(完整版)定义新运算(可编辑修改word版)
小学数学定义新运算
小学数学定义新运算一.什么是定义新运算我们已经学过了加、减、乘、除运算。
在有些情况下,常把「有多步含加、减、乘、除的运算」用某种新的符号表示,这就是定义了新的运算。
见到了这种用新的符号所定义的运算后,就按它所规定的「运算程序」进行运算,直到得出最后结果。
例如,设A、B表示自然数,如果定义符号「※」表示的运算如下:A※B=3×A+4×B那么,根据新运算「※」的定义,就可以计算6※7如下:6※7=3×6+4×7=46。
如果定义符号「※」表示的运算为:A※B=A÷B×2+3×A-2,那么,按此定义去计算4※2的话,就有:4※2=4÷2×2+3×4-2=2×2+12-2=14。
二.定义新运算需要注意的几个问题按照新定义的运算求某个算式的结果,关键是要正确理解这种新运算的意义,如上面举例中的运算符号「※」所表示的运算并不是一种固定的算法,而是因题而异,不同的题目有不同的规定,我们应当严格按不同的规定进行运算。
需要注意的是:(1)有括号时,应当先算括号里的;(2)新定义的运算往往不一定具备交换律和结合律,不能随便套用这些运算定律来解题。
(3)上面例举中所定义的运算使用了符号「※」来定义,但并不是说只有「※」才是规定运算的符号,可能用△,#,…等符号。
符号的种类是次要的,符号所定义的运算按照怎样的程序来进行才是主要的。
三.典型例题例1设a,b表示整数(包括0),规定「*」的运算为a*b=a÷b×2+3×a-b,计算:169*13。
分析与解答动手算之前,先让我们弄清「*」是怎么一种运算程序,按规定,a*b的值是用a除以b,把商数乘2之后,再加上a的3倍,最后减去b,这些运算有两个特点:(1)各步运算都是大家熟悉的四则运算;(2)各步运算的先后次序要按规定的顺序办。
那么,根据「*」的规定,我们可以计算得到:169*13=169÷13×2+3×169-13=520。
第一节 定义新运算
第1讲定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【思路导航】这题的新运算被定义为:a*b等于a和b两数之和加上两数之差。
这里的“*”就代表一种新运算。
在定义新运算中同样规定了要先算小括号里的。
因此,在13*(5*4)中,就要先算小括号里的(5*4)。
练习1:1、将新运算“*”定义为:a*b=(a+b)×(a-b).求27*9。
2、设a*b=a2+2b,那么求10*6和5*(2*8)。
3、设a*b=3a-b×1/2,求(25*12)*(10*5)。
【例题2】设p、q是两个数,规定:p△q=4×q-(p+q)÷2。
求3△(4△6)。
【思路导航】根据定义先算4△6。
在这里“△”是新的运算符号。
练习2:1、设p、q是两个数,规定p△q=4×q-(p+q)÷2,求5△(6△4)。
2、设p、q是两个数,规定p△q=p2+(p-q)×2。
求30△(5△3)。
3、设M、N是两个数,规定M*N=M/N+N/M,求10*20-1/4。
【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。
练习3:1、如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,……那么4*4=________。
(完整版)定义新运算(小学数学五年级奥数)
定义新运算知识与方法:对于常用的加、减、乘、除等运算,我们已经熟知它们的运算法则和计算方法,如6+ 2=8, 6X2=12等。
都是2和6,为什么运算结果不同呢?主要是运算方式不同,实质上是对应法则不同。
由此可见,一种运算实际就是两个数与一个数的一种对应方法。
对应法则不同就是不同的运算。
当然,这个对应法则应该是对应任意两个数。
通过这个法则都有一个唯一确定的数与它们对应。
这节课,我们将定义一些新的运算形式,它们与我们常用的加、减、乘、除运算是不相同的。
解决定义新运算这类题的关键:是抓住定义的本质借用“ +、一、X、十”四则运算进行的,解答时要弄活新运算与四则运算的关系。
特别注意运算顺序,每个新定义的运算符号只能在本题中使用,新运算不一定符合运算定律。
例1:设a、b都表示数,规定:aAb =3X a— 2X b。
试计算:(1) 3A2; (2) 2A3。
练习1:1. 设a b都表示数,规定:a。
b=5X a— 2X b。
试计算3042. 设a b都表示数,规定:a*b=3x a+ 2X b。
试计算:5*6例2:对于两个数a与b,规定b=3a+ 2a,试计算( 3^5)练习2:1.对于两个数a与b,规定:aOb=a+3b,试计算405062.对于两个数A与B,规定:A△ B=2X A — B,试计算5A6A7例3:对于两个数a, b,规定:a金b=ax b+ a+ b,试计算:9 ®练习3:1.对于两个数a, b,规定:a$b=ax b— ( a+ b),试计算:6 ® 7.2..对于两个数A与B,规定:A GB=A X B-2,试计算:8 99例4:如果2、3=2 + 3 + 4, 5A4=5+ 6+ 7+ 8,那么按此规律计算:(1) 3A5;(2) 8A3。
练习4:1.如果4A2=4X 5, 2A3=2X 3X 4,那么按此规律计算:5A4。
2.如果24=24- (2+ 4), 3V6=36- (3 + 6), 6V3=63- (6+ 3),那么按此规律计算:7V2.例5:对于两个数a与b,规定aDb=a(a+1)+(a+2)+・・・(a+b— 1)。
第一讲 定义新运算
随堂练习
1、设a*b=(a+b)×(a-b),请计算27*9。 27*9=(27+9)×(27-9) =36×18 =648
2、设a*b= a2 +2b ,求 10*6 和 5*(2*8)。
10*6= 102 +2×6 =100+12 = 11 2
2*8= 22 +2×8=20
5*20= 52 +2×20=65
2.定义新运算是一种特别设计的运算形式,它使用的是一些特殊的运算 符号,如:△、□、◇、*、!等,这与四则运算中的“+、-、×、÷” 不同。
3.新定义运算中有括号的要先算括号里面的。
例题1 已知新式运算a*b=(a+b)+(a-b),求13*5的结果 13*5=(13+5)+(13-5)
