立体几何常见结论

合集下载

立体几何应记住的结论

立体几何应记住的结论

立体几何应记住的结论:
1. 设正三角形边长为a ,则三角形高为
a 2
,外接圆的半径为
a 3
,内接圆的半径为
a 6
,面积为
2
a 4
2. 内接于球内的正方体1111ABC D A B C D -的边长为a ,球的半径为R ,则2R =
即R ,2
=
3. 设正方体的边长为a ,则以正方体顶点为顶点的正四面体的体积为
3
13
a , 三个侧面为
直角三角形,底面为面对角线的正三棱锥的体积为
3
16
a 。

4. 设正四面体的边长为a ,则正四面体的高为
a 3
,外接球的半径为
a 4
,即高与
半径的比为
43

5. 设正六边形1
1111A B C D E F A B C D E F -
的边长为
a ,则对角线B D a =,
AD 2a =,外接圆的半径为a ,0
A B D 90∠=;
6. 底面边长为a 的正三棱锥的侧面都是直角三角形,;体积为3
1
6
a
7. 边长为a 3
12
a
正方体的截面的形状:
1. 三角形,.截面可以是等边三角形,等腰三角形,锐角三角形,但不是直角三角形,钝
角三角形,
2. 四边形:截面可以是平形四边形,矩形,菱形,正方形,梯形,等腰梯形,它们至少一
组对边平行,
3. 五边形:截面五边形必须有两组分别平行的边,同时有两个相同的角,截面不可能是正
五边形。

4.六边形:截面五边形必须有两组分别平行的边,同时有两个相同的角,截面可以是正六
边形。

立体几何所有的定理大总结(绝对全)

立体几何所有的定理大总结(绝对全)

⽴体⼏何所有的定理⼤总结(绝对全)(⼆)异⾯直线所成⾓1.定义:不同在任何⼀个平⾯内的两条直线或既不平⾏也不相交的两条直线叫异⾯直线。

2.画法:借助辅助平⾯。

1.定义:对于异⾯直线a 和b ,在空间任取⼀点P ,过P 分别作a 和b 的平⾏线1a 和1b ,我们把1a 和1b 所成的锐⾓或者叫做异⾯直线a 和b 所成的⾓。

2.范围:(0°,90°】(★空间两条直线所成⾓范围:【0°,90°】)(三)线⾯⾓1.定义:当直线l 与平⾯α相交且不垂直时,叫做直线l 与平⾯α斜交,直线l 叫做平⾯α的斜线。

设直线l 与平⾯α斜交与点M ,过l 上任意点A ,做平⾯α的垂线,垂⾜为O ,把点O 叫做点A 在平⾯α上的射影,直线OM 叫做直线l 在平⾯α上的射影。

1.定义:把直线l 与其在平⾯α上的射影所成的锐⾓叫做直线l 和平⾯α所成的⾓。

2.范围【0°,90°】(★斜线与平⾯所成⾓范围:【0°,90°】)(三)⼆⾯⾓1.定义:(1)半平⾯:平⾯内的⼀条直线把这个平⾯分成两个部分,其中每⼀个部分叫做半平⾯。

(3)⼆⾯⾓的棱:这⼀条直线叫做⼆⾯⾓的棱。

(4)⼆⾯⾓的⾯:这两个半平⾯叫做⼆⾯⾓的⾯。

(5)⼆⾯⾓的平⾯⾓:以⼆⾯⾓的棱上任意⼀点为端点,在两个⾯内分别作垂直于棱的两条射线,这两条射线所成的⾓叫做⼆⾯⾓的平⾯⾓。

(6)直⼆⾯⾓:平⾯⾓是直⾓的⼆⾯⾓叫做直⼆⾯⾓。

1.定义:从⼀条直线出发的两个半平⾯所组成的图形叫做⼆⾯⾓。

2.表⽰:如下图,可记作α-AB-β或P-AB-Q3.范围为【0°,180°】(五)六种距离1.点到点的距离:两点之间的线段PQ 的长。

2.点到线的距离:过P 点作1PP ⊥l ,交l 于1P ,线段1PP 的长。

3.点到⾯的距离:过P 点作1PP ⊥α,交α于1P ,线段1PP 的长。

立体几何基础定理 → 立体几何高级定理

立体几何基础定理 → 立体几何高级定理

立体几何基础定理→ 立体几何高级定理
一、简介
立体几何是几何学中研究空间中的图形和形体的分支。

立体几何基础定理是理解和应用立体几何的基础,而立体几何高级定理是在基础定理的基础上进一步深入研究和探索立体几何中更复杂的问题。

本文将介绍一些立体几何基础定理,并简要描述一些立体几何高级定理。

二、立体几何基础定理
1. 平行面截立体图形切割平行截线的比例定理
当一对平行面截取一个立体图形时,截线与截面上的相似图形的边的比例相等。

2. 对割立体图形的剖面截线定理
对一个立体图形进行平行或垂直于某个固定平面的切割,剖面上的截线与截面上的边对应的边成比例。

3. 双平面截取切割立体图形的定理
当两个平面同时截取一个立体图形时,这两个平面上的截线与
截面上的相似图形的边的比例相等。

三、立体几何高级定理
1. 欧拉定理
对于任意一个立体图形,它的顶点数V、边数E和面数F之间
存在着关系:V-E+F=2。

2. 圆柱内切立方体体积比定理
一个半径为r的正圆柱体内切一个立方体,其体积比为2:1。

3. 四边形界整体间体积所构成条件的定理
当一个正四边形的对角线所围成的四个空间面积分别是A、B、C和D时,当且仅当A + B = C + D时,存在唯一一个立体使得四
个面积为该立体的面积。

四、结论
立体几何基础定理是理解立体几何的基础,而立体几何高级定
理进一步探索了立体几何中更复杂的问题。

通过学习和应用这些定
理,可以更好地理解立体图形的性质和关系,并在实际问题中应用立体几何的知识。

立体几何常考定理的总结(八大定理)

立体几何常考定理的总结(八大定理)

lmβααba立体几何的八大定理一、线面平行的判定定理:线线平行⇒线面平行文字语言:如果平面外.的一条直线与平面内.的一条直线平行,则这条直线与平面平行. 符号语言://a b a b αα⊄⎫⎪⊂⎬⎪⎭⇒//a α关键点:在平面内找一条与平面外的直线平行的线...................... 二、线面平行的性质定理:线面平行⇒线线平行文字语言:如果一条直线和一个平面平行,经过..这条直线的平面和这个平面相交..,那么这条直线就和交线..平行. 符号语言://l l m αβαβ⎫⎪⊂⎬⎪⋂=⎭⇒//l m关键点:需要借助一个经过已知直线的平面,接着找交线。

.......................... 三、面面平行的判定定理:线面平行⇒ 面面平行文字语言:如果一个平面内.有两.条相交..直线都平行..于另一个平面..,那么这两个平面平行. 符号语言://a b a b A a b αααβββ⊂⎫⎪⊂⎪⎪=⇒⎬⎪⎪⎪⎭∥∥ 关键点:在要证明面面平行的其中一个面内找两条相交直线和另一面线面平行。

................................... 四、面面平行的性质定理: 面面平行⇒线线平行、面面平行⇒线面平行 文字语言:如果两个平行平面同时..和第三..个.平面相交..,那么所得的两条交线..平行. 符号语言:////a a b b αβαγβγ⎫⎪⋂=⇒⎬⎪⋂=⎭关键点:找第三个平面与已知平面都相.................交,则交线平行.......文字语言:如果两个平面平行,那么其中一个平面内的任意..一条直线平行于另一个平面.符号语言://,//a a αβαβ⊂⇒ 关键:只要是其中一个平面内的直线就行..................nmAαaBA l βαaβα五、线面垂直的判定定理:线线垂直⇒线面垂直文字语言:如果一条直线和一个平面内.的两.条相交..直线垂直..,那么这条直线垂直于这个平面. 符号语言:,a ma n a m n A m n ααα⊥⎫⎪⊥⎪⇒⊥⎬⋂=⎪⎪⊂⊂⎭关键点:在平面内找两条相交直线与所要证的直线垂直........................ 六、线面垂直的性质定理:线面垂直⇒线线垂直文字语言:若一条直线垂直于一个平面,则这条直线垂直平面内的任意..一条直线. 符号语言:l l a a αα⊥⎫⇒⊥⎬⊂⎭关键点:往往线面垂直中的线线垂直需要用这个定理推出......................... 七、平面与平面垂直的判定定理:线面垂直⇒面面垂直文字语言:如果一个平面经过..另一个平面的一条垂线,则这两个平面互相垂直. (如果一条直线垂直于一个平面,并且有另一个平面经过这条直线,那么这两个平面垂直)符号表示:a a ααββ⊥⎫⇒⊥⎬⊂⎭关键点:....在需要证明的两个平面中找线面垂直................八、平面与平面垂直的性质定理:面面垂直⇒线面垂直文字语言:如果两个平面互相垂直,那么在一个平面内垂直..于它们的交线..的直线垂直于另一个平面.符号语言:l AB AB AB lαβαββα⊥⎫⎪=⎪⇒⊥⎬⊂⎪⎪⊥⎭关键点:先找交线,再在其中一个面内找与交线垂直的线。

立体几何所有的定理大总结

立体几何所有的定理大总结
{}
(4)借助法:两条平行直线,若其中一条垂直于一个平面,则另一条必定也垂直于这个平面。
{}
(5)借助法:一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。
{}
“平行”的判定:
(1)定义法:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。
(2)判定法:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。(线线平行线面平行)
相交
共面垂直()
平行()
“异面垂直”的判定:
(1)定义法:如ห้องสมุดไป่ตู้两条异面直线所成的角是直角,那么这两条异面直线互相垂直。
(2)其它法:三垂线逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直。
{}
“共面垂直”的判定:
(1)定义法:如果两条直线所成的角是直角,那么这两条直线互相垂直。
(6) 直二面角:平面角是直角的二面角叫做直二面角。
1.定义:从一条直线出发的两个半平面所组成的图形叫做二面角。
2.表示:如下图,可记作α-AB-β或P-AB-Q
3.范围为【0°,180°】
(5)六种距离
1.点到点的距离:两点之间的线段PQ的长。
2.点到线的距离:过P点作,交于,线段的长。
3.点到面的距离:过P点作,交于,线段的长。
3.经过平面外一点,有且只有一条直线和已知平面垂直。
4.经过平面外一点,有无数个平面和已知平面垂直。
5.经过直线外一点,有且只有一条直线和已知直线平行。
6.经过直线外一点,有无数个平面和已知直线平行。
7.经过直线外一点,有且只有一条直线和已知直线垂直。
8.经过直线外一点,有无数个平面和已知直线垂直。

立体几何常用小结论

立体几何常用小结论

1、三个平面两两相交,其三条交线要么共点,要么互相平行。

2、一个四面体有两组对棱互相垂直,则其第三组对棱也互相垂直,且这时每一个顶点在对面三角形所在平面内的射影,都是该三角形的垂心;反之也成立.特别地,正四面体的三组对棱都互相垂直,且每一个顶点在对面正三角形所在平面内的射影,都是该正三角形的中心。

3、任意一个四面体PABC 都可补成一个平行六面体B P A C ADB C ''-',且四面体PABC 的体积等于对应平行六面体B P A C ADB C ''-'的体积的三分之一.特别地,任意一个正四面体都可补成一个正方体;任意一个三组对棱分别相等的四面体都可补成一个长方体。

