大学物理自测题下(黄皮书)稳恒磁场要点及详细答案
大学物理稳恒磁场习题及答案 (1)
衡水学院 理工科专业 《大学物理B 》 稳恒磁场 习题解答一、填空题(每空1分)1、电流密度矢量的定义式为:dI j n dS ⊥=v v,单位是:安培每平方米(A/m 2) 。
2、真空中有一载有稳恒电流I 的细线圈,则通过包围该线圈的封闭曲面S 的磁通量? = 0 .若通过S 面上某面元d Sv的元磁通为d ?,而线圈中的电流增加为2I 时,通过同一面元的元磁通为d ?',则d ?∶d ?'= 1:2 。
3、一弯曲的载流导线在同一平面内,形状如图1(O 点是半径为R 1和R 2的两个半圆弧的共同圆心,电流自无穷远来到无穷远去),则O 点磁感强度的大小是2020100444R IR IR IB πμμμ-+=。
4、一磁场的磁感强度为k c j b i a B ϖϖϖϖ++= (SI),则通过一半径为R ,开口向z 轴正方向的半球壳表面的磁通量的大小为πR 2c Wb 。
5、如图2所示通有电流I 的两根长直导线旁绕有三种环路;在每种情况下,等于:对环路a :d B l ⋅⎰v v Ñ=____μ0I __;对环路b :d B l ⋅⎰vv Ñ=___0____; 对环路c :d B l ⋅⎰v v Ñ =__2μ0I __。
6、两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是___1∶2__,运动轨迹半径之比是_____1∶2_____。
二、单项选择题(每小题2分)( B )1、均匀磁场的磁感强度B v垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为A. 2?r 2BB.??r 2BC. 0D. 无法确定的量( C )2、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为A. B. C. D.( D )3、如图3所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度A. 方向垂直环形分路所在平面且指向纸内B. 方向垂直环形分路所在平面且指向纸外C .方向在环形分路所在平面内,且指向aD .为零( D )4、在真空中有一根半径为R 的半圆形细导线,流过的电流为I ,则圆心处的磁感强度为A.R 140πμ B. R120πμ C .0 D .R140μ ( C )5、如图4,边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度??绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度??绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感强度的大小为B 2,则B 1与B 2间的关系为A. B 1 = B 2B. B 1 = 2B 2 C .B 1 =21B 2 D .B 1 = B 2 /4 ( B )6、有一半径为R 的单匝圆线圈,通以电流I ,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中心的磁感强度和线圈的磁矩分别是原来的 (A) 4倍和1/8. (B) 4倍和1/2. (C) 2倍和1/4. (D) 2倍和1/2. 三、判断题(每小题1分,请在括号里打上√或×)( × )1、电源的电动势是将负电荷从电源的负极通过电源内部移到电源正极时,非静电力作的功。
物理黄皮书答案
ac
c
(v
B)
dl
a
1 B (l sin 30)2
2
1 B l 2
8
ac边中的动生电动势为:
1 B l 2
8
67
Bvl sin
a 点高
O→a Uac Bvl sin
a→0 Uoa Bvl cos
dt
4
dt
4
顺时针 c→b
63
F
qv
B
ev
B
E非 e v B
B
v
1 BR2
2
由中心向外
64
刚进入时感应电流方向为逆时针
Bbvt Bbv I Bbv R
I
Bbv R
2a v a v
av
t
Bbv R
65
ab
1 2
BR2
1 2
2nBR2
nBR2
a
66
0
同选择题(7)
磁场
减小
; (2)圆线圈轴线上各点的磁
场 在 x R / 2 区域减小;在 x R / 2区域增大。 。
解:
B
2(
0 IR2
R2 x2
)3
2
载流圆环圆心:
B 0I
2R
轴线上不同位置的磁感应强度 随R变化的情况不同:
Y
I
x
OR
p•
X
令:
dB 0
dR
在 x R / 2 区域减小;在 x R / 2区域增大。
r2
B dB
2
载流直导线的磁场:
B
0 I 4a
(cos1
c os 2
)
无限长载流直导线: B 0 I 2a
大学物理自测题下(黄皮书)稳恒磁场要点及详细答案
0I 4 a
(cos 1
cos2 )
a
B1
0I 4 a
[cos
4
cos
]
1
a
B2
0I 4 a
[cos
0
cos
3
4
]
2
B
B1
B2
0I 2 a
(1
2) 2
向里
27
4. 载有一定电流的圆线圈在周围空间产生的磁场与圆线
圈半径R有关,当圆线圈半径增大时,(1)圆线圈中心点
3. 环路的选择及形状是任意的,但是要尽量方便积分。
4
载流直导线
B
0 I 4 a
(cos1
无限长
cos2 )
半无限长
B 0I 2 a
B 0I
4 a
载流圆环
B
0 IR 2
2(R2 z2 )3
2
中心
B
0 I 4 R2
dl 0I
l
2R
无限远 B 0IR2 0 IS 2z3 2 z3
1 2
D
12
B
13
I1 2q 2
I2 4q 2
圆电流的半径一样 2 a
1
2
B1 2 B2
14
xR xR
B0
B 0I 2 r
15
5.如图,流出纸面的电流为 2I ,流进纸面的电 流为 I ,则下述各式中那一个是正确的?
(A) H L1 d l 2I (C) H L3 d l I
33
M mB
大学物理自测题下(黄皮书)电磁感应要点及详细答案共51页
1、合法而稳定的权力在使用得当时很 少遇到 抵抗。 ——塞 ·约翰 逊 2、权力会使人渐渐失去温厚善良的美 德。— —伯克
3、最大限度地行使权力总是令人反感 ;权力 不易确 定之处 始终存 在着危 险。— —塞·约翰逊 4、权力会奴化一切。——塔西佗
谢谢!