= 18+8 = 26 你会求13*(5*4)吗? 5*4 =(5+4)+(5-4)=10 13*10=(13+10)+(13-10)=26
第一讲
定义新运算
专题解析
定义新运算是指用一个符号和已知运算表达式表示一种新的运算。 比如:a&b=a×b-a+b 新定义的运算和符号=运算表达式(运算方法) 1.要正确理解新式运算的含义,将数值代入,转化为常规的四则运算。
例如:2#3=2×3-(2+3) 符号“#”的含义是:两个数的积减去两个数的和
2
=16-2+2
=16 x&16=4x-2×16+ 1 ·x ·16 =34
2
=4x-32+8x =34
12x-32=34
12x=34+32
x=66÷12
完整版)六年级奥数定义新运算及答案
完整版)六年级奥数定义新运算及答案1.根据定义,(2※3)※5=(3+2)×3※5=5×15=75.2.根据定义,a△5=(a-2)×5=30,解得a=8.3.根据定义,(18,12)+[18,12]=6+36=42.4.先计算括号内的值:(68)(35)=(6+8-1)+(3×5-2)=(13)+(13)=26,再将4与26相乘,得到104.5.=8,=25,=2,因此++××>=+>=29.6.根据定义,x⊙5=3x-10,5⊙x=3×5-2x,因此有3x-10+5=2x+15,解得x=20.7.根据定义,a※b=(b+a)×b,因此4※5=(5+4)×5=45.8.根据定义,(x※3)※4=x(x+1)(x+2)(x+3)(x+4)(x+5)(x+6)(x+7),因此x=7.9.根据定义,1※2=a+b-c,2※3=2a+3b-6c,因此有a+b-c=3,2a+3b-6c=4,解得a=2,b=1,c=0,因此m的数值是0.10.(1) 根据定义,4△3=1,8△5=3,因此(4△3)+(8△5)=1+3=4;(2) 根据定义,2△3=-1,(-1)△4=3,因此(2△3)△4=3;(3) 根据定义,2△5=-3,3△4=1,因此(2△5)△(3△4)=-2.11.(1) 根据定义,3※4=1,1※9=8,因此(3※4)※9=8;(2) 这个运算不满足交换律,也不满足结合律,因为a※b的结果取决于a和b的大小关系。
12.(1) 根据定义,(2※3)※4=13,2※(3※4)=28;(2) 根据定义,a※3=(2a+3)/(2b+a),因此有2a+3=6,2b+a=9,解得a=3,b=3/2.13.根据定义,12⊙21=252-3=249,5⊙15=75-5=70.4⊗26。
4×26﹣2。
小学奥数定义新运算
小学奥数——定义新运算1、设a,b都表示数,规定a△b=3×a-2×b。
①求4△3,3△4。
②求(17△6)△2, 17△(6△2)。
③如果已知5△b=5,求b。
2、定义运算※为a※b=a×b-(a+b),①求5※7,7※5;②求12※(3※4),(12※3)※4;③如果3※(5※x)=3,求x.3、4、如果4※2=14,5※3=22,3※5=4,7※18=31,求6※9的值。
5、设a▽b=a×b+a-b,求5▽8。
6、规定:a△b=a+(a+1)+(a+2)+……(a+b-1),其中a,b表示自然数。
(1)求1△100的值;(2)已知x△10=75,求x。
7. 设ba,表示两个不同的数,规定baba43+=∆.求6)78(∆∆.8. 定义运算⊖为a⊖b=5×)(baba+-⨯. 求11⊖12.9. ba,表示两个数,记为:a※b=2×bba41-⨯.求8※(4※16).10. 设yx,为两个不同的数,规定x□y4)(÷+=yx.求a□16=10中a的值.11. 规定a ba ba b +⨯=.求2 10 10的值.12. Q P ,表示两个数,P ※Q =2QP +,如3※4=243+=3.5.求4※(6※8);如果x ※(6※8)=6,那么=x ?13. 定义新运算x ⊕yx y 1+=.求3⊕(2⊕4)的值.14. 有一个数学运算符号“⊗”,使下列算式成立:4⊗8=16,10⊗6=26,6⊗10=22,18⊗14=50.求7⊗3=?15. 对于数b a ,规定运算“▽”为)5()3(-⨯+=∇b a b a .求)76(5∇∇的值.16. y x ,表示两个数,规定新运算“ ”及“△”如下:x y x y 56+=,x △xy y 3=.求(2 3)△4的值..【读一读】 狼&羊羊和狼在一起时,狼要吃掉羊,所以关于羊及狼,我们规定一种运算,用符号△表示羊△羊=羊;羊△狼=狼;狼△羊=狼;狼△狼=狼。
第1讲 定义新运算
第1讲定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题1】假设a*()+(),求13*5和13*(5*4)。
练习1:1、将新运算“*”定义为:a*()×().。
求27*9。
2、设a*2+2b,那么求10*6和5*(2*8)。
【例题2】设p、q是两个数,规定:p△4×()÷2。
求3△(4△6)。
练习2:1、设p、q是两个数,规定p△q=4×q-()÷2,求5△(6△4)。
2、设p、q是两个数,规定p△q=p2+(p-q)×2。
求30△(5△3)。
【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4;210*2。
练习3:1、如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,……那么4*4。
2、规定,那么8*5。
【例题4】规定②=1×2×3,③=2×3×4 ,④=3×4×5,⑤=4×5×6,……如果1/⑥-1/⑦ =1/⑦×A,那么,A是几?练习4:1、规定:②=1×2×3,③=2×3×4,④=3×4×5,⑤=4×5×6,……如果1/⑧-1/⑨=1/⑨×A,那么。
定义新运算
定义新运算导言在数学中,运算是一种数学操作,用于对数值或数值集合进行处理和计算。
常见的运算包括加法、减法、乘法和除法等。
然而,在某些场景下,常规运算无法满足需求,因此需要定义新的运算。
新运算的定义新运算是指不属于常规运算范畴的一种数学操作。
它可以对数值进行加工处理,从而获得满足特定需求的结果。
与常规运算不同的是,新运算可能具有不同的符号、规则和运算法则。
新运算的特点1.创新性:新运算是一种相对于常规运算的创新,它提供了新的数学方式和解决问题的途径。
