高点和最低点再列出运算式子计算有理数的减法即可得【详解】因为所以最高点的海拔高度为20米最低点的海拔高度米则(米)即最高点比最低点高90米故答案为:90【解析:90【分析】先根据有理数的大小比较法则得出最高点和最低点,再列出运算式子,计算有理数的减法即可得.【详解】因为205070>->-,所以最高点的海拔高度为20米,最低点的海拔高度70-米,--=+=(米),则20(70)207090即最高点比最低点高90米,故答案为:90.【点睛】本题考查了有理数的大小比较法则、有理数减法的实际应用,依据题意,正确列出运算式子是解题关键.9.如果点A表示+3,将A向左移动7个单位长度,再向右移动3个单位长度,则终点表示的数是__________.-1【分析】根据向右为正向左为负根据正负数的意义列式计算即可【详解】根据题意得终点表示的数为:3-7+3=-1故答案为-1【点睛】本题考查了数轴正负数在实际问题中的应用在本题中向左向右具有相反意义可解析:-1【分析】根据向右为正,向左为负,根据正负数的意义列式计算即可.【详解】根据题意得,终点表示的数为:3-7+3=-1.故答案为-1.【点睛】本题考查了数轴,正负数在实际问题中的应用,在本题中向左、向右具有相反意义,可以用正负数来表示,从而列出算式求解.10.下列各组式子:①a﹣b与﹣a﹣b,②a+b与﹣a﹣b,③a+1与1﹣a,④﹣a+b与a ﹣b,互为相反数的有__.②④【分析】直接利用互为相反数的定义分析得出答案【详解】解:①a-b与-a-b=-(a+b)不是互为相反数②a+b与-a-b是互为相反数③a+1与1-a不是相反数④-a+b与a-b是互为相反数故答案解析:②④【分析】直接利用互为相反数的定义分析得出答案.【详解】解:①a-b与-a-b=-(a+b),不是互为相反数,②a+b与-a-b,是互为相反数,③a+1与1-a,不是相反数,④-a+b与a-b,是互为相反数.故答案为:②④.【点睛】本题考查了互为相反数,正确把握相反数的定义是解题的关键.11.把点P从数轴的原点开始,先向右移动2个单位长度,再向左移动7个单位长度,此时点P所表示的数是______.【分析】根据向右移动加向左移动减进行解答即可【详解】因为点P从数轴的原点开始先向右移动2个单位长度再向左移动7个单位长度所以点P所表示的数是0+2-7=-5故答案为:-5【点睛】本题考查的是解析:5-【分析】根据向右移动加,向左移动减进行解答即可.【详解】因为点P从数轴的原点开始,先向右移动2个单位长度,再向左移动7个单位长度,所以点P所表示的数是 0+2-7=-5.故答案为:-5.【点睛】本题考查的是数轴,熟知数轴的特点是解答此题的关键.12.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2020厘米的线段AB,则线段AB盖住的整点个数是______.2020或2021【分析】分线段AB的端点与整点重合和不重合两种情况考虑重合时盖住的整点是线段的长度+1不重合时盖住的整点是线段的长度由此即可得出结论【详解】若线段的端点恰好与整点重合则1厘米长的线解析:2020或2021【分析】分线段AB的端点与整点重合和不重合两种情况考虑,重合时盖住的整点是线段的长度+1,不重合时盖住的整点是线段的长度,由此即可得出结论.【详解】若线段AB的端点恰好与整点重合,则1厘米长的线段盖住2个整点,若线段AB的端点不与整点重合,则1厘米长的线段盖住1个整点,因为202012021+=,所以2020厘米长的线段AB盖住2020或2021个整点.故答案为:2020或2021.【点睛】本题考查了数轴,解题的关键是找出长度为n(n为正整数)的线段盖住n或n+1个整点.本题属于基础题,难度不大,解决该题型题目时,分端点是否与整点重合两种情况来考虑是关键.13.计算:5213(15.5)65772⎛⎫⎛⎫⎛⎫-+++-+-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭__________.0【分析】将同分母的分数分别相加再计算加法即可【详解】原式故答案为:0【点睛】此题考查有理数的加法计算法则掌握有理数加法的运算律:交换律和结合律是解题的关键解析:0【分析】将同分母的分数分别相加,再计算加法即可.【详解】原式5213615.5510100772⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-=-+= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦.【点睛】此题考查有理数的加法计算法则,掌握有理数加法的运算律:交换律和结合律是解题的关键.14.(1)用四舍五入法,对5.649取近似值,精确到0.1的结果是____;(2)用四舍五入法,把1 999.508取近似值(精确到个位),得到的近似数是____;(3)用四舍五入法,把36.547精确到百分位的近似数是____.(1)56(2)2000(3)3655【分析】(1)精确到哪一位即对下一位的数字进行四舍五入据此解答即可;(2)把十分位上的数字5进行四舍五入即可;(3)把千分位上的数字7进行四舍五入即可【详解】解解析:(1)5.6 (2)2000 (3)36.55【分析】(1)精确到哪一位,即对下一位的数字进行四舍五入,据此解答即可;(2)把十分位上的数字5进行四舍五入即可;(3)把千分位上的数字7进行四舍五入即可.【详解】解:(1)5.649≈5.6.(2)1999.58≈2000(3)36.547≈36.55故答案为:5.6;2000;36.55【点睛】本题考查了近似数:经过四舍五入得到的数为近似数.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位的说法.15.定义一种正整数的“H运算”:①当它是奇数时,则该数乘3加13;②当它是偶数时,则取该数的一半,一直取到结果为奇数停止.如:数3经过1次“H运算”的结果是22,经过2次“H运算”的结果为11,经过3次“H运算”的结果为46,那么数28经过2020次“H运算”得到的结果是_________.16【分析】从28开始分别按照偶数和奇数的计算法则依次计算直到出现循环即可得解【详解】解:第1次:;第2次:;第3次:;第4次:;第5次:;第6次:;第7次:等于第5次所以从第5次开始奇数次等于1偶解析:16【分析】从28开始,分别按照偶数和奇数的计算法则依次计算,直到出现循环即可得解.【详解】⨯⨯=;解:第1次:280.50.57⨯+=;第2次:371334⨯=;第3次:340.517⨯+=;第4次:3171364⨯⨯⨯⨯⨯⨯=;第5次:640.50.50.50.50.50.51⨯+=;第6次:311316⨯⨯⨯⨯=,等于第5次.第7次:160.50.50.50.51所以从第5次开始,奇数次等于1,偶数次等于16.因为2020是偶数,所以数28经过2020次“H运算”得到的结果是16.故答案为16.【点睛】本题考查了有理数的乘法,发现循环规律,是解题的关键.16.把67.758精确到0.01位得到的近似数是__.76【分析】根据要求进行四舍五入即可【详解】解:把67758精确到001位得到的近似数是6776故答案是:6776【点睛】本题考查了近似数:经过四舍五入得到的数称为近似数解析:76.【分析】根据要求进行四舍五入即可.【详解】解:把67.758精确到0.01位得到的近似数是67.76.故答案是:67.76.【点睛】本题考查了近似数:经过四舍五入得到的数称为近似数.17.用计算器求2.733,按键顺序是________;使用计算器计算时,按键顺序为,则计算结果为________.73xy3=-2【分析】首先确定使用的是xy键先按底数再按yx键接着按指数最后按等号即可【详解】解:(1)按照计算器的基本应用用计算机求2733按键顺序是273xy3=;(2)-8×5÷20=-40解析:73,x y,3,=-2【分析】首先确定使用的是x y键,先按底数,再按y x键,接着按指数,最后按等号即可.【详解】解:(1)按照计算器的基本应用,用计算机求2.733,按键顺序是2.73、x y、3、=;(2)-8×5÷20=-40÷20=-2.【点睛】此题主要考查了利用计算器进行数的乘方,关键是计算器求幂的时候指数的使用方法.18.计算-32+5-8×(-2)时,应该先算_____,再算_____,最后算_____.正确的结果为_____.乘方乘法加法12【分析】按照有理数混合运算的运算顺序进行计算解答即可【详解】解:原式=-9+5+16=12故答案为:乘方乘法加法12【点睛】本题主要考查了有理数混合运算的运算顺序先算乘方再算乘除最后解析:乘方乘法加法12【分析】按照有理数混合运算的运算顺序进行计算解答即可.【详解】解:原式=-9+5+16=12.故答案为:乘方,乘法,加法,12【点睛】本题主要考查了有理数混合运算的运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的.19.填空:(1)____的平方等于9;(2)(-2)3=____;(3)-14+1=____;(4)23×212⎛⎫⎪⎝⎭=____.3或-3-802【分析】根据乘方的法则计算即可【详解】解:(1)32=9(-3)2=9所以3或-3的平方等于9;(2)(-2)3=-2×2×2=-8;(3)-14+1=-1+1=0;(4)23×=8解析:3或-3 -8 0 2【分析】根据乘方的法则计算即可.【详解】解:(1)32=9,(-3)2=9,所以3或-3的平方等于9;(2)(-2)3=-2×2×2=-8;(3)-14+1=-1+1=0;(4)23×212⎛⎫⎪⎝⎭=8×14=2.故答案为:3或-3;-8;0;2.【点睛】本题考查了有理数乘方运算,熟记法则和乘方的意义是解决此题的关键.20.计算:3122--=__________;︱-9︱-5=______.-24【分析】直接根据有理数的减法运算即可;先运算绝对值再进行减法运算【详解】=-=-2;︱-9︱-5==9-5=4故答案为-24【点睛】本题考查了绝对值的化简以及有理数的运算解题的关键是掌握有理数解析:-2 4【分析】直接根据有理数的减法运算即可;先运算绝对值,再进行减法运算.【详解】3122--=-42=-2;︱-9︱-5==9-5=4, 故答案为-2,4.【点睛】本题考查了绝对值的化简以及有理数的运算,解题的关键是掌握有理数的运算法则. 21.把35.89543精确到百分位所得到的近似数为________.90【分析】要精确到百分位看看那个数字在百分位上然后看看能不能四舍五入【详解】解:3589543可看到9在百分位上后面的5等于5往前面进一位所以有理数3589543精确到百分位的近似数为3590故答解析:90【分析】要精确到百分位,看看那个数字在百分位上,然后看看能不能四舍五入.【详解】解:35.89543可看到9在百分位上,后面的5等于5,往前面进一位,所以有理数35.89543精确到百分位的近似数为35.90,故答案为:35.90.【点睛】本题考查了精确度,精确到哪一位,即对下一位的数字进行四舍五入.22.已知一个数的绝对值为5,另一个数的绝对值为3,且两数之积为负,则两数之差为____.±8【分析】首先根据绝对值的性质得出两数进而分析得出答案【详解】设|a|=5|b|=3则a=±5b=±3∵ab <0∴当a=5时b=-3∴5-(-3)=8;当a=-5时b=3∴-5-3=-8故答案为:解析:±8【分析】首先根据绝对值的性质得出两数,进而分析得出答案.【详解】设|a|=5,|b|=3,则a=±5,b=±3,∵ab <0,∴当a=5时,b=-3,∴5-(-3)=8;当a=-5时,b=3,∴-5-3=-8.故答案为:±8.【点睛】本题主要考查了绝对值的性质以及有理数的混合运算,熟练掌握绝对值的性质是解题关键.23.在括号中填写题中每步的计算依据,并将空白处补充完整:(-4)×8×(-2.5)×(-125)=-4×8×2.5×125=-4×2.5×8×125______=-(4×2.5)×(8×125)______=____×____=____.乘法交换律乘法结合律-101000-10000【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可【详解】(-4)×8×(-25)×(-125)=-4×8×25×125=-4×25×8×解析:乘法交换律乘法结合律 -10 1000 -10000【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可.【详解】(-4)×8×(-2.5)×(-125)=-4×8×2.5×125=-4×2.5×8×125(乘法交换律)=-(4×2.5)×(8×125)(乘法结合律)=-10×1000=-10000.故答案为:乘法交换律,乘法结合律,-10,1000,-10000.【点睛】本题主要考查了有理数的乘法运算和乘法运算律,正确掌握运算法则和乘法运算律是解题的关键.24.若两个不相等的数互为相反数,则两数之商为____.-1【分析】设其中一个数为a (a≠0)它的相反数为-a然后作商即可【详解】解:设其中一个数为a(a≠0)则它的相反数为-a所以这两个数的商为a÷(-a)=-1故答案为:-1【点睛】本题考查了相反数和解析:-1【分析】设其中一个数为a(a≠0),它的相反数为-a,然后作商即可.【详解】解:设其中一个数为a(a≠0),则它的相反数为-a,所以这两个数的商为a÷(-a)=-1.故答案为:-1.【点睛】本题考查了相反数和除法法则,根据题意设出这两个数是解决此题的关键.25.若230x y ++-= ,则x y -的值为________.【分析】先利用绝对值的非负性求出xy 的值代入求解即可【详解】解:由题意得解得∴故答案为:【点睛】本题考查了绝对值的非负性解题的关键是熟练掌握绝对值的非负性解析:5-【分析】先利用绝对值的非负性求出x 、y 的值,代入求解即可.【详解】解:由题意得,230x y ++-=20,30x y +=-=解得 2x =-, 3y =,∴235-=--=-x y ,故答案为: 5.-【点睛】本题考查了绝对值的非负性,解题的关键是熟练掌握绝对值的非负性.26.已知|a |=3,|b |=2,且ab <0,则a ﹣b =_____.5或﹣5【分析】先根据绝对值的定义求出ab 的值然后根据ab <0确定ab 的值最后代入a ﹣b 中求值即可【详解】解:∵|a|=3|b|=2∴a =±3b =±2;∵ab <0∴当a =3时b =﹣2;当a =﹣3时b解析:5或﹣5【分析】先根据绝对值的定义,求出a 、b 的值,然后根据ab <0确定a 、b 的值,最后代入a ﹣b 中求值即可.【详解】解:∵|a|=3,|b|=2,∴a =±3,b =±2;∵ab <0,∴当a =3时b =﹣2;当a =﹣3时b =2,∴a ﹣b =3﹣(﹣2)=5或a ﹣b =﹣3﹣2=﹣5.故填5或﹣5.【点睛】本题主要考查的是有理数的乘法、绝对值、有理数的减法,熟练掌握相关法则是解题的关键.27.数轴上,如果点 A 所表示的数是3-,已知到点 A 的距离等于 4 个单位长度的点所表示的数为负数,则这个数是_______.-7【分析】根据在数轴上点A 所表示的数为3可以得到到点A 的距离等于4个单位长度的点所表示的数是什么再根据负数的定义即可求解【详解】解:∵点A所表示的数是-3到点A的距离等于4个单位长度的点所表示的数解析:-7【分析】根据在数轴上,点A所表示的数为3,可以得到到点A的距离等于4个单位长度的点所表示的数是什么,再根据负数的定义即可求解.【详解】解:∵点A所表示的数是-3,到点A的距离等于4个单位长度的点所表示的数为负数,∴这个数是-3-4=-7.故答案为:-7.【点睛】本题考查了数轴,解题的关键是明确数轴的特点,知道到一个点的距离等3个单位长度的点表示的数有两个.28.计算(﹣1)÷6×(﹣16)=_____.【分析】根据有理数乘除法法则进行计算【详解】解:(-1)÷6×(-)=-×(−)=故答案为【点睛】此题考查了有理数的乘除法熟练掌握法则是解本题的关键解析:136.【分析】根据有理数乘除法法则进行计算.【详解】解:(-1)÷6×(-16),=-16×(−16),=1 36.故答案为1 36.【点睛】此题考查了有理数的乘除法,熟练掌握法则是解本题的关键.29.在有理数3.14,3,﹣12,0,+0.003,﹣313,﹣104,6005中,负分数的个数为x,正整数的个数为y,则x+y的值等于__.4【解析】负分数为:﹣﹣3共2个;正整数为:36005共2个则x+y=2+2=4故答案为4【点睛】本题主要考查了有理数的分类熟记有理数的分类是解决此题的关键解析:4【解析】负分数为:﹣12,﹣313,共2个;正整数为: 3, 6005共2个,则x+y=2+2=4,故答案为4.【点睛】本题主要考查了有理数的分类,熟记有理数的分类是解决此题的关键.30.如果将正整数按下图的规律排列,那么第六行,第五列的数为_______.32【分析】观察分析题图中数的排列规律可知:第n行第一列是且第n行第一列到第n列的数从左往右依次减少1所以第六行的第一个数是36减去4即可得到第五个数【详解】解:观察分析题图中数的排列规律可知:第n解析:32【分析】观察、分析题图中数的排列规律可知:第n行第一列是2n,且第n行第一列到第n列的数从左往右依次减少1,所以第六行的第一个数是36,减去4,即可得到第五个数.【详解】解:观察、分析题图中数的排列规律可知:第n行第一列是2n,且第n行第一列到第n列的数从左往右依次减少1,所以第六行第五个数是26436432-=-=.故答案为:32.【点睛】本题主要考查了数字规律题,能够观察出第一个数是行数的平方,再依次减少是解决本题的关键.。