5、虽然权力是一头固执的熊,可是金 子可以 拉着它 的鼻子 走。——莎士 比
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
大学物理《电磁学2·稳恒磁场》复习题及答案共72页文档
40、人类法律,事物有规律,这是不 容忽视 的。— —爱献 生
谢谢你的阅读
上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
大学物理《电磁学2·稳恒磁场》复习 题及答案
36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯
大学物理稳恒磁场习题及答案
衡水学院理工科专业《大学物理B 》稳恒磁场习题解答 【1 】一.填空题(每空1分)1.电流密度矢量的界说式为:dIj n dS ⊥=,单位是:安培每平方米(A/m2). 2.真空中有一载有稳恒电流I 的细线圈,则经由过程包抄该线圈的关闭曲面S 的磁通量=0 .若经由过程S 面上某面元d S 的元磁通为d,而线圈中的电流增长为2I 时,经由过程统一面元的元磁通为d ',则d ∶d '=1:2 .3.一曲折的载流导线在统一平面内,外形如图1(O 点是半径为R1和R2的两个半圆弧的配合圆心,电流自无限远来到无限远去),则O 点磁感强度的大小是2020100444R IR IR IB πμμμ-+=.4.一磁场的磁感强度为k c j b i a B++= (SI),则经由过程一半径为R,启齿向z 轴正偏向的半球壳概况的磁通量的大小为πR2cWb. 5.如图2所示通有电流I 的两根长直导线旁绕有三种环路;在每种情形下,等于: 对环路a :d B ⋅⎰=____μ0I__;对环路b :d B ⋅⎰=___0____; 对环路c :d B ⋅⎰=__2μ0I__.6.两个带电粒子,以雷同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是___1∶2__,活动轨迹半径之比是_____1∶2_____. 二.单项选择题(每小题2分)( B )1.平均磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S,则经由过程S 面的磁通量的大小为( C )2.有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中间产生的磁感强度的大小之比B1 / B2为(D )3.如图3所示,电流从a 点分两路经由过程对称的圆环形分路,会合于b 点.若ca.bd 都沿环的径向,则在环形分路的环心处的磁感强度A. 偏向垂直环形分路地点平面且指向纸内B. 偏向垂直环形分路地点平面且指向纸外C .偏向在环形分路地点平面内,且指向aD .为零( D )4.在真空中有一根半径为R 的半圆形细导线流过的电流为I,则圆心处的磁感强度为 A.R 140πμ B. R120πμ C .0D .R 140μ ( C )5.如图4,边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度绕AC 轴扭转时,在中间O 点产生的磁感强度大小为B1;此正方形同样以角速度绕过O 点垂直于正方形平面的轴扭转时,在O 点产生的磁感强度的大小为B2,则B1与B2间的关系为A. B1= B2B. B1= 2B2C .B1=21B2D .B1= B2 /4O IR 1 R 2图1b⊗ ⊙ cI I c a图2c I db a图3A CqqqqO图4(B )6.有一半径为R 的单匝圆线圈,通以电流I,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中间的磁感强度和线圈的磁矩分离是本来的 (A) 4倍和1/8. (B) 4倍和1/2. (C) 2倍和1/4.(D) 2倍和1/2. 三.断定题(每小题1分,请在括号里打上√或×)( × )1.电源的电动势是将负电荷从电源的负极经由过程电源内部移到电源正极时,非静电力作的功. ( √ )2.磁通量m SB dS φ=⋅⎰的单位为韦伯.( × )3.电流产生的磁场和磁铁产生的磁场性质是有区此外. ( × )4.电动势用正.负来暗示偏向,它是矢量.( √ )5.磁场是一种特别形态的物资,具有能量.动量和电磁质量等物资的根本属性. ( × )6.知足0m SB dS φ=⋅=⎰的面积上的磁感应强度都为零.四.简答题(每小题5分)1.在统一磁感应线上,各点B 的数值是否都相等?为何不把感化于活动电荷的磁力偏向界说为磁感应强度B的偏向?答:在统一磁感应线上,各点B 数值一般不相等.(2分)因为磁场感化于活动电荷的磁力偏向不但与磁感应强度B 的偏向有关,并且与电荷速度偏向有关,即磁力偏向其实不是独一由磁场决议的,所以不把磁力偏向界说为B 的偏向.(3分)2.写出法拉第电磁感应定律的数学表达式,解释该表达式的物理意义. 答:法拉第电磁感应定律的数学表达式r lS BE dl dS t∂⋅=-⋅∂⎰⎰(2分) 物理意义:(1)感生电场是由变更的磁场激发的;(1分)(2)感生电场r E 与Bt∂∂组成左手螺旋关系;(1分)(3)右侧的积分面积S 为左侧积分路径L 包抄的面积.(1分)五.盘算题(每题10分,写出公式.代入数值.盘算成果.)1.如图5所示,AB.CD 为长直导线,BC 为圆心在O 点的一段圆弧形导线,其半径为R.若通以电流I,求O 点的磁感应强度. 解:如图所示,O 点磁场由AB .C B.CD 三部分电流产生.个中AB 产生01=B(1分)CD 产生RIB 1202μ=,(2分)偏向垂直向里(1分)CD 段产生)231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,(2分)偏向⊥向里(1分)∴)6231(203210ππμ+-=++=R I B B B B ,(2分)偏向⊥向里.(1分) 2.如图6所示.半径为R 的平均带电圆盘,面电荷密度为σ.当盘以角速度ω绕个中间轴OO '扭转时,求盘心O 点的B 值.解法一:当带电盘绕O 轴迁移转变时,电荷在活动,因而产生磁场.可将圆盘算作很多齐心圆环的组合,而每一个带电圆环迁移转变时相当图5于一圆电流.