2.特殊性:新运算通常具有特殊的性质和规则,与常规运算存在差异。
3.应用性:新运算在特定领域或问题中具有较高的应用价值,能够更好地解决特定问题。
新运算的例子例子一:矩阵运算矩阵运算是一种常见的新运算。
它对矩阵进行加、减、乘等操作,从而获得矩阵相加、相减、相乘后的结果。
矩阵运算在线性代数、计算机图形学等领域具有广泛的应用,例如图像处理、机器学习等。
例子二:向量运算向量运算是指对向量进行处理和计算的一种新运算。
它可以进行向量的加法、减法、点积、叉积等操作,从而获得向量的相加、相减、点积、叉积等结果。
向量运算在物理学、力学等领域具有重要的应用,例如力的合成、求解位置等。
新运算的运算法则新运算的运算法则是指确定新运算的规则和操作方式。
它可以保证新运算的正确性和可靠性。
不同的新运算可能有不同的运算法则,以下是一些常见的运算法则:1.封闭性:新运算中的结果仍然属于原有运算的数值集合。
2.结合律和交换律:新运算满足结合律和交换律,可以改变运算顺序或数值顺序而不影响结果。
3.幂等性:多次进行新运算的结果与一次运算的结果相同。
4.分配律:新运算与其他运算之间满足分配律,可以在不同运算之间进行组合。
结语通过定义新运算,我们可以拓展数学领域的研究和应用范围,寻找更加适用于特定问题的数学工具和方法。
新运算的引入和应用将促进数学学科的发展和创新,对于解决实际问题和推动科学进步具有重要的意义。
最新小学三年级奥数讲义定义新运算
△*△p 4 6 定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:、 、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题 1】假设 a*b=(a+b)+(a-b),求 13*5 和 13*(5*4)。
【思路导航】这题的新运算被定义为:a*b 等于 a 和 b 两数之和加上两数之差。
这里的“*”就代表一种新运算。
在定义新运算中同样规定了要先算小括号里的。
因此,在 13*(5*4)中,就要先算小括号里的(5*4)。
练习 1:13*5=(13+5)+(13-5)=18+8=265*4=(5+4)+(5-4)=1013*(5*4)=13*10=(13+10)+(13-10)=261.将新运算“*”定义为:a*b=(a+b)×(a-b).。
求 27*9。
2.设 a*b=a2+2b ,那么求 10*6 和 5*(2*8)。
3.设 a*b=3a -b ×1/2,求(25*12)*(10*5)。
【例题 2】设 p 、q 是两个数,规定: q=4×q-(p+q)÷2。
求 △3错误!6)。
【思路导航】根据定义先算 4△6。
在这里“ ”是新的运算符号。
△3 错误! 6)=△3 【×6-(4+6)÷2】=△3 19=4×19-(3+19)÷2练习 2:1.设 p 、q 是两个数,规定 △p q =4×q -(p+q )÷2,求 △5 △( 4)。
精品文档52.设p、q是两个数,规定△p q=p2+(p-q)×2。
定义新运算
3.已知
MN
M N
N M
,
求10 20。
4.设
a
b
1 3
a
1 2
b
,已知
x
Байду номын сангаас
2
2
,求x。
81 34
47
例4 设 a b 3a b ,已知 x 1 4,
求x。
解: x 1 3x 1 4
3x 1 4 3x 3 x 1
设a b 4a 1 b,已知 5 x 21,
求x。
2
解: 5 x 45 1 x 21
2
4 5 1 x 21
2
1 x 1 2
x2
设 p q 3p 2q ,已知 x (4 1) 7,
求x。
解:① 4 1 3 4 21
12 2 10
②x 10 7
3x 210 7
3x 20 7
x9
做一做
1.已知A※B=A-B,求(10-1)※6。
2.已知 p q p2 ( p q) 2 ,
变式训练
1.“△”表示的是一种新的运算, 已知 a△b= a × b -(a+b), 求5△(6△2)。
解:5△(6△2) =5 △ [ 6×2 -(6+2)] =5 △4 =5×4-(5+4) =11
2.“☆”表示的是一种新的运算, 已知 a ☆ b=( a + b) ×(a-b), 求9 ☆ 7。
解:9 ☆ 7 = (9+7)×(9-7) =16 ×2 =32
例3 设 a b b2 2a , 那么求 610和 1 (3 2) 。
(完整word版)定义新运算
【知识梳理】定义新运算这类题目是在考验我们的适应能力,我们大家都习惯四则运算,定义新运算就打破了运算规则,要求我们要严格按照题目的规定做题.新定义的运算符号,常见的如△、◎、※等等,这些特殊的运算符号,表示特定的意义,是人为设定的.解答这类题目的关键是理解新定义,严格按照新定义的式子代入数值,把定义的新运算转化成我们所熟悉的四则运算。
一、定义新运算基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。
基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。
关键问题:正确理解定义的运算符号的意义。
注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。
②每个新定义的运算符号只能在本题中使用。
我们学过的常用运算有:+、-、×、÷等.如:2+3=5 2×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.二、定义新运算分类1.直接运算型2.反解未知数型3.观察规律型4.其他类型综合【分类型例题分析】一、直接运算型例 1若表示,求的值例 2 定义新运算为a△b=(a+1)÷b,求的值。
6△(3△4)例 3 已知a,b是任意自然数,我们规定:a⊕b= a+b-1,,那么例 4 规定运算“☆”为:若a>b,则a☆b=a+b;若a=b,则a☆b=a-b+1;若a<b,则a ☆b=a×b。
那么,(2☆3)+(4☆4)+(7☆5)= 。
奥数专题-定义新运算(带答案完美排版)