4、四面体为正四面体的充要条件是任意相邻两个面所成共6个二面角都相等。

5、 任意一个四面体都有一个内切球和一个外接球。

6、以正六面体(即正方体)的六个面的中心为顶点的多面体是正八面体;以正八面体的八个面的中心为顶点的多面体是正六面体;以正十二面体的十二个面的中心为顶点的多面体是正二十面体;以正二十面体的二十个面的中心为顶点的多面体是正十二面体。

7、正四面体ABCD 的边长为a ,高为h ,其外接球与内切球球心重合,且有关系:r R h +==,内切球半径为:,比例为3:1。

8、如果一条直线与两个相交平面都平行,则这条直线与交线平行。

9、如果两个相交平面都垂直于第三个平面,则交线也垂直于第三个平面。

10、若P 为ABC ∆所在平面外一点, O 是点P 在 ABC ∆内的射影,则: ①若PA PB PC ==或PA 、PB 、PC 与 所成角均相等, 则O 为ABC ∆的外心; ②若P 到ABC ∆的三边的距离相等, 则O 为△ABC 的内心;③若PA 、PB 、PC 两两互相垂直, 或,PA BC PB AC ⊥⊥则O 为ABC ∆的垂心. ④若PAB PAC ∠=∠,则点O 在ABC ∠的平分线上。

立体几何常用结论及方法

立体几何常用结论及方法

1、垂直于同一条直线的两条直线。

2、平行于同一条直线的两条直线。

在空间内:1、垂直于同一条直线的两条直线。

2、垂直于同一条直线的两个平面。

3、平行于同一条直线的两条直线。

4、平行于同一条直线的两个平面。

5、垂直于同一个平面的两条直线。

6、垂直于同一个平面的两个平面。

7、平行于同一个平面的两条直线。

8、平行于同一个平面的两个平面。

结论二、在平面内:1、过直线外一点有条直线和已知直线平行。

2、过一点有且只有条直线和已知直线垂直。

在空间内:1、过直线外一点有条直线和已知直线平行。

2、过一点有条直线和已知直线垂直。

3、过直线外一点有个平面和已知直线平行。

4、过一点有个平面和已知直线垂直。

5、过平面外一点有个平面和已知平面平行。

6、过一点有个平面和已知平面垂直。

7、过平面外一点有条直线和已知平面平行。

8、过一点有条直线和已知平面垂直。

9、过一个平面的一条平行直线有个平面和已知平面平行。

10、过一个平面的一条垂线有个平面和已知平面垂直。

11、过一条直线有个平面和已知平面垂直。

(前提:线面不垂直)1、垂直于同一条直线的两条直线平行。

2、平行于同一条直线的两条直线平行。

在空间内:1、垂直于同一条直线的两条直线平行、相交、异面.2、垂直于同一条直线的两个平面平行。

3、平行于同一条直线的两条直线平行。

4、平行于同一条直线的两个平面平行、相交。

5、垂直于同一个平面的两条直线平行。

6、垂直于同一个平面的两个平面平行、相交。

7、平行于同一个平面的两条直线平行、相交、异面8、平行于同一个平面的两个平面平行。

结论二、在平面内:1、过直线外一点有且只有一条直线和已知直线平行。

2、过一点有且只有一条直线和已知直线垂直。

在空间内:1、过直线外一点有且只有一条直线和已知直线平行。

2、过一点有无数条直线和已知直线垂直。

3、过直线外一点有无数个平面和已知直线平行。

4、过一点有且只有一个平面和已知直线垂直。

5、过平面外一点有且只有一个平面和已知平面平行。

知识点-立体几何知识点常见结论总结

知识点-立体几何知识点常见结论总结

立体几何高考知识点和解题思想汇总补充:三角形内心、外心、重心、垂心知识四心的概念介绍:(1)重心——中线的交点:重心将中线长度分成2:1;(2)垂心一一高线的交点:高线与对应边垂直;(3)内心一一角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等;(4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。

若P为ABC所在平面外一点,0是点P在ABC内的射影,贝①若PA PB PC或PA、PB、PC与所成角均相等,则0为ABC的外心;②若P到ABC的三边的距离相等,则0ABC的内心;③若PA、PB、PC两两互相垂直,或PA BC,PB AC则0为ABC的垂心.常见空间几何体定义:1 .棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱,这两个面为底面,其他面为侧面。

棱柱具有下列性质:1)棱柱的各个侧面都是平行四边形,所有的侧棱都平行且相等;2)棱柱的两个底面与平行于底面的截面是对应边互相平行的全等多边形。

3)直棱柱的侧棱长与高相等;直棱柱的侧面及经过不相邻的两条侧棱的截面都是矩形。

棱柱的分类:斜棱柱:侧棱不垂直于底面的棱柱叫做斜棱柱。

直棱柱:侧棱垂直于底面的棱柱叫做直棱柱。

直棱柱的各个侧面都是矩形;正棱柱:底面是正多边形的直棱柱叫做正棱柱。

正棱柱的各个侧面都是全等的矩形。

平行六面体:底面是平行四边形的棱柱。

直平行六面体:侧棱垂直于底面的平行六面体叫直平行六面体。

长方体:底面是矩形的直棱柱叫做长方体2 .棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥.(1)如果一个棱锥的底面是正多边形,且顶点与底面中心的连线垂直于底面,这样的棱锥称为正棱锥•正棱锥具有性质: ①正棱锥的顶点和底面中心的连线即为高线;② 正棱锥的侧面是全等的等腰三角形,这些等腰三角形底边上的高都相等,叫做这个正棱锥 的斜高.(2) 底边长和侧棱长都相等的三棱锥叫做正四面体. (3) 依次连结不共面的四点构成的四边形叫做空间四边形.常见几何题表面积、体积公式1旋转体的表面积(1) 圆柱的表面积S = 2 r 2 + 2 rl (其中r 为底面半径,I 为母线长)• (2) 圆锥的表面积S = r 2 + rl (其中r 为底面半径,I 为母线长)•⑷ 球的表面积公式S = 4 R 2 (其中R 为球半径).2 •几何体的体积公式(1) 柱体的体积公式V = Sh (其中S 为底面面积,h 为高). 1(2) 锥体的体积公式V = §Sh (其中S 为底面面积,h 为高). 4 3(3) 球的体积公式V = §n R (其中R 为球半径)•三棱锥外接球问题:、正四面体:如图1,正四面体ABCD 勺边长为a ,高为h ,其外接球与内切球球心重 律,比例为3:1。

立体几何中的所有结论

立体几何中的所有结论

第九章:直线、平面、简单几何体小结一、重要的概念和定理 1.公理和推论公理1.如果一条直线上的两个点在一个平面内,那么这条直线上的所有点都在 这个平面内。

作用:判断直线在平面内的依据。

公理2.如果两个平面有一个公共点,那么它们还有其它公共点,且这些公共点的集合是通过该公共点的一条直线。

作用:判断两个平面相交和共线的依据。

公理3.经过不在同一直线上的三个点,有且只 有一个平面。

推论1.经过一条直线和这条直线外一点,有且 作用:确定平面的依据。

只有一个平面。

推论2.经过两条相交直线,有且只有一个平面。

推论3.经过两条平行直线,有且只有一个平面。

公理4.同平行于一条直线的两条直线互相平行。

作用:判断平行的依据。

2.概念⑴直线与直线 ①异面直线:不在任何一个平面内的两条直线叫做异面直线。

②异面直线所成角:如果a 、b 是异面直线,经过空间任意一点0作a '∥a ,b '∥b ,那么把a '和b '所成的锐角(或直角)叫做异面直线a 和b 所成的角。