人教版初一数学七年级数学上册练习题【附答案】

人教版初一数学七年级数学上册练习题【附答案】

人教版初一数学七年级数学上册练习题【附答案】人教版七年级数学上册精品练题(附答案)——有理数一、填空题(每空2分,共38分)1、-1的倒数是-1;1/2的相反数是-1/2.2、比-3小9的数是-12;最小的正整数是1.3、在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是-1或6.4、两个有理数的和为5,其中一个加数是-7,那么另一个加数是12.5、某旅游景点11月5日的最低气温为-2℃,最高气温为8℃,那么该景点这天的温差是10℃。

6、计算:(-1)100+(-1)101=-2.7、平方得21的数是√2;立方得-64的数是-4.8、+2与-2是一对相反数,表示两个方向的移动。

9、绝对值大于1而小于4的整数有2、3,其和为5.10、若a、b互为相反数,c、d互为倒数,则3(a+b)-3cd=0.11、若(a-1)2+|b+2|=1,则a+b=-2.12、数轴上表示数-5和表示-14的两点之间的距离是9.13、在数-5、1、-3、5、-2中任取三个数相乘,其中最大的积是75,最小的积是-75.14、若m,n互为相反数,则|m-1+n|=1.二、选择题(每小题3分,共21分)15、有理数a、b在数轴上的对应的位置如图所示,则a+b<0.16、下列各式中正确的是|a2|=|-a2|。

17、如果a+b>0,且ab<0,那么a、b异号。

18、下列代数式中,值一定是正数的是(-x)+2.19、算式(-3/3)×4可以化为-3×4/3.20、小明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分。

求小明第四次测验的成绩。

答案:C、91分。

21、一家商店一月份把某种商品按进货价提高60%出售,到三月份再以8折(80%)的价格大拍卖。

求该商品三月份的价格比进货价高还是低?答案:低12.8%。

三、计算(每小题5分,共15分)22、(–– +)|–|(22)、4912÷36;答案:22为正数,所以(–– +)|–|(22) = (–– +)|22| = 22;4912÷36 = 136.23、9÷3–5)–3×(–4)2÷3答案:9÷3 = 3,3–5 = –2,(–2)–3×(–4)2÷3 = –2–3×16÷3 = –2–16 = –18.24、–12–1+(–12)÷6×(–)34÷7答案:(–12)÷6 = –2,(–)34÷7 = –4,–12–1+(–2)×(–4)= –12–1+8 = –5.四、解答题(共46分)25、已知|a|=7,|b|=3,求a+b的值。

七年级上册+专题练习+数学角度问题(基础难度)

七年级上册+专题练习+数学角度问题(基础难度)