定义新运算我们学过的常用运算有:+、-、×、÷等.如:2+3=52×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.我们先通过具体的运算来了解和熟悉“定义新运算”.例1、设a、b都表示数,规定a△b=3×a-2×b,①求3△2,2△3;②这个运算“△”有交换律吗?③求(17△6)△2,17△(6△2);④这个运算“△”有结合律吗?⑤如果已知4△b=2,求b.分析:解定义新运算这类题的关键是抓住定义的本质,本题规定的运算的本质是:用运算符号前面的数的3倍减去符号后面的数的2倍.解:① 3△2=3×3-2×2=9-4=52△3=3×2-2×3=6-6=0.②由①的例子可知“△”没有交换律.③要计算(17△6)△2,先计算括号内的数,有:17△6=3×17-2×6=39;再计算第二步39△2=3 ×39-2×2=113,所以(17△6)△2=113.对于17△(6△2),同样先计算括号内的数,6△2=3×6-2×2=14,其次17△14=3×17-2×14=23,所以17△(6△2)=23.④由③的例子可知“△”也没有结合律.⑤因为4△b=3×4-2×b=12-2b,那么12-2b=2,解出b=5.例2、定义运算※为a※b=a×b-(a+b),①求5※7,7※5;②求12※(3※4),(12※3)※4;③这个运算“※”有交换律、结合律吗?④如果3※(5※x)=3,求x.解:① 5※7=5×7-(5+7)=35-12=23,7※ 5=7×5-(7+5)=35-12=23.②要计算12※(3※4),先计算括号内的数,有:3※4=3×4-(3+4)=5,再计算第二步12※5=12×5-(12+5)=43,所以12※(3※4)=43.对于(12※3)※4,同样先计算括号内的数,12※3=12×3-(12+3)=21,其次21※4=21×4-(21+4)=59,所以(12※ 3)※4=59.③由于a※b=a×b-(a+b);b※a=b×a-(b+a)=a×b-(a+b)(普通加法、乘法交换律)所以有a※b=b※a,因此“※”有交换律.由②的例子可知,运算“※”没有结合律.④5※x=5x-(5+x)=4x-5;3※(5※x)=3※(4x-5)=3(4x-5)-(3+4x-5)=12x-15-(4x-2)=8x-13那么8x-13=3 解出x=2.例3、定义新的运算a ?b=a×b+a+b.①求6 ?2,2 ?6;②求(1 ?2)?3,1 ?(2 ?3);③这个运算有交换律和结合律吗?解:① 6 ?2=6×2+6+2=20,2 ?6=2×6+2+6=20.②(1 ?2)?3=(1×2+1+2)?3=5 ?3=5×3+5+3=231 ?(2 ?3)=1 ?(2×3+2+3)=1 ?11=1×11+1+11=23.③先看“?”是否满足交换律:a ?b=a×b+a+bb ?a=b×a+b+a=a×b+a+b(普通加法与乘法的交换律)所以a ?b=b ?a,因此“?”满足交换律.再看“?”是否满足结合律:(a ?b)?c=(a×b+a+b)?c=(a×b+a+b)×c+a×b+a+b+c=abc +ac +bc +ab +a +b +c .a ?(b ?c )=a ?(b ×c +b +c )=a ×(b ×c +b +c )+a +b ×c +b +c=abc +ab +ac +a +bc +b +c=abc +ac +bc +ab +a +b +c .(普通加法的交换律) 所以(a ? b )? c =a ?(b ? c ),因此“?”满足结合律.说明:“?”对于普通的加法不满足分配律,看反例:1 ?(2+3)=1 ? 5=1×5+1+5=11;1 ? 2+1 ? 3=1×2+1+2+1×3+1+3=5+7=12;因此1 ?(2+3)≠ 1 ? 2+1 ? 3.例4、有一个数学运算符号“?”,使下列算式成立:2?4=8,5?3=13,3?5=11,9?7=25,求7?3=?解:通过对2?4=8,5?3=13,3?5=11,9?7=25这几个算式的观察,找到规律:a ?b =2a +b ,因此7?3=2×7+3=17.例5、x 、y 表示两个数,规定新运算“*”及“△”如下:x *y=mx+ny ,x △y=kxy ,其中 m 、n 、k 均为自然数,已知 1*2=5,(2*3)△4=64,求(1△2)*3的值.分析:我们采用分析法,从要求的问题入手,题目要求1△2)*3的值,首先我们要计算1△2,根据“△”的定义:1△2=k ×1×2=2k ,由于k 的值不知道,所以首先要计算出k 的值,k 值求出后,l △2的值也就计算出来了.我们设1△2=a , (1△2)*3=a *3,按“*”的定义: a *3=ma+3n ,在只有求出m 、n 时,我们才能计算a *3的值.因此要计算(1△2)*3的值,我们就要先求出 k 、m 、n 的值.通过1*2 =5可以求出m 、n 的值,通过(2*3)△4=64求出 k 的值.解:因为1*2=m ×1+n ×2=m+2n ,所以有m+2n=5.又因为m 、n 均为自然数,所以解出:①当m=1,n=2时: (2*3)△4=(1×2+2×3)△4=8△4=k ×8×4=32k有32k=64,解出k=2.②当m=3,n=1时:(2*3)△4=(3×2+1×3)△4=9△4=k ×9×4=36k有36k=64,解出k=971,这与k 是自然数矛盾,因此m=3,n =1,k=971 m=1 n =2 m=2 n =23(舍去) m=3n =1这组值应舍去.所以m=l ,n=2,k=2.(1△2)*3=(2×1×2)*3=4*3=1×4+2×3=10.在上面这一类定义新运算的问题中,关键的一条是:抓住定义这一点不放,在计算时,严格遵照规定的法则代入数值.还有一个值得注意的问题是:定义一个新运算,这个新运算常常不满足加法、乘法所满足的运算定律,因此在没有确定新运算是否具有这些性质之前,不能运用这些运算律来解题.课后习题1.a *b 表示a 的3倍减去b 的21,例如:1*2=1×3-2×21=2,根据以上的规定,计算:①10*6; ②7*(2*1).2.定义新运算为 a 一b =b 1a +, ①求2一(3一4)的值; ② 若x 一4=1.35,则x =?3.有一个数学运算符号○,使下列算式成立:21○32=63,54○97=4511,65○71=426,求113○54的值. 4.定义两种运算“?”、“?”,对于任意两个整数a 、b ,a ?b =a +b +1, a ?b=a ×b -1,①计算4?[(6?8)?(3?5)]的值;②若x ?(x ?4)=30,求x 的值.5.