2016版《一点一练》高考数学(文科)专题演练:第十章 推理与证明、算法与复数(含两年高考一年模拟)
新高考数学文科一轮总复习课时练习10.1合情推理和演绎推理(含答案详析)
第十章 推理与证明第1讲 合情推理和演绎推理1.观察(x 2)′=2x ,(x 4)′=4x 3,(cos x )′=-sin x .由归纳推理可得:若定义在R 上的函数f (x )满足f (-x )=f (x ),记g (x )为f (x )的导函数,则g (-x )=( )A .f (x )B .-f (x )C .g (x )D .-g (x )2.(2012年江西)观察下列各式:a +b =1.a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( )A .28B .76C .123D .1993.给出下列三个类比结论:①(ab )n =a n b n 与(a +b )n 类比,则有(a +b )n =a n +b n ;②log a (xy )=log a x +log a y 与sin(α+β)类比,则有sin(α+β)=sin αsin β;③(a +b )2=a 2+2ab +b 2与(a +b )2类比,则有(a +b )2=a 2+2a·b +b 2.其中结论正确的个数是( )A .0个B .1个C .2个D .3个4.图K10-1-1的三角形称为谢宾斯基(Sierpinski)三角形.在下图中,将第1个三角形的三边中点为顶点的三角形着色,将第k (k ∈N *)个图形中的每个未着色三角形的三边中点为顶点的三角形着色,得到第k +1个图形,这样这些图形中着色三角形的个数依次构成一个数列{a n },则数列{a n }的通项公式为________________. ……图K10-1-15.如图K10-1-2,在平面上,用一条直线截正方形的一个角,则截下的一个直角三角形按图K10-1-2(1)所标边长,由勾股定理,得c 2=a 2+b 2.设想把正方形换成正方体,把截线换成如图K10-1-2(2)所示的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O -ABC ,若用s 1,s 2,s 3表示三个侧面面积,s 4表示截面面积,则你类比得到的结论是__________________.(1) (2)图K10-1-26.已知cos π3=12,cos π5cos 2π5=14,cos π7cos 2π7cos 3π7=18,…,根据以上等式,可猜想出的一般结论是 .7.(2012年广东汕头一模)观察下列一组等式:21+2=4;21×2=4;32+3=92;32×3=92;43+4=163;43×4=163;…,根据这些等式反映的结果,可以得出一个关于自然数n 的等式,这个等式可以表示为_______________________________________________.8.(2013年广东)设整数n ≥4,集合X ={1,2,3,…,n }.令集合S ={(x ,y ,z )|x ,y ,z ∈X ,且三个条件x <y <z ,y <z <x ,z <x <y 恰有一个成立},若(x ,y ,z )和(z ,w ,x )都在S 中,则下列选项正确的是( )A .(y ,z ,w )∈S ,(x ,y ,w )∉SB.(y,z,w)∈S,(x,y,w)∈SC.(y,z,w)∉S,(x,y,w)∈SD.(y,z,w)∉S,(x,y,w)∉S9.(2012年福建)某同学在一次研究性学习中发现,以下5个式子的值都等于同一个常数.①sin213°+cos217°-sin13°cos17°;②sin215°+cos215°-sin15°cos15°;③sin218°+cos212°-sin18°cos12°;④sin2(-18°)+cos248°-sin(-18°)cos48°;⑤sin2(-25°)+cos255°-sin(-25°)cos55°.(1)试从上述5个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.第十章 推理与证明第1讲 合情推理和演绎推理1.D 2.C 3.B4.a n =3n -12解析:根据图形可知:a 1=1,a n +1-a n =3n (n ∈N *).当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+3+32+…+3n -1=3n-12. 5.s 24=s 21+s 22+s 236.cos π2n +1cos 2π2n +1…cos n π2n +1=12n ,n ∈N * 7.n +1n +(n +1)=n +1n×(n +1)(n ∈N *) 解析:由于n +1n +(n +1)=n +1+(n 2+n )n =(n +1)2n, n +1n ×(n +1)=(n +1)2n ,故可得n +1n +(n +1)=n +1n×(n +1)(n ∈N *). 