七年级上册数学角度问题(基础难度)一.选择题(共18小题)1.如图,点A在点O的北偏东60°的方向上,点B在点O的南偏东40°的方向上,则∠AOB度数为()A.70°B.80°C.100°D.110°2.如图,下列说法中错误的是()A.OA方向是北偏东20°B.OB方向是北偏西15°C.OC方向是南偏西30°D.OD方向是东南方向3.如图所示四个图形中,能用∠α、∠AOB、∠O三种方法表示同一个角的图形是()A.B.C.D.4.如图,将一副三角板叠放在一起,使直角的顶点重合于O,则∠AOC+∠DOB=()A.90°B.120°C.160°D.180°5.如图,点B,O,D在同一直线上,若∠1=15°,∠2=105°,则∠AOC的度数是()6.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC等于()A.30°B.45°C.50°D.60°7.如图,∠AOC和∠DOB都是直角,如果∠AOB=150°,那么∠DOC=()A.30°B.40°C.50°D.60°8.如图,已知∠AOB是直角,∠AOC是锐角,ON平分∠AOC,OM平分∠BOC,则∠MON是()A.45°B.45°+∠AOC C.60°﹣∠AOC D.不能计算9.如图所示,已知∠AOC=∠BOD=70°,∠BOC=30°,则∠AOD的度数为()A.100°B.110°C.130°D.140°10.如图,∠AOB是一直角,∠AOC=40°,OD平分∠BOC,则∠AOD等于()A.65°B.50°C.40°D.25°11.如图,已知∠AOC=∠BOD=90°,∠AOD=150°,则∠BOC的度数为()A.30°B.45°C.50°D.60°12.下列图形中表示北偏东60°的射线是()A.B.C.D.13.如图,下列说法正确的是()A.∠1与∠BOC表示同一个角B.∠β表示的是∠AOCC.∠1+∠β=∠AOC D.∠β>∠114.如图,已知∠AOB=120°,∠COD在∠AOB内部且∠COD=60°,则∠AOD与∠COB一定满足的关系为()A.∠AOD=∠COB B.∠AOD+∠COB=180°C.∠AOD=∠COB D.∠AOD+∠COB=120°15.如图,点O在直线AB上,若∠AOD=159.5°,∠BOC=51°30′,则∠COD的度数为()A.30°B.31°C.30°30′D.31°30′16.如图,∠AOC=∠BOD=80°,如果∠AOD=140°,那么∠BOC等于()A.20°B.30°C.50°D.40°17.如图,已知∠AOC=∠BOD=80°,∠BOC=25°,则∠AOD的度数为()A.150°B.145°C.140°D.135°18.有下列说法:①射线是直线的一半;②线段AB是点A与点B的距离;③角的大小与这个角的两边所画的长短有关;④两个锐角的和一定是钝角.其中正确的个数有()A.0个B.1个C.2个D.3个二.填空题(共5小题)19.如图,直线AB、CD相交于点O,∠DOE=∠BOE,OF平分∠AOD,若∠BOE=28°,则∠EOF的度数为.20.如图,将一副直角三角板叠在一起,使直角顶点重合于点O,则∠AOB+∠DOC=度.21.将两块直角三角尺的直角顶点重合为如图的位置,若∠AOD=110°,则∠COB=度.22.如图,点A、O、B在一条直线上,且∠AOC=50°,OD平分∠AOC,则∠BOD=度.23.如图,A,O,B是同一直线上的三点,OC,OD,OE是从O点引出的三条射线,且∠1:∠2:∠3:∠4=1:2:3:4,则∠5=度.三.解答题(共17小题)24.如图,点O在直线AC上,OD平分∠AOB,∠BOE=∠EOC,∠DOE=70°,求∠EOC.25.如图,已知∠AOB=120°,OE平分∠AOB,射线OC在∠AOE内部,∠BOC=90°,(1)求∠EOC的度数.(2)作射线OF,使射线OC是∠EOF三等分线,则∠AOF的度数为.26.(1)在∠AOB内部画1条射线OC,则图1中有个不同的角;(2)在∠AOB内部画2条射线OC,OD,则图2中有个不同的角;(3)在∠AOB内部画3条射线OC,OD,OE,则图3中有个不同的角;(4)在∠AOB内部画10条射线OC,OD,OE…,则图中有个不同的角;(5)在∠AOB内部画n条射线OC,OD,OE…,则图中有个不同的角.27.如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=70°,求∠BOD的度数;(2)若∠EOC:∠EOD=2:3,求∠BOD的度数.28.如图所示,直线AB、CD、EF交于点O,OG平分∠BOF,且CD⊥EF,∠AOE=70°,求∠DOG的度数.29.如图,已知∠AOC=60°,∠BOD=90°,∠AOB是∠DOC的3倍,求∠AOB的度数.30.如图,两直线AB,CD相交于点O,已知OE平分∠BOD,且∠AOC:∠AOD=3:7,(1)求∠DOE的度数;(2)若OF⊥OE,求∠COF的度数.31.已知:O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图1.若∠AOC=30°.求∠DOE的度数;(2)在图1中,若∠AOC=a,直接写出∠DOE的度数(用含a的代数式表示);(3)将图1中的∠DOC绕顶点O顺时针旋转至图2的位置,探究∠AOC和∠DOE的度数之间的关系.写出你的结论,并说明理由.32.如图,已知∠1=65°15′,∠2=78°30′,求∠1+∠2和∠3.33.已知:∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE.(1)如图①,当∠BOC=70°时,求∠DOE的度数;(2)如图②,若射线OC在∠AOB内部绕O点旋转,当∠BOC=α时,求∠DOE的度数;(3)如图③,当射线OC在∠AOB外绕O点旋转时,画出图形,直接写出∠DOE的度数.34.(1)平面内将一副三角板按如图1所示摆放,∠EBC=°;(2)平面内将一副三角板按如图2所示摆放,若∠EBC=165°,那么∠α=°;(3)平面内将一副三角板按如图3所示摆放,∠EBC=115°,求∠α的度数.35.如图,已知∠AOC=∠BOD=75°,∠BOC=30°,求∠AOD.36.已知∠AOB是一个定角,记为α,在∠AOB的内部作射线OC,再分别作∠AOC和∠BOC的平分线OD,OE.(1)如图①,当α=120°,∠AOC=40°时,求∠DOE的度数;(2)如图①,当射线OC在∠AOB内绕点O旋转时,∠DOE的度数是否发生变化?若变化,请说明理由;若不变,猜想∠DOE与α的关系,并证明;(3)当射线OC在∠AOB外绕点O旋转到图②位置时,直接写出∠DOE的度数(用含a的代数式表示).37.如图,将两块直角三角尺的直角顶点C叠放在一起,(1)若∠DCE=35°,求∠ACB的度数;(2)若∠ACB=140°,求∠DCE的度数;(3)猜想∠ACB与∠DCE的大小关系,并说明理由.38.(1)如图所示,∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数.(2)如果(1)中∠AOB=α,其他条件不变,求∠MON的度数.(3)如果(1)中∠BOC=β(β为锐角),其他条件不变,求∠MON的度数.(4)从(1)(2)(3)的结果你能看出什么规律?(5)线段的计算与角的计算存在着紧密的联系,它们之间可以互相借鉴解法,请你模仿(1)~(4),设计一道以线段为背景的计算题,并写出其中的规律来?39.如图,已知OA⊥OD,∠FOD=2∠COD,OB平分∠AOC,OE平分∠COF.(1)若∠COD=30°,求∠BOE的度数;(2)若∠BOE=85°,求∠COD的度数.(提示:设∠COD=x°)40.如图,已知∠AOB是直角,∠BOC=60°,OE平分∠AOC,OF平分∠BOC.(1)求∠EOF的度数;(2)若将条件“∠AOB是直角,∠BOC=60°”改为:∠AOB=x°,∠EOF=y°,其它条件不变.①则请用x的代数式来表示y;②如果∠AOB+∠EOF=156°.则∠EOF是多少度?七年级上册数学角度问题(基础难度)参考答案与试题解析一.选择题(共18小题)1.如图,点A在点O的北偏东60°的方向上,点B在点O的南偏东40°的方向上,则∠AOB度数为()A.70°B.80°C.100°D.110°【分析】根据方向角的定义以及角的和差,可得∠AOB的度数.【解答】解:∵点A在点O的北偏东60°的方向上,点B在点O的南偏东40°的方向上,∴∠AOB=180°﹣60°﹣40°=80°,故选:B.【点评】本题考查了方向角的定义,用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边.2.如图,下列说法中错误的是()A.OA方向是北偏东20°B.OB方向是北偏西15°C.OC方向是南偏西30°D.OD方向是东南方向【分析】直接利用方向角的确定方法分别分析得出答案.【解答】解:A、OA方向是北偏东70°,符合题意;B、OB方向是北偏西15°,不符合题意;C、OC方向是南偏西30°,不符合题意;D、OD方向是东南方向,不合题意.故选:A.【点评】此题主要考查了方向角,正确把握方向角的概念是解题关键.3.如图所示四个图形中,能用∠α、∠AOB、∠O三种方法表示同一个角的图形是()A.B.C.D.【分析】根据角的表示方法进行逐一分析,即角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示.【解答】解:A、因为顶点O处有四个角,所以这四个角均不能用∠O表示,故本选项错误;B、因为顶点O处只有一个角,所以这个角能用∠O、∠α及∠AOB表示,故本选项正确;C、因为顶点O处有三个角,所以这三个角均不能用∠O表示,故本选项错误;D、因为∠O与∠α表示的不是同一个角,故本选项错误.故选:B.【点评】本题考查的是角的表示方法,熟知角的三种表示方法是解答此题的关键.4.如图,将一副三角板叠放在一起,使直角的顶点重合于O,则∠AOC+∠DOB=()A.90°B.120°C.160°D.180°【分析】因为本题中∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.【解答】解:设∠AOD=a,∠AOC=90°+a,∠BOD=90°﹣a,所以∠AOC+∠BOD=90°+a+90°﹣a=180°.故选:D.【点评】本题考查了角度的计算问题,在本题中要注意∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.5.如图,点B,O,D在同一直线上,若∠1=15°,∠2=105°,则∠AOC的度数是()A.75°B.90°C.105°D.125°【分析】由图示可得,∠2与∠BOC互补,结合已知可求∠BOC,又因为∠AOC=∠COB+∠1,即可解答.【解答】解:∵∠2=105°,∴∠BOC=180°﹣∠2=75°,∴∠AOC=∠1+∠BOC=15°+75°=90°.故选:B.【点评】本题考查了角的计算,解决本题的关键是利用补角求出∠BOC.6.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC等于()A.30°B.45°C.50°D.60°【分析】从如图可以看出,∠BOC的度数正好是两直角相加减去∠AOD的度数,从而问题可解.【解答】解:∵∠AOB=∠COD=90°,∠AOD=150°∴∠BOC=∠AOB+∠COD﹣∠AOD=90°+90°﹣150°=30°.故选:A.【点评】此题主要考查学生对角的计算的理解和掌握,解答此题的关键是让学生通过观察图示,发现几个角之间的关系.7.如图,∠AOC和∠DOB都是直角,如果∠AOB=150°,那么∠DOC=()A.30°B.40°C.50°D.60°【分析】根据图象∠AOB等于两个直角的和减去∠COD计算.【解答】解:∠DOC=90°+90°﹣∠AOB=180°﹣150°=30°.故选A.【点评】本题注意,∠COD是两个直角重叠的部分.8.如图,已知∠AOB是直角,∠AOC是锐角,ON平分∠AOC,OM平分∠BOC,则∠MON是()A.45°B.45°+∠AOC C.60°﹣∠AOC D.不能计算【分析】结合图形,根据角的和差,以及角平分线的定义,找到∠MON与∠AOB的关系,即可求出∠MON的度数.【解答】解:∵OM平分∠BOC,ON平分∠AOC,∴∠MOC=∠BOC,∠NOC=∠AOC,∴∠MON=∠MOC﹣∠NOC=(∠BOC﹣∠AOC),=(∠BOA+∠AOC﹣∠AOC),=∠BOA,=45°.故选:A.【点评】本题考查了角的计算,属于基础题,此类问题,注意结合图形,运用角的和差和角平分线的定义求解.9.如图所示,已知∠AOC=∠BOD=70°,∠BOC=30°,则∠AOD的度数为()A.100°B.110°C.130°D.140°【分析】根据图形和题目中的条件,可以求得∠AOB的度数和∠COD的度数,从而可以求得∠AOD的度数.【解答】解:∵∠AOC=70°,∠BOC=30°,∴∠AOB=40°;同理可得,∠COD=40°.∴∠AOD=∠AOB+∠BOC+∠COD=40°+30°+40°=110°,故选:B.【点评】本题考查角的计算,解答本题的关键是明确角之间的关系,利用数形结合的思想解答.10.如图,∠AOB是一直角,∠AOC=40°,OD平分∠BOC,则∠AOD等于()A.65°B.50°C.40°D.25°【分析】由∠AOB是一直角,∠AOC=40°,可知∠COB=50°,又知OD平分∠BOC,故可知∠AOD的度数.【解答】解:∵∠AOB是一直角,∠AOC=40°,∴∠COB=50°,∵OD平分∠BOC,∴∠COD=25°,∵∠AOD=∠AOC+∠COD,∴∠AOD=65°.故选:A.【点评】本题考查角与角之间的运算,注意结合图形,发现角与角之间的关系,进而求解.11.如图,已知∠AOC=∠BOD=90°,∠AOD=150°,则∠BOC的度数为()A.30°B.45°C.50°D.60°【分析】由∠AOC=∠BOD=90°,∠AOD=150°,可求出∠BOC的度数,再根据角与角之间的关系求解.【解答】解:∵∠AOC=∠BOD=90°,∠AOD=150°,∴∠BOC=∠AOC+∠BOD﹣∠AOD=180°﹣150°=30°,故选:A.【点评】此题考查的知识点是角的计算,注意此题的解题技巧:两个直角相加和∠BOC相比,多加了∠BOC一次.12.下列图形中表示北偏东60°的射线是()A.B.C.D.【分析】根据方向角的定义解答即可.【解答】解:北偏东60°就是从北向东偏60°,即从上往右偏60°,故选:A.【点评】本题考查了方向角的定义,解答时注意方向和角度.13.如图,下列说法正确的是()A.∠1与∠BOC表示同一个角B.∠β表示的是∠AOCC.∠1+∠β=∠AOC D.∠β>∠1【分析】根据角的概念和表示方法可知,当角的顶点处只有一个角时这个角可以用顶点来表示,由此可得结论.【解答】解:A、∠1与∠AOB表示的是同一个角,故A说法错误;B、∠β表示的是∠BOC,故B说法错误;C、∠1+∠β=∠AOC,故C说法正确;D、∠AOC>∠1,故D说法错误.故选:C.【点评】此题考查了角的表示方法,根据图形特点将每个角用合适的方法表示出来是解题的关键.14.如图,已知∠AOB=120°,∠COD在∠AOB内部且∠COD=60°,则∠AOD与∠COB一定满足的关系为()A.∠AOD=∠COB B.∠AOD+∠COB=180°C.∠AOD=∠COB D.∠AOD+∠COB=120°【分析】根据角的和差,可得∠AOD+∠COB=∠AOC+∠COD+∠COD+∠DOB=∠AOB+∠COD,再代入计算即可求解.【解答】解:∵∠AOD=∠AOC+∠COD,∠COB=∠COD+∠DOB,∴∠AOD+∠COB=∠AOC+∠COD+∠COD+∠DOB,=∠AOC+∠COD+∠DOB+∠COD=∠AOB+∠COD∵∠AOB=120°,∠COD=60°,∴∠AOD+∠COB=120°+60°=180°.故选:B.【点评】本题考查了角的计算.解题的关键是利用了角的和差关系求解.15.如图,点O在直线AB上,若∠AOD=159.5°,∠BOC=51°30′,则∠COD的度数为()A.30°B.31°C.30°30′D.31°30′【分析】将∠AOD转化成159°30′,将其代入∠COD=∠AOD+∠BOC﹣∠AOB中,即可求出结论.【解答】解:∵∠AOD=159.5°=159°30′,∴∠COD=∠AOD+∠BOC﹣∠AOB=159°30′+51°30′﹣180°=31°.故选:B.【点评】本题考查了角的计算以及度分秒的换算,牢记“将高级单位化为低级单位时乘以60,将低级单位转化为高级单位时除以60”是解题的关键.16.如图,∠AOC=∠BOD=80°,如果∠AOD=140°,那么∠BOC等于()A.20°B.30°C.50°D.40°【分析】先求出∠COD的度数,然后根据∠BOC=∠BOD﹣∠COD,即可得出答案.【解答】解:∵∠AOC=80°,∠AOD=140°,∴∠COD=∠AOD﹣∠AOC=60°,∵∠BOD=80°,∴∠BOC=∠BOD﹣∠COD=80°﹣60°=20°.故选:A.【点评】本题主要考查了角的计算能力,熟练掌握角相互间的和差关系是基础.17.如图,已知∠AOC=∠BOD=80°,∠BOC=25°,则∠AOD的度数为()A.150°B.145°C.140°D.135°【分析】先求∠AOC与∠BOC的度数差即可得出∠AOB的度数,再求∠AOB与∠DOB的和即可.【解答】解:∵∠AOC=∠BOD=80°,∠BOC=25°,∴∠AOB=∠AOC﹣∠BOC=80°﹣25°=55°,∴∠AOD=∠BOD+∠AOB=80°+55°=135°,故选:D.【点评】本题考查了角的运算,较为简单,解题关键是不要忘了减去两个角的重合部分.18.有下列说法:①射线是直线的一半;②线段AB是点A与点B的距离;③角的大小与这个角的两边所画的长短有关;④两个锐角的和一定是钝角.其中正确的个数有()A.0个B.1个C.2个D.3个【分析】根据射线的定义和射线、直线没有长度极快判断①;根据两点间的距离的定义即可判断②,根据角的特点即可判断③,举出反例即可判断④.【解答】解:∵射线是指直线上的一点和它一旁的部分所组成的图形,没有长度,直线也没有长度,∴①的说法错误;∵点A与点B的距离是指线段AB的长度,是一个数,而线段是一个图形,∴②错误;∵角的大小与这个角的两边的长短无关,∴③错误;∵当这两个锐角的度数是10°和20°时,10°+20°=30°,30°的角是锐角,不是钝角,∴④错误;∴正确的个数是0个,故选:A.【点评】本题考查了学生对角的定义,直线、射线的定义,两点间的距离的定义的理解和运用,主要考查学生的理解能力和辨析能力,题目比较好,但是一道比较容易出错的题目.二.填空题(共5小题)19.如图,直线AB、CD相交于点O,∠DOE=∠BOE,OF平分∠AOD,若∠BOE=28°,则∠EOF的度数为90°.【分析】根据已知条件“∠DOE=∠BOE,OF平分∠AOD,若∠BOE=28°”和平角的定义可以求得∠AOF=∠DOF =∠AOD=62°,∠DOE=∠BOE=28°;然后根据图形求得∠EOF=∠DOF+∠DOE=62°+28°=90°.【解答】解:∵∠DOE=∠BOE,∠BOE=28°,∴∠DOB=2∠BOE=56°;又∵∠AOD+∠BOD=180°,∴∠AOD=124°;∵OF平分∠AOD,∴∠AOF=∠DOF=∠AOD=62°,∴∠EOF=∠DOF+∠DOE=62°+28°=90°.故答案是:90°.【点评】本题考查了角的计算.解题时,注意利用隐含在题干中的已知条件“∠AOB=180°”.20.如图,将一副直角三角板叠在一起,使直角顶点重合于点O,则∠AOB+∠DOC=180 度.【分析】先利用∠AOD+∠COD=90°,∠COD+∠BOC=90°,可得∠AOD+∠COD+∠COD+∠BOC=180°,而∠BOD=∠COD+∠BOC,∠AOD+∠BOD=∠AOB,于是有∠AOB+∠COD=180°.【解答】解:如右图所示,∵∠AOD+∠COD=90°,∠COD+∠BOC=90°,∠BOD=∠COD+∠BOC,∠AOD+∠BOD=∠AOB,∴∠AOD+∠COD+∠COD+∠BOC=180°,∴∠AOD+2∠COD+∠BOC=180°,∴∠AOB+∠COD=180°.