对于任意的整数x 、y ,定义新运算“△”,x △y=y ×2x ×m y×x ×6+(其中m 是一个确定的整数),如果1△2=2,则2△9=?6.对于数a 、b 规定运算“▽”为a ▽b=(a +1)×(1-b ),若等式(a ▽a )▽(a +1)=(a +1)▽(a ▽a )成立,求a 的值.7.“*”表示一种运算符号,它的含义是:x *y=xy 1+))((A y 1x 1++, 已知2*1=1×21+))((A 1121++=32,求1998*1999的值. 8.a ※b=b÷a b a +,在x ※(5※1)=6中,求x 的值. 9.规定 a △b=a +(a +1)+(a +2)+…+(a +b -1),(a 、b 均为自然数,b>a )如果x △10=65,那么x=?10.我们规定:符号◇表示选择两数中较大数的运算,例如:5◇3=3◇5=5,符号△表示选择两数中较小数的运算,例如:5△3=3△5=3,计算:)25.2◇106237()9934△3.0()3323△625.0()2617◇6.0(++ =? 课后习题解答1.2.3.所以有5x-2=30,解出x=6.4 左边: 8.解:由于9.解:按照规定的运算:x △10=x +(x+1)+(x+2)+…+(x+10-1)=10x +(1+2+3+?+9)=10x + 45因此有10x + 45=65,解出x=2.定义新运算我们学过的常用运算有:+、-、×、÷等.如:2+3=52×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.我们先通过具体的运算来了解和熟悉“定义新运算”.例1、设a 、b 都表示数,规定a △b =3×a -2×b ,①求 3△2, 2△3;②这个运算“△”有交换律吗?③求(17△6)△2,17△(6△2);④这个运算“△”有结合律吗?⑤如果已知4△b =2,求b .例2、定义运算※为 a ※b =a ×b -(a +b ),①求5※7,7※5; ②求12※(3※4),(12※3)※4;③这个运算“※”有交换律、结合律吗? ④如果3※(5※x )=3,求x . 例3、定义新的运算a ? b =a ×b +a +b .①求6 ? 2,2 ? 6;②求(1 ? 2)? 3,1 ?(2 ? 3);③这个运算有交换律和结合律吗?例4、有一个数学运算符号“?”,使下列算式成立:2?4=8,5?3=13,3?5=11,9?7=25,求7?3=?例5、x 、y 表示两个数,规定新运算“*”及“△”如下:x *y=mx+ny ,x △y=kxy ,其中 m 、n 、k 均为自然数,已知 1*2=5,(2*3)△4=64,求(1△2)*3的值.课后习题1.a *b 表示a 的3倍减去b 的21,例如:1*2=1×3-2×21=2,根据以上的规定,计算:①10*6; ②7*(2*1).2.定义新运算为 a 一b =b 1a +, ①求2一(3一4)的值; ② 若x 一4=1.35,则x =?3.有一个数学运算符号○,使下列算式成立:21○32=63,54○97=4511,65○71=426,求113○54的值. 4.定义两种运算“?”、“?”,对于任意两个整数a 、b ,a ?b =a +b +1, a ?b=a ×b -1,①计算4?[(6?8)?(3?5)]的值;②若x ?(x ?4)=30,求x 的值.5.对于任意的整数x 、y ,定义新运算“△”,x △y=y ×2x ×m y×x ×6+(其中m 是一个确定的整数),如果1△2=2,则2△9=?6.对于数a 、b 规定运算“▽”为a ▽b=(a +1)×(1-b ),若等式(a ▽a )▽(a +1)=(a +1)▽(a ▽a )成立,求a 的值.7.“*”表示一种运算符号,它的含义是:x *y=xy 1+))((A y 1x 1++, 已知2*1=1×21+))((A 1121++=32,求1998*1999的值. 8.a ※b=b÷a b a +,在x ※(5※1)=6中,求x 的值.9.规定 a △b=a +(a +1)+(a +2)+…+(a +b -1),(a 、b 均为自然数,b>a )如果x △10=65,那么x=?10.我们规定:符号◇表示选择两数中较大数的运算,例如:5◇3=3◇5=5,符号△表示选择两数中较小数的运算,例如:5△3=3△5=3,计算:)25.2◇106237()9934△3.0()3323△625.0()2617◇6.0(++ =?[文档可能无法思考全面,请浏览后下载,另外祝您生活愉快,工作顺利,万事如意!]。
定义新运算文档
例1:规定a¤b=(a+b)÷2,计算7¤13的值是多少?随堂练习1:规定a⊙b=ab÷2,计算〔4⊙12〕⊙5的值是多少?随堂练习2:规定a⊙b=(a+b)×2,计算〔4⊙5〕⊙6的值是多少?例2:规定a◎b=2a+3b-4,计算5◎7的值是多少?随堂练习1:规定a◎b=3a+4b-5,计算7◎3的值是多少?随堂练习2:规定a◎b=4b-3a+2,计算6◎9的值是多少?例3:规定a△b=a+b-1, a▽b=a-b+1,计算:〔4△5〕▽〔3△2〕随堂练习1:规定a△b=a+b-1, a▽b=a-b+1,计算:〔5△8〕▽〔4△7〕随堂练习2:规定a△b=a+b-1, a▽b=a-b+1,计算:〔6▽3)△〔10▽4〕例4:规定5⊙2=5+6=114⊙3=4+5+6=157⊙4=7+8+9+10=34计算6⊙5=随堂练习:规定5⊙2=5+6=114⊙3=4+5+6=157⊙4=7+8+9+10=34计算1⊙100=例5:规定5⊙2=5+55=604⊙3=4+44+444=4927⊙4=7+77+777+7777=计算6⊙5=随堂练习:规定5⊙2=5+55=604⊙3=4+44+444=4927⊙4=7+77+777+7777=计算2⊙5=课后练习:1:规定a△b=a÷b×3,求24△6和72△9的值各是多少?2:规定a※b,表示求a到b之间,所有自然数之和,例如:3※5=3+4+5=12,求7※15的值是多少?3:规定a⊙b=10a+20b,求〔3⊙7〕+〔4⊙6〕的值。
4:规定a⊙b=5a+4b-3,那么5⊙6与6⊙5的值哪个大?大多少?5:规定a※b=〔a×b-a+b〕×2014,求5※6的值?6:规定a△b=〔5b-3a〕÷2,求4△6的值。