8.B 解析:若(x ,y ,z )=(1,2,3)∈S 和(z ,w ,x )=(3,4,1)∈S 都在S 中,则(y ,z ,w )=(2,3,4)∈S ,(x ,y ,w )=(1,2,4)∈S ,故选B.9.解:(1)选择(2):由sin 215°+cos 215°-sin15°cos15°=1-12sin30°=34,故这个常数是34. (2)推广,得到三角恒等式sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34. 证明:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos30°cos α+sin30°sin α)2-sin α(cos30°cos α+sin30°sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α=34sin 2α+34cos 2α=34.。
一点一练高考数学第十章推理证明、算法、复数专题演练
1.(2014·山东)用反证法证明命题“设,为实数,则方程++b =0至少有一个实根”时,要做的假设是( )A .方程x 3+ax +b =0没有实根B .方程x 3+ax +b =0至多有一个实根C .方程x 3+ax +b =0至多有两个实根D .方程x 3+ax +b =0恰好有两个实根 2.(2015·山东)观察下列各式: C 01=40; C 03+C 13=41; C 05+C 15+C 25=42; C 07+C 17+C 27+C 37=43; ……照此规律,当n ∈N *时,C 02n -1 +C 12n -1+ C 22n -1+…+ C n -12n -1=________.3.(2015·福建)一个二元码是由0和1组成的数字串x 1x 2…x n (n ∈N *),其中x k (k =1,2,…,n )称为第k 位码元.二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0).已知某种二元码x 1x 2…x 7的码元满足如下校验方程组:⎩⎪⎨⎪⎧x 4⊕x 5⊕x 6⊕x 7=0,x 2⊕x 3⊕x 6⊕x 7=0,x 1⊕x 3⊕x 5⊕x 7=0,其中运算⊕定义为0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0.现已知一个这种二元码在通信过程中仅在第k 位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k 等于________.4.(2014·安徽)如图,在等腰直角三角形ABC 中,斜边BC =22,过点A 作BC 的垂线,垂足为A 1;过点A 1作AC 的垂线,垂足为A 2;过点A 2作A 1C 的垂线,垂足为A 3;…,依此类推,设BA =a 1,AA 1=a 2,A 1A 2=a 3,…,A 5A 6=a 7,则a 7=________.5.(2014·福建)若集合{a ,b ,c ,d }={1,2,3,4},且下列四个关系:①a =1;②b ≠1;③c =2;④d ≠4有且只有一个是正确的,则符合条件的有序数组(a ,b ,c ,d )的个数是________.6猜想一般凸多面体中F,V,E所满足的等式是________.7.(2014·重庆)设a1=1,a n+1=a2n-2a n+2+b(n∈N*).(1)若b=1,求a2,a3及数列{a n}的通项公式;(2)若b=-1,问:是否存在实数c使得a2n<c<a2n+1对所有n∈N*成立?证明你的结论.考点35 推理与证明、数学归纳法一年模拟试题精练1.(2015·陕西师大附中模拟)观察下列等式:13+23=1,73+83+103+113=12,163+173+193+203+223+233=39,…,则当n <m 且m ,n ∈N 时,3n +13+3n +23+…+3m -23+3m -13=________.(最后结果用m ,n 表示)2.(2015·湖北黄冈模拟)对于集合N ={1,2,3,…,n }和它的每一个非空子集,定义一种求和称之为“交替和”如下:如集合{1,2,3,4,5}的交替和是5-4+3-2+1=3,集合{3}的交替和为3. 当集合N 中的n =2时,集合N ={1,2}的所有非空子集为{1},{2},{1,2},则它的“交替和”的总和S 2=1+2+(2-1)=4,请你尝试对n =3,n =4的情况,计算它的“交替和”的总和S 3, S 4,并根据计算结果猜测集合N ={1,2,3,…,n }的每一个非空子集的“交替和”的总和S n =________ (不必给出证明).3.