以O 为圆心,r 为半径,宽为dr 的圆环,此环上电量rdr ds dq πσσ2⋅==(2分)此环迁移转变时,其等效电流rdr dq dI ωσπω=⋅=2(3分) 此电流在环心O 处产生的磁感应强度大小2200drrdIdB ωσμμ==(2分)其偏向沿轴线,是以全部圆盘在盘心O 处产生的磁感应强度大小是R dr dBB Rωσμωσμ0002121==⎰⎰(3分) 解法二:依据活动电荷的磁场公式304r rv q B ⨯=πμ,(2分)求解,在圆盘上取一半径为r,宽为dr 的圆环,电量rdr dq πσ2=,ωr v =(2分)dr rdr r r dq r dB 22440020σωμπσπωμπωμ=⋅==(3分)偏向垂直于盘面向上,同样RqRdr dB B Rπωμωσμσωμ2220000====⎰⎰(3分) 3.图7所示,在一长直载流导线旁有一长为L 导线ab,其上载电流分离为I1和I2,a 端到直导线距离为d 求当导线ab 与长直导线垂直,求ab 受力.解:取如图8所示坐标系直导线在距其为x 处,产生的磁场xI B πμ210=(2分) 其偏向垂直低面向里,电流之I2dx 受安培力大小为dx xI I Bdx I df πμ22102==(3分) df 偏向垂直向上,且各电流之受力偏向雷同,(2分)故,ab 受力为012012ln22d L LdI I I I d Lf df dx x dμμππ++===⎰⎰(3分) 4.一长直导线通有电流120A I =,旁边放一导线ab,个中通有电流210A I =,且两者共面,如图8所示.求导线ab 所受感化力对O 点的力矩.解:如图9所示,在ab 上取r d ,它受力ab F ⊥d 向上,(2分)大小为rI rI F πμ2d d 102=(2分) F d 对O 点力矩F r M⨯=d (2分)图6I 1I2dL图7Md 偏向垂直纸面向外,大小为r I I F r M d 2d d 210πμ==(2分) ⎰⎰-⨯===ba bar II M M 6210106.3d 2d πμm N ⋅(2分)5.两平行长直导线相距d=40cm,每根导线载有I1=I2=20A 如图10所示.求: ⑴两导线地点平面内与该两导线等距的一点A 处的磁感应强度; ⑵经由过程图中斜线所示面积的磁通量.(r1=r3=10cm,l=25cm)解: (1)图中的A 点的磁场122222O O A I I B d d μμππ=+⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭()512124010O O OI I I I T d d dμμμπππ-=+=+=⨯(4分) (2)在正方形中距中间x 处,取一窄条ds ldx =,则经由过程ds 的磁通量m d B ldx φ=()1222O O I I ldxx d z μμππ⎛⎫=+ ⎪ ⎪-⎝⎭ 122O l I I dx x d x μπ⎛⎫=+ ⎪-⎝⎭(3分)31122d r O m m r l I I d dx x d x μφφπ-⎛⎫==+ ⎪-⎝⎭⎰⎰311213ln ln 2O l d r d r I I r r μπ⎛⎫--=+ ⎪⎝⎭ ()121ln 2O l d n I I r μπ⎛⎫-=+ ⎪⎝⎭6111ln 2.210O l d r I wb r μπ--==⨯(3分) 6.已知磁感应强度B=2.0Wb ·m -2的平均磁场, 偏向沿X 轴正偏向,如图11所示,试求:(1) 经由过程abcd 面的磁通量; (2) 经由过程图中befc 面的磁通量; (3)经由过程图中aefd 面的磁通量. 解:(1)经由过程abcd 面的磁通量mabcd abcd B S φ= 2.00.40.3=⨯⨯ 0.24wb =(4分)(2)经由过程ebfc 面的磁通量,因为B 线擦过此面 故0mbdfc φ=(3分)(3)经由过程aefd 面的磁通量图110.24 maefd mabcd wbφφ==(3分)。
大学物理第8章稳恒磁场课后习题答案与解析
第8章 稳恒磁场 习题及答案6. 如图所示,AB 、CD 为长直导线,C B为圆心在O 点的一段圆弧形导线,其半径为R 。
若通以电流I ,求O 点的磁感应强度。
解:O 点磁场由AB 、C B、CD 三部分电流产生,应用磁场叠加原理。
AB 在O 点产生的磁感应强度为01=BC B在O 点产生的磁感应强度大小为θπμR I B 402=RIR I 123400μππμ=⨯=,方向垂直纸面向里CD 在O 点产生的磁感应强度大小为)cos (cos 421003θθπμ-=r IB )180cos 150(cos 60cos 400︒︒-=R I πμ )231(20-=R I πμ,方向垂直纸面向里 故 )6231(203210ππμ+-=++=R I B B B B ,方向垂直纸面向里7. 如图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连。
已知圆环的粗细均匀,求环中心O 的磁感应强度。
解:圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。
且θπθ-==21221R R I I 电阻电阻 1I 产生的磁感应强度大小为)(θππμ-=24101RI B ,方向垂直纸面向外2I 产生的磁感应强度大小为θπμRIB 4202=,方向垂直纸面向里 所以, 1)2(2121=-=θθπI I B B环中心O 的磁感应强度为0210=+=B B B8. 如图所示,一无限长载流平板宽度为a ,沿长度方向通过均匀电流I ,求与平板共面且距平板一边为b 的任意点P 的磁感应强度。
解:将载流平板看成许多无限长的载流直导线,应用叠加原理求解。
以P 点为坐标原点,垂直载流平板向左为x 轴正方向建立坐标系。
在载流平板上取dx aIdI =,dI 在P 点产生的磁感应强度大小为x dI dB πμ20=dx axIπμ20=,方向垂直纸面向里 P 点的磁感应强度大小为⎰⎰+==a b b x dx a I dB B πμ20bab a I +=ln 20πμ 方向垂直纸面向里。
大学物理《电磁学2·稳恒磁场》复习题及答案共72页
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
大学物理《电磁学2·稳恒磁场》复习 题及答案
36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯
拉
60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
大学物理《稳恒电流的磁场》习题答案