7:规定a※b=3a-2b,求5※3的值,假设X※〔4※1〕=7,那么X是多少?8:规定a△b=ab÷(a+b),求10△〔10△10〕的值。
(完整word版)三年级奥数讲义定义新运算
定新运算一、知重点定新运算是指运用某种特别符号来表示特定的意,进而解答某些算式的一种运算。
解答定新运算,关是要正确地理解新定的算式含,而后格依照新定的算程序,将数代入,化常的四运算算式行算。
定新运算是一种人的、性的运算形式,它使用的是一些特别的运算符号,如: * 、△、⊙等,是与四运算中的“+、-、×、÷”不一样的。
新定的算式中有括号的,要先算括号里面的。
但它在没有化前,是不合适于各样运算定律的。
二、精精【例 1】假 a*b=(a+b)+(a-b) ,求 13*5 和 13* ( 5*4 )。
【思路航】的新运算被定:a*b 等于 a 和 b 两数之和加上两数之差。
里的“ * ”就代表一种新运算。
在定新运算中同定了要13*5=(13+5)+( 13-5 ) =18+8=26先算小括号里的。
所以,在13*( 5*4 )5*4=(5+4) +(5-4 ) =10中,就要先算小括号里的(5*4 )。
13* ( 5*4 )=13*10=( 13+10)+(13-10 )=26 1:1.将新运算“ *”定: a*b=(a+b) × (a-b). 。
求 27*9 。
2.a*b=a2+2b ,那么求 10*6 和 5* ( 2*8 )。
3. a*b=3a - b× 1/2 ,求( 25*12 ) * ( 10*5 )。
3△(4 △ 6)【例 2】 p、q 是两个数,定: p△q=4× q-(p+q) ÷ 2。
求3△ (4 △ 6) 。
=3△【 4× 6-( 4+6)÷ 2】=3△19【思路航】依据定先算 4△6。
在里“△”是新的运算符号。
=4×19-( 3+19)÷ 2=76-11=652:1. p、 q 是两个数,定p△ q= 4× q-( p+q)÷ 2,求 5△( 6△ 4)。
2. p、 q 是两个数,定p△ q= p2+( p- q)× 2。
定义新运算完整版
定义新运算知识要点:定义新运算就是以加减乘除四则运算为基础,用某种新的符号来表示新运算。
见到这种新的运算符号所定义的运算后,就按照它所规定的“运算程序”进行运算,直到得出最后的结果。
运算时要严格按照新运算的定义要求进行计算,不得随意改变运算顺序,这是最关键的一点。
运算时,有括号的先算出括号里的值,再算出括号外的值,在没有确定新定义运算具有交换律,结合律之前,不能运用运算定律解题。
运算的符号可以是※,也可以是○,□。
§。
等,符号的种类是次要的,符号定义的运算运算程序才是主要的。
例1:设a、b是两个自然数,定义a*b=2a+4b,计算4*5是多少?开心一练:1设a、b是两个自然数,定义a*b=3a+5b,计算6*3是多少?2 对于自然数,定义a*b=3a+2b,求(1)10*11(2)11*10例2:定义新运算“*”对任何数a和b,有a*b=a×b-a+b,计算(1)8*10(2)(3*4)*5开心一练:1 定义新运算“*”对任何数a和b,有a*b=a×b+a-b,计算(1)4*6 (2)(4*6)*52对于整数a、b,设a*b=3a+b-1,求(1)4*(3*5)(2)(4*3)*53规定a△b=3a-b,求10△(2△5)。
例3:设a*b=4a-3b,求(1)5*(3*2)(2)x*(2*x)=15,求x。
开心一练:1已知a*b=a×b+a,如果(3*x)*2=18求x。
2设a*b=5a+4b,求(1)4*(3*2)(2)已知x*(4*x)=122,求x。
例4:对整数a*b,规定a*b=ax+b,如果4*5=23,求3*2的值。
开心一练:1 对整数a*b,规定a*b=a÷b×2+ab+x,如果6*3=28,求5*2的值。
2 对于整数a、b,设a*b=3a-bx,已知5*4=7,求x。
例5:设a、b都表示数,规定a♦b=3×a-2×b (1)求3♦2,2♦3。
新运算定义
新运算定义新运算定义定义一:数学中的新运算•什么是新运算?新运算是对传统数学运算进行扩展和补充,引入新的运算规则和符号,使得数学在某些领域或问题上更加完备和精确。
•为什么需要新运算?传统数学中的基本运算已经能够解决大多数实际问题,但在某些特殊场景下存在一些限制。
通过引入新运算,可以更好地描述和解决这些问题。
•新运算的示例:1.矩阵乘法:传统数学中,乘法通常是两个数的乘积,但在线性代数中,矩阵乘法是非常重要的运算,能够描述线性变换等复杂关系。
2.向量积:传统数学中,乘法是两个数的乘积,但在向量运算中,存在向量积,用于求取两个向量之间的夹角和叉积。
3.复数除法:传统数学中,除法通常是两个数的商,但在复数运算中,除法的定义不同,包括共轭复数的乘法等。
定义二:计算机科学中的新运算•什么是新运算?新运算是计算机科学中引入的一种新的计算方法,用于解决传统运算无法解决的问题,或提供更高效的解决方案。
•为什么需要新运算?随着计算机科学的发展,出现了许多新的问题和需求,传统运算已经无法满足这些需求。
新运算的引入使得计算机科学能够更好地应对这些问题。
•新运算的示例:1.并行计算:传统计算只能在一个处理器上进行,但在大规模计算和分布式系统中,引入并行计算可以极大地提高计算速度和效率。
2.量子计算:传统计算是基于二进制系统的,但在某些特定场景下,引入量子计算可以有效地解决某些问题,如因子分解、模拟量子物理等。
3.模糊逻辑:传统逻辑运算是基于真和假的二元系统,但在模糊逻辑中,引入了模糊集合和模糊推理,使得计算机能够处理不确定性和模糊性问题。
相关书籍简介1.《数学新运算引论》–作者:张三–出版日期:2022年–简介:本书介绍了数学中的新运算概念和定义,包括矩阵乘法、向量积、复数除法等。
通过详细的数学推导和实例分析,读者可以了解新运算的原理、应用和意义,进一步拓宽数学思维。
2.《计算机科学中的新运算探索》–作者:李四–出版日期:2023年–简介:本书介绍了计算机科学中的新运算方法和技术,包括并行计算、量子计算、模糊逻辑等。
奥数第一讲奥数定义新运算教师版(可编辑修改word版)