如果两条异面直线所成的角是直角,就称这两条异面直线互相垂直。

显然若设异面直线所成角为α,则0<α≤2π。

③异面直线间的距离:和异面直线都垂直相交的直线叫做两条异面直线的公垂线。

两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离。

⑵直线和平面①直线和平面平行:如果一条直线和一个平面没有公共点,那么就说这条直线和这个平面平行。

②直线和平面垂直:如果一条直线和一个平面内的任何一条直线都垂直,那么就说这条直线和这个平面垂直,这条直线叫做平面的垂线,平面叫做直线的垂面。

③射影:自一点P 向平面α引垂线,垂足P ' 叫做点P 在平面α内的正射影(简称射影)。

如果图形F 上的所有点在一平面内射影构成图形F ',则F '叫做图形F 在这个平面内的射影。

过斜线上斜足以外的一点向平面引垂线,过垂足和斜足的直线叫做斜线在这个平面上的射影。

二级结论专题9 立体几何

二级结论专题9  立体几何

二级结论专题9立体几何二级结论1:三余弦定理与三正弦定理【结论阐述】三余弦定理(又称最小角定理):如图①,AB 是平面的一条斜线,BC 是平面内的一条直线,OA ⊥平面π于O ,OC BC ⊥于C ,则cos =cos cos ABC OBC OBA ∠∠⋅∠,即斜线与平面内一条直线夹角γ的余弦值等于斜线与平面所成角α的余弦值乘以射影与平面内直线夹角β的余弦值:cos =cos cos γα⋅β;说明:为方便记忆,我们约定γ为线线角,α为线面角,β为射影角,则由三余弦定理可得线面角是最小的线线角,即平面的斜线和它在平面内的射影所成的角,是这条斜线和这个平面内任一条直线所成角中的最小者.三正弦定理(又称最大角定理):如图②,设二面角--AB θδ的平面角为α,AC ⊂平面θ,CO ⊥平面δ,OB AB ⊥,设=,=CAB CAO ∠β∠γ,则sin =sin sin γα⋅β.说明:为方便记忆,我们约定α为二面角,β为线棱角,γ为线面角,则由三正弦定理可得二面角是最大的线面角,即对于一个锐二面角,在其中一个半平面内的任一条直线与另一个半平面所成的线面角的最大值等于该二面角的平面角.【应用场景】空间三类角,即两条异面直线所成角、直线与平面所成角、二面角是立体几何的核心内容,也是高考重点考查的内容之一,几乎在每一份数学高考试卷中都会涉及.建立空间直角坐标系,通过空间向量的坐标运算,是求解空间三类角问题的常用方法.但此法存在两个缺陷:一是若图形不规则或不容易建立坐标系,则该法常常行不通;二是运算量较大.运用“最小(大)角”定理和“三余(正)弦”定理,不仅关联了线线角、线面角和二面角,而且利用它解决立体几何中的三类角问题,不需要建立坐标系,运算量也很小.【典例指引1】(2022年高考浙江卷8)1.如图,已知正三棱柱1111,ABC A B C AC AA -=,E ,F 分别是棱11,BC A C 上的点.记EF 与1AA 所成的角为α,EF 与平面ABC 所成的角为β,二面角F BC A --的平面角为γ,则()A .αβγ≤≤B .βαγ≤≤C .βγα≤≤D .αγβ≤≤【典例指引2】(2019年高考浙江卷8)2.设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P AC B --的平面角为γ,则A .,βγαγ<<B .,βαβγ<<C .,βαγα<<D .,αβγβ<<【针对训练】(2018年高考浙江8)3.已知四棱锥S ABCD -的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为1θ,SE 与平面ABCD 所成的角为2θ,二面角S AB C --的平面角为3θ,则A .123θθθ≤≤B .321θθθ≤≤C .132θθθ≤≤D .231θθθ≤≤(2022·浙江·高三开学考试)4.在正方体1111ABCD A B C D -中,M 是棱11A D 上的点且1112A M MD =,N 是棱CD 上的点,记MN 与BC 所成的角为α,MN 与底面ABCD 所成的角为β,二面角M CD A --的平面角为γ,则()A .αβγ≥≥B .αγβ≥≥C .γαβ≥≥D .γβα≥≥(2022·北京大兴·高一期末)5.如图,在正方体1111ABCD A B C D -中,M 是棱AB 的中点.令直线1D M 与1AA 所成的角为1θ,直线1D M 与平面1111D C B A 所成的角为2θ,二面角1D AM C --的平面角为3θ,则()A .123θθθ>=B .132θθθ>>C .123θθθ=<D .132θθθ<<(2022·河南新乡·高二期末)6.已知直线l 是平面θ的斜线,且与平面θ交于点M ,l 在平面θ上的射影为m ,在平面θ内过点M 作一条直线n ,直线n 和直线m 不重合,直线l 与平面θ所成的角为α,直线m 与直线n 所成的角为β,直线l 与直线n 所成的角为γ,则()A .cos cos cos αβγ=⋅B .cos cos cos βαγ=⋅C .cos cos cos γαβ=⋅D .以上说法都不对(2022·山西省长治市第二中学校高一期末)7.在空间,若60,AOB BOC COA ∠=∠=∠=︒直线OA 与平面OBC 所成角为θ,则cos θ=()A .13B .12C .2D .38.如图所示,在侧棱垂直于底面的三棱柱111ABC A B C -中,P 是棱BC 上的动点,记直线1A P 与平面ABC 所成的角为1θ,与直线BC 所成的角为2θ,则1θ,2θ的大小关系是A .12θθ=B .12θθ>C .12θθ<D .不能确定(2022·江西省万载中学高二期中)9.已知点A 、B 分别在二面角l αβ--的两个面α、β上,AC ⊥l ,BD ⊥l ,C 、D 为垂足,AC BD CD ==,若AB 与l 成60º角,则二面角l αβ--为()A .30ºB .45ºC .60ºD .120º10.已知二面角AB αβ--是直二面角,P 为棱AB 上一点,PQ 、PR 分别在平面α、β内,且45QPB RPB ∠=∠=︒,则QPR ∠为()A .45°B .60°C .120°D .150°11.ABC 的AB 边在平面α内,C 在平面α外,AC 和BC 分别在与平面α成30 和45 的角,且平面ABC 与平面α成60 的二面角,那么sin ACB ∠的值为()A .1B .13C .3D .1或13(2022·上海市七宝中学高二开学考试)12.正方体中1111ABCD A B C D -,过1D 作直线l ,若直线l 与平面ABCD 中的直线所成角的最小值为6π,且直线l 与直线1BC 所成角为π4,则满足条件的直线l 的条数为_________.(2022·河南省上蔡第一高级中学高三月考)13.在四面体SABC 中,SA ⊥平面,,ABC AB AC SB SC BC ⊥===若直线l 与SA 所成的角为6π,则直线l 与平面SBC 所成角的取值范围是__________.(2022·浙江宁波·高二期末)14.已知三棱锥-P ABC 的棱长均为1,BC ⊂平面,E α为PB 中点,l α⊥.记l 和直线AE 所成角为θ,则该三棱锥绕BC 旋转的过程中,sin θ的最小值是___________.15.三角形ABC 的一条边AB 在平面α内,π=2A ∠,=AB a ,AC ,若AC 与平面α所成角为π4,则直线BC 与平面α所成角的正弦值为___________.二级结论2:多面体的外接球和内切球【结论阐述】类型一球的内切问题(等体积法)例如:如图①,在四棱锥P ABCD -中,内切球为球O ,求球半径.方法如下:------=++++P ABCD O ABCD O PBC O PCD O PAD O PABV V V V V V即:-11111=++++33333P ABCD ABCD PBC PCD PAD PAB V S r S r S r S r S r ⋅⋅⋅⋅⋅,可求出.类型二球的外接问题1.公式法正方体或长方体的外接球的球心为其体对角线的中点2.补形法(补长方体或正方体)①墙角模型(三条线两个垂直)题设:三条棱两两垂直②对棱相等模型(补形为长方体)题设:三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(AB=CD ,AD=BC ,AC=BD )3.单面定球心法(定+算)步骤:①定一个面外接圆圆心:选中一个面如图:在三棱锥-P ABC 中,选中底面ABC ∆,确定其外接圆圆心1O (正三角形外心就是中心,直角三角形外心在斜边中点上,普通三角形用正弦定理定外心2=sin a r A);②过外心1O 做(找)底面ABC ∆的垂线,如图中1PO ⊥面ABC ,则球心一定在直线(注意不一定在线段1PO 上)1PO 上;③计算求半径R :在直线1PO 上任取一点O 如图:则==OP OA R ,利用公式22211=+OA O A OO 可计算出球半径R .4.双面定球心法(两次单面定球心)如图:在三棱锥-P ABC 中:①选定底面ABC ∆,定ABC ∆外接圆圆心1O ;②选定面PAB ∆,定PAB ∆外接圆圆心2O ;③分别过1O 做面ABC 的垂线,和2O 做面PAB 的垂线,两垂线交点即为外接球球心O .【应用场景】多面体外接球问题是立体几何中的重难点内容之一,在高考中频繁出现.解决此类问题的关键是确定球心的位置,运用常见模型可以很方便的确定球心的位置从而准确求解.【典例指引1】(2022·山西吕梁·一模)16.在《九章算术·商功》中,将四个面都为直角三角形的四面体称为鳖臑,如图在鳖臑ABCD 中,AB ⊥平面BCD ,1AB BC CD ===,BC CD ⊥,则鳖臑ABCD 内切球的表面积为()A .3πB .(3π-C .12πD .(3π+【典例指引2】17.已知三棱锥-P ABC ,在底面ABC 中,30A =,1BC =,PA ⊥面ABC ,PA =则此三棱锥的外接球的表面积为()A .163πB .C .323πD .16π【针对训练】(2022·湖北黄冈·高一期末)18.若圆锥的内切球(球面与圆锥的侧面以及底面都相切)的半径为1,当该圆锥体积是球体积两倍时,该圆锥的高为()A .2B .4CD .(2022·青海·海南藏族自治州高级中学高三开学考试)19.如图正四棱柱1111ABCD A B C D -中,底面面积为36,11A BC V 的面积为棱锥111B A B C -的外接球的表面积为()A .68πB .C .172πD .(2022·全国·高三专题练习)20.已知四面体-P ABC 中,PA ⊥平面ABC ,2PA AB ==,BC =,且3tan2ABC ∠=,则四面体-P ABC 的外接球的表面积为()A .15πB .17πC .18πD .20π(2022·江苏·金陵中学高一期末)21.前一段时间,高一年级的同学们参加了几何模型的制作比赛,大家的作品在展览中获得了一致好评.其中一位同学的作品是在球当中放置了一个圆锥,于是就产生了这样一个有趣的问题:已知圆锥的顶点和底面圆周都在球O 面上,若圆锥的侧面展开图的圆心角为23π,面积为3π,则球O 的表面积等于()A .818πB .812πC .1218πD .1212π(2022·云南·弥勒市一中高二阶段练习)22.设直三棱柱111ABC A B C -的所有顶点都在一个球面上,且球的体积是3,1AB AC AA ==,120BAC ∠=︒,则此直三棱柱的高是()A .1B .2C .D .4(2022·重庆·西南大学附中高一期末)23.已知正方形ABCD 中,2AB =,E 是CD 边的中点,现以AE 为折痕将ADE V 折起,当三棱锥D ABE -的体积最大时,该三棱锥外接球的表面积为()A .525π48B .5π4C .25π4D .25π(2022·广西·柳铁一中高三阶段练习)24.在三棱锥A BCD -中,3AB AD BC ===,5CD =,4BD =,AC =锥外接球的表面积为()A .63π10B .64π5C .128π5D .126π5(2022·江西省南丰县第二中学高一学业考试)25.已知四棱锥S ABCD -,SA ⊥平面ABCD ,AB BC ⊥,BCD DAB π∠+∠=,2SA =,BC =S BC A --的大小为3π.若四面体S ACD -的四个顶点都在同一球面上,则该球的体积为()A .3B .C .10πD .323π二、填空题(2022·河南焦作·一模)26.已知三棱锥-P ABC 的每条侧棱与它所对的底面边长相等,且ABC 是底边长为2的等腰三角形,则该三棱锥的外接球的表面积为___________.(2022·河南驻马店·高三期末)27.在三棱锥-P ABC 中,底面是以AB 为斜边的等腰直角三角形,4AB =,PA PB PC ===-P ABC 外接球的表面积为______.(2022·全国·模拟预测)28.