第14章 稳恒电流的磁场 参考答案一、选择题1(B),2(A),3(D),4(C),5(B),6(D),7(B),8(C),9(D),10(A) 二、填空题(1). 最大磁力矩,磁矩 ; (2). πR 2c ; (3). )4/(0a I μ; (4).RIπ40μ ;(5). μ0i ,沿轴线方向朝右. ; (6). )2/(210R rI πμ, 0 ; (7). 4 ; (8).B I R2,沿y 轴正向; (9). ωλB R 3π,在图面中向上; (10). 正,负.三 计算题1. 将通有电流I 的导线在同一平面内弯成如图所示的形状,求D 点的磁感强度B的大小.解:其中3/4圆环在D 处的场 )8/(301a I B μ=AB 段在D 处的磁感强度 )221()]4/([02⋅π=b I B μBC 段在D 处的磁感强度)221()]4/([03⋅π=b I B μ1B、2B 、3B 方向相同,可知D 处总的B 为)223(40baI B +ππ=μ2. 半径为R 的导体球壳表面流有沿同一绕向均匀分布的面电流,通过垂直于电流方向的每单位长度的电流为K .求球心处的磁感强度大小.解:如图θd d d KR s K I ==2/32220])cos ()sin [(2)sin (d d θθθμR R R I B +=32302d sin R KR θθμ=θθμd sin 2120K =⎰π=020d sin 21θθμK B ⎰π-=00d )2cos 1(41θθμK π=K 041μ3. 如图两共轴线圈,半径分别为R 1、R 2,电流为I 1、I 2.电流的方向相反,求轴线上相距中点O 为x 处的P 点的磁感强度. 解:取x 轴向右,那么有2/322112101])([2x b R I R B ++=μ 沿x 轴正方向 2/322222202])([2x b R I R B -+=μ 沿x 轴负方向21B B B -=[2μ=2/32211210])([x b R I R ++μ]])([2/32222220x b R I R -+-μ若B > 0,则B方向为沿x 轴正方向.若B < 0,则B的方向为沿x 轴负方向.4.一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小,由安培环路定 律可得: )(220R r rRIB ≤π=μ因而,穿过导体内画斜线部分平面的磁通Φ1为⎰⎰⋅==S B S B d d 1 Φr r RI Rd 2020⎰π=μπ=40Iμ在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为)(20R r rIB >π=μ因而,穿过导体外画斜线部分平面的磁通Φ2为⎰⋅=S Bd 2Φr r I R Rd 220⎰π=μ2ln 20π=I μ穿过整个矩形平面的磁通量 21ΦΦΦ+=π=40I μ2ln 20π+I μ5. 一半径为 4.0 cm 的圆环放在磁场中,磁场的方向对环而言是对称发散的,如图所示.圆环所在处的磁感强度的大小为0.10 T ,磁场的方向与环面法向成60°角.求当圆环中通有电流I =15.8 A 时,圆环所受磁力的大小和方向.1 m解:将电流元I d l 处的B分解为平行线圈平面的B 1和垂直线圈平面的B 2两分量,则 ︒=60sin 1B B ; ︒=60cos 2B B分别讨论线圈在B 1磁场和B 2磁场中所受的合力F 1与F 2.电流元受B 1的作用力l IB lB I F d 60sin 90sin d d 11︒=︒=方向平行圆环轴线.因为线圈上每一电流元受力方向相同,所以合力⎰=11d F F ⎰π︒=Rl IB 20d 60sin R IB π⋅︒=260sin = 0.34 N ,方向垂直环面向上.电流元受B 2的作用力l IB lB I F d 60cos 90sin d d 22︒=︒= 方向指向线圈平面中心. 由于轴对称,d F 2对整个线圈的合力为零,即02=F . 所以圆环所受合力 34.01==F FN , 方向垂直环面向上.6. 如图所示线框,铜线横截面积S = 2.0 mm 2,其中OA 和DO '两段保持水平不动,ABCD 段是边长为a 的正方形的三边,它可绕OO '轴无摩擦转动.整个导线放在匀强磁场B中,B 的方向竖直向上.已知铜的密度ρ = 8.9×103 kg/m 3,当铜线中的电流I =10 A 时,导线处于平衡状态,AB段和CD 段与竖直方向的夹角α =15°.求磁感强度B的大小.解:在平衡的情况下,必须满足线框的重力矩与线框所受的磁力矩平衡(对OO '轴而言). 重力矩 αραρs i n s i n 2121gSa a a gS a M +⋅=αρsin 22g Sa =B 2d l磁力矩ααcos )21sin(222B Ia BIa M =-π=平衡时 21M M = 所以 αρsin 22g Sa αcos 2B Ia = 31035.9/tg 2-⨯≈=I g S B αρT7. 半径为R 的半圆线圈ACD 通有电流I 2,置于电流为I 1的无限长直线电流的磁场中,直线电流I 1恰过半圆的直径,两导线相互绝缘.求半圆线圈受到长直线电流I 1的磁力.解:长直导线在周围空间产生的磁场分布为 )2/(10r I B π=μ取xOy 坐标系如图,则在半圆线圈所在处各点产生的磁感强度大小为:θμsin 210R I B π=, 方向垂直纸面向里,式中θ 为场点至圆心的联线与y 轴的夹角.半圆线圈上d l 段线电流所受的力为:l B I B l I F d d d 22=⨯= θθμd sin 2210R R I I π=θsin d d F F y =. 根据对称性知: F y =0d =⎰y F θcos d d F F x = ,⎰π=0x x dF F ππ=2210I I μ2210I I μ=∴半圆线圈受I 1的磁力的大小为: 2210I I F μ=,方向:垂直I 1向右.I 2I 1A DC8. 如图所示.一块半导体样品的体积为a ×b ×c .沿c 方向有电流I ,沿厚度a 边方向加有均匀外磁场B (B的方向和样品中电流密度方向垂直).实验得出的数据为 a =0.10 cm 、b =0.35 cm 、c =1.0 cm 、I =1.0 mA 、B =3.0×10-1 T ,沿b 边两侧的电势差U =6.65 mV ,上表面电势高.(1) 问这半导体是p 型(正电荷导电)还是n 型(负电荷导电)?(2) 求载流子浓度n 0 (即单位体积内参加导电的带电粒子数).解:(1) 根椐洛伦兹力公式:若为正电荷导电,则正电荷堆积在上表面,霍耳电场的方向由上指向下,故上表面电势高,可知是p 型半导体。
大学物理自测题下(黄皮书)电磁感应要点及详细答案
b
c
0
同选择题(7) 同选择题