故答案是180.【点评】本题考查了角的计算、三角板的度数,注意分清角之间的关系.21.将两块直角三角尺的直角顶点重合为如图的位置,若∠AOD=110°,则∠COB=70 度.【分析】∠COB是两个直角的公共部分,同时两个直角的和是180°,所以∠AOB+∠COD=∠AOD+∠COB.【解答】解:由题意可得∠AOB+∠COD=180°,又∠AOB+∠COD=∠AOC+2∠COB+∠BOD=∠AOD+∠COB,∵∠AOD=110°,∴∠COB=70°.故答案为:70.【点评】求解时正确地识图是求解的关键.22.如图,点A、O、B在一条直线上,且∠AOC=50°,OD平分∠AOC,则∠BOD=155 度.【分析】根据点A、O、B在一条直线上,∠AOB为平角,求出∠COB,再利用OD平分∠AOC,求出∠COD,然后用∠COB+∠COD即可求解.【解答】解:∵点A、O、B在一条直线上,∴∠COB=180°﹣∠AOC=180°﹣50°=130°,∵OD平分∠AOC,∴∠COD=×50°=25°,∴∠BOD=∠COB+∠COD=130°+25°=155°.故答案为:155.【点评】此题主要考查学生对角的计算的理解和掌握,此题的关键是点A、O、B在一条直线上,∠AOB为平角,此题难度不大,属于基础题.23.如图,A,O,B是同一直线上的三点,OC,OD,OE是从O点引出的三条射线,且∠1:∠2:∠3:∠4=1:2:3:4,则∠5=60 度.【分析】利用平角和角的比例关系即可求出.【解答】解:A,O,B是同一直线上的三点,即∠AOB=180°∠1:∠2:∠3=1:2:3,可知∠1=30°∠2=60°∠3=90°;∠1:∠2:∠3:∠4=1:2:3:4,∠4=120°,∠5=180°﹣120°=60°.故填60.【点评】此题是对角进行度的比例计算,相对比较简单,但要准确求出各角大小是本题的难点.另外此题答案不能带单位.三.解答题(共17小题)24.如图,点O在直线AC上,OD平分∠AOB,∠BOE=∠EOC,∠DOE=70°,求∠EOC.【分析】设∠AOB=x,根据角平分线的定义、补角的概念,结合题意列出方程,解方程即可.【解答】解:设∠AOB=x,则∠BOC=180°﹣x,∵OD平分∠AOB,∴∠BOD=∠AOB=x,∵∠BOE=∠EOC,∴∠BOE=∠BOC=60°﹣x,由题意得,x+60°﹣x=70°,解得,x=60°,∠EOC=(180°﹣x)=80°.【点评】本题考查的是角的计算、角平分线的定义,正确进行角的计算、掌握角平分线的定义是解题的关键.25.如图,已知∠AOB=120°,OE平分∠AOB,射线OC在∠AOE内部,∠BOC=90°,(1)求∠EOC的度数.(2)作射线OF,使射线OC是∠EOF三等分线,则∠AOF的度数为30°或15°.【分析】(1)由角平分线知,结合∠BOC=90°可得答案;(2)由射线OC是∠EOF三等分线可分∠EOC=∠EOF和∠EOC=∠EOF两种情况求解可得.【解答】解:(1)∵OE平分∠AOB,∠AOB=120°,∴,∵∠BOC=90°,∴∠EOC=∠BOC﹣∠EOB=30°;(2)若∠EOC=∠EOF,则∠EOF=3∠EOC=90°,∵∠AOE=∠AOB=60°,∴∠AOF=∠EOF﹣∠EOA=30°;若∠EOC=∠EOF,则∠EOF=∠EOC=45°,∴∠AOF=∠AOE﹣∠EOF=15°;综上,∠AOF的度数为30°或15°,故答案为:30°或15°.【点评】本题主要考查角的计算,学会计算角的和、差、倍、分.也考查了角平分线的定义.26.(1)在∠AOB内部画1条射线OC,则图1中有 3 个不同的角;(2)在∠AOB内部画2条射线OC,OD,则图2中有 6 个不同的角;(3)在∠AOB内部画3条射线OC,OD,OE,则图3中有10 个不同的角;(4)在∠AOB内部画10条射线OC,OD,OE…,则图中有66 个不同的角;(5)在∠AOB内部画n条射线OC,OD,OE…,则图中有个不同的角.【分析】(1)根据图形数出即可;(2)根据图形数出即可;(3)根据图形数出即可;(4)有1+2+3+…+9+10+11=66个角;(5)求出1+2+3+…+n+(n+1)的值即可.【解答】解:(1)在∠AOB内部画1条射线OC,则图中有3个不同的角,故答案为:3.(2)在∠AOB内部画2条射线OC,OD,则图中有6个不同的角,故答案为:6.(3)在∠AOB内部画3条射线OC,OD,OE,则图中有10个不同的角,故答案为:10.(4)在∠AOB内部画10条射线OC,OD,OE,…,则图中有1+2+3+…+10+11=66个不同的角,故答案为:66.(5)在∠AOB内部画n条射线OC,OD,OE,…,则图中有1+2+3+…+n+(n+1)=个不同的角.故答案为:.【点评】本题考查了角的有关概念的应用,关键是能根据题意得出规律.27.如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=70°,求∠BOD的度数;(2)若∠EOC:∠EOD=2:3,求∠BOD的度数.【分析】(1)根据角平分线定义得到∠AOC=∠EOC=×70°=35°,然后根据对顶角相等得到∠BOD=∠AOC =35°;(2)先设∠EOC=2x,∠EOD=3x,根据平角的定义得2x+3x=180°,解得x=36°,则∠EOC=2x=72°,然后与(1)的计算方法一样.【解答】解:(1)∵OA平分∠EOC,∴∠AOC=∠EOC=×70°=35°,∴∠BOD=∠AOC=35°;(2)设∠EOC=2x,∠EOD=3x,根据题意得2x+3x=180°,解得x=36°,∴∠EOC=2x=72°,∴∠AOC=∠EOC=×72°=36°,∴∠BOD=∠AOC=36°.【点评】考查了角的计算:1直角=90°;1平角=180°.也考查了角平分线的定义和对顶角的性质.28.如图所示,直线AB、CD、EF交于点O,OG平分∠BOF,且CD⊥EF,∠AOE=70°,求∠DOG的度数.【分析】求出∠BOF,根据角平分线求出∠GOF,求出∠EOD,代入∠DOG=180°﹣∠GOF﹣∠EOD求出即可.【解答】解:∵∠AOE=70°,∴∠BOF=∠AOE=70°,又∵OG平分∠BOF,∴∠GOF=∠BOF=35°,又∵CD⊥EF,∴∠EOD=90°,∴∠DOG=180°﹣∠GOF﹣∠EOD=180°﹣35°﹣90°=55°.【点评】本题考查了角平分线定义,垂直,邻补角的应用,主要考查学生的计算能力.29.如图,已知∠AOC=60°,∠BOD=90°,∠AOB是∠DOC的3倍,求∠AOB的度数.【分析】设∠COD=x,则∠AOD可表示为60°﹣x,于是∠AOB=90°+60°﹣x=150°﹣x,再根据∠AOB是∠DOC 的3倍得到150°﹣x=3x,解得x=37.5°,然后计算3x即可.【解答】解:设∠COD=x,∵∠AOC=60°,∠BOD=90°,∴∠AOD=60°﹣x,∴∠AOB=90°+60°﹣x=150°﹣x,∵∠AOB是∠DOC的3倍,∴150°﹣x=3x,解得x=37.5°,∴∠AOB=3×37.5°=112.5°.【点评】本题考查了角的计算:会利用角的倍、分、差进行角度计算.30.如图,两直线AB,CD相交于点O,已知OE平分∠BOD,且∠AOC:∠AOD=3:7,(1)求∠DOE的度数;(2)若OF⊥OE,求∠COF的度数.【分析】(1)根据∠AOC:∠AOD=3:7,可求出∠AOC的度数,再根据对顶角的性质可求出∠DOB的度数,根据角平分线的性质即可解答.(2)根据垂直的定义可求出∠DOF的度数,再根据平角的定义解答即可.【解答】解:(1)∵两直线AB,CD相交于点O,∠AOC:∠AOD=3:7,∴∠AOC=180°×=54°,∴∠BOD=54°,又∵OE平分∠BOD,∴∠DOE=54°÷2=27°.(2)∵OF⊥OE,∠DOE=27°,∴∠DOF=63°,∠COF=180°﹣63°=117°.【点评】本题主要考查了角的计算,熟练掌握对顶角的性质,余角补角的定义,角平分线的性质并进行计算是解答本题的关键.31.已知:O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图1.若∠AOC=30°.求∠DOE的度数;(2)在图1中,若∠AOC=a,直接写出∠DOE的度数(用含a的代数式表示);(3)将图1中的∠DOC绕顶点O顺时针旋转至图2的位置,探究∠AOC和∠DOE的度数之间的关系.写出你的结论,并说明理由.【分析】(1)求出∠BOD,求出∠BOC,根据角平分线求出∠BOE,代入∠DOE=∠BOE﹣∠BOD求出即可.(2)求出∠BOD,求出∠BOC,根据角平分线求出∠BOE,代入∠DOE=∠BOE﹣∠BOD求出即可.(3)把∠AOC当作已知数求出∠BOC,求出∠BOD,根据角平分线求出∠BOE,代入∠DOE=∠BO+∠BOD求出即可.【解答】解:(1)∵∠COD是直角,∠AOC=30°,∴∠BOD=180°﹣90°﹣30°=60°,∴∠COB=90°+60°=150°,∵OE平分∠BOC,∴∠BOE=∠BOC=75°,∴∠DOE=∠BOE﹣∠BOD=75°﹣60°=15°.(2)∵∠COD是直角,∠AOC=α,∴∠BOD=180°﹣90°﹣α=90°﹣α,∴∠COB=90°+90°﹣α=180°﹣α,∵OE平分∠BOC,∴∠BOE=∠BOC=90°﹣α,∴∠DOE=∠BOE﹣∠BOD=90°﹣α﹣(90°﹣α)=α.(3)∠AOC=2∠DOE,理由是:∵∠BOC=180°﹣∠AOC,OE平分∠BOC,∴∠BOE=∠BOC=90°﹣∠AOC,∵∠COD=90°,∴∠BOD=90°﹣∠BOC=90°﹣(180°﹣∠AOC)=∠AOC﹣90°,∴∠DOE=∠BOD+∠BOE=(∠AOC﹣90°)+(90°﹣∠AOC)=∠AOC,即∠AOC=2∠DOE.【点评】本题考查了角的有关计算和角平分线定义的应用,主要考查学生的计算能力,求解过程类似.32.附加题:如图,已知∠1=65°15′,∠2=78°30′,求∠1+∠2和∠3.【分析】根据∠+∠2+∠3=180°求解.【解答】解:∵∠1=65°15′,∠2=78°30′,∴∠1+∠2=65°15′+78°30′=143°45′.∴∠3=180°﹣(∠1+∠2)=180°﹣143°45′=36°15′.故答案为143°45′、36°15′.【点评】本题主要考查角的比较与运算,利用了平角的概念求解.33.已知:∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE.(1)如图①,当∠BOC=70°时,求∠DOE的度数;(2)如图②,若射线OC在∠AOB内部绕O点旋转,当∠BOC=α时,求∠DOE的度数;(3)如图③,当射线OC在∠AOB外绕O点旋转时,画出图形,直接写出∠DOE的度数.【分析】(1)由∠BOC的度数求出∠AOC的度数,利用角平分线定义求出∠COD与∠COE的度数,相加即可求出∠DOE的度数;(2)∠DOE度数不变,理由为:利用角平分线定义得到∠COD为∠AOC的一半,∠COE为∠COB的一半,而∠DOE =∠COD+∠COE,即可求出∠DOE度数为45度;(3)分两种情况考虑,同理如图3,则∠DOE为45°;如图4,则∠DOE为135°.【解答】解:(1)如图①中,∠AOC=90°﹣∠BOC=20°,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC=10°,∠COE=∠BOC=35°,∴∠DOE=∠COD+∠COE=45°;(2)如图②中,∠DOE的大小不变,理由是:∠DOE=∠COD+∠COE=∠AOC+∠COB=(∠AOC+∠COB)=∠AOB=45°;(3)∠DOE的大小发生变化情况为,如图3,则∠DOE为45°;如图4,则∠DOE为135°,分两种情况:如图3所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC,∠COE=∠BOC,∴∠DOE=∠COD﹣∠COE=(∠AOC﹣∠BOC)=45°;如图4所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC,∠COE=∠BOC,∴∠DOE=∠COD+∠COE=(∠AOC+∠BOC)=×270°=135°.【点评】此题考查了角的计算,熟练掌握角平分线定义是解本题的关键.容易出错的地方是解(3)小题漏掉其中的一种情况.34.(1)平面内将一副三角板按如图1所示摆放,∠EBC=150 °;(2)平面内将一副三角板按如图2所示摆放,若∠EBC=165°,那么∠α=15 °;(3)平面内将一副三角板按如图3所示摆放,∠EBC=115°,求∠α的度数.【分析】(1)(2)根据角的和差关系可直接算出答案;(3)首先计算出∠DBC的度数,再用∠ABC的度数减去∠DBC的度数即可.【解答】解:(1)∠EBC=90°+60°=150°;(2)∠α=∠EBC﹣∠DBE﹣∠ABC=165°﹣90°﹣60°=15°;(3)因为∠EBC=115°,∠EBD=90°,所以∠DBC=∠EBC﹣∠EBD=25°.因为∠ABC=60°,所以∠α=∠ABC﹣∠DBC=35°.【点评】此题主要考查了角的计算以及一副三角板各角之间的关系,根据图象得出是解题关键.35.如图,已知∠AOC=∠BOD=75°,∠BOC=30°,求∠AOD.【分析】根据∠AOC=∠BOD=75°,∠BOC=30°,利用角的和差关系先求出∠AOB的度数,再求∠AOD.【解答】解:∵∠AOC=75°,∠BOC=30°,∴∠AOB=∠AOC﹣∠BOC=75°﹣30°=45°,又∵∠BOD=75°,∴∠AOD=∠AOB+∠BOD=45°+75°=120°.故答案为120°.【点评】此题主要考查了角相互间的和差关系,比较简单.36.已知∠AOB是一个定角,记为α,在∠AOB的内部作射线OC,再分别作∠AOC和∠BOC的平分线OD,OE.(1)如图①,当α=120°,∠AOC=40°时,求∠DOE的度数;(2)如图①,当射线OC在∠AOB内绕点O旋转时,∠DOE的度数是否发生变化?若变化,请说明理由;若不变,猜想∠DOE与α的关系,并证明;(3)当射线OC在∠AOB外绕点O旋转到图②位置时,直接写出∠DOE的度数(用含a的代数式表示).【分析】(1)根据角平分线的定义,OD、OE分别平分∠AOC和∠BOC,则可求得∠COE、∠COD的值,∠DOE=∠COE+∠COD;(2)结合角的特点∠DOE=∠DOC+∠COE,求得结果进行判断和计算;(3)根据周角的定义,结合角的特点∠DOE=∠DOC+∠COE,求得结果进行判断和计算.【解答】解:(1)∵α=120°,∠AOC=40°,∴∠BOC=80°,∵OD、OE分别平分∠AOC和∠BOC,∴∠COE=∠BOC=40°,∠COD=∠AOC=20°,∴∠DOE=60°;(2)∵∠BOC=α﹣∠AOC,OD、OE分别平分∠AOC和∠BOC,∴∠COE=∠BOC=α﹣∠AOC,∠COD=∠AOC,∴∠DOE=∠COE+∠COD=α;(3)∠DOE=(360°﹣α)=180°﹣α.【点评】考查了角的计算,熟记角的特点与角平分线的定义是解决此题的关键.37.如图,将两块直角三角尺的直角顶点C叠放在一起,(1)若∠DCE=35°,求∠ACB的度数;(2)若∠ACB=140°,求∠DCE的度数;(3)猜想∠ACB与∠DCE的大小关系,并说明理由.【分析】本题已知两块直角三角尺实际就是已知三角板的各个角的度数,根据角的和差就可以求出∠ACB,∠DCE 的度数;根据前两个小问题的结论猜想∠ACB与∠DCE的大小关系,结合前两问的解决思路得出证明.【解答】解:(1)∵∠ECB=90°,∠DCE=35°∴∠DCB=90°﹣35°=55°∵∠ACD=90°∴∠ACB=∠ACD+∠DCB=145°.(2)∵∠ACB=140°,∠ACD=90°∴∠DCB=140°﹣90°=50°∵∠ECB=90°∴∠DCE=90°﹣50°=40°.(3)猜想得∠ACB+∠DCE=180°(或∠ACB与∠DCE互补)理由:∵∠ECB=90°,∠ACD=90°∴∠ACB=∠ACD+∠DCB=90°+∠DCB∠DCE=∠ECB﹣∠DCB=90°﹣∠DCB∴∠ACB+∠DCE=180°.【点评】记忆三角板各角的度数,把所求的角转化为已知角的和与差.38.(1)如图所示,∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数.(2)如果(1)中∠AOB=α,其他条件不变,求∠MON的度数.(3)如果(1)中∠BOC=β(β为锐角),其他条件不变,求∠MON的度数.(4)从(1)(2)(3)的结果你能看出什么规律?(5)线段的计算与角的计算存在着紧密的联系,它们之间可以互相借鉴解法,请你模仿(1)~(4),设计一道以线段为背景的计算题,并写出其中的规律来?【分析】(1)首先根据题中已知的两个角度数,求出角AOC的度数,然后根据角平分线的定义可知角平分线分成的两个角都等于其大角的一半,分别求出角MOC和角NOC,两者之差即为角MON的度数;(2)(3)的计算方法与(1)一样.(4)通过前三问求出的角MON的度数可发现其都等于角AOB度数的一半.(5)模仿线段的计算与角的计算存在着紧密的联系,也在已知条件中设计两条线段的长,设计两个中点,求中点间的线段长.【解答】解:(1)∵∠AOB=90°,∠BOC=30°,∴∠AOC=90°+30°=120°,又OM平分∠AOC,∴∠MOC=∠AOC=60°,又∵ON平分∠BOC,∴∠NOC=∠BOC=15°∴∠MON=∠MOC﹣∠NOC=45°;(2)∵∠AOB=α,∠BOC=30°,∴∠AOC=α+30°,又OM平分∠AOC,∴∠MOC=∠AOC=+15°,又∵ON平分∠BOC,∴∠NOC=∠BOC=15°∴∠MON=∠MOC﹣∠NOC=;(3)∵∠AOB=90°,∠BOC=β,∴∠AOC=90°+β,又OM平分∠AOC,∴∠MOC=∠AOC=+45°,又∵ON平分∠BOC,∴∠NOC=∠BOC=∴∠MON=∠MOC﹣∠NOC=45°;(4)从(1)(2)(3)的结果可知∠MON=∠AOB;(5)①已知线段AB的长为20,线段BC的长为10,点M是线段AC的中点,点N是线段BC的中点,求线段MN的长;②若把线段AB的长改为a,其余条件不变,求线段MN的长;③若把线段BC的长改为b,其余条件不变,求线段MN的长;④从①②③你能发现什么规律.规律为:MN=AB.【点评】本题考查了学会对角平分线概念的理解,会求角的度数,同时考查了学会归纳总结规律的能力,以及会根据角和线段的紧密联系设计实验的能力.39.如图,已知OA⊥OD,∠FOD=2∠COD,OB平分∠AOC,OE平分∠COF.(1)若∠COD=30°,求∠BOE的度数;(2)若∠BOE=85°,求∠COD的度数.(提示:设∠COD=x°)【分析】(1)根据∠COD=30°,OA⊥OD,可求出∠AOC,根据OB平分∠AOC和∠FOD=2∠COD,可求出∠FOD,再根据OE平分∠COF,求出∠COE,即可求出∠BOE;(2)设∠COD=x°,根据已知条件可得∠BOC=,∠COE=,然后列方程,解方程即可求出答案.【解答】解:(1)∵∠COD=30°,OA⊥OD,∴∠AOC=60°,∵OB平分∠AOC,∴∠BOC=30°,∵∠FOD=2∠COD,∴∠FOD=60°,∵OE平分∠COF,∴∠COE=45°,∴∠BOE=30+45=75°;(2)设∠COD=x°,由已知可得:∠BOC=,∠COE=,∴+=85,解之x=40答:∠COD=40°.【点评】此题主要考查学生对角的计算的理解和掌握,此题涉及到方程思想,有一定拔高难度,属于中档题.40.如图,已知∠AOB是直角,∠BOC=60°,OE平分∠AOC,OF平分∠BOC.(1)求∠EOF的度数;(2)若将条件“∠AOB是直角,∠BOC=60°”改为:∠AOB=x°,∠EOF=y°,其它条件不变.①则请用x的代数式来表示y;②如果∠AOB+∠EOF=156°.则∠EOF是多少度?【分析】(1)根据角平分线的性质和角的和差倍分关系求∠EOF的度数;(2)①用字母代替数字理由同(1);。