(2015·山东威海模拟)对大于1的自然数m 的三次幂可用奇数进行以下方式的“分裂”23⎩⎪⎨⎪⎧35,33⎩⎪⎨⎪⎧7911,43⎩⎪⎨⎪⎧13151719,…仿此,若m 3的“分裂”数中有一个是2 015,则m 的值为________.4.(2015·湖北七市模拟)将长度为l (l ≥4,l ∈N *)的线段分成n (n ≥3)段,每段长度均为正整数,并要求这n 段中的任意三段都不能构成三角形.例如,当l =4时,只可以分为长度分别为1,1,2的三段,此时n 的最大值为3;当l =7时,可以分为长度分别为1,2,4的三段或长度分别为1,1,1,3的四段,此时n 的最大值为4.则:(1)当l =12时,n 的最大值为________; (2)当l =100时,n 的最大值为________.5.(2015·广东模拟)已知n ,k ∈N * ,且k ≤n ,k C k n =n C k -1n -1,则可推出C 1n +2C 2n +3C 3n +…+k C k n +…+n C n n =n (C 0n -1+C 1n -1+…C k -1n -1+…C n -1n -1)=n ·2n -1,由此,可推出C 1n +22C 2n +32C 3n +…+k 2C k n +…+n 2C nn =________.6.(2015·山东日照模拟)已知2+23=223,3+38=338,4+415=4415,…,若7+a b =7ab,(a 、b 均为正实数),则类比以上等式,可推测a 、b 的值,进而可得a +b =________.7.(2015·安徽淮南模拟)已知函数f 1(x )=2x +1,f n +1(x )=f 1(f n (x )),且a n =f n (0)-1f n (0)+2.(1)求证:{a n }为等比数列,并求其通项公式; (2)设b n =(-1)n -12a n ,g (n )=1+12+13+…+1n (n ∈N *),求证:g (b n )≥n +22.1.(2015·福建)阅读如图所示的程序框图,运行相应的程序,则输出的结果为( )A.2 B.1 C.0 D.-12.(2015·北京)执行如图所示的程序框图,输出的结果为( )A.(-2,2) B.(-4,0)C.(-4,-4) D.(0,-8)3.(2015·重庆)执行如图所示的程序框图,若输出k的值为8,则判断框内可填入的条件是( )A .s ≤34B .s ≤56C .s ≤1112D .s ≤25244.(2015·新课标全国Ⅱ)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为14,18,则输出的a =( )A .0B .2C .4D .145.(2014·重庆)执行如图所示的程序框图,若输出k 的值为6,则判断框内可填入的条件是( )A .s >12B .s >35C .s >710D .s >456.(2014·四川)执行如图的程序框图,如果输入的x ,y ∈R ,那么输出的S 的最大值为( )A .0B .1C .2D .31.(2015·黑龙江绥化模拟)执行如图所示的程序框图,若输入的值为22,则输出的S 的值为( )A .232B .211C .210D .1912.(2015·乌鲁木齐模拟)执行如图程序在平面直角坐标系上打印一系列点,则打出的点在圆x 2+y 2=10内的个数是( )A .2B .3C .4D .53.(2015·遂宁模拟)在区间[-2,3]上随机选取一个数M ,不断执行如图所示的程序框图,且输入x 的值为1,然后输出n 的值为N ,则M ≤N -2的概率为( )A.15B.25C.35D.454.(2015·济宁一模)已知如图1所示是某学生的14次数学考试成绩的茎叶图,第1次到第14次的考试成绩依次记为A 1,A 2,…A 14,图2是统计茎叶图中成绩在一定范围内考试次数的一个程序框图,则输出的n 的值是( )A .8B .9C .10D .115.(2015·陕西一模)如图,给出的是计算12+14+16+…+12 016的值的程序框图,其中判断框内应填入的是( )A .i ≤2 021B .i ≤2 019C .i ≤2 017D .i ≤2 0156.(2015·山东枣庄模拟)某算法的程序框图如图所示,如果输出的结果为26,则判断框内的条件应为( )A .k ≤5?B .k >4?C .k >3?D .k ≤4?1.(2015·安徽)设i 是虚数单位,则复数2i1-i 在复平面内所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.