εac = ∫ (v × B) ⋅ dl
1 = Bω(l sin 30°)2 2 1 = Bω l 2 8
1 ac边中的动生电动势为 边中的动生电动势为: 边中的动生电动势为 Bω l 2 8
a
c
dI ε L = −L dt
R I
ε (t )
ε (t) +ε L = IR
U = ∫ E ⋅ dl = ∫ Edl cosθ = 0
E=
q 4πε0 R
2
(−cosω ti − sinω tj )
ωt
q D= (−cosω ti − sinω tj ) 2 4πR dD j= dt
D = ε0 E
qω j= (sinω ti − cosω tj ) 2 4πR
(D)
负
2
2
B
LP =2 L Q
IP RQ 1 = = IQ RP 2
RP =2 RQ
1 2 W = LI 2
1 2 LP IP 12 1 WP 2 = 2×( ) = = 2 2 WQ 1 2 LQ IQ 2
(D)
Ψ = LI
1 1 2 1 W = LI = (LI )I = (ψ )I 2 2 2
l r
电磁波的能流密度(坡因廷矢量) 电磁波的能流密度(坡因廷矢量): S = wu
⇒ S = EH
E
S = E× H
H
S
10、辐射压强: 、辐射压强:
F pc ∆S P= = = pc = w ∆S ∆S
F S P=( )=w= ∆S c
平均压强: 平均压强:
φ = BS cos( −ωt) = BS sinωt
大学物理恒定磁场知识点及试题带答案
恒定磁场一、基本要求1、了解电流密度的概念。
2、掌握磁感应强度的概念及毕奥—萨伐尔定律,能利用叠加原理结合对称性分析,计算一些简单问题中的磁感应强度。
3、理解稳恒磁场的两个基本规律:磁高斯定理和安培环路定理。
掌握应用安培环路定理计算磁感应强度的条件和方法,并能熟练应用。
4、掌握洛伦兹力公式,能分析运动电荷在磁场中的受力和运动。
掌握安培力公式,理解磁矩的概念,能计算简单几何形状的载流导线和载流平面线圈在均匀磁场中或在无限长直载流导线产生的非均匀磁场中所受的力和力矩。
二、主要内容 1、稳恒电流电流:电荷的定向运动。
电流强度:单位时间通过导体某一横截面的电量,即dtdq I =。
电流密度)(δ:通过与该点的电荷移动方向相垂直的单位面积的电流强度,方向与该点的正电荷移动方向一致。
电流密度是描述电流分布细节的物理量,单位是2/m A 。
电流强度⎰⋅=SS d Iδ。
2、磁场在运动的电荷(电流)周围,除了形成电场外,还形成磁场。
磁场的基本性质之一是它对置于其中的运动电荷或电流有作用力。
和电场一样,磁场也是一种物质。
3、磁感应强度磁感应强度B是描述磁场性质的物理量。
当电荷在磁场中沿不同方向运动时,磁场对它的作用力不同,沿某方向运动时不受力,与该方向垂直运动时受力最大,定义B 的方向与该方向平行,由v q F⨯max 决定。
B 的大小定义为qvF B max=。
如右图所示。
B 的单位为T (特斯拉)。
4、毕奥—萨伐尔定律电流元:电流元l Id是矢量,其大小等于电流I 与导线元长度dl 的乘机,方向沿电流方向。
毕奥—萨伐尔定律:电流元l Id 在P 点产生的磁感应强度为 30r rl Id B d⨯=μ式中0μ为真空磁导率,A m T /10470⋅⨯=-πμ,r由电流元所在处到P 点的矢量。
运动电荷的磁场:304rrqv B πμ ⨯= 本章判断磁场方向的方法与高中所学方法相同。
几种特殊形状载流导线的磁场()012 cos cos 4I B aμθθπ=- a I B πμ20= a I B πμ40= )1(cos 40+=θπμa IB0=B5、磁场的高斯定理磁感应线:磁感应线为一些有向曲线,其上各店的切线方向为该点的磁感应强度方向,磁感应线是闭合曲线。
大学物理习题答案稳恒电流的磁场
第十章 稳恒电流的磁场1、四条相互平行的无限长直载流导线,电流强度均为I ,如图放置,若正方形每边长为2a ,求正方形中心O 点的磁感应强度的大小和方向。
解:43210B B B B B r r r r r +++=无限长载流直导线产生的磁感应强度 rI2B 0πμ=由图中的矢量分析可得a 2I a 2I22B B 0042πμ=πμ=+a I45cos a2I 2B 0000πμ=⋅πμ= 方向水平向左2、把一根无限长直导线弯成图 (a)、(b) 所示形状,通以电流I ,分别求出O 点的磁感应强度B 的大小和方向。
解:(a )(b )均可看成由两个半无限长载流直导线1、3和圆弧2组成,且磁感应强度在O 点的方向相同 (a )方向垂直纸面向外。
)38(R16I43R 4I R 4I R 4I B 00000π+πμ=π⋅πμ+πμ+πμ=(b )由于O 点在电流1、3的延长线上,所以0B B 31==r r方向垂直纸面向外。
R8I323R I 4B B 0020μ=π⋅πμ==14(a ) I(b )3、真空中有一边长为l 的正三角形导体框架,另有互相平行并与三角形的bc 边平行的长直导线1和2分别在a 点和b 点与三角形导体框架相连 (如图) 。
已知直导线中的电流为I ,求正三角形中心点O 处的磁感应强度B 。
解:三角形高为 l l360sin h .0==4 它在 θθπμ=θ=d sin R 2Isin dB dB 20x θθπμ−=θ−=d cos R2I cos dB dB 20yRI d sin R2I dB B 20200x x πμ=∫θθπμ∫==π0d cos R2I dB B 020y y =∫∫θθπμ−==π)T (1037.6100.10.5104RI B B 522720x P −−−×=××π××π=πμ==∴轴正方向。
大学物理单元自测题(黄皮书)详细答案
B dS 0
s
d B dS
BI
3. 边长为2a的等边三角形线圈, 通有电流I,则线圈中心处的磁 感应强度的大小为 90 I / 4 a 。
B'
0 I
4 π r0
(cos 1 cos 2 )
60o
a
a
o
I
a Ia
o
0 I 30 I o o (cos 30 cos 150 ) 4 π r0 4πa
b
I
d I
c c
b
I
O
F
I
d
O
a
F
F
a
4. 顺磁物质的磁导率: (A) 比真空的磁导率略小; (B) 比真空的磁导率略大; (C) 远小于真空的磁导率; (D) 远大于真空的磁导率. 5. 用线圈自感系数L表示载流线圈磁场能量的公式
1 2 (A) 只适用于无限长密绕螺线管; Wm LI 2 (B) 只适用于单匝圆线圈; (C) 只适用于一个匝数很多且密绕的螺线管; (D) 适用于自感系数L一定的任意线圈.