初中数学:七年级上册计算专项整式的化简求值专项训练50题

初中数学:七年级上册计算专项整式的化简求值专项训练50题

整式的化简求值专项训练50题1.老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:+3(x﹣1)=x2﹣5x+1(1)求所挡的二次三项式;(2)若x=﹣1,求所挡的二次三项式的值.2.阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2的结果是.(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值;拓展探索:(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.3.已知:关于x的多项式2ax3﹣9+x3﹣bx2+4x3中,不含x3与x2的项.求代数式3(a2﹣2b2﹣2)﹣2(a2﹣2b2﹣3)的值.4.已知含字母a,b的代数式是:3[a2+2(b2+ab﹣2)]﹣3(a2+2b2)﹣4(ab﹣a﹣1)(1)化简代数式;(2)小红取a,b互为倒数的一对数值代入化简的代数式中,恰好计算得代数式的值等于0,那么小红所取的字母b的值等于多少?(3)聪明的小刚从化简的代数式中发现,只要字母b取一个固定的数,无论字母a取何数,代数式的值恒为一个不变的数,那么小刚所取的字母b的值是多少呢?4.如果关于x的多项式(3x2+2mx﹣x+1)+(2x2﹣mx+5)﹣(5x2﹣4mx﹣6x)的值与x的取值无关,试确定m的值,并求m2+(4m﹣5)+m的值.5.已知:2x2+ax﹣y+6﹣bx2+3x﹣5y﹣1的值与x的取值无关,A=4a2﹣ab+4b2,B=3a2﹣ab+3b2,先化简3A﹣[2(3A﹣2B)﹣3(4A﹣3B)]再求值.7.(2022秋•南昌期中)已知天平左边托盘中的物体重量为x,右边托盘中的物体重量为y,其中x=30(1+a2)﹣3(a﹣a2),y=31﹣[a﹣2(a2﹣a)﹣31a2](1)化简x和y;(2)请你想一想,天平会倾斜吗?如果出现倾斜,将向哪边倾斜?请说明理由.8.(2022秋•福田区校级期中)如下1□2□3□4…□(n+1)将1到n+1(n≥1,且n为正整数)一共n+1个连续正整数按从小到大的顺序排成一排,每相邻的两个数之间放置一个方格.(1)一共需要放置个方格;(2)如果第一个方格填入加号“+”,第二个方格填入减号“﹣”,第三个方格填入加号“+”,第四个方格填入减号“﹣”,…,按此规律轮流将加、减号从左向右依次填入方格中,问最后一个方格应填入什么符号?(3)按照(2)中的方法我们用加、减号将1到n+1一共n+1个连续正整数连接成一个算式,问这个算式的值等于多少?9.如果“三角”表示3(2x+5y+4z),“方框”表示﹣4[(3a+b)﹣(c﹣d)].求的值.10.先化简,后求值(1)2(x2y+xy)﹣3(x2y﹣xy)﹣4x2y,其中x=1,y=﹣1;(2)|a﹣2|+(b+3)2=0,求3a2b﹣[2ab2﹣2(ab﹣1.5a2b)+ab]+3ab2的值;(3)已知a2+5ab=76,3b2+2ab=51,求代数式a2+11ab+9b2的值;(4)已知ab=3,a+b=4,求3ab﹣[2a﹣(2ab﹣2b)+3]的值.11.课堂上老师给大家出了这样一道题,“当x=2010时,求代数式x+(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y+y3)的值”,小明一看,“x的值太大了,而且又没有y的值,怎么算呢?”你能帮小明解决这个问题吗?请写出过程.12.化简计算:(1)3a2﹣2a﹣a2+5a(2)14(−82+2−4)−12(−1)(3)根据下边的数值转换器,当输入的x与y满足|+1|+(−12)2=0时,请列式求出输出的结果.(4)若单项式232与﹣2x m y3是同类项,化简求值:(m+3n﹣3mn)﹣2(﹣2m﹣n+mn)13.化简或化简求值①3(x2﹣2xy)﹣[3x2﹣2y﹣2(3xy+y)]②已知A=3a2+b2﹣5ab,B=2ab﹣3b2+4a2,先求﹣B+2A,并求当a=−12,b=2时,﹣B+2A的值.③如果代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x所取的值无关,试求代数式133−22−(143−32)的值.④有这样一道计算题:“计算(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y﹣y3)的值,其中=12,y=﹣1”,甲同学把=12看错成=−12;但计算结果仍正确,你说是怎么一回事?14.一个四位数m=1000a+100b+10c+d(其中1≤a,b,c,d≤9,且均为整数),若a+b=k(c﹣d),且k为整数,称m为“k型数”.例如,4675:4+6=5×(7﹣5),则4675为“5型数”;3526:3+5=﹣2×(2﹣6),则3526为“﹣2型数”.(1)判断1731与3213是否为“k型数”,若是,求出k;(2)若四位数m是“3型数”,m﹣3是“﹣3型数”,将m的百位数字与十位数字交换位置,得到一个新的四位数m′,m′也是“3型数”,求满足条件的所有四位数m.15.对于整数a,b,定义一种新的运算“⊙”:当a+b为偶数时,规定a⊙b=2|a+b|+|a﹣b|;当a+b为奇数时,规定a⊙b=2|a+b|﹣|a﹣b|.(1)当a=2,b=﹣4时,求a⊙b的值.(2)已知a>b>0,(a﹣b)⊙(a+b﹣1)=7,求式子34(a﹣b)+14(a+b﹣1)的值.(3)已知(a⊙a)⊙a=180﹣5a,求a的值.16.先化简,再求值4x2y﹣[6xy﹣3(4xy﹣2)﹣x2y]+1,其中|x+1|+(y﹣2)2=0.17.已知A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7(1)求A等于多少?(2)若|a+1|+(b﹣2)2=0,求A的值.18.已知A=2x2﹣3xy+y2+2x+2y,B=4x2﹣6xy+2y2﹣3x﹣y(1)当x=2,y=−15时,求B﹣2A的值.(2)若|x﹣2a|+(y﹣3)2=0,且B﹣2A=a,求a的值.19.有这样一道计算题:3x2y+[2x2y﹣(5x2y2﹣2y2)]﹣5(x2y+y2﹣x2y2)的值,其中x=12,y=﹣1.小明同学把“x=12”错看成“x=−12”,但计算结果仍正确;小华同学把“y=﹣1”错看成“y=1”,计算结果也是正确的,你知道其中的道理吗?请加以说明.20.若单项式235r2r23与−3463K2K1的和仍是单项式,求m,n的值.21.先化简,再求值:已知2(﹣3xy+y2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.22.先化简,再求值:3(2x2﹣3xy﹣5x﹣1)+6(﹣x2+xy﹣1),其中x、y满足(x+2)2+|y−23|=0.23.已知:A=ax2+x﹣1,B=3x2﹣2x+4(a为常数).(1)若A与B的和中不含x2项,求出a的值;(2)在(1)的基础上化简:B﹣2A.24.已知M=x2﹣ax﹣1,N=2x2﹣ax﹣2x﹣1.(1)求N﹣(N﹣2M)的值;(2)若多项式2M﹣N的值与字母x取值无关,求a的值.25.已知多项式(a+3)x3﹣x b+x+a是关于x的二次三项式,求a b﹣ab的值.26.已知A=x﹣2y,B=﹣x﹣4y+1(1)求2(A+B)﹣(2A﹣B)的值;(结果用x、y表示)(2)当|x+12|与y2互为相反数时,求(1)中代数式的值.26.已知﹣2a m bc2与4a3b n c2是同类项,求多项式3m2n﹣2mn2﹣m2n+mn2的值.28.已知:A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7.(1)求A.(2)若|a+1|+(b﹣2)2=0,计算A的值.29.先化简,再求值:﹣2(mn﹣3m2)﹣[m2﹣5(mn﹣m2)+2mn],其中|m﹣1|+(n+2)2=030.已知m、n是系数,且mx2﹣2xy+y与3x2+2nxy+3y的差中不含二次项,求m+3n的值.31.阅读材料:对于任何数,我们规定符号的意义是=ad﹣bc.例如:1234=1×4﹣2×3=﹣2(1)按照这个规定,请你计算56−28的值.(2)按照这个规定,请你计算当|m+3|+(n﹣1)2=0时,23+2−12−2的值.31.如果代数式(﹣2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x所取得的值无关,试求代数式13a3﹣2b2﹣(14a3﹣3b2)的值.32.学习了整式的加减运算后,老师给同学们布置了一道课堂练习题“a=﹣2,b=2017时,求(3a2b﹣2ab2+4a)﹣2(2a2b﹣3a)+2(ab2+12a2b)﹣1的值”.盈盈做完后对同桌说:“张老师给的条件b=2017是多余的,这道题不给b的值,照样可以求出结果来.”同桌不相信她的话,亲爱的同学们,你相信盈盈的说法吗?说说你的理由.33.小红做一道数学题:两个多项式A,B=4x2﹣5x﹣6,试求A+B的值.小红误将A+B看成A﹣B,结果答案为﹣7x2+10x+12(计算过程正确).试求A+B的正确结果.34.有这样一道题,计算(2x4﹣4x3y﹣x2y2)﹣2(x4﹣2x3y﹣y3)+x2y2的值,其中x=2,y =﹣1,甲同学把“x=2”错抄成“x=﹣2”,但他计算的结果也是正确的,请用计算说明理由.35.有三个多项式A、B、C分别为:A=12x2+x﹣1,B=12x2+3x+1,C=12x2﹣x,请你对A﹣2B﹣C进行化简,并计算当x=﹣2时代数式A﹣2B﹣C的值.37.已知代数式A=x2+xy+2y−12,B=2x2﹣2xy+x﹣1(1)求2A﹣B;(2)当x=﹣1,y=﹣2时,求2A﹣B的值;(3)若2A﹣B的值与x的取值无关,求y的值.38.化简求值:(1)当a=﹣1,b=2时,求代数式﹣2(ab﹣3b2)﹣[6b2﹣(ab﹣a2)]的值(2)先化简,再求值:4xy﹣2(32x2﹣3xy+2y2)+3(x2﹣2xy),当(x﹣3)2+|y+1|=0,求式子的值(3)若(2mx2﹣x+3)﹣(3x2﹣x﹣4)的结果与x的取值无关,求m的值39.课堂上李老师给出了一道整式求值的题目,李老师把要求的整式(7a3﹣6a3b)﹣(﹣3a3﹣6a3b+10a3﹣3)写完后,让小红同学顺便给出一组a、b的值,老师说答案.当小红说完:“a=65,b=﹣2014”后,李老师不假思索,立刻说出答案“3”.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误”.你能说出其中的道理吗?40.化简求值:(1)(8x﹣7y)﹣3(4x﹣5y)其中:x=﹣2,y=﹣1.(2)已知多项式(﹣2x2+3)的2倍与A的差是2x2+2x﹣7,当x=﹣1时,求A的值.40.已知整式﹣5x2y﹣[2x2y﹣3(xy﹣2x2y﹣mx4)]+2xy不含x4项,化简该整式,若|x+1|+(y ﹣2x)2=0,求该整式的值.42.已知:A=2a2+3ab﹣2a﹣1,B=a2+ab﹣1(1)求4A﹣(3A﹣2B)的值.(2)当a取任何数值,A﹣2B的值是一个定值时,求b的值.43.莉莉在计算一个多项式A减去多项式2b2﹣3b﹣5的差时,因一时疏忽忘了对两个多项式用括号括起来,因此减式后面两项没有变号,结果得到的差是b2+3b﹣1.(1)据此请你求出这个多项式A;(2)求出这两个多项式运算的正确结果.44.已知一个三角形的第一条边长为2a+5b,第二条边比第一条边长3a﹣2b,第三条边比第二条边短3a(1)用含a,b的式子表示这个三角形的第二条边、第三条边及周长,结果要化简;(2)若a,b满足|a﹣5|+(b﹣3)2=0,求出这个三角形的周长.45.填空题:(请将结果直接写在横线上)定义新运算“⊕”,对于任意有理数a,b有a⊕b=r32,(1)4(2⊕5)=.(2)若A=x2+2xy+y2,B=﹣2xy+y2,则(A⊕B)+(B⊕A)=.46.(1)若代数式﹣4x6y与x2n y是同类项,求(4n﹣13)2015的值.(2)若2x+3y=2015,求2(3x﹣2y)﹣(x﹣y)+(﹣x+9y)的值.(3)已知A=x3+3x2y﹣5xy2+6y3﹣1,B=﹣6y3+5xy2+x2y﹣2x3+2,C=x3﹣4x2y+3,试说明A+B+C的值与x,y无关.47.已知A=3x﹣2y﹣3,B=﹣4x+3y+2(1)求3A+2B;(2)将英文26个字母按以下顺序排列:a、b、c、d、e、f、g、h、i、j、k、l、m、n、o、p、q、r、s、t、u、v、w、x、y、z.规定a接在z后面,使26个字母排成圈,设计一个密码:若x代表其中一个字母,则x﹣3代表“把一个字母换成字母表中从它向前3位的字母”.如x表示字母m时,则x﹣3表示字母j.若(1)中求得的式子恰好是一个密码,请直接解读下列密文“Nqtajrfymx”的意思,并翻译成中文为.48.老师在黑板上书写一个正确的演算过程,随后用手掌捂住了一个二次三项式.形式如下:(1)求所捂的二次三项式;(2)若x=−32,求所捂的二次三项式的值.49.(1)设n表示任意一个整数,则用含有n的代数式表示任意一个偶数为,用含有n的代数式表示任意一个奇数为;(答案直接填在题中横线上)(2)用举例验证的方案探索:任意两个整数的和与这两个数的差是否同时为奇数或同时为偶数?你的结论是;(填“是”或“否”,答案直接填在题中横线上)(3)设a、b是任意的两个整数,试用“用字母表示数”的方法并分情况来说明a+b和a﹣b是否“同时为奇数”或“同时为偶数”?并进一步得出一般性的结论.例:①若a、b都是偶数,设a=2m,b=2n,则a+b=2m+2n=2(m+n);a﹣b=2m﹣2n =2(m﹣n);此时a+b和a﹣b同时为偶数.请你仿照以上的方法并考虑其余所有可能的情况加以计算和说明;(4)以(3)的结论为基础进一步探索:若a、b是任意的两个整数,那么﹣a+b、﹣a ﹣b、a+b、a﹣b是否“同时为奇数”或“同时为偶数”?(5)应用第(2)、(3)、(4)的结论完成:在2016个自然数1,2,3,…,2015,2016的每一个数的前面任意添加“+”或“﹣”,则其代数和一定是.(填“奇数”或“偶数”,答案直接填在题中横线上)50.已知m、x、y满足(1)32(x﹣5)2+5|m|=0;(2)﹣a2b y+1与3a2b3是同类项,求代数式;0.375x2y+5m2x﹣{−716x2y+[−14xy2+(−316x2y﹣3.475xy2)]﹣6.275xy2}的值.。