已知A 、B 、C 、D 为空间不共面的四个点,且2BC BD AB ===A BCD -体积最大时,其外接球的表面积为______.(2022·安徽马鞍山·一模)29.三棱锥-P ABC 中,PAC △是边长为2AB BC ==,平面PAC ⊥平面ABC ,则该三棱锥的外接球的体积为______30.在三棱锥P -ABC 中,PA ,PB ,PC 两两垂直,1PA =,2PB =,3PC =,则该三棱锥的外接球的表面积为()A .494πB .56πC .3D .14π(2022·湖北荆州·高一期中)31.如图,在一个底面边长为2的正四棱锥P ABCD -中,大球1O 内切于该四棱锥,小球2O 与大球1O 及四棱锥的四个侧面相切,则小球2O 的表面积为______.答案第1页,共23页参考答案:1.A【分析】先用几何法表示出αβγ,,,再根据边长关系即可比较大小.【详解】如图所示,过点F 作FP AC ⊥于P ,过P 作PM BC ⊥于M ,连接PE,则EFP α=∠,FEP β=∠,FMP γ=∠,tan 1PE PE FP AB α==≤,tan 1FP AB PE PE β==≥,tan tan FP FPPM PEγβ=≥=,所以αβγ≤≤,故选:A .2.B【解析】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半.【详解】方法1:如图G 为AC 中点,V 在底面ABC 的投影为O ,则P 在底面投影D 在线段AO 上,过D 作DE 垂直AE ,易得//PE VG ,过P 作//PF AC 交VG 于F ,过D 作//DH AC ,交BG 于H ,则,,BPF PBD PED α=∠β=∠γ=∠,则cos cos PF EG DH BDPB PB PB PBα===<=β,即αβ>,tan tan PD PDED BDγ=>=β,即y >β,综上所述,答案为B.方法2:由最小角定理βα<,记V AB C --的平面角为γ'(显然γ'=γ)由最大角定理β<γ'=γ,故选B.方法3:(特殊位置)取V ABC -为正四面体,P 为VA 中点,易得cos sin sin α=α=β=γ= B.【点睛】常规解法下易出现的错误有,不能正确作图得出各种角.未能想到利用“特殊位置法”,寻求简便解法.3.D【分析】分别作出线线角、线面角以及二面角,再构造直角三角形,根据边的大小关系确定角的大小关系.【详解】设O 为正方形ABCD 的中心,M 为AB 中点,过E 作BC 的平行线EF ,交CD 于F ,过O 作ON 垂直EF 于N ,连接SO 、SN 、OM ,则SO 垂直于底面ABCD ,OM 垂直于AB ,因此123,,,SEN SEO SMO θθθ∠=∠=∠=从而123tan ,tan ,tan ,SN SN SO SO EN OM EO OMθθθ====因为SN SO EO OM ≥≥,,所以132tan tan tan ,θθθ≥≥即132θθθ≥≥,选D.【点睛】线线角找平行,线面角找垂直,面面角找垂面.4.B【分析】作MH AD ⊥于H ,过N 作//NE BC 交AB 于E ,过M 作MF NE ⊥于F ,可得MNF α=∠,MDA γ=∠,MNH β∠=,在正方体中求得它们的正切值比较大小后可得结论.【详解】作MH AD ⊥于H ,则1//MH AA ,1A M AH =,从而1HD MD =,而1AA ⊥平面ABCD ,因此有MH ⊥平面ABCD ,过N 作//NE BC 交AB 于E ,过M 作MF NE ⊥于F ,则MNF α=∠,tan MF MNF FN∠=,由正方体性质易知MDA ∠为二面角M CD A --的平面角,即MDA γ=∠,1113tan 223AA MH MDA DH A D ∠===,NF ⊂平面ABCD ,则MH NF ⊥,同理MH HN ⊥,MF MH M = ,,MF MH ⊂平面MFH ,所以NF ⊥平面MFH ,又HF ⊂平面MFH ,所以FN HF ⊥,所以HDNF 是矩形,FN DH =,由MH ⊥平面ABCD 知MNH β∠=,tan MH MNH HN∠=,由MF MH ≥,HN HD ≥得MF MH MH FN HD NH ≥≥,即tan tan tan αγβ≥≥,,,αβγ均为锐角,所以αγβ≥≥,N 与D 重合时,三角相等.故选:B .5.B【分析】取11A B 的中点N ,再根据几何关系,结合线线角线面角与二面角的定义,分析123,,θθθ的正切值大小结合正切的单调性判断即可【详解】取11A B 的中点N ,连接如图.易得1//AA MN ,故直线1D M 与1AA 所成的角11D MN θ=∠.又直线1D D ⊥平面1111D C B A ,故1D M 与平面1111D C B A 所成的角21MD N θ=∠.又AB ⊥平面11AA D D ,故二面角1D AM C --的平面角3145D AD θ=∠=o .因为1111tan 1D N D A MN MNθ=>=,3tan 1θ=,21tan 1MN D N θ=<,故132tan tan tan θθθ>>,又123,,θθθ均为锐角,故132θθθ>>故选:B6.C【分析】过直线l 上一点A (与M 不重合)作平面θ的垂线交平面θ于O ,过点O 在平面θ内作直线n 的垂线交直线n 于点N ,连接ON ,求出cos α、cos β、cos γ的表达式,由此可得出合适的选项.【详解】如图,过直线l 上一点A (与M 不重合)作平面θ的垂线交平面θ于O ,过点O 在平面θ内作直线n 的垂线交直线n 于点N ,连接ON ,由线面角的定义可得AMO α=∠,则cos MO AMα=,因为AO ⊥平面θ,MN ⊂平面θ,AO MN ∴⊥,ON MN ⊥ ,AO ON O = ,MN ∴⊥平面AON ,AN ⊂ 平面AON ,AN MN ∴⊥,所以,cos cos MN OMN OM β=∠=,cos cos MN AMN AMγ=∠=,因此,cos cos cos γαβ=.故选:C.7.D 【分析】根据线面角定义,结合线面垂直的判定定理进行求解即可.【详解】如图,过点A 作AH ⊥平面BOC 于H ,连接OH ,则AOH ∠为直线OA 与平面OBC 所成的角θ,分别作HE OB ⊥,交OB 于点E ,HF OC ⊥,交OC 于点F ,连接AE 、AF ,因为OB ⊂平面BOC ,所以AH OB ⊥,因为,,AH HE H AH HE =⊂ 平面AEH ,所以OB ⊥平面AEH ,而AE ⊂平面AEH ,所以AE OB ⊥,同理AF OC ⊥,因为60AOB AOC ∠=∠=︒,OEA OFA ∠=∠,OA OA =,所以OEA △≌OFA ,所以AE AF =,OE OF =,所以EH FH =,则OH 为BOC ∠的角平分线,由60BOC ∠=︒,可得30FOH ∠=︒,令HF a =,则2OH a =,OF =,即OE OF ==,在直角三角形AOE 中,因为60AOB ∠=︒,所以cos 60AO ==︒,于是在直角三角形AOH 中,cosOH AOH OA ∠==即cos 3θ=.故选:D8.C【详解】分析:首先要明确有关最小角定理,之后对其中的角加以归类,从而得到两角的关系,即可得结果.详解:根据线面角是该直线与对应平面内的任意直线所成角中最小的角,所以有12θθ<,故选C.点睛:该题考查的是有关角的大小的比较问题,在思考的过程中,需要明确角的意义,从而结合最小角定理,得到结果.9.D【分析】由题意画出图形,作出直线AB 与l 所成角及二面角l αβ--的平面角,设AC BD CD a ===,由已知直线AB 与l 所成角大小,即可求解二面角l αβ--的大小.【详解】解:如图,在β内,过B 作//BE DC ,且BE DC =,连接,CE AE ,由BD l ⊥,则四边形DCEB 为矩形,可得CE l ⊥,CE BD CD ==,AC l ⊥ ,得ACE ∠为二面角l αβ--的平面角,且l ⊥平面ACE即BE ⊥平面ACE ,则BE AE⊥设AC BD CD a ===,则CE BE a ==,又直线AB 与l 所成角为60º,60ABE ∴∠=︒,得AE ,∴在ACE △中,2221cos 22AC CE AE ACE AC CE +-∠=-⋅.120∴∠=︒ACE 故二面角l αβ--的大小为120︒.故选:D .10.B【解析】在正方体中构造符合条件的图形,由正方体的性质即可求解.【详解】以正方体为模型,构造满足条件的几何图形如下图所示,连接QR ,由正方体的性质可得PQR 为等边三角形,故60QPR ∠=︒,故选:B.【点睛】本题主要考查了直二面角,正方体的性质,属于中档题.11.D【分析】从C 向平面α作垂线CD ,作CE AB ⊥,证得DE AB ⊥,分ABC ∠为锐角和钝角,由线面角及二面角结合勾股定理及余弦定理求解即可.【详解】从C 向平面α作垂线CD ,连接,AD BD ,作CE AB ⊥,连接DE ,AB α⊂,则CD AB ⊥,,,CD CE C CD CE ⋂=⊂平面CDE ,则AB ⊥平面CDE ,又DE ⊂平面CDE ,则DE AB ⊥,如图所示:设,45,,30,22CD h CBD BC CAD AC CD h =∠=︒=∠=︒==,CED ∠是二面角的平面角,60,CED CE ∠=︒=,由勾股定理,AE BE ==,当ABC ∠为锐角,CE 在ABC 内,AB AE BE =+=,))()2222,h =+ 即222AB BC AC =+,90,sin 1ACB ACB ∴∠=︒∠=;当ABC ∠为钝角,CE 在ABC 之外,3AB AE BE h =-=,根据余弦定理,2222cos ,AB AC BC AC BC ACB =+-∠())222222cos3h h h ACB ⎛⎫=+-⨯⨯∠ ⎪ ⎪⎝⎭cos 3ACB ⇒∠=,1sin 3ACB ∠,综上:sin ACB ∠的值为1或13.故选:D .12.2【分析】作出辅助线,得到1DD 为轴的圆锥母线(母线与1DD 成60︒)是直线l 的运动轨迹,1D A 为轴的圆锥母线(母线与1D A 成45︒)是直线l 的运动轨迹,两个圆锥的交线即为满足条件的直线l 的条数.【详解】设立方体的棱长为1,过1D 作直线l ,若直线l 与平面ABCD 中的直线所成角的最小值为6π,即l 与平面ABCD 所成角为6π,1DD 为轴的圆锥母线(母线与1DD 成60︒)是直线l 的运动轨迹,连接1D A ,由题意得11D A BC ∥,直线l 与直线1BC 所成角为π4,直线l 与直线1D A 所成角为π4.此时1D A 为轴的圆锥母线(母线与1D A 成45︒)是直线l 的运动轨迹,两个圆锥相交得到两条交线.故答案为:213.,62ππ⎡⎤⎢⎣⎦【分析】设BC 的中点为D ,连接,SD AD ,根据等腰与直角三角形的性质可得ADS ∠为二面角S BC A --的平面角,3ASD π∠=,且直线l 不妨看作以SA 为轴,轴截面的顶角为3π的圆锥母线所在的直线,进而求得线面角的最大值与最小值即可.【详解】如图,设BC 的中点为D ,连接,SD AD .因为SA ⊥平面,ABC SB SC ==AB AC =,所以,AD BC BC SD ⊥⊥,所以ADS ∠为二面角S BC A --的平面角.又,AB AC BC ⊥=1AB AC AD SA ====,故3ASD π∠=.直线l 不妨看作以SA 为轴,轴截面的顶角为3π的圆锥母线所在的直线,所以直线l 与平面SBC 所成角的最小值为366πππ-=,最大值为362πππ+=,故直线l 与平面SBC 所成角的取值范围是,62ππ⎡⎤⎢⎥⎣⎦.故答案为:,62ππ⎡⎤⎢⎥⎣⎦14【分析】把l 和直线AE 所成角转化为AE 与平面α所成角,结合线面角的性质可求答案.【详解】设AE 与平面α所成角为1θ,因为l α⊥,l 和直线AE 所成角为θ,所以1sin cos θ=θ;取CD 的中点F ,连接,EF AF ,因为,E F 分别为中点,所以//EF BC ,AEF ∠或其补角是AE 与BC 所成角;在AEF △中,12AE AF EF ===,所以cos 6AEF ∠=且AEF ∠为锐角.三棱锥绕BC 旋转的过程中,由线面角的性质可知,1AEF θ≤∠,所以1cos cos 6AEF θ≥∠=,即sin θ15【分析】过点C 作CO α⊥,垂足为O ,连,OA OB ,则CBO ∠是直线BC 与平面α所成的角,CAO ∠是AC 与平面α所成的角,利用直角三角形可求出结果.【详解】解:过点C 作CO α⊥,垂足为O ,连,OA OB,则CBO ∠是直线BC 与平面α所成的角,CAO ∠是AC 与平面α所成的角,则π=4CAO ∠,∵AC ,∴==CO OA a ,在直角三角形ABC 中,π=2A ∠,=AB a,AC∴BC ,在直角三角形COB中,sin =CO CBO BC ∠∴直线BC 与平面α.16.B 【分析】根据鳖臑的性质,结合四面体内切球的性质、棱锥的体积公式、棱锥和球的表面积公式进行求解即可.