y A cos(t 0 ) v A sin(t 0 )
v m / s
1 vm vm 2 O
t 0 1 v0 A sin 0 vm 2 1 5 sin 0 0 or 2 6 6
vm
O
t s
x
vm
12. 如图所示,两列波长为 的相干 波在P点相遇。波在S1点振动的初相 是 1 ,S1到P点的距离是r1;波在S2 点的初相是 2 ,S2到P点的距离是r2 。 以k代表零或正、负整数,则 P 点是 干涉极大的条件为:
大 学 物 理 下 综 合 测 试 题
大学物理习题册(下)(稳恒磁场和电磁感应)参考解答
稳恒磁场一.选择题1. 参考答案A 。
考查点: 电流延长线上B=0,环型电流B=0(参考解答题1)。
2. 参考答案A 。
考查点:有限长直导线在周围空间产生的磁感强度。
电流延长线上B=03. 参考答案C 。
考查点:无限长电流在空间中某点磁感应强度,圆形电流在圆心磁感应强度。
4. 参考答案C 。
考查点:将无限大电流视为宽为dx 的无限长电流。
002()2()dI Idx dB x b a x b μμππ==++ 故000ln 2()2a Idx I a bB a x b a bμμππ+==+⎰5. 参考答案A 。
考查点:电流延长线上B=0,环型电流B=0(参考解答题1)。
6. 参考答案B 。
可分别用右手定则标出各区域磁感应强度方向即可判断哪个区域磁感应强度最大,从而磁通量最大。
7. 参考答案D 。
对半球面,磁感应线穿出,故磁通量为负。
且大小cos B S BS θΦ== 8. 参考答案C 。
安培环路定理理解 9. 参考答案C 。
安培环路定理理解 10. 参考答案 C 。
安培环路定理理解11. 参考答案 C 。
洛伦兹力不做功,只改变运动方向。
12. 参考答案B 。
霍尔电势差的计算公式。
13. 参考答案 B 。
分别对 ab ,bc ,cd ,da 边用右手定则(dF Idl B =⨯)可判断各边受力方向。
14. 参考答案A 。
000100020003237()124432()222215()3244F a a a F a a a F a a a μμμπππμμμπππμμμπππ⎧=+⨯=⎪⎪⎪=-⨯=⎨⎪⎪=+⨯=⎪⎩,设距离都是a.15. 参考答案C 。
磁介质的定义理解。
二.填空题1. B =0122I R μπ⨯(半无限长导线产生磁感应强度). 2.0Ilπ、 0 3. 01012,(),0I I I μμ-+(安培环路定理)4.00()44IIj k RRμμπ+-(半圆形电流在圆心产生的磁感应强度,半无限长在周围空间产生磁感应强度)5. F =660.510100.5100.40.200i j kev B e k ⨯=⨯=-⨯-6. IB a .7. 1/4 (M =Is )8. 铁磁质、顺磁质、抗磁质三.计算题1.解:设两段载流导线的电阻分别为R 1和R 2,则通过这两段载流导线的电流分别为 2121R R R I I +=,2112R R R II +=两段载流导线的电流在Oπθμπθμ2222121201101R R R R I R I B +== πθμπθμ2222221102202R R R R I R I B +==根据电阻定律S r S l R θρρ==可知 2121θθ=R R 所以 21B B = 两段载流导线在O 点处的磁感强度为 120B B -=(考点:环形电流在圆心产生的磁感应强度,有限长电流在延长线上磁感应强度。
大学物理试卷答案稳恒磁场
M O P
K
第五题图
二、填空题
7、图中所示的一无限长直圆筒,沿圆周方向上的面电流密 度单位垂直长度上流过的电流为i,则圆筒内部的磁感强度的 大小为B =_____ _0 i__,方向___沿__轴__线__方__向_朝__右_.
iHale Waihona Puke 8、有一同轴电缆,其尺寸如图所示,它的内外两导体中的电 流均为I,且在横截面上均匀分布,但二者电流的流向正相反,则
解:取x轴向右,那么有
B1
2[R12
(0bR12Ix1)2]3/2沿x轴正方向
I1 R1
I2
OP x
B2
2[R22
0R22I2
(bx)2]3/2
沿x轴负方向
2b
BB1B2
0 2
[
0R12I1
[R12 (bx)2]3/2
0R22I2
]
[R22 (bx)2]3/2
若B > 0,则 B方向为沿x轴正方向.若B < 0,B 则
R2 x
的方向为沿x轴负方向.