定义新运算姓名分数加、减、乘、除这四种运算的意义和运算法则我们都很熟悉.除了这四种运算之外,我们还可以人为地规定一些其它运算,并给出特定的运算规则,这样的运算形式我们一般称之为定义新运算.它使用的是一些特殊的运算符号,如*、△、▽、⊙等,这与四则运算中的“+、-、×、÷”表示的意义是不同的,其运算规则中运用的计算方法与我们所学的四则运算方法相同,解题的关键是通过表达式寻找到运算规则.一、假设 a*b=(a+b)+(a-b),求13*5 和13*(5*4)。
解析:这道题的新运算被定义为:a*b 等于a 和b 两数之和加上两数之差。
这里的“*”就代表一种新运算。
在定义新运算规定了要先算“小括号”里的。
因此,在 13* (5*4)中,就要先算小括号里的5*4。
13*5=(13+5)+(13-5)=18+8=2 65*4=(5+4)+(5-4)=1013*(5*4)=13*10=(13 +10)+(13-10)=26举一反三(15 分)1.设a*b=(a+b)×(a-b),求27*9.解:27*9=(27+9)×(27-9)=36×18=648.2. 设 a*b=a2+2b, 求 10*6 和5*(2*8)。
解:(1)10*6 =102+6×2 =100+12 =112;(2)5*(2*8)=5*(22+8×2) =5*(4+16) =5*20 =52+20×2 =25+40 =65.13.设a*b=3a-b ×2 ,求(25*12)*(10*5).解:(25*12)*(10*5) =(25×3-12× )*(10×3-5× ) =(75-6)*(30-2.5) =69*27.5=69×3-27.5× =207-13.75 =193.25.二、 设 p 、 q 是两个数,规定:.求.解:因为 ,所以:所以:.举一反三(15 分)1.设 p、 q 是两个,规定 :数30△(5△3)=30△[52 +(5-3)×2 ].求5△(6△4).解:因为,所以:所以:2.设 p、q 是两个数,规定p△q=p 2+(p-q)×2。
(完整版)定义新运算
第一讲定义新运算一、教学目标:1、知识与技能:理解新定义符号的含义,严格按新的规则操作。
2、过程与方法:经历新定义运算算式转化成一般的+、-、×、÷数学式子的过程,培养学生运用数学转化思想指导思维活动的能力。
3、情意目标:通过将新定义运算转化成一般运算的过程,使学生感受数学中转化的思想方法;体验学习与运用数学法则、规定解决数学问题的成功.二、教学重难点:1、教学重点:理解新定义,按照新定义的式子代入数值。
2、教学难点:把定义的新运算转化成我们所熟悉的四则运算。
三、教学方法:引导发现法四、教学过程:(一)导入:1、看图大比拼(准备几张生活中常见标志的图片)。
2、我做指挥官(用手势代替语言指挥)。
3、在下面的括号内填入适当的运算符号,使得等式成立。
5()2=7 6()3=3 100()2=50 13( )3=394、趣味引导:生活中我们都知道羊和狼在一起时,狼要吃掉羊,所以当狼和羊在一起时,我们用△符号表示狼战胜羊:狼△羊= 羊△狼= 羊△羊= 狼△狼=在动画片《喜洋洋与灰太狼》中,羊群总是能化险为夷战胜狼,因此我们用☆符号表示羊战胜狼:羊☆狼= 狼☆羊= 羊☆羊= 狼☆狼=5、已知符号“#”表示a#b=a+b,求:3#5、5#9、88#13的值?(体现对应思想和解题的三个步骤)加强认识:已知符号“*”表示:a*b=b-a,求:3*9、60*72的值?小结:定义新运算是指运用某种特殊的符号表示的一种特定运算形式;它是人们整合旧的运算规则,利用新的符合表示出的一种运算方式;解决此类问题,关键是要正确理解新定义的算式含义,能够将新定义的运算方法转化为旧的运算规则。
一般新运算问题的解题三个步骤:(1)弄清新符号的算式意义;(2)找准问题中数字与定义算式中字母的对应;(3)将对应数字代入算式计算(二)例题引导:第一类:(直接运算型)例题引导:①表示求两个平均数的运算,则a①b=(a+b)÷2,当 a=5,b=15时,求a①b?例1:已知符号“△”表示:a△b=(a+b)×6,求:10△3, 6△9的值?练习:(1)对定义运算※为a※b=(a+b)×2。
(完整版)六年级奥数定义新运算及答案
定义新运算1.规定:a ※b=(b+a)×b,那么(2※3)※5= 。
2.如果a △b 表示b a ⨯-)2(,例如3△444)23(=⨯-=,那么,当a △5=30时, a= 。
3.定义运算“△”如下:对于两个自然数a 和b,它们的最大公约数与最小公倍数的和记为a △b.例如:4△6=(4,6)+[4,6]=2+12=14.根据上面定义的运算,18△12= 。
4.已知a,b 是任意有理数,我们规定: a ⊕b= a+b-1,2-=⊗ab b a ,那么[]=⊗⊕⊕⊗)53()86(4 。
5.x 为正数,<x>表示不超过x 的质数的个数,如<5.1>=3,即不超过5.1的质数有2,3,5共3个.那么<<19>+<93>+<4>×<1>×<8>>的值是 。
6.如果a ⊙b 表示b a 23-,例如4⊙5=3×4-2×5=2,那么,当x ⊙5比5⊙x 大5时, x= 。
7.如果1※4=1234,2※3=234,7※2=78,那么4※5= 。
8.规定一种新运算“※”: a ※b=)1()1(++⨯⋅⋅⋅⨯+⨯b a a a .如果(x ※3)※4=421200,那么x= 。
9.对于任意有理数x, y,定义一种运算“※”,规定:x ※y=cxy by ax -+,其中的c b a ,,表示已知数,等式右边是通常的加、减、乘运算.又知道1※2=3,2※3=4,x ※m=x(m ≠0),则m 的数值是 。
10.设a,b 为自然数,定义a △b ab b a -+=22。
(1)计算(4△3)+(8△5)的值;(2)计算(2△3)△4;(3)计算(2△5)△(3△4)。
11.设a ,b 为自然数,定义a ※b 如下:如果a ≥b ,定义a ※b=a-b ,如果a<b ,则定义a ※b= b-a 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲定义新运算
一、教学目标:
1、知识与技能:理解新定义符号的含义,严格按新的规则操作。
2、过程与方法:经历新定义运算算式转化成一般的+、-、×、÷数学式子的过程,培养学生运用数学转化思想指导思维活动的能力。
3、情意目标:通过将新定义运算转化成一般运算的过程,使学生感受数学中转化的思想方法;体验学习与运用数学法则、规定解决数学问题的成功.