【详解】解:因为四面体ABCD 四个面都为直角三角形,AB ⊥平面BCD ,BC CD ⊥,所以AB BD ⊥,AB BC ⊥,BC CD ⊥,AC CD ⊥,设四面体ABCD 内切球的球心为O ,则()13ABCD O ABC O ABD O ACD O BCD ABC ABD ACD BCD V V V V V r S S S S ----=+++=+++△△△△内,所以3ABCDV r S =内,因为四面体ABCD的表面积为1ABCD ABC ABD ACD BCD S S S S S =+++=△△△△,又因为四面体ABCD 的体积16ABCD V =,所以312V r S ==内,所以24(3S r ππ==-球,故选:B【点睛】关键点睛:利用棱锥的等积性进行求解是解题的关键.17.D【分析】利用正弦定理求出ABC 的外接圆半径为1,结合PA ⊥面ABC ,PA =接球半径,进而求出外接球的表面积.【详解】设ABC 的外接圆半径为R ,因为30A = ,1BC =,由正弦定理得:122sin sin 30BC R A ===︒,所以ABC 的外接圆半径为1,设球心O 在ABC 的投影为D ,则DA =1,因为PA ⊥面ABC ,PA =12OD PA ==2OA ==,即此三棱锥的外接球的半径为2,故外接球表面积为24π216π⨯=.故选:D 18.B【分析】先设出未知量,即圆锥半径为r ,圆锥高为h ,分析组合体轴截面图,找出h 与r 的一组关系式,再根据题意中圆锥与球体的体积关系找出另一组h 与r 的关系式即可求出答案.【详解】如下图组合体的轴截面,设圆锥半径为r ,圆锥高为h ,则CF r =,1AO h =-,AC ,由sin sin OAE CAF =∠∠得OE CFOA CA=,代入得222220h r hr h --=①,由“该圆锥体积是球体积两倍”可知23142(1)33V r h =⋅=⨯⨯ππ,即28hr =②,联立两式得4h =.故选:B19.C【分析】根据正四棱柱的性质求得棱柱的高,三棱锥111B A B C -的外接球即为正四棱柱的外接球,棱柱的对角线即为其外接球的直径,求得球半径后可得表面积.【详解】设正四棱柱1111ABCD A B C D -的高为h ,因为正方形ABCD 的面积为36,所以11116A B B C ==,在111Rt A B C △中,由勾股定理得11A C =在1Rt BCC 中,由勾股定理得22136BC h =+,11A B BC =,因为11 A BC △的面积为所以12⋅=10h =,依题意,三棱锥111B A B C -的外接球即为正四棱柱1111ABCD A B C D -的外接球,其半径为12R ==,所以三棱锥111B A B C -的外接球的表面积为24172ππ⋅=.故选:C .20.B【分析】根据题意可求得ABC 的外接圆半径,再根据勾股定理求出四面体-P ABC 的外接球的半径,即可求解.【详解】解:如图所示:在ABC 中,3tan 2ABC ∠=,又22sin cos 1ABC ABC ∠+∠= 且()0,ABC π∠∈,故解得:cos ,sin 1313ABC ABC ∠=∠=,由余弦定理得:2222cos AC AB BC AB BC ABC =+-⋅⋅∠,即222222=913AC =+-⨯⨯,故3AC =,设ABC 的外接圆半径为r ,则2sin 13ACr ABC===∠,设ABC 的外接圆圆心为1O ,四面体-P ABC 的外接球球心为O ,则222222211117124OA OO O A PA r ⎛⎫=+=+=+= ⎪⎝⎭⎝⎭,∴四面体-P ABC 的外接球的表面积为:174=174ππ⨯.故选:B.21.A【分析】设球半径为R ,圆锥的底面半径为r ,利用扇形的弧长和面积公式求得R ,即可求解.【详解】圆锥的顶点和底面圆周都在球O 面上,圆锥的侧面展开图的圆心角为23π,面积为3π,设母线为l ,则212323l ππ⨯⨯=,可得:3l =,由扇形的弧长公式可得:223r l ππ=,所以1r =,圆锥的高1OO ==,由()222r RR +=,解得:R =所以球O 的表面积等于2818144328R πππ=⨯=,故选:A 22.B【分析】先确定底面ABC 的外接圆圆心及半径,再确定球心位置,并利用球心和圆心的连线垂直于底面,得到直角三角形,利用勾股定理求解.【详解】设12AB AC AA m ===,三角形ABC 外接圆1O 的半径为r ,直三棱柱111ABC A B C -外接球O 的半径为R .因为120BAC ∠=︒,所以30ACB ∠=︒,于是24sin 30r ABm ==︒,2r m =,12O C m =.又球心O 到平面ABC 的距离等于侧棱长1AA 的一半,所以1OO m =.在1Rt OO C 中,由22211OC OO O C =+,得2224R m m =+,R =.所以球的体积34)33V π==,解得1m =.于是直三棱柱的高是122AA m ==.故选:B.23.C【分析】设棱锥D ABE -的外接球球心为O ,半径为R ,则OM ⊥平面BCEF ,因为ABE 的面积为定值,所当高最大时,三棱锥D ABE -的体积最大,过D 作DF AE ⊥于F ,设点M 为ABE 的外心,则有222222(),DF OM FM R OM EM R -+=+=通过计算可得点M 为外接球的球心,从而可求得结果【详解】解:过D 作DF AE ⊥于F ,设点M 为ABE 的外心,G 为AE 的中点,连接,MG MF ,因为正方形ABCD 中,2AB =,E 是CD 边的中点,所以1DE =,则AE BE ===,2EG =,AD DE DF AE ⋅=所以EF ===12MG EG ==,54EM =,所以2510FG EG EF =-=,所以20FM =,设棱锥D ABE -的外接球球心为O ,半径为R ,则OM ⊥平面BCEF ,设OM x =,因为ABE 的面积为定值,所当高最大时,三棱锥D ABE -的体积最大,此时平面ADE ⊥平面BCEF ,因为DF AE ⊥,平面ADE 平面BCEF AE =,所以DF ⊥平面BCEF ,所以222222(),DF OM FM R OM EM R -+=+=,所以2222()DF OM FM OM EM -+=+,所以2222DF DF OM FM EM -⋅+=,所以461252558016OM -⨯+=,解得0OM =,所以ABE 的外心为三棱锥D ABE -外接球的球心,所以54R EM ==所以三棱锥外接球的表面积为2252544164R πππ=⨯=24.D【分析】由已知条件先判定出球心的位置,然后运用正弦定理、余弦定理和勾股定理计算出球的半径,即可计算出外接球的表面积.【详解】如图,由3AB BC ==,AC =,得222AB BC AC +=,∴AB BC ⊥,由3BC =,4BD =,5CD =,得222BC BD CD +=,∴BC BD ⊥,又AB BD B = ,∴BC ⊥平面ABD ,设ABD △的外心为G ,过G 作底面的垂线GO ,使12GO BC =,则O 为三棱锥外接球的球心,在ABD △中,由3AB AD ==,4BD =,得2223341cos 2339BAD +-∠==⨯⨯,sin BAD ∠=,设ABD △的外接圆的半径为r ,则r =,32OG =,∴2223126220OB ⎛⎫=+= ⎪⎝⎭.∴三棱锥外接球的表面积为21261264π4ππ205R =⨯=.25.A【分析】先确定出三角形ACD 外接圆的圆心O ',然后过O '作垂直于平面ABCD 的垂线l ,再过SA 中点M 向l 作垂线,垂足即为球心,根据线段长度可求解出球的半径,则球的体积可求.【详解】因为AB BC ⊥,BCD DAB π∠+∠=,所以222CDA ππππ∠=--=,所以CD AD ⊥,所以ACD 外接圆的圆心为AC 的中点,记为O ',过O '作直线l 使得l ⊥平面ABCD ,取SA 中点M ,过M 作MO l ⊥垂足为O ,则OA OS OC OD ===,所以O 为四面体S ACD -外接球的球心,因为,,SA BC AB BC SA AB A ⊥⊥= ,所以BC ⊥平面SAB ,BC SB ⊥,又AB BC ⊥,所以二面角S BC A --的平面角为SBA ∠,所以3SBA π∠=,因为2SA =,所以3tan3SA AB π==,所以2AC ==,所以112AO MO AC '===,又因为112AM SM OO AS '====,所以AO ==所以四面体S ACD -外接球的体积为34=33π,故选:A.26.34π【分析】把三棱锥放入一个长方体中,转化为求长方体外接球的半径即可得解.【详解】三棱锥-P ABC 可以嵌入一个长方体内,且三棱锥的每条棱均是长方体的面对角线,如图,设PA BC ==,PB AC PC AB x ====,长方体交于一个顶点的三条棱长为a ,b ,c ,则122ABCS =⨯=△,解得5x =.由题得(222218a b PA +===,22225a c AC +==,22225b c PC +==,解之得3a =,3b =,4c =.所以该三棱锥的外接球的半径为R ==,所以该三棱锥的外接球的表面积为2244342S R πππ⎛⎫==⨯= ⎪ ⎪⎝⎭.故答案为:34π27.169π9##169π9【分析】取AB 的中点D 可得PD AB ⊥,由222PD CD PC +=得PD CD ⊥,根据线面垂直的判断定理得PD ⊥平面ABC ,得三棱锥-P ABC 外接球的球心O 在线段PD 上,由()2222R PD OD OD AD =-=+可得答案.【详解】如图,取AB 的中点D ,连接PD ,CD .由题意可得2AD BD CD ===,因为PA PB =,所以PD AB ⊥,因为PA =,所以3PD =,所以222PD CD PC +=,所以90PDC ∠= ,即PD CD ⊥.因为AB CD D = ,所以PD ⊥平面ABC ,设三棱锥-P ABC 外接球的球心为O ,由题意易得三棱锥-P ABC 外接球的球心O 在线段PD 上,如下图则三棱锥-P ABC 外接球的半径R 满足()2222R PD OD OD AD =-=+,解得56=OD ,所以513366=-=R ,216936R =;若三棱锥-P ABC 外接球的球心O 在线段PD 的延长线上,如下图,则三棱锥-P ABC 外接球的半径R 满足()2222=+=+R PD OD OD AD ,()22232+=+OD OD ,无解;所以,三棱锥-P ABC 外接球的表面积2169π4π9S R ==.故答案为:169π9.28.18π【分析】由题可得当BA 、BC 、BD 两两垂直时,三棱锥的体积最大,将三棱锥补形为一个长宽高分别为.【详解】当BA 、BC 、BD 两两垂直时,如图三棱锥A BCD -的底面BCD △的面积和高同时取得最大值,则三棱锥的体积最大,此时将三棱锥补形为一个长宽高分别为长方体的外接球即为三棱锥的外接球,球的半径r =,表面积为24π18πr =.故答案为:18π.29【分析】计算出外接球的半径,进而求得外接球的体积.【详解】等边三角形PAC 的高为πsin 33⨯==,等边三角形PAC 的外接圆半径为222sin6π=三角形ABC 的外接圆半径为22sin3π=,设12,O O 分别是等边三角形PAC 、等边三角形ABC 的中心,设O 是三棱锥-P ABC 的外接球的球心,R 是外接球的半径,则2222215R OA R ==+=⇒=,所以外接球的体积为34π3R =.故答案为:330.D 【分析】将三棱锥P -ABC 补全为长方体,长方体的外接球就是所求的外接球,长方体的对角线就是外接球直径,计算出半径后可得表面积.【详解】将三棱锥P -ABC 补全为长方体,则长方体的外接球就是所求的外接球,设球半径为R ,则()222224214R R PA PB PC ==++=,所以球的表面积为2414S R ππ==.故选:D .31.2π【分析】设O 为正方形ABCD 的中心,AB 的中点为M ,连接PM ,OM ,PO ,可画出内切球的切面图,分别求出大球和小球的半径分别为2R =和4r =,从而求出小球2O 的表面积.【详解】设O 为正方形ABCD 的中心,AB 的中点为M ,连接PM ,OM ,PO ,则1OM =,221013PM PA AM =-=-=,9122PO =-=,如图,在截面PMO 中,设N 为球1O 与平面PAB 的切点,则N 在PM 上,且1O N PM ⊥,设球1O 的半径为R ,则1O N R =,∵1sin 3OM MPO PM ∠==,∴1113NO PO =,则13PO R =,11422PO PO OO R =+==,∴22R =,设球1O 与球2O 相切于点Q ,则22PQ PO R R =-=,设球2O 的半径为r ,同理可得4PQ r =,∴224R r ==,故小球2O 的表面积242r ππ=.故答案为:2π。