13、螺绕环中心长L= 10 cm,环上均匀密绕线圈N = 200匝,
线圈中通有电流I = 0.1 A.管内充满相对磁导率 的磁介质.求管内磁场强度和磁感强度的大小.
= 4r 200
解: H n IN/lI200 A/m
BH0rH1.06 T
14、一铁环中心线周长L = 30 cm,横截面S = 1.0 cm2,环上 紧密地绕有N = 300 匝线圈.当导线中电流I = 32 mA 时,通 过环截面的磁通量 = 2.0×10-5 Wb.试求铁芯的磁化率 Xm .
6、用细导线均匀密绕成长为L、半径为a L>> a、总匝数为N 的螺线管,管内充满相对磁导率为 的r 均匀磁介质.若线圈中 载有稳恒电流I,则管中任意一点的 . D
大学物理作业--稳恒磁场二解答
稳恒磁场二
第七章 稳恒磁场
4.图中,六根无限长导线互相绝缘,通过电流均为 I,区域Ⅰ、Ⅱ、Ⅲ、Ⅳ均为相等的正方形,哪一个区 域指向纸内的磁通量最大? (A)Ⅰ区域. (B) Ⅱ区域. (C)Ⅲ区域. (D) Ⅳ区域. (E) 最大不止一个. 1 2 3 a a a x, y o
距无限长直导线d处的磁场为:
dB
0 Idl sin
4π r
2
0 Ird q
4π r
2
0 Id q
4π r
Idl r
B dB
总磁感强度 2 n 0 I dq
4π
0
0 I
4π
2 n
r
0
dq aq b
O
2na b ln 4πa b
0 I
R1
R2
稳恒磁场二
2na b B ln 4πa b
稳恒磁场二
第七章 稳恒磁场
一、选择题
!1.哪一幅曲线图能确切描述载流圆线圈在其轴线上任 意点所产生的磁感应强度大小B随x坐标的变化关系? (x坐标轴垂直于圆线圈平面,原点在圆线圈中心O)
B B
线圈的轴
o
x
(B)
x
电流
x
( A)
B
0 IR2
( 2 x R )2
2 2 3
B
B
B
x
(C ) ( D)
L
单根载流导线在 P 点产生的磁场
0 I BL 垂直向上; 2a 0 I BR 垂直向下. 2a
y A
L P a B x
稳恒磁场二
第七章 稳恒磁场
大学物理稳恒磁场作业题参考答案
8.3.7 设题8.3.7图中两导线中的电流均为8A,对图示的三条闭合曲线 a , b , c ,
分别写出安培环路定理等式右边电流的代数和.并讨论:
(1)在各条闭合曲线上,各点 的磁感应强度 B 的大小是否相等?
(2)在闭合曲线 c 上各点的 B 是否为 零?为什么?
解:
B a
dl
8
0
b
B
dl
80
cB dl 0
∴
Fab
b
Idl
B
I
(
b
dl
)
2 B
I ab B
a
a
方向⊥ ab 向上,大小 Fab BI ab
题 8.3.11 图
8.3.11 如题8.3.11图所示,在长直导线 AB 内通以电流 I1 =20A,在矩形线圈 CDEF 中通有电流 I 2 =10 A, AB 与线圈共面,且 CD , EF 都与 AB 平行.已知 a =9.0cm, b =20.0cm, d =1.0 cm,求:
(C)内外部磁感应强度 B 都与 r 成反比;
(D)内部磁感应强度 B 与 r 成反比,外部磁感应强度 B 与 r 成正比。
[答案:B]
(5)在匀强磁场中,有两个平面线圈,其面积 A1 = 2 A2,通有电流 I1 = 2 I2,它
们所受的最大磁力矩之比 M1 / M2 等于 [
]
(A) 1;
(B) 2;
(1)导线 AB 的磁场对矩形线圈每边所作用的力;
(2)矩形线圈所受合力和合力矩. 解:(1) FCD 方向垂直 CD 向左,大小
FCD
I2b
0 I1 2d
8.0 104
N
同理 FFE 方向垂直 FE 向右,大小
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
做功等于电流乘以通过载流线圈的磁通量的改变量
8
霍尔效应
霍耳电势差
BI VH RH b
霍尔系数
1 RH nq
测定载流子的浓度
判定载流子的正、负
RH n RH 0 q 0 V1 V2
RH 0 q 0 V1 V2
9
磁介质
磁化强度
M
m V
有磁介质时的安培环路定理
H dl I 0
l
11
B dS 0
1
1 2 0
1 B r cos 0
2
2
1 B r cos
2
D
12
B
13
I 1 2q 2 I 2 4q 2
0 4 1 2 3 5
6
31
8.铜的相对磁导率 r 0.9999912 ,其磁化率 m
它是
,
抗
磁性介质。
r 1 m 0.9999912
m r 1 0.9999912 1 8.8 106
32
12.长直电缆由一个圆柱导体和一共轴圆筒状导体组成,两 导体中有等值反向均匀电流I 通过,其间充满磁导率为μr 的均 匀磁介质。则介质中离中心轴距离为r 的某点处的磁场强度大 小H= ___,磁感应强度的大小B____.