人教版数学七年级上册 第3章 3.1 --3.3基础练习题含答案

人教版数学七年级上册 第3章 3.1 --3.3基础练习题含答案

人教版数学七年级上册第3章 3.1 --3.3基础练习题含答案3.1从算式到方程一.选择题1.若关于x的方程(k﹣2020)x﹣2019=7﹣2020(x+1)的解是整数,则整数k的取值个数是()A.6B.8C.9D.102.已知k位非负整数,且关于x的方程3(x﹣3)=kx的解为正整数,则k的所有可能取值为()A.4,6,12B.4,6C.2,0D.2,0,﹣6 3.下列四组变形中,变形正确的是()A.由x=2,得x=B.由2x﹣3=0得2x﹣3+3=0C.由5x=7得x=35D.由5x+7=0得5x=﹣74.关于x的一元一次方程2x a﹣1+m=2的解为x=1,则a﹣m的值为()A.5B.4C.3D.25.下列等式变形正确的是()A.若4x=2,则x=2B.若4x﹣2=2﹣3x,则4x+3x=2﹣2C.若4(x+1)﹣3=2(x+1),则4(x+1)+2(x+1)=3D.若=1,则3(3x+1)﹣2(1﹣2x)=66.下列等式变形不正确的是()A.由x+2=y﹣2,可得x﹣y=4B.由2x=y,可得x=yC.由﹣x=y,可得x=﹣5y D.由y﹣x=﹣2,可得x=y+27.如图,两个天平都平衡,则六个球体的重量等于()个正方体的重量.A.7B.8C.9D.108.已知(a≠0,b≠0),下列变形错误的是()A.B.3a=4b C.D.4a=3b9.运用等式性质进行的变形,正确的是()A.若x=y,则=B.若=,则x=yC.由4x﹣5=3x+2,得到4x﹣3x=﹣5+2D.若a2=3a,则a=310.下面是一个被墨水污染过的方程:3x﹣2=x﹣,答案显示此方程的解是x=2,被墨水遮盖的是一个常数,则这个常数是()A.2B.﹣2C.D.二.填空题11.已知关于x的方程2﹣(a﹣1)x|a|=0是一元一次方程,则a=.12.已知方程(m﹣1)x|m|﹣5=0是关于x的一元一次方程,则m的值为.13.已知关于x的一元一次方程+3=2020x+m的解为x=2,那么关于y的一元一次方程+3=2020(1﹣y)+m的解y=.14.设“●■▲”分别表示三种不同的物体,如图所示,前两架天平保持平衡,如果要使第三架天平也平衡,那么“?”处应该放“■”的个数为.15.如果(a+3)x|a|﹣2=3是一元一次方程,那么a=.三.解答题16.关于x的方程x﹣2m=﹣3x+4与2﹣x=m的解互为相反数.(1)求m的值;(2)求这两个方程的解.17.已知x=﹣2是关于x的方程a(x+3)=a+x的解,求代数式a2﹣2a+1的值.18.【定义】若关于x的一元一次方程ax=b的解满足x=b+a,则称该方程为“友好方程”,例如:方程2x=﹣4的解为x=﹣2,而﹣2=﹣4+2,则方程2x=﹣4为“友好方程”.【运用】(1)①﹣2x =,②x =﹣1两个方程中为“友好方程”的是 (填写序号); (2)若关于x 的一元一次方程3x =b 是“友好方程”,求b 的值;(3)若关于x 的一元一次方程﹣2x =mn +n (n ≠0)是“友好方程”,且它的解为x =n ,则m = ,n = .19.我们规定,若关于x 的一元一次方程ax =b 的解为a +b ,则称该方程为“合并式方程”,例如:3x =﹣的解为﹣,且﹣,则该方程3x =﹣是合并式方程.(1)判断x =1是否是合并式方程并说明理由;(2)若关于x 的一元一次方程5x =m +1是合并式方程,求m 的值.3.2解一元一次方程(一)—合并同类项与移项一、选择题1.下列各方程中,合并同类项正确的是( )A .由3x -x =-1+3,得2x =4B .由23x +x =-7-4,得53x =-3 C .由52-13=-x +23x ,得136=13x D .由6x -4x =-1+1,得2x =0 2.下列变形一定正确的是( )。

七年级上册数学第五章练习题

七年级上册数学第五章练习题

七年级上册数学第五章练习题•相关推荐七年级上册数学第五章练习题数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。

以下是小编为大家整理的相关内容七年级上册数学第五章练习题,仅供参考,希望能够帮助大家。

七年级上册数学第五章练习题1一、选择题(每小题4分,共12分)1.方程3x+6=0的解的相反数是( )A.2B.-2C.3D.-32.若2x+1=8,则4x+1的值为( )A.15B.16C.17D.193.某同学解方程5x-1=□x+3时,把□处数字看错得x=-,他把□处看成了( )A.3B.-9C.8D.-8二、填空题(每小题4分,共12分)4.方程3x+1=x的解为 .5.若代数式3x+7的值为-2,则x= .6.(2012潜江中考)学校举行“大家唱大家跳”文艺汇演,设置了歌唱与舞蹈两类节目,全校师生一共表演了30个节目,其中歌唱类节目比舞蹈类节目的3倍少2个,则全校师生表演的歌唱类节目有个.三、解答题(共26分)7.(8分)解下列方程.(1)2x+3=x-1.(2)2t-4=3t+5.8.(8分)(2012雅安中考)用一根绳子绕一个圆柱形油桶,若环绕油桶3周,则绳子还多4尺;若环绕油桶4周,则绳子又少了3尺.这根绳子有多长?环绕油桶一周需要多少尺?【拓展延伸】9.(10分)先看例子,再解类似的题目.例:解方程|x|+1=3.方法一:当x≥0时,原方程化为x+1=3,解方程,得x=2;当x<0时,原方程化为-x+1=3,解方程,得x=-2,所以方程|x|+1=3的解是x=2或x=-2.方法二:移项,得|x|=3-1,合并同类项,得|x|=2,由绝对值的意义知x=±2,所以原方程的解为x=2或x=-2.问题:用你发现的规律解方程:2|x|-3=5.(用两种方法解)答案解析1.【解析】选A.方程3x+6=0移项得3x=-6,方程两边同除以3,得x=-2;则-2的相反数是2.2.【解析】选A.由方程2x+1=8得x=,把x的值代入4x+1得15.3.【解析】选C.把x=-代入5x-1=□x+3,得:--1=-□+3,解得:□=8.4.【解析】原方程移项,得3x-x=-1,合并同类项,得2x=-1,方程两边同除以2,得x=-.答案:x=-5.【解析】因为代数式3x+7的值为-2,所以3x+7=-2,移项,得3x=-2-7,合并同类项,得3x=-9,方程两边同除以3,得x=-3.答案:-36.【解析】设舞蹈类节目有x个,则3x-2+x=30,解得x=8,所以3x-2=22.答案:227.【解析】(1)移项,得2x-x=-1-3.合并同类项,得x=-4.(2)移项得:2t-3t=5+4.合并同类项,得-t=9.方程两边同除以-1,得:t=-9.【归纳整合】若方程中左右两边的系数有一定的关系,可先根据等式的基本性质,将系数进行化简,可使方程变得简单,更容易解方程.因此,解题之前要先仔细观察方程的特征,再进行解答.七年级上册数学第五章练习题2数轴基础检测1、画出数轴并表示出下列有理数:2、在数轴上表示-4的点位于原点的边,与原点的距离是个单位长度。

七年级上册数学综合复习基础题(含答案)

七年级上册数学综合复习基础题(含答案)