立体几何常见二级结论及应用

立体几何常见二级结论及应用

立体几何的二级结论结论一: 斜二测画法直观图面积为原图形面积的√24倍备注:在用斜二测画法画直观图时,首先在画直观图的平面上画出对应的x'轴和y'轴,两轴相交于点O',且使∠x'O'y' =45°(或135°),在已知图形平行于x 轴的线段,在直观图中画成平行于x'轴,长度保持不变;在已知图形平行于y 轴的线段,在直观图中画成平行于y'轴,且长度为原来的一半。

结论二:n 面体的表面积为S ,体积为V ,则内切球的半径r=3V S证明:将内切球的球心与n 面体(n ≥4)的各顶点连线,就能将这个多面体分割成n 个棱锥,此时各棱锥的高就是内切球的半径r ;设n 面体体积为V ,各面面积分别为S 1,S 2,……,S n ,各棱锥体积分别为V 1,V 2,……,V n 则有:V=V 1+V 2+……+V n V=13S 1r+13S 2r+……+13S n r V=13r(S 1+S 2+……+S n ) V=13rS 即r=3V S备注:对于棱锥而言,只有三棱锥一定有内切球,内切球的球心在三个侧面与底面形成的三个二面角的角平分面的交点上。

对于n 棱锥(n ≥4),只有正n 棱锥才有内切球。

结论三:设点A 为面上一点,过点A 的斜线AO 在面上的射影为AB ,另外AC 为面上任意一条直线,则∠OAC ,∠BAC 和∠OAB 三角的余弦值存在如下的关系,被称为三余弦定理:cos ∠OAC=cos ∠BAC ·cos ∠OAB 证明:在AC 上找一点C 使得,BC ⊥AC ,连接OC 如下所示:cos ∠OAB=ABOA ①cos ∠BAC=ACAB ②∵ AC ⊥BC ,OB ⊥AC ∴ AC ⊥面OBC ,∴ AC ⊥OC ∴ cos ∠OAC=AC OA ③由①②③可知:cos ∠OAC=cos ∠BAC ·cos ∠OAB例题:已知直线L 与平面α所成角为45°,L 在α内的射影为m ,n 是α内的一条直线,且直线n 与m 所成角为45°,则直线L 与n 所成角为多少? 解:OAB COABC根据三余弦定理可知: cos θ=cos45°·cos45°=12又∵两条直线的夹角范围为[0,90°] ∴ θ=60°结论四:面积射影定理:设平面α外的△ABC 在平面α内的射影为△ABO ,分别记△ABC 与△ABO 的面积为S 和S ’,记△ABC 所在的平面与平面α所成的二面角为θ,则有:cos θ=S’S备注:当二面角的范围为(90°,180]时,cos θ=-S’S证明:过点C 作CD ⊥AB 于点D ,连接OD∵ CD ⊥AB又CO ⊥面ABO ,∴ CO ⊥AB ∴ AB ⊥面CDO ∴ AB ⊥OD∴ 二面角C-AB-D 的平面角即为∠CDOACOBA COBDS △ABC =12CD ·AB ,S △ABO =12OD ·AB∴ S △ABO S △ABC =OD CD=cos ∠CDO 例题:在正三棱柱ABC-A 1B 1C 1中,2AB=AA 1,D 为BB 1上的中点,求平面AC 1D 与平面ABC 所成角的正弦值。

立体几何常见结论

立体几何常见结论

立体几何常见结论1.平面平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。

(1).证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内 ,推出点在面内), 这样可根据公理2证明这些点都在这两个平面的公共直线上.(2).证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。

(3)。

证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证明两平面重合 2。

空间直线。

(1). 空间直线位置关系三种:相交、平行、异面. 相交直线:共面有且仅有一个公共点;平行直线:共面没有公共点;异面直线:不同在任一平面内,无公共点[注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(也可能两条直线平行,也可能是点和直线等)②直线在平面外,指的位置关系是平行或相交③若直线a 、b 异面,a 平行于平面α,b 与α的关系是相交、平行、在平面α内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点。

⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形) ⑥在同一平面内的射影长相等,则斜线长相等。

(×)(并非是从平面外一点..向这个平面所引的垂线段和斜线段)⑦b a ,是夹在两平行平面间的线段,若b a =,则b a ,的位置关系为相交或平行或异面.⑧异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线。

(不在任何一个平面内的两条直线)(2). 平行公理:平行于同一条直线的两条直线互相平行. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如右图)。

(直线与直线所成角]90,0[︒︒∈θ)(向量与向量所成角])180,0[ ∈θ推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.(3). 两异面直线的距离:公垂线段的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.[注]:21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内。

空间向量解立体几何常用结论

空间向量解立体几何常用结论

l
v
n
面面垂直 n1 n2 n1 n2 0
n1
n2
面面平行 // n1 // n2 n1 k n2
n2
n1
三、利用空间向量求夹角的基本原理
(1)异面直线所成的角 (范围: 0 )
2
v1
v1, v2
v2
统一结论: cos cos v1, v2
(2)二面角 (范围: 0 )

(3)模长公式:若 a (x1, y1, z1) , b (x2, y2, z2 ) ,
则| a |
aa
x12 y12 z12 , | b |
bb
x22
y22
z
2 2
(4)夹角公式: cos
ab
a b
| a | | b |
x1x2 y1 y2 z1z2

x12 y12 z12 x22 y22 z22
2
x2
,
y1
2
y2
,
z1
2
z2
二、利用空间向量证明平行、垂直的基本原理
线线平行 l // m v1 // v2 v1 kv2
v1
l
m
v2
线面平行 l // v n v n 0
v
l
n
线线垂直 l
m
v1
v2
v1
v2
0
v1
l
v2
m 线面垂直 l v // n v k n
利用空间向量解立体几何常用结论
一、空间向量的直角坐标运算:
(1)若 a (x1, y1, z1) , b (x2, y2, z2 ) ,则
a b (x1 x2, y1 y2, z1 z2 ) ,

高中立体几何常用公式及结论

高中立体几何常用公式及结论

高中立体几何常用公式及结论面面夹角公式图九、求点到面的距离的方法:① 直接法:直接确定点到平面的垂线段长(垂线段一般在二面角所在的平面上);② 转移法:转化为另一点到该平面的距离(利用线面平行的性质);③ 体积法:利用三棱锥体积公式。

④ 向量法:向量法中:点到面的距离公式图十、空间向量的坐标运算空间向量的坐标运算图十一、球① 球的半径是R,则其球图(1)② 球的组合体(1)球与长方体的组合体:长方体的外接球的直径是长方体的体对角线长。

(2)球与正方体的组合体:正方体的内切球的直径是正方体的棱长;正方体的棱切球的直径是正方体的面对角线长;正方体的外接球的直径是正方体的体对角线长。

(3)球与正四面体的组合体:棱长为 a 的正四面体的内切球的半径为(√6 /12) a球图(2)十二、多面体:(1)棱柱:两底面互相平行,侧面都是平行四边形,侧棱平行且相等。

棱柱图(2)正棱锥:底面是正多边形,侧面是等腰三角形,顶点在底面内的射影是底面中心性质:Ⅰ、平行于底面的截面和底面相似;截面的边长和底面的对应边边长的比等于截得的棱锥的高与原棱锥的高的比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;Ⅱ、各侧面都是全等的等腰三角形;通过四个直角三角形正棱锥图(1)实现边,高,斜高间的换算。

正棱锥图(2)(3)正四面体:正四面体图(1)对于棱长为 a 正四面体的问题可将它补成一个边长为√2/2 a 的正方体问题。

对棱间的距离为√2/2 a (正方体的边长)正四面体的高√6/3 a (= 2/3 × L正方体体对角线)正四面体的体积为正四面体图(2)正四面体的中心到底面与顶点的距离之比为 1 : 3。

立体几何中的公理、定理和常用结论汇总

立体几何中的公理、定理和常用结论汇总

立体几何中的公理、定理和常用结论汇总1.四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.公理2:过不在一条直线上的三点,有且只有一个平面.公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面;推论2:经过两条相交直线有且只有一个平面;推论3:经过两条平行直线有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4:平行于同一条直线的两条直线互相平行.2.异面直线判定的一个定理过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.3.等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.4.平行与垂直的八大定理(1).直线与平面平行的判定定理和性质定理文字语言图形语言符号语言判定定理平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(简记为“线线平行⇒线面平行”)因为l∥a,a⊂α,l⊄α,所以l∥α性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简记为“线面平行⇒线线平行”)因为l∥α,l⊂β,α∩β=b,所以l∥b(2).平面与平面平行的判定定理和性质定理文字语言图形语言符号语言判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”)因为a∥β,b∥β,a∩b=P,a⊂α,b⊂α,所以α∥β性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行因为α∥β,α∩γ=a,β∩γ=b,所以a∥b(3).直线与平面垂直的判定定理与性质定理文字语言图形语言符号语言判定定理一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直⎭⎪⎬⎪⎫a,b⊂αa∩b=Ol⊥al⊥b⇒l⊥α性质定理垂直于同一个平面的两条直线平行⎭⎪⎬⎪⎫a⊥αb⊥α⇒a∥b(4).平面与平面垂直的判定定理与性质定理文字语言图形语言符号语言判定定理一个平面过另一个平面的垂线,则这两个平面垂直⎭⎪⎬⎪⎫l⊂βl⊥α⇒α⊥β性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直⎭⎪⎬⎪⎫α⊥βl⊂βα∩β=al⊥a⇒l⊥α5.(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.(2)垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b.(3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.(4)如果两个平面平行,那么一个平面的任意一条直线与另一个平面平行.6.垂直关系中的三个重要结论(1)两平行线中的一条与平面垂直,则另一条也与这个平面垂直.(2)一条直线垂直于两平行平面中的一个,则与另一个平面也垂直.(3)若果一条直线垂直于一个平面,那么该直线与平面中的任意直线垂直.。