二、教学重难点:
1、教学重点:理解新定义,按照新定义的式子代入数值。
2、教学难点:把定义的新运算转化成我们所熟悉的四则运算。
三、教学方法:引导发现法
四、教学过程:
(一)导入:
1、看图大比拼(准备几张生活中常见标志的图片)。
2、我做指挥官(用手势代替语言指挥)。
3、在下面的括号内填入适当的运算符号,使得等式成立。
5()2=7 6()3=3 100()2=50 13()3=39
4、趣味引导:
生活中我们都知道羊和狼在一起时,狼要吃掉羊,所以当狼和羊在一起时,我们用△符号表示狼战胜羊:狼△羊= 羊△狼= 羊△羊= 狼△狼=
在动画片《喜洋洋与灰太狼》中,羊群总是能化险为夷战胜狼,因此我们用☆符号表示羊战胜狼:羊☆狼= 狼☆羊= 羊☆羊= 狼☆狼=
5、已知符号“#”表示 a#b=a+b,求:3#5、5#9、88#13 的值?(体现对应思想和解题的三个步骤)
加强认识:已知符号“*”表示:a*b=b-a,求:3*9、60*72 的值?
小结:定义新运算是指运用某种特殊的符号表示的一种特定运算形式;它是人们整合旧的运算规则,利用新的符合表示出的一种运算方式;解决此类问题,关键是要正确理解新定义的算式含义,能够将新定义的运算方法转化为旧的运算规则。
一般新运算问题的解题三个步骤:(1)弄清新符号的算式意义;(2)找准问题中数字与定义算式中字母的对应;(3)将对应数字代入算式计算
(二)例题引导:
第一类:(直接运算型)
例题引导:①表示求两个平均数的运算,则a①b=(a+b)÷2,当 a=5,b=15 时,求a①b?例 1:已知符号“△”表示:a△b=(a+b)×6,求:10△3,6△9的值?
练习:(1)对定义运算※为a※b=(a+b)×2。
求5※7和17※5的结果?
(2)对于任意的两个数a 和b,规定a b= 3a-b÷3。
求6 9 和9 6 的值。
例题延伸:若A * B 表示(A+3×B)×B,求5 * 7 的值。
练习:若 a#b 表示(a×a+2×b)-a×b,求 5#6、30#14 的值?
小结:在直接运算类型中,要明确符号代表的算式意义,利用对应思想将题干中的字母转化为数字,再结合旧运算解决;其中特别需要注意的是在转化过程中,新符号前后的字母与数字必须一一对应(即:新运算中不含交换律规则)
例2:已知符号@表示:a@b=(a-b)×(a+b),求:(8@3)@4 的值?
练习:(1)已知x*y=x×y-(x+y),求:5*(10*6)的值?
(2)已知A#B=(7×A+B)×(A+3×B),求 5#(7#2)和(5#7)#2 的值?
小结:(1)明确新运算符号及算式的意义;(2)含有括号的运算中按照既有运算规则:先算小括号再算中括号最后算大括号;(3)把计算出一个括号的值当做一步。
特别需要注意的是:严格按照括号顺序计算,不能简单的使用结合律。
例 3:设a*b 表示a 的3 倍减去 b 的2 倍,计算:7*6 和(5*4)*3 的结果。
练习:(1)设a※b表示a 与b 的积减去 a 与b 的差,试求7※3的值。
4 的值。
(2)已知a b 表示a 除以3 的余数乘b,求13
小结:在没有算式的新运算符号问题中,解决问题的关键在于要将题干中的文字语言转化为数学语言,能够根据题意列出新符号代表的数学算式。
P Q
例 4:P、Q 表示两个数,P△Q=,求4△(6△9)的值是多少?
3
a +b
练习:(1)如果a b= ,那么1998 2000 的值是多少?
2
a + 1
(2)定义新运算为a△b=,那么7△(5△3)的值是多少?
b
小结:对于此类定义新运算,解题的关键在于要弄清楚分数线的含义。
第二类:(观察规律型)
导入:如果1※2=1+11
5※4=5+55+555+5555
8※=5=8+88+888+8888+88888
计算(3※2)×5
例五:规定a b=a+(a+1)+(a+2)+(a+3)+. ... +(a+b+1),其中a、b 表示自然数。
(1)求1 100 的值。
(2)已知一个数x 10=75,求这个数x 是多少?
练习:(1)已知“⊙”表示一种新的运算符号,已知:2⊙3= 2 + 3 + 4 ;7⊙2= 7 + 8 :3⊙5 = 3 + 4 + 5 + 6 + 7 ,……,求:20⊙9=
”表示一种新的运算符号,已知:34=4+5+6,6 3=3+4+5+6+7+8,求5 9 (2)已知
“
和4 6 的值?
(3)已知符号☆表示:4☆3=4+8+12;3☆4=3+6+9+12;5☆6=5+10+15+20+25+30,求:(20☆5)÷(10☆3)=
小结:找规律型新运算,关键在于根据题中给出的数字算式认识到新符号代表的算式结构及
规律。
●(选学内容)第三类:(反解型)
例 6:如果a△ b 表示
(a - 2) ⨯b ,例如3△ 4= (3 - 2) ⨯ 4 = 4 ,那么 ,当a△ 5=30 时 , a= .
练习:(1)如果a⊙b 表示3×a-2×b,例如4⊙5=3×4-2×5=2,那么当a⊙8=11时,求a=?(2)规定新运算※:a※b=6×a-b.若a※(4※1)=7,则a= .
小结:反解型新运算,关键是将含有字母的问题换成含有字母的算式,根据问题的值,利用
已学的倒退法去还原字母代表的数字。
我来争第一(趣味小知识):
一般我们都认为手枪指向谁,谁好像是有危险的,下面的规则同学们能看懂吗
规定:警察小偷=警察,警察小偷=小偷.
那么:(猎人小兔)(山羊白菜)
2014 年春季四年级精英班第一课家庭作业
一、基础题:
1、定义新运算“△”:a△b= a÷b×3,求(1)24△6;(2)36△9。
2、对于任意两个自然数 a、b,定义一种新运算“*”:a*b=a×b+a÷b,求 75*5=?,12*4=?
3、已知一个符号“#”表示 a 的 3 倍与 b 之差再加 1 的和,求:7#9 和 9#7 的值?
二、提高题:
4、规定 a*b=(a+b)÷2,求(1*9)*9 的值。
5、规定 X○+Y=(X+Y)÷4求:2○+(3○+5)的值。
6、已知:a@b 表示(a+b)×(a-b),求:(10@6)@5 的值?
7、规定a○+b,表示自然数 a 到b 的各个数之和,例如:3 ○+10=3+4+5+6+7+8+9+10=52,求:1 ○+20 和10○+20 的值?。