七年级数学全册暑期大练兵——综合复习基础练习试卷简介:全卷共6个选择题,8个填空题,5个计算题,分值100,测试时间60分钟。

本套试卷是七年级上册综合复习测试题。

整套试卷难度都不大,主要考察了学生对课本基础知识的理解和掌握。

但是有些题目需要一定的计算量,这个是比较容易出错的。

学生在做题过程中可以回顾本学期知识点,做到认真细心,提高正确率。

学习建议:本卷是综合测试卷,考的不是某一方面的知识点,而是整个一本书的知识点。

这就要求学生在平时的学习过程中注意积累和复习,每一节都学踏实了,做起综合题才不会困难。

同学们在做完题之后,要根据各个题目涉及到的知识点,回头看课本,做到查漏补缺。

一、单选题(共6道,每道5分)1.一个正方体的表面展开图可以是()A.B.C.D.答案:C解题思路:A、B、D项都不能构成正方体易错点:对正方体的十一种展开图没有掌握试题难度:二颗星知识点:几何体的展开图2.由一些大小相同的小正方体搭成的几何体的俯视图如图所示,其中正方形中的数字表示该位置上的小正方体的个数,那么该几何体的左视图是()A.B.C.D.答案:B解题思路:从俯视图分析,该几何体的左视图共有3列,第一列最高为2个小正方体,第二列最高为3个小正方体,第三列最高为1个小正方体,故选B易错点:对几何体的三视图掌握不牢固试题难度:三颗星知识点:简单组合体的三视图3.如图,已知C 是线段AB的中点,D 是BC的中点,E 是AD的中点,F 是AE的中点,那么线段AF是线段AC 的()A.B.C.D.答案:C解题思路:由已知条件可知,AF=AE=AD=(AC+AD)=AC+×AC=AC易错点:不会进行线段之间的转换试题难度:三颗星知识点:两点间的距离4.已知在数轴上a、b的对应点如图所示,则下列式子正确的是()A.ab>0B.|a|>|b|C.a—b>0D.a + b>0答案:C解题思路:从数轴上可以看出,0<a<1,b<-1,答案选C易错点:不会根据数轴比较数的大小试题难度:三颗星知识点:有理数大小比较5.代数式xa+bya-1与3x2y是同类项,则a-b的值为()A.2B.0C.-2D.1答案:A解题思路:由题意知,a+b=2,a-1=1,解得a=2,b=0易错点:对同类项的特点不熟悉试题难度:三颗星知识点:同类项6.有理数x,y在数轴上的位置如图所示,则()A.y>x>0B.x>y>0C.x<y<0D.y<x<0答案:A解题思路:观察数轴,可以得出y>x>0易错点:不会比较数轴上数的大小试题难度:二颗星知识点:有理数大小比较二、填空题(共8道,每道5分)1.如图,∠AOC=90°,∠COB=α,OD平分∠AOB,则∠COD等于______答案:45°-解题思路:∠COD=∠BOD-∠BOC=∠AOB-α=(90°+α)-α=45°-易错点:不会根据角之间的关系进行转化试题难度:三颗星知识点:角的计算2.若|a|=1,|b|=4,且ab<0,则a+b=______答案:3或-3解题思路:由题意可知,a=1,b=-4或a=-1,b=4,则a+b=-3或3易错点:对绝对值的知识点掌握不牢试题难度:三颗星知识点:绝对值3.a是不为1的有理数,我们把称为a的差倒数.如:2的差倒数是,-1的差倒数是.已知,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,……,依此类推,则a2011=______答案:解题思路:,,,,……,由此可以发现,,,,而2011=3×670+1,所以易错点:不能发现各项之间的规律试题难度:四颗星知识点:开放探究型问题4.据报道,全球观看北京奥运会开幕式现场直播的观众达到2 300 000 000人,创下全球直播节目收视率的最高纪录.该观众人数可以用科学计数法表示为______人答案:2.3×109易错点:对科学记数法掌握不熟练试题难度:二颗星知识点:科学计数法5.在“2008北京”奥运会国家体育场的“鸟巢”钢结果工程施工建设中,首次使用了我国科研人员自主研制的强度为4.6×108帕的钢材,那么4.6×108的原数为______答案:460 000 000易错点:对科学记数法掌握不熟练试题难度:二颗星知识点:科学计数法6.典典同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成扇形和条形统计图,如图所示.(1)典典同学共调查了___名居民的年龄,扇形统计图中a=_____,b=_____;(2)补全条形统计图.(3)若该辖区年龄在0~14岁的居民约有3人,请估计年龄在15~59岁的居民的人数.答案:(1)500,20%,12%;(2)如图:(3)10解题思路:(1)共调查了居民230÷46%=500名居民,a=100÷500=20%,b=60÷500=12% (2)41~59岁之间有500-100-230-60=110个人(3)3÷100×(230+110)&asymp;10人易错点:对各种统计图掌握不牢固试题难度:四颗星知识点:条形统计图7.-a+2b-3c的相反数是______答案:a-2b+3c易错点:对相反数的概念理解不清楚试题难度:二颗星知识点:相反数8.已知,,,,则a+b=_______答案:109解题思路:观察规律可以发现:,所以a=10,b=102-1=99,a+b=109易错点:不能发现各项等式中数字之间的关系和规律试题难度:三颗星知识点:规律探索型问题三、计算题(共5道,每道6分)1.计算:0.25×(-2)3-答案:-13解题思路:原式==-2-10-1=-13易错点:计算错误试题难度:三颗星知识点:有理数的混合运算2.解方程:答案:解题思路:去分母:4(2x-1)-3(5x+1)=24,去括号:8x-4-15x-3=24,-7x=31,易错点:计算容易出现错误试题难度:三颗星知识点:解一元一次方程3.化简求值:,其中x=3,答案:xy2+xy,解题思路:原式=3x2y-(2xy2-2xy+3x2y+xy)+3xy2=3x2y-2xy2+2xy-3x2y-xy+3xy2=xy2+xy,把x和y的值代入上式得:原式=易错点:计算容易出现错误试题难度:三颗星知识点:代数式求值4.甲、乙两人做如下的游戏:一个均匀的骰子,它的每个面上分别标有数字1,2,3,4,5,6,任意掷出骰子后,若朝上的数字是6,则甲获胜;若朝上的数字不是6,则乙获胜. 你认为这个游戏对甲、乙双方公平吗?答案:不公平解题思路:朝上的数字是6的概率为,而朝上的数字不是6的概率为,所以这个游戏对甲、乙双方不公平易错点:不会计算概率试题难度:三颗星知识点:游戏公平性5.化简求值:4x2-4xy+y2-2(x2-2xy+y2),其中,y=-2答案:2x2-y2,解题思路:原式=4x2-4xy+y2-2x2+4xy-2y2=2x2-y2,把x和y的值代入上式,得:原式=易错点:计算易出错试题难度:三颗星知识点:整式的加减。

七年级数学上册一元一次方程应用题专题练习50题

七年级数学上册一元一次方程应用题专题练习50题

七年级数学上册一元一次方程应用题专题练习50题1、某人乘车行121千米的路程,一共用了3小时.第一段路程每小时行42千米,第二段每小时行38千米,第三段每小时行40千米.第三段路程为20千米,第一段和第二段路程各有多少千米?2、某果园用硫磺、石灰、水制成一种杀虫药水,其中硫磺2份,石灰1份,水10份,要制成这种药水520千克,需要硫磺多少千克?3、从每千克0.8元的苹果中取出一部分,又从每千克0.5元的苹果中取出一部分混合后共15千克,每千克要卖0.6元,问需从两种苹果中各取出多少千克?4、某人骑自行车以每小时10千米的速度从甲地到乙地,返回时因事绕道而行,比去时多走8千米的路.虽然行车的速度增加到每小时12千米,但比去时还多用了10分钟.求甲、乙两地的距离.5、甲、乙两个工程队合做一项工程,乙队单独做一天后,由甲、乙两队合做两天后就完成了全部工程.已知甲队单独做所需天数是乙队单独做所需天数的32,问甲、乙两队单独做,各需多少天?6、甲、乙两个仓库共有20吨货物,从甲仓库调出101到乙仓库后,甲仓库中的货物比乙仓库中的货物多16吨.问甲、乙两仓库中原来各有多少吨货物?7、一班打草600千克,二班比一班多打150千克,二班比三班多打100千克,把三班打的草按9:11分给一、二两个生产队,各应分多少千克?8、一项工程300人共做, 需要40天,如果要求提前10天完成,问需要增多少人? 9、一个两位数,个位上的数字是十位上的数字的2倍.先将这个两位数的两个数字对调,得到第二个两位数,再将第二个两位数的十位数字加上1,个位数字减去1,得到第三个两位数.若第三个两位数恰好是原来两位数的2倍,求原来两位数的大小.10、小王骑车从A地到B地共用了4小时.从B地返回A地,他先以去时的速度骑车行2小时, 后因车出了毛病,修车耽误了半小时,接着他用比原速度每小时快6千米的速度回到A地,结果返程比去时少用了10分钟.求小王从A地到B地的骑车速度.11、某人每小时可走平路8千米,可走下坡路10千米,可走上坡路6千米.他从甲地到乙地去,先走一段上坡路,再走一段平路,到乙地后立即返回甲地.往返共用了2小时36分钟.若甲乙两地间的路程为10千米,问在这10千米路程中,上坡路及平路各有多少千米?12、有两支成分不同且长度相等的蜡烛,其中一支3小时可燃烧完,另一支4小时燃烧完.现在要求到下午四点钟时,其中一支蜡烛的剩余部分恰是另一支剩余部分的二倍,问应在何时点燃这两支蜡烛? 13、某同学要把450克浓度为60%的硝酸铵溶液配成浓度为40%的溶液,但他未经考虑便加入300克水.(1) 请通过计算说明,该同学加进的水是超量的.(2) 这时需加进硝酸铵多少克?配成浓度为40%的硝酸铵溶液多少克?14、学校买来一批练习本,分给三个班.甲班分得的为全部练习本的42%,乙班分到的是甲班的75,丙班分到的比乙班少20本,问共有多少练习本?15、汽车从A地往B地送货.如果往返都以每小时60千米的速度行驶,那么可以按时返回.可是当司机到达B地后才发现,从A地到B地每小时只走了55千米,为了按时返回A地,汽车应以多大速度往回开?16、从家里骑摩托车到火车站,如果每小时行30千米,那么比开车时间早到15分钟;如果每小时行18千米,那么比开车时间迟到15分钟.现在打算在开车时间前10分钟到达,那么骑摩托车的速度应该是多少? 17、一只轮船航行于甲、乙两地之间,顺水用3小时,逆水比顺水多30分钟,已知轮船在静水中速度是每小时26千米,求水流的速度.18、好马走15天的路程,劣马需走30天,已知劣马每天走150千米,问好马每天走多少千米?19、一艘轮船发生漏水事故,海水以每分钟24桶的速度涌进底舱,发现时已漏进600桶海水.水手立即开动两部抽水机向外抽水,经50分钟将舱内的水抽完,已知甲机抽水量是乙机的54,问甲、乙两机每分钟各抽水多少桶?20、现有浓度为10%.及浓度为20%的两种酒精溶液.问各取多少可配制成浓度为14%的酒精溶液100升?21、一环形公路周长是24千米,甲乙两人从公路上的同一地点同一时间出发,背向而行,3小时后.他们相遇.已知甲每小时比乙慢0.5千米,求甲、乙两人速度各是多少?22、敌我相距14千米,得知敌军于1小时前以每小时4千米的速度逃跑,现在我军以每小时7千米的速度追击敌军,问需几小时可以追上?23、某班的男生人数比全班人数的85少5人,女生比男生少2人,求全班的人数.24、甲、乙两站相距245千米,一列慢车由甲站开出,每小时行驶50千米;同时,一列快车由乙站开出,每小时行驶70千米;两车同向而行,快车在慢车的后面,经过几小时快车可以追上慢车?25、某水池有甲、乙两个给水龙头,单独开甲龙头时,2小时可以把空池灌满水.单独开乙龙头时,3小时可以把空池灌满水.现在先开甲龙头,半小时后再甲、乙两个龙头齐开.问把空池灌水32,一共需要多少小时?26、某工作,甲单独干需用15小时完成,乙单独干需用12小时完成,若甲先干1小时、乙又单独干4小时,剩下的工作两人合作,问:再用几小时可全部完成任务?27、一水池有一个进水管,5小时可以注满空池,池底有一个出水管,8小时可以放完满池的水.如果两水管同时打开,那么经过几小时可把空水池灌满?28、一列快车从甲地开往乙地需5小时,一列慢车从乙地开往甲地需要的时间比快车多51小时.两列火车同时从两地相对开出,2小时后,慢车在一个车站停了下来,快车继续行驶96千米与慢车相遇.问甲、乙两地相距多少千米?29、某班学生列队从学校到一个农场去参加劳动,以每小时4千米的速度行进.走完1千米时,一个学生奉命回学校取一件东西,他以每小时5千米的速度跑回学校,取了东西后又立即以同样的速度跑步追赶队伍,结果在距农场1.5千米的地方追上队伍.求学校到农场的距离.30、一列客车和一列货车在平行的轨道上同向行驶,客车长200米,货车长310米,客货两车的速度比为4:3.如果客车从后面追赶货车,从车头赶上到车尾超过的时间为2分钟.求两列火车的速度.31、甲、乙两人由A 村去B 城办事,乙临时因事耽误了30分钟,若乙的速度比甲的速度每小时快5千米,那么乙用了2小时追上甲.求甲、乙两人的速度及追上时离A 村的距离.32、某运输公司原有汽车900辆,其中小轿车占259 .现又购进一批小轿车,这样小轿车占该公司汽车的40%.问该公司现有小轿车多少辆?33、一辆拖拉机耕一片地.第一天耕了这片地的41,第二天耕了剩下的31少2亩,第三天耕了剩下的21多1亩,这时还有25亩没耕.问这片土地共有多少亩?34、某校四个班为“希望工程”捐款,甲班捐的钱数是另外三个班捐款总和的一半,乙班捐的钱数是另外三个班捐款总和的31, 丙班捐的钱数是另外三个班捐款总和的41,丁班共捐了169元.求这四个班捐款的总和.35、一块铜锌合金重24千克,放在水中称只有9121千克,已知铜在水中称时重量减少91,锌在水中秤时重量减少71.问这块合金中铜、锌各占多少千克?36、将一批白杨树苗栽在一条马路的两旁,若每隔3米栽一棵,将剩下3棵树苗;若每隔2.5米栽一棵,则还缺77棵树苗.求这条马路的长及这批树苗的棵数.37、一批材料,原计划用6辆汽车12次运完,为了提前完成任务,再增加3辆汽车,问几次可以运完?38、一个容器盛满纯药液63升.第一次倒出一部分药液后,用水加满;第二次倒出混合液的31,再用水加满,这时容器内所含的纯药液是28升,问第一次倒出的药液有多少升?39、已知三个连续奇数的和为39,求这三个奇数.40、修一条路,原计划每天修75米,20天修完,实际每天计划多修32,问可以提前几天修完?41、粗蜡烛和细蜡烛长短一样,粗蜡烛可以点5小时,细蜡烛可以点4小时.同时点燃这两支蜡烛,点了一段时间后粗蜡烛比细蜡烛长3倍.问这两只蜡烛已点了多长时间?42、现有糖水20千克,浓度为22%,问:需加多少千克糖后可使浓度变为40%?43、某学校开展一次建校劳动,若单独让初一学生完成需6小时,若单独让初二学生完成需4小时.现让初一、初二学生一起先干2小时,其余让初二学生完成,还需多少时间可全部完成任务?44、某商店存有一批棉布,第 一天卖出92,第二天卖出剩下的72,第三天补进第二天剩下的31,这时商店有布780米,问原来存布多少米?45、甲、乙两人从同一地点出发,同向而行,甲骑自行车,乙步行.如果乙先走12千米,那么甲用1小时就能追上乙;如果乙先走1小时,那么甲只用21小时就能追上乙.求两人的速度.46、有含盐15%的盐水30千克,要使盐水含盐10%,需要加水多少千克?47、某市举行环城自行车赛,一圈7千米,甲的速度是乙的速度的75,出发后来161小时,两人第二次相遇.问:甲、乙二人每分钟相差多少千米?48、要把浓度为 4%的农药1.5千克,稀释到浓度为0.04%的药液,问需要加水多少千克?49、某工人每天早晨在同一时刻从家骑自行车去工厂,如果以每小时16千米的速度行驶,可在工厂上班时刻前15分钟到工厂;如果以每小时9.6千米的速度行驶,则在工厂上 班时刻后15分钟到工厂.(1) 求这位工人家到工厂的距离. (2) 这位工人每天早晨以每小时16千米的速度行驶,在工厂上班时刻前多少小时从家里出发,可在上班前15分钟到工厂?50、甲从A 地出发以6 千米/时的速度向B 地行驶,40分钟后,乙从A 地以8千米/时的速度按甲所走的路径追甲,结果在甲行至离B 地还差5千米处追上了甲,求A 、B 两地间的距离.。