高考数学:立体几何常用二级结论

高考数学:立体几何常用二级结论

立体几何常用二级结论及解题方法梳理1.从一点O 出发的三条射线OA 、OB 、OC .若AOB AOC ∠=∠,则点A 在平面BOC 上的射影在BOC ∠的平分线上;2.立平斜三角余弦公式:(图略)AB 和平面所成的角是1θ,AC 在平面内,AC 和AB 的射影1AB 成2θ,设3BAC θ∠=,则123cos cos cos θθθ=;3.异面直线所成角的求法:⑴平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线.⑵补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系;4.直线与平面所成角:过斜线上某个特殊点作出平面的垂线段,是产生线面角的关键.5.二面角的求法:⑴定义法;⑵三垂线法;⑶垂面法;⑷射影法:利用面积射影公式cos S S θ=射斜,其中θ为平面角的大小,此方法不必在图形中画出平面角;6.空间距离的求法:⑴两异面直线间的距离,高考要求是给出公垂线,所以一般先利用垂直作出公垂线,然后再进行计算.⑵求点到直线的距离,一般用三垂线定理作出垂线再求解.⑶求点到平面的距离,一是用垂面法,借助面面垂直的性质来作.因此,确定已知面的垂面是关键;二是不作出公垂线,转化为求三棱锥的高,利用等体积法列方程求解.7.用向量方法求空间角和距离:⑴求异面直线所成的角:设a 、b分别为异面直线a 、b 的方向向量,则两异面直线所成的角||||||arccos a b a b α⋅⋅=.⑵求线面角:设l 是斜线l 的方向向量,n 是平面α的法向量,则斜线l 与平面α所成的角||||||arcsin l n l n α⋅⋅=.⑶求二面角(法一)在α内a l ⊥ ,在β内b l ⊥ ,其方向如图(略),则二面角l αβ--的平面角||||arccos a ba b α⋅⋅=.(法二)设1n ,2n是二面角l αβ--的两个半平面的法向量,其方向一个指向内侧,另一个指向外侧,则二面角l αβ--的平面角1212||||arccos n n n n α⋅⋅=.(4)求点面距离:设n是平面α的法向量,在α内取一点B ,则A 到α的距离|||||cos |||AB n d AB n θ⋅==(即AB 在n 方向上投影的绝对值).8.正棱锥的各侧面与底面所成的角相等,记为θ,则cos S S θ=侧底.面积射影定理:'cos S S θ=(平面多边形及其射影的面积分别是S 、'S ,它们所在平面所成锐二面角的为θ).9.正四面体(设棱长为a )的性质:①全面积2S =;②体积312V =;③对棱间的距离2d a =;④相邻面所成二面角13arccos α=;⑤外接球半径4R a =;⑥内切球半径12r a =;⑦正四面体内任一点到各面距离之和为定值63h a =.10.直角四面体的性质:(直角四面体—三条侧棱两两垂直的四面体).在直角四面体O ABC-中,,,OA OB OC 两两垂直,令,,OA a OB b OC c ===,则⑴底面三角形ABC 为锐角三角形;⑵直角顶点O 在底面的射影H 为三角形ABC 的垂心;⑶2BOC BHC ABC S S S ∆∆∆= ;⑷2222AOB BOC COA ABC S S S S ∆∆∆∆++=;⑸22221111OHabc=++;⑹外接球半径R=22212a b c R ++=.11.已知长方体的体对角线与过同一顶点的三条棱所成的角分别为,,αβγ因此有22cos cos αβ+2cos 1γ+=或222sin sin sin 2αβγ++=;若长方体的体对角线与过同一顶点的三侧面所成的角分别为,,αβγ,则有222sin sin sin 1αβγ++=或222cos cos cos 2αβγ++=.12.正方体和长方体的外接球的直径等与其体对角线长;13.球的体积公式343V R π=,表面积公式24S R π=;掌握球面上两点A 、B 间的距离求法:⑴计算线段AB 的长;⑵计算球心角AOB ∠的弧度数;⑶用弧长公式计算劣弧AB 的长.14.立体几何常切接问题模型类型一、三垂直模型(三条线两个垂直,不找球心的位置即可求出球半径)方法:找三条两两垂直的线段,直接用公式2222)2(c b a R ++=,即2222c b a R ++=,求出R类型二、垂面模型(一条直线垂直于一个平面)1.题设:如图5,⊥P A 平面ABC 解题步骤:第一步:将ABC ∆画在小圆面上,A 为小圆直径的一个端点,作小圆的直径AD ,连接PD ,则PD 必过球心O ;第二步:1O 为ABC ∆的外心,所以⊥1OO 平面ABC ,算出小圆1O 的半径r D O =1(三角形的外接圆直径算法:利用正弦定理,得r C c B b A a 2sin sin sin ===),P A OO 211=;第三步:利用勾股定理求三棱锥的外接球半径:①222)2()2(r P A R +=⇔22)2(2r P A R +=;②2122OO r R +=⇔212OO r R +=2.题设:如图6,7,8,P 的射影是ABC ∆的外心⇔三棱锥ABC P -的三条侧棱相等⇔三棱锥ABC P -的底面ABC ∆在圆锥的底上,顶点P 点也是圆锥的顶点解题步骤:第一步:确定球心O 的位置,取ABC ∆的外心1O ,则1,,O O P 三点共线;第二步:先算出小圆1O 的半径r AO =1,再算出棱锥的高h PO =1(也是圆锥的高);第三步:勾股定理:21212O O A O OA +=⇒222)(r R h R +-=,解出R类型三、两平面垂直模型1.题设:如图9-1,平面⊥P AC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径)第一步:易知球心O 必是P AC ∆的外心,即P AC ∆的外接圆是大圆,先求出小圆的直径r AC 2=;第二步:在P AC ∆中,可根据正弦定理R CcB b A a 2sin sin sin ===,求出R 2.如图9-2,平面⊥P AC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径)21212O O C O OC +=⇔2122O O r R +=⇔2122O O R AC -=15..判定线线平行的方法(1)利用定义:证明线线共面且无公共点.(2)利用平行公理:证明两条直线同时平行于第三条直线.(3)利用线面平行的性质定理:a∥α,a ⊂β,α∩β=b ⇒a∥b.(4)利用面面平行的性质定理:α∥β,α∩γ=a,β∩γ=b ⇒a∥b.(5)利用线面垂直的性质定理:a⊥α,b⊥α⇒a∥b.16.判定线面平行的方法(1)利用定义:证明直线a与平面α没有公共点,往往借助反证法.(2)利用直线和平面平行的判定定理:a⊄α,b⊂α,a∥b⇒a∥α.(3)利用面面平行的性质的推广:α∥β,a⊂β⇒a∥α.17.判定面面平行的方法(1)利用面面平行的定义:两个平面没有公共点.(2)利用面面平行的判定定理:a⊂α,b⊂α,a∩b=A,a∥β,b∥β⇒α∥β.(3)垂直于同一条直线的两个平面平行,即a⊥α,a⊥β⇒α∥β.(4)平行于同一个平面的两个平面平行,即α∥γ,β∥γ⇒α∥β.18.证明直线与平面垂直的方法(1)利用线面垂直的定义:若一条直线垂直于一个平面内的任意一条直线,则这条直线垂直于这个平面.符号表示:∀a⊂α,l⊥a⇔l⊥α.(其中“∀”表示“任意的”)(a⊥b,a⊥c,b⊂α,c⊂α,b∩c=M⇒a⊥α).(2)利用线面垂直的判定定理:若一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.符号表示:l⊥m,l⊥n,m⊂α,n⊂α,m∩n=P⇒l⊥α.(3)若两条平行直线中的一条垂直于一个平面,则另一条也垂直于这个平面.符号表示:a∥b,a⊥α⇒b⊥α.(4)利用面面垂直的性质定理:若两平面垂直,则在一个平面内垂直于交线的直线必垂直于另一个平面.符号表示:α⊥β,α∩β=l,m⊂α,m⊥l⇒m⊥β.(5)平行线垂直平面的传递性质(a∥b,b⊥α⇒a⊥α).(6)面面平行的性质(a⊥α,α∥β⇒a⊥β).(7)面面垂直的性质(α∩β=l,α⊥γ,β⊥γ⇒l⊥γ).19.证明平面与平面垂直的方法(1)利用平面与平面垂直的定义:若两个平面相交,所成的二面角是直二面角,则这两个平面互相垂直.符号表示:α∩β=l,O∈l,OA⊂α,OB⊂β,OA⊥l,OB⊥l,∠AOB=90°⇒α⊥β. (2)利用平面与平面垂直的判定定理:若一个平面通过另一个平面的垂线,则这两个平面互相垂直.符号表示:l⊥α,l⊂β⇒α⊥β.20.空间向量的坐标表示及运算(1)数量积的坐标运算设a=(a1,a2,a3),b=(b1,b2,b3),则①a±b=(a1±b1,a2±b2,a3±b3);②λa=(λa1,λa2,λa3);③a·b=a1b1+a2b2+a3b3.(2)共线与垂直的坐标表示设a=(a1,a2,a3),b=(b1,b2,b3),则a∥b ⇔a=λb ⇔a1=λb1,a2=λb2,a3=λb3(λ∈R),a⊥b ⇔a·b=0⇔a1b1+a2b2+a3b3=0(a,b 均为非零向量).(3)模、夹角和距离公式设a=(a1,a2,a3),b=(b1,b2,b3),则|a|=a·a=a21+a22+a23,cos〈a,b〉=a·b|a||b|=a1b1+a2b2+a3b3a21+a22+a23·b21+b22+b23.设A(a1,b1,c1),B(a2,b2,c2),则dAB=|AB →|=错误!.21.立体几何中的向量方法(1)直线的方向向量与平面的法向量的确定①直线的方向向量:l 是空间一直线,A,B 是直线l 上任意两点,则称AB →为直线l 的方向向量,与AB →平行的任意非零向量也是直线l 的方向向量.②平面的法向量可利用方程组求出:设a,b 是平面α内两不共线向量,n 为平面α的法向(2)用向量证明空间中的平行关系①设直线l1和l2的方向向量分别为v1和v2,则l1∥l2(或l1与l2重合)⇔v1∥v2.②设直线l 的方向向量为v,与平面α共面的两个不共线向量v1和v2,则l∥α或l ⊂α⇔存在两个实数x,y,使v=xv1+yv2.③设直线l 的方向向量为v,平面α的法向量为u,则l∥α或l ⊂α⇔v⊥u.④设平面α和β的法向量分别为u1,u2,则α∥β⇔u1∥u2.(3)用向量证明空间中的垂直关系①设直线l1和l2的方向向量分别为v1和v2,则l1⊥l2⇔v1⊥v2⇔v1·v2=0.②设直线l 的方向向量为v,平面α的法向量为u,则l⊥α⇔v∥u.③设平面α和β的法向量分别为u1和u2,则α⊥β⇔u1⊥u2⇔u1·u2=0.(4)点面距的求法如图,设AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离d=|AB →·n||n|.22.空间向量与空间角的关系(1)设异面直线l1,l2的方向向量分别为m1,m2,则l1与l2的夹角θ满足cos θ=|cos 〈m1,m2〉|.(2)设直线l 的方向向量和平面α的法向量分别为m,n,则直线l 与平面α的夹角θ满足sin θ=|cos〈m,n〉|.(3)求二面角的大小(ⅰ)如图①,AB、CD 是二面角α­l ­β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.(ⅱ)如图②③,n1,n2分别是二面角α­l ­β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos〈n1,n2〉或-cos〈n1,n2〉.。

高考立体几何知识点详细复习总结

高考立体几何知识点详细复习总结

立体几何知识点一、立体几何网络图:(1)线线平行的判断:⑴平行于同一直线的两直线平行。

⑶如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

⑹如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

⑿垂直于同一平面的两直线平行。

(2)线线垂直的判断:⑺在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。

⑻在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直。

⑽若一直线垂直于一平面,这条直线垂直于平面内所有直线。

补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。

(3)线面平行的判断:⑵如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。

⑸两个平面平行,其中一个平面内的直线必平行于另一个平面。

(4)线面垂直的判断:⑼如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面。

⑾如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。

⒁一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。

⒃如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面。

(5)面面平行的判断:⑷一个平面内的两条相交直线分别平行于另一个平面,这两个平面平行。

⒀垂直于同一条直线的两个平面平行。

(6)面面垂直的判断: ⒂一个平面经过另一个平面的垂线,这两个平面互相垂直。

二、其他定理:(1)确定平面的条件:①不公线的三点;②直线和直线外一点;③相交直线; (2)直线与直线的位置关系: 相交 ; 平行 ; 异面 ;直线与平面的位置关系: 在平面内 ; 平行 ; 相交(垂直是它的特殊情况) ; 平面与平面的位置关系: 相交 ;; 平行 ;(3)等角定理:如果两个角的两边分别平行且方向相同,那么这两个角相等;如果两条相交直线和另外两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等;(4)射影定理(斜线长、射影长定理):从平面外一点向这个平面所引的垂线段和斜线段中,射影相等的两条斜线段相等;射影较长的斜线段也较长;反之,斜线段相等的射影相等;斜线段较长的射影也较长;垂线段比任何一条斜线段都短。

