两个基本计数原理PPT课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2) 密码为4位,每位是0到9这10个数字中的一个, 或是从A到Z这26个英文字母中的1个,这样的 密码共有多少个?
3) 密码为4~6位,每位均为0到9这10个数字中 的一个数字,这样的 密码共有多少个?
1)密码为4位,每位均为0到9这10个数 字中的一个数字,这样的 密码共有 多少个?
解:(1) 设置四位密码,每一位上 都可以从0到9这10个数字中取 一个,有10种取法,根据分步计数 原理,四位密码的个数是 10×10×10×10=10000
3) 密码为4~6位,每位均为0到9 这10个数字中的一个数字,这样的 密码共有多少个?
(3)设置一个由0到9这10个数字组成的4~ 6位密码,有3类方式,其中设置4位密码 、5 位密码、6位密码的个数 分别为104,105, 106,根据分类计数原理,设置由0到9这10个 数字组成的4~6位密码个数是 104+105+106=1110000
2×3=6 种不同方法。
答:在图 (1)的电路中,只合上一只开关以接通电路,有5
种不同的方法;图(2)的电路中,合上两只开关以接通电路, 有6种不同的方法.
m1
A
m2
……
B
mn
A
m1
m2
…...
mn
B
例3:为了确保电子信箱的安全,在注册时通常要 设置电子信箱密码.在网站设置的信箱中, 1) 密码为4位,每位均为0到9这10个数字中的一 个数字,这样的 密码共有多少个?
(1)在图(1)中按要求接通电路,只要 在A中的两个开关或B中的三个开 关中合上一只即可,故有 2+3=5 种不同的方法.
(2)在图(2)中,按要求接通电路必须分两 步进行:第一步,合上A中的一只开关;第 二步,合上B中的一只开关。故有
(2) 在图(2)的电路中,合上两只 开关以接通电路,有多少种不同 的方法?
2) 密码为4位,每位是0到9这10个数字 中的一个,或是从A到Z这26个英文 字母中的1个,这样的密码共有多少 个? (2)设置四位密码,每一位上都可以从 0到9这10个数字或从A到Z这26个 英文字母中的1个中取一个,共有 10+26=36种取法. 根据分步计数原理,四位密码的个数 是 36×36×36×36=1679616
课堂小结
课堂小结
1. 分类计数与分步计数原理是两个最基本,也是 最重要的原理,是解答排列、组合问题,尤其是 较复杂的排列、组合问题的基础. 2.辨别运用分类计数原理还是分步计数原理的关 键是“分类”还是“分步”,也就是说“分类” 时,各类办法中的每一种方法都是独立的,都能 直接完成这件事,而“分步”时,各步中的方法 是相关的,缺一不可,当且仅当做完个步骤时, 才能完成这件事.
问题情境1:
上海
问题 1.从南京到上海,有3条公路,2条铁路,那么 从南京到上海共有多少种不同的方法?
宁波
上海
问题2、增加杭州游,从南京到杭州的路有 三条,由杭州到上海的路有两条。问:从南 京经杭州到上海有多少种不同的方法?
杭州
宁波
分类计数原理 完成一件事, 有n类方式, 在第一 类方式,中有m1种不同的方法,在第二类方式,中 有m2种不同的方法,……,在第n类方式,中有 mn种不同的方法. 那么完成这件事共有
N=m1+m2+…+m n
种不同的方法。
注:本原理又称加法原理.
分步计数原理 完成一件事,需要分成n个步骤, 做第1步有m1种不同的方法,做第2步有m2种不 同的方法,……,做第n步有mn种不同的方法, 那么完成这件事共有
种不同的方法。 注:本原理又称乘法原理.
N=m1×m2×…×mn
例1: 某班共有男生28名,女生 20名,从该班选出学生代表参 加校学代会.
(1)若学校分配给该班1名代表, 有多少种不同的选法?
(2)若学校分配给该班2名代表, 且男女生代表各1名,有多少种 不同的选法?
例2: (1) 在图 (1)的电路中,只合上 一只开关以接通电路,有多少种不同的 方法?
(2) 在图(2)的电路中,合上两只 开关以接通电路,有多少种不同的方法?
(1) 在图 (1)的电路中,只合上一只开 关ຫໍສະໝຸດ Baidu接通电路,有多少种不同的方法?