(完整版)七年级数学上册面积计算典型练习题

(完整版)七年级数学上册面积计算典型练习题

(完整版)七年级数学上册面积计算典型练习题一、填空题1. 一个长方形的长是12cm,宽是8cm,它的面积是\_\_\_\_\_\_\_平方厘米。

2. 一个正方形的边长是5cm,它的面积是\_\_\_\_\_\_\_平方厘米。

3. 一个矩形的长和宽之比是3:4,它的面积是72平方米,长是\_\_\_\_\_\_\_米。

4. 一个长方形的面积是60平方米,宽是6米,它的长是\_\_\_\_\_\_\_米。

5. 一个正方形的面积是81平方厘米,边长是\_\_\_\_\_\_\_厘米。

二、选择题1. 长方形的长是10cm,宽是6cm,它的面积是()。

- [ ] A. 46平方厘米- [ ] B. 40平方厘米- [ ] C. 56平方厘米- [ ] D. 16平方厘米2. 一个正方形的周长是20cm,它的面积是()。

- [ ] A. 40平方厘米- [ ] B. 100平方厘米- [ ] C. 25平方厘米- [ ] D. 400平方厘米3. 一个长方形的长是5cm,宽是4cm,它的周长是()。

- [ ] A. 20cm- [ ] B. 18cm- [ ] C. 16cm- [ ] D. 9cm三、计算题1. 一个三角形的底是6cm,高是8cm,它的面积是多少平方厘米?2. 一个等边三角形的边长是9cm,它的面积是多少平方厘米?3. 一个梯形的上底和下底分别是5cm和9cm,高是7cm,它的面积是多少平方厘米?四、应用题1. 一块农田是矩形,长60m,宽30m,求这块农田的面积,并用平方米表示。

2. 一根木板宽30cm,长4m,它的面积是多少平方厘米?3. 一个房间的地板是长方形,长6m,宽4m,地板铺设地砖,每块地砖的边长是25cm,需要多少块地砖?以上是七年级数学上册面积计算典型练习题,希望能够帮助你更好地理解和掌握面积计算的方法和技巧。

如果还有其他问题,请随时提问。

人教新课标七年级上册数学整式的加减练习题50道

人教新课标七年级上册数学整式的加减练习题50道

人教新课标七年级上册数学整式的加减练习题50道1、6a^2b+1ab^2-4ab^2-7a^2b^2合并同类项得:-7a^2b^2+2a^2b-3ab^22、-3x^2y+2x^2y+3xy^2-2xy2合并同类项得:-3x^2y+5xy^23、-2(a^2-3a)+5a^2-2a展开得:-2a^2+6a+5a^2-2a合并同类项得:3a^2+4a4、2x-(x+3y)-(-x-y)-(x-y)化简得:2x-x-3y+x+y-x+y合并同类项得:-y5、(2x^4-5x^2-4x+1)-(3x^3-5x^2-3x)化简得:2x^4-3x^3+4x^2-x+16、-[-(x+1)]-(x-1)化简得:x+1-x+1合并同类项得:27、-3(x^2-2xy+y^2)+(2x^2-xy-2y^2)展开得:-3x^2+6xy-3y^2+2x^2-xy-2y^2合并同类项得:-x^2+5xy-5y^28、5ab-2[3ab-(4ab^2+ab)]-5ab^2,其中a=,b=。

化简得:5ab-2[3ab-4ab^2-ab]-5ab^2展开得:5ab-6ab+8ab^2+5ab^2合并同类项得:13ab^2-a9、3ab-4ab+8ab-7ab+ab合并同类项得:ab10、7x-(5x-5y)-y化简得:7x-5x+5y-y合并同类项得:2x+4y11、23a^3bc^2-15ab^2c+8abc-24a^3bc^2-8abc合并同类项得:-a^3bc^2-15ab^2c-8abc12、-7x^2+6x+13x^2-4x-5x^2合并同类项得:x^2+2x13、2y+(-2y+5)-(3y+2)化简得:2y-2y+5-3y-2合并同类项得:-y+314、(2x^2-3xy+4y^2)+(x^2+2xy-3y^2)合并同类项得:3x^2-xy+y^215、2a-(3a-2b+2)+(3a-4b-1)合并同类项得:2a-3a+3a-2b-4b+2-1合并同类项得:-3b+116、-6x^2-7x^2+15x^2-2x^2合并同类项得:x^217、2x-(x+3y)-(-x-y)-(x-y)与第4题重复,已删除18、2x+2y-[3x-2(x-y)]化简得:2x+2y-3x+4x-2y合并同类项得:3x19、5-(1-x)-1-(x-1)化简得:5-1+x-1-1-x+1合并同类项得:320、一个多项式减去3m^4-m^3-2m+5得-2m^4-3m^3-2m^2-1,那么这个多项式等于______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、在数轴上表示下列各数,并按从小到大的顺序用“<”号把这些数连接起来。

6-—4, -4, 0, 2.5, -1.75, -0.2, -1.1.72、已知x是正数,并且-6<x<5,在数轴上表示x所能取得的所有数值。

3、分别写出下列各数的绝对值、相反数和倒数。

8-—-8.5, -7, 0, 2.25, 2.25, -6, -2.4.74、计算。

-100+300 -9+(-23) -50+705+(-13) -5×(-17) 9-(-26)4-—-25 10÷(-9) -5÷(-14)549×(-—) (-2)×(-0.8)÷(-15)×50 312×6÷(-1.4)-(-55) (-1)2÷3-(-1)2×447÷(-—)+(-8)÷(-6) -(0+6)-22-(1+6) 55(-8)-8×(-—)-(-9) (6+4)×33÷(6+1) 45、用科学记数法表示下列各数。

1900000 20000000 490000 -73400000-12000000 900 640000 -81900000006、下列用科学记数法写出的数,原来分别是什么数?1×103-5×1029.6×1079.72×1085.1×107-6.4×107-7.3×107-8.93×1087、对下列各数取近似数。

0.000878(精确到万分位) 307.123(精确到个位)75.4918(精确到0.1) 0.00562(精确到0.1)8、计算。

-5+|2| |-7-(-7)| |-9|+(-8)9、列式表示。

甲地的海拔高度是hm,乙地比甲地高80m,丙地比甲地低9m,列式表示乙、丙两地的海拔高度,并计算这两地的高度差。

10、计算。

-x2y+4x2y 50z2+12.5z21 1—a2bc+—cba2-a2b+0.8a2b 5 51 1—ab+—ab-8 9x2y2-5.5x2y2 5 48ab+8a2b2-5+8ab2+4a2b2-7+4ab7x3+6x2-y2-y-2x2-y-y2(2a2b+9b3)-(-5a2b2-b3)(9x2y+xy2)+(9x2y+8xy2)-4m2+[5m2-(9m2-4m)-4(m2-5m)] 20-6(1-a)+(1-a-a2)-3(1-a+a2-a3) (a2b+ab)+(-a2b-ab)(2a2+5a+3)+(7a2+3a+1)(9b2-4b-7)-4(9-6b+2b2)11、先化简下式,再求值。

x2+5-2x2-3x-2x2-9-9x其中,x=-4。

12、把(x+y)和(c+d)各看成一个整体,对下列各式进行化简:(x+y)+6(x+y)-5(x+y)(c+d)2+4(c+d)-2(c+d)2+9(c+d)13、解方程。

3x-—x=4-8 x+7x=78x-0.5x+6x+18.5x=5×10+5×99x x—-—=9 -x-8.5x=7×5+7 2 2x-2=20+14x 7x+6.5x=-105x-3=—x+2 -3x+8=9x+3 89 7—x+2=—x x+7.5x+4x=102 418x-8x+9x=20 y+3y-10y=-8 y-4.5y+6y=-14-9 x-5x=6y-2=3y+7 9x-(7x-10)=8x-3(x-3)7 5 1—b+—b-b=—×2-9 8x-3(x-2)=4+4(x-3) 4 4 44(x+7)=3x 2x+4(2x+1)=4-4(x-5)5-2(x+3)=4+4(5-6.5x) 3(x-8)=3x1 17(—x+2)+4x=3-(—x+1) 7y+3=5y-34 5x+3 1+x——-4=6-——-x+2.5x=-95 6x+4 2x-37x-——=4-———4(x-5)=4x2 58a-(4-7a)=3 8b-(3b+8)=8 4x+4(5x-2)=20 8y+4(2y+8)=4 2(x+5)=7(x+3) 3x=2(x-5)5x+3 9x+8———=———x-4.5x=152 86x-4 6x+7———=———7x=-6(x-8) 3 97y-5 7y+1———+5=———5(6-3.5y)=-(1.5y+3) 4 83y-2 6y-5 7y-4———+———=1+———2(x-6)=8(x+2) 4 6 124x+4 6x-1———=———x-2.5x=-63 51、在数轴上表示下列各数,并按从小到大的顺序用“<”号把这些数连接起来。

1— 6.5, -4, 0, 1.25, -0.5, -1.6, -1.4.72、已知x是正数,并且-6<x<7,在数轴上表示x所能取得的所有数值。

3、分别写出下列各数的绝对值、相反数和倒数。

7— 5.5, 4, 0, -0.25, 1.75, 1.8, -0.6.64、计算。

-600+400 -69+(-39) -55+50-26-(-50) 2÷(-10) 5+(-26)2-—+27 1×(-16) -3÷(-27)348÷(-—) (-0.6)×(-2)-(-7)×500 3-60×4÷(-6)×(-0.1) (-2)3×3-(-3)3÷712÷(-—)÷(-3)÷(-1) -(9-7)×13+(9+8) 44(-4)+8×(-—)×(-3) -(9+7)-42×(4+3) 35、用科学记数法表示下列各数。

-400 800000 620000 -94000018000 -2500 6500000 -865006、下列用科学记数法写出的数,原来分别是什么数?-9×108-9×104 4.5×108-9.68×108-7.9×102-6.75×107 6.2×103-3.91×1047、对下列各数取近似数。

0.000701(精确到万分位) 5472.1(精确到十位)43.4146(精确到0.1) 0.00796(精确到0.1)8、计算。

-1-|5| |-6-(-7)| |-9|+(-7)9、列式表示。

学校里男生人数占学生总数的46%,女生的人数是a,学生总数是多少?10、计算。

-6x2y+8x2y 70x2+8.5x21 1—a2bc+—cba2a2b-0.7a2b4 61 1—mn+—mn+1 -6a3b-4.5a3b 5 6ab+9a2b2-6-4ab2-8a2b2+7-4ab4x3-6x2+y2-3y+x2-y-y2(8a2b-7b3)-(2a2b2+8b3)(7x2y-xy2)-(x2y+xy2)-6c2+[7c2+(3c2-2c)-9(c2+8c)]13-8(1-a)-(1-a-a2)+2(1-a+a2-a3) (-a2b-ab)-(-4a2b+ab)(3n2-4n-6)-(3n2-4n-5)(7c2-5c+8)-4(9+2c-6c2)11、先化简下式,再求值。

x2-1-7x2+3x+6x2-5+7x其中,x=-3。

12、把(m+n)和(c+d)各看成一个整体,对下列各式进行化简:4(m+n)-2(m+n)-6(m+n)(c+d)2+7(c+d)-5(c+d)2+6(c+d)13、解方程。

98x-—x=5-9 x-3x=283x-18.5x-6x+2.5x=10×4+2×57x x—-—=11 2x+6.5x=2×1-92 42x+3=4-14x -9x+6.5x=-113x+3=—x-3 -x-4=7x-4 81 5—x+3=—x x-6.5x+6x=132 420x-4x+2x=12 y+2.5y-2y=-13 y+2.5y+5.5y=-14+4.5 x-8x=-22y-4=9y-9 4x+(5x+8)=8x-4(x-4)1 7 7—b+—b-b=—÷4+1 7x+4(x+2)=9-3(x-3) 8 2 44(x+9)=8x 4x-2(4x+7)=3-2(x+8)3-3(x-3)=7-4(5-6.5x) 4(x+1)=4x1 17(—x-1)-5x=6-(—x-9) y-6=4y+74 6x+4 3-x——+4=1+——5x+3.5x=-46 5x+4 3x+15x+——=2+———3(x+1)=3x6 59a-(1-5a)=-3 2b-(4b+8)=15x-4(6x-8)=12 7y+3(2y-2)=8 3(x-2)=6(x-5) 2x=3(x+5)3x+2 2x+2———=———-8x-3.5x=-14 3 78x-7 5x+1———=———4x=-8(x-9)3 93y-1 4y-2———-1=———4(5-2.5y)=-(4y-9)2 66y-3 2y-4 8y+7———-———=6+———4(x+4)=6(x+5) 2 8 103x-2 9x-2———=———-x+0.5x=-194 7。

相关文档
最新文档