中职数学第九章立体几何知识点

中职数学第九章立体几何知识点

立体几何一、 平面.定义:无限延展,没有边界(光滑、平坦) 平面的基本性质:定理1:如果直线l 上的两个点都在平面α 内,那么这条直线在这个平面内。

记作:l α⊆ 定理2:如果两个平面有公共点,那么有且仅有一条过该公共点的公共直线。

记作:p αβ∈ ⇒ ,l p l αβ=∈定理3:不在同一条直线上的三点确定一个平面. 结论1:直线与直线外一点可以确定一个平面 结论2:两条相交线可以确定一个平面 结论3:两条平行线可以确定一个平面二、空间直线.空间直线位置关系:相交、平行、异面 分类:㈠.1.定义:不同在任何一个平面内的两条直线,叫异面直线。

2.判定定理:一条直线与平面相交,该直线与平面内不过交点的直线是异面直线。

,,,a A b A b a b αα=⊆∉⇒ 是异面直线3.异面直线所成的角:经过空间任意一点分别作与两条异面直线平行的直线,这两条相交直线的夹角叫做两条异面直线所成的角。

范围:0,2π⎛⎤⎥⎝⎦当两条异面直线所成的角为直角时,称这两条异面直线垂直。

㈡平行:1.平行公理:平行于同一条直线的两条直线互相平行.2. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如下图).推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.12方向相同12方向不相同三、直线与平面1. 直线与平面的位置关系:相交、平行、在平面内(其中相交、平行统称在平面外) 记作:,a ,a a A ααα=⊆2.直线与平面平行:判定定理:如果平面外一条直线与平面内一条直线平行,那么这条直线与这个平面平行。

,,b a a b a ααα⊄⊆⇒性质定理:如果一条直线与一个平面平行,并且经过这条直线的一个平面和这个平面相交,那么这条直线与交线平行。

,,a a b a b αβαβ⊆=⇒3.直线与平面所成的角:斜线l 与它在平面α 内的射影的夹角,叫做直线与平面α所成的角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何常见结论1.平面平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。

(1).证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内 ,推出点在面内), 这样可根据公理2证明这些点都在这两个平面的公共直线上。

(2).证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。

(3).证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证明两平面重合 2. 空间直线.(1). 空间直线位置关系三种:相交、平行、异面. 相交直线:共面有且仅有一个公共点;平行直线:共面没有公共点;异面直线:不同在任一平面内,无公共点[注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(也可能两条直线平行,也可能是点和直线等)②直线在平面外,指的位置关系是平行或相交③若直线a 、b 异面,a 平行于平面α,b 与α的关系是相交、平行、在平面α内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点.⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形) ⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一点..向这个平面所引的垂线段和斜线段)⑦b a ,是夹在两平行平面间的线段,若b a =,则b a ,的位置关系为相交或平行或异面.⑧异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)(2). 平行公理:平行于同一条直线的两条直线互相平行. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如右图). (直线与直线所成角]90,0[︒︒∈θ)(向量与向量所成角])180,0[οο∈θ推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.(3). 两异面直线的距离:公垂线段的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.[注]:21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面) 3. 直线与平面平行、直线与平面垂直.(1). 空间直线与平面位置分三种:相交、平行、在平面内.(2). 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行⇒线面平行”)[注]:①直线a 与平面α内一条直线平行,则a ∥α. (×)(平面外一条直线) ②直线a 与平面α内一条直线相交,则a 与平面α相交. (×)(平面外一条直线)③若直线a 与平面α平行,则α内必存在无数条直线与a 平行. (√)(不是任意一条直线,可利用平行的传递性证之)④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×)(可能在此平面内) ⑤平行于同一个平面的两直线平行.(×)(两直线可能相交或者异面) ⑥直线l 与平面α、β所成角相等,则α∥β.(×)(α、β可能相交)(3). 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行⇒线线平行”)(4). 直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直.● 若PA ⊥α,a ⊥AO ,得a ⊥PO (三垂线定理), ● 三垂线定理的逆定理亦成立.直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直⇒线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.性质:如果两条直线同垂直于一个平面,那么这两条直线平行.(5).a.垂线段和斜线段长定理:从平面外一点..向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.[注]:垂线在平面的射影为一个点. [一条直线在平面内的射影是一条直线.(×)]b.射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上。

4. 平面平行与平面垂直.(1). 空间两个平面的位置关系:相交、平行.POAa(2). 平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(“线面平行⇒面面平行”)推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行. [注]:一平面内的任一直线平行于另一平面.(3). 两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.(“面面平行⇒线线平行”)(4). 两个平面垂直判定一:两个平面所成的二面角是直二面角,则两个平面垂直.两个平面垂直判定二:如果一条直线与一个平面垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直⇒面面垂直”)注:如果两个二面角的平面分别对应互相垂直,则两个二面角没有什么关系.(5). 两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.推论:如果两个相交平面都垂直于第三平面,则它们交线垂直于第三平面. 简证:如图,在平面内过O 作OA 、OB 分别垂直于21,l l ,因为ααββ⊥⊂⊥⊂OB PM OA PM ,,,则OB PM OA PM ⊥⊥,.所以结论成立 (1). a.最小角定理:21cos cos cos θθθ=(1θ为最小角,如图) b.最小角定理的应用(∠PBN 为最小角)简记为:成角比交线夹角一半大,且又比交线夹角补角一半长,一定有4条. 成角比交线夹角一半大,又比交线夹角补角小,一定有2条. 成角比交线夹角一半大,又与交线夹角相等,一定有3条或者2条.成角比交线夹角一半小,又与交线夹角一半小,一定有1条或者没有.5. 棱柱. 棱锥(1). 棱柱.a.①直棱柱侧面积:Ch S =(C 为底面周长,h 是高)该公式是利用直棱柱的侧面展开图为矩形得出的. ②斜棱住侧面积:l C S 1=(1C 是斜棱柱直截面周长,l 是斜棱柱的侧棱长)该公式是利用斜棱柱的侧面展开图为平行四边形得出的.b.{四棱柱}⊃{平行六面体}⊃{直平行六面体}⊃{长方体}⊃{正四棱柱}⊃{正方体}. {直四棱柱}I {平行六面体}={直平行六面体}.四棱柱直平行六面体长方体正四棱柱底面是平行四边形侧棱垂直底面底面是矩形底面是正方形PαβθM AB O图1θθ1θ2图2c.棱柱具有的性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;直棱柱的各个侧面都是矩形........;正棱柱的各个侧面都是全等的矩形...... ②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等..多边形. ③过棱柱不相邻的两条侧棱的截面都是平行四边形.注:①棱柱有一个侧面和底面的一条边垂直可推测是直棱柱. (×) (直棱柱不能保证底面是矩形,可如图) ②(直棱柱定义)棱柱有一条侧棱和底面垂直. d.平行六面体:定理一:平行六面体的对角线交于一点.............,并且在交点处互相平分. [注]:四棱柱的对角线不一定相交于一点.定理二:长方体的一条对角线长的平方等于一个顶点上三条棱长的平方和.推论一:长方体一条对角线与同一个顶点的三条棱所成的角为γβα,,,则 1cos cos cos 222=++γβα. 推论二:长方体一条对角线与同一个顶点的三各侧面所成的角为γβα,,,则2cos cos cos 222=++γβα. [注]:①有两个侧面是矩形的棱柱是直棱柱.(×)(斜四棱柱的两个平行的平面可以为矩形) ②各侧面都是正方形的棱柱一定是正棱柱.(×)(应是各侧面都是正方形的直.棱柱才行) ③对角面都是全等的矩形的直四棱柱一定是长方体.(×)(只能推出对角线相等,推不出底面为矩形) ④棱柱成为直棱柱的一个必要不充分条件是棱柱有一条侧棱与底面的两条边垂直. (两条边可能相交,可能不相交,若两条边相交,则应是充要条件)(2). 棱锥:棱锥是一个面为多边形,其余各面是有一个公共顶点的三角形. [注]:①一个三棱锥四个面可以都为直角三角形.②一个棱柱可以分成等体积的三个三棱锥;所以棱柱棱柱3V S h V ==.a.①正棱锥定义:底面是正多边形;顶点在底面的射影为底面正多边形的中心. [注]:i. 正四棱锥的各个侧面都是全等的等腰三角形.(不是等边三角形) ii. 正四面体是各棱相等,而正三棱锥是底面为正三角形,侧棱与底棱不一定相等iii. 正棱锥定义的推论:若一个棱锥的各个侧面都是全等的等腰三角形(即侧棱相等);底面为正多边形. ②正棱锥的侧面积:'Ch 21S =(底面周长为C ,斜高为'h ) ③棱锥的侧面积与底面积的射影公式:αcos 底侧S S =(侧面与底面成的二面角为α)labc附:以知c ⊥l ,b a =⋅αcos ,α为二面角b l a --. 则l a S ⋅=211①,b l S ⋅=212②,b a =⋅αcos ③ ⇒①②③得αcos 底侧S S =. 注:S 为任意多边形的面积(可分别求多个三角形面积和的方法).b.棱锥具有的性质:①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.c.特殊棱锥的顶点在底面的射影位置:①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心. ③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心. ④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心. ⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心. ⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径; ⑧每个四面体都有内切球,球心I 是四面体各个二面角的平分面的交点,到各面的距离等于半径.[注]:i. 各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(×)(各个侧面的等腰三角形不知是否全等)ii. 若一个三棱锥,两条相对棱互相垂直,则第三组相对棱必然垂直简证:AB ⊥CD ,AC ⊥BD ⇒ BC ⊥AD. 令===,, 得-=⋅⇒=-=-=,,已知()()0,0=-⋅=-⋅0=-⇒c b c a 则0=⋅AD BC .iii. 空间四边形OABC 且四边长相等,则顺次连结各边的中点的四边形一定是矩形. iv. 若是四边长与对角线分别相等,则顺次连结各边的中点的四边是一定是正方形.简证:取AC 中点'O ,则⊥⇒⊥'⊥'AC AC O B AC o o ,平面=∠⇒⊥⇒'FGH BO AC B O O 90°易知EFGH 为平行四边形⇒EFGH 为长方形.若对角线等,则EFGH FG EF ⇒=为正方形.B CFEHGBCDAO'(3). 球:a.球的截面是一个圆面.①球的表面积公式:24R S π=.②球的体积公式:334R V π=.b.纬度、经度:①纬度:地球上一点P 的纬度是指经过P 点的球半径与赤道面所成的角的度数.②经度:地球上B A ,两点的经度差,是指分别经过这两点的经线与地轴所确定的二个半平面的二面角的度数,特别地,当经过点A 的经线是本初子午线时,这个二面角的度数就是B 点的经度.附:①圆柱体积:h r V 2π=(r 为半径,h 为高)②圆锥体积:h r V 231π=(r 为半径,h 为高)③锥体体积:Sh V 31=(S 为底面积,h 为高)(1). ①内切球:当四面体为正四面体时,设边长为a ,a h 36=,243a S =底,243a S =侧,得R a R a a a ⋅⋅+⋅=⋅2224331433643a a a R 46342334/42=⋅==⇒. 注:球内切于四面体:h S R S 313R S 31V 底底侧ACD B ⋅=⋅+⋅⋅⋅=-。

相关文档
最新文档