22
13.如图所示的一细螺绕环,它由表面绝缘的导线在铁环上密 绕而成,每厘米绕10匝。当导线中的电流I为2.0A时,测得 铁环内的磁感应强度的大小B为1.0T,则可求得铁环的相对 r 为(真空磁导率 0 4 107 T m A1)。 磁导率
l
H dl I 0
33
则导线中的电流定义为 1 A (安培)。
的电流时,若在每米长度导线上的相互作用力为 2 107 N 时,
6
y dF
I
B
Id l
Fx dFx BI dy 0
0
0
O
P
x
Fy dFy BI dx BIl
0
l
结论:任意平面载流导线在均匀磁场中所受的力 , 与 其始点和终点相同的载流直导线所受的磁场力相同。
L2
H dl I H dl I
3
L4
L1 2I L2 I L3 L4
[ D ]
16
f qv B
17
f qv B
f qvB sin
g
B
18
f qv B
mv R qB 1 2 E k mv 2
19
磁感应强度 B
第七章 稳恒磁场知识点总结
单位: N /( A m) T 方向:磁力线的切线方向,用箭头指出; 大小:垂直于磁感应强度方向单位面积上的磁力线根数。
B F / qv sin
F qv B
F qvB sin
F
洛伦兹力公式
B
v
1
毕奥-萨伐尔定律
0 B dB L 4
L
Idl r 3 r
真空磁导率
en
右手螺旋
0 4 10 T m/A
7
磁矩
M max B m
m NISen
I
2
S R 2 线圈平面法向单位矢量
磁 通 , m 0; , m 0 2 2 量
2 圆电流的半径一样 a 2 1 B1 B2 2
14
xR xR
B0
0 I B 2 r
15
5.如图,流出纸面的电流为 2I ,流进纸面的电 流为 I ,则下述各式中那一个是正确的?
(A) L H dl 2 I (C) L H dl I
1
(B) (D)
24
二.填空题
• 1.半径为0.5cm的无限长直圆柱形导体上,沿轴线 方向均匀地流着I=3A的电流。作一个半径r = 5cm、 长l=5cm且与电流同轴的圆柱形闭合曲面S,则该曲 面上的感应强度沿曲面的积分 0 =_________________________。
m B dS 0
a
1
a
2
向里
27
4. 载有一定电流的圆线圈在周围空间产生的磁场与圆线 圈半径R有关,当圆线圈半径增大时,(1)圆线圈中心点 减小 (即圆心)的磁场 ; (2)圆线圈轴线上各点的 磁场 在 x R / 2 区域减小;在 x R / 2 区域增大 。 解:
B
0 IR 2
2( R x )
穿过任意闭合曲面的磁通量为零 对本题来说, 沿竖直方向的磁感应强 度B为0,构造闭合曲面(侧面s和上 下底面S上和S下),则:
S
B
25
s s上 s下 0
b→a d→c f→e
26
0 I B (cos 1 cos 2 ) 4 a 0 I B1 [cos cos ] 4 a 4 0 I 3 B2 [cos 0 cos ] 4 a 4 0 I 2 B B1 B2 (1 ) 2 a 2
M m B M mB sin
垂直时:
m ISen
3 Na2 IB 4
0
M 0
20
铁磁质-顺磁质
11. 附图中,M、P、O为由软磁材料制成的 棒,三者在同一平面内,当K闭合后, (A) M的左端出现N极. M (B) P的左端出现N极. O P (C) O的右端出现N极. (D) P的右端出现N极.
推论:任意形状的平面闭合载流线圈在均匀磁场中所受合力为零
7
磁力矩
M m B ISen B
磁力、磁力矩做功
A F S I ( f i ) A Md I ( f i )
磁通量有正负,用电流与磁场 是否成右手螺旋判断正负。
单位:T m2 Wb
m
S
B dS BdS cos
S
en
s
B
dS
磁高斯定理
S
B dS 0
3
安培环路定理
B dl 0 Ii
l i
I1
I3
l
I2
1. 代数和:电流有正负
电流方向跟积分环绕方向满足右手螺旋关系的为正, 相反为负。
2 2 32
Y
I
x
O
载流圆环圆心:
B
0 I
2R
p
轴线上不同位置的磁感应强度 随R变化的情况不同:
R
d 2B 0 2 dR
X
dB 令: 0 dR
x R/ 2
在 x R / 2 区域减小;在 x R / 2 区域增大
28
dF IB dF Idl B dl 5 0 10 0 B1 0 2 d 2 2d 5 0 10 0 15 0 B2 2 d 2 d 2 d 15 0 5 0 5 0 B3 4 d 2 2d 2 d
磁化电流密度
J s M n0
介质表面法线方向单位矢量
磁化电流
I s M dl
l
10
磁场强度
B H M 0
对于各向同性介质
B 0 H M 0 1 m H 0 r H H
K
I
[ B ]
21
[12 ] 关于稳恒磁场的磁场强度的下列几种说法中哪 个是正确的? (A) 仅与传导电流有关。 (B) 若闭合曲线内没有包围传导电流,则曲线上各点 的H必为零。 (C) 若闭合曲线上各点H均为零,则该曲线所包围传 导电流的代数和为零。 (D) 以闭合曲线L为边缘的任意曲面的H通量均相等。
N H I nI 2 r
H 2 r NI
B 0 r H 0 r nI
B 1 r 3.98 102 0 nI 4 107 1000 2
23
B
en
I B
把小磁针看做分子电流 磁力矩 M m B ISen B 0
2. 安培环路定理表达式中的 B由所有的电流共同产生,
但电流强度 I 是指穿过闭合曲线的电流,不包括闭合曲线 以外的电流。 3. 环路的选择及形状是任意的,但是要尽量方便积分。
4
载流直导线 B 0 I (cos 1 cos 2 ) 4 a
无限长B
半无限长
载流圆环 B
0 IR 2
2( R 2 z 2 )3 2
0 I dl 2 l 4 R 2R 0 IR 2 0 IS 无限远 B 3 2z 2 z 3
中心 B 无限长 B 0 nI 半无限长 B
0 I 2 a 0 I B 4 a 0 I
I
I
I
nI 螺线管 B 0 (cos 2 cos 1 ) 2
无限大面电流
B
1 0 nI 2
I
0
I , 2 l
. . . ..
c
d
5
b
a
螺绕环
B 0nI
螺绕环外部无磁场
安培力公式 F Idl B
l
左手定则判断力的方向
F qv B
洛伦兹力
安培定义:真空中相距 1 m的两无限长平行直导线载有相等
dFA 0 dl
dFB B2 I B dl
1
2
3
dFC B3 I C dl