(2015·广东)若复数z =i(3-2i)(i 是虚数单位),则z =( ) A .3-2i B .3+2i C .2+3i D .2-3i3.(2015·新课标全国Ⅱ)若a 为实数,且(2+a i)(a -2i)=-4i ,则a =( ) A .-1 B .0 C .1 D .24.(2015·陕西)设复数z =(x -1)+y i(x ,y ∈R ),若|z |≤1,则y ≥x 的概率为( ) A.34+12π B.14-12π C.12-1π D.12+1π5.(2015·新课标全国Ⅰ)设复数z 满足1+z 1-z =i ,则|z |=( )A .1 B. 2 C. 3 D .26.(2015·四川)设i 是虚数单位,则复数i 3-2i=( )A .-iB .-3iC .iD .3i7.(2015·北京)复数i(2-i)=( ) A .1+2i B .1-2i C .-1+2i D .-1-2i8.(2015·福建)若集合A ={i ,i 2,i 3,i 4}(i 是虚数单位),B ={1,-1},则A ∩B 等于( )A .{-1}B .{1}C .{1,-1}D .∅9.(2015·湖南)已知(1-i )2z=1+i(i 为虚数单位),则复数z =( )A .1+iB .1-iC .-1+iD .-1-i10.(2015·山东)若复数z 满足z1-i =i ,其中i 为虚数单位,则z =( )A .1-iB .1+iC .-1-iD .-1+i11.(2014·重庆)复平面内表示复数i(1-2i)的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限12.(2014·浙江)已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+b i)2=2i”的( )A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件13.(2014·山东)已知a,b∈R,i是虚数单位,若a-i与2+b i互为共轭复数,则(a +b i)2=( )A.5-4i B.5+4iC.3-4i D.3+4i14.(2015·重庆)设复数a+b i(a,b∈R)的模为3,则(a+b i)(a-b i)=________.15.(2015·天津)i是虚数单位,若复数(1-2i)(a+i)是纯虚数,则实数a的值为________.1.(2015·安徽江南十校模拟)若复数6+a i3-i (其中a ∈R ,i 为虚数单位)的实部与虚部相等,则a =( )A .3B .6C .9D .122.(2015·广东广州模拟)已知i 为虚数单位,复数z =(1+2i)i 对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.(2015·万州区模拟)设复数z =a +i1-i(a ∈R ,i 为虚数单位),若z 为纯虚数,则a =( )A .-1B .0C .1D .24.(2015·乌鲁木齐模拟)在复平面内,复数1+2i1-i对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 5.(2015·遂宁模拟)已知复数z 满足:z i =2+i(i 是虚数单位),则z 的虚部为( ) A .2i B .-2i C .2 D .-26.(2015·济宁一模)已知i 为虚数单位,复数z 满足i z =1+i ,则z =( ) A .1+i B .1-i C .-1+i D .-1-i7.(2015·青岛一模)设i 为虚数单位,复数2i1+i 等于( )A .-1+iB .-1-iC .1-iD .1+i8.(2015·陕西一模)已知复数z 1=2+i ,z 2=1-2i ,若z =z 1z 2,则z -=( )A.45+iB.45-i C .i D .-i 9.(2015·德阳模拟)复数2i 2-i =( )A .-25+45i B.25-45iC.25+45i D .-25-45i 10.(2015·山东枣庄模拟)i 是虚数单位,若z =1i -1,则|z |=( )A.12B.22C. 2 D .2 11.(2015·四川成都模拟)已知i 是虚数单位, 若⎝ ⎛⎭⎪⎫2+i 1+m i 2<0(m ∈R ),则m 的值为( )A.12 B .-2 C .2 D .-1212.(2015·陕西西安模拟)设a ∈R ,i 是虚数单位,则“a =1”是“a +ia -i为纯虚数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件13.(2015·贵州模拟)复数z =m -2i1+2i(m ∈R ,i 为虚数单位)在复平面上对应的点不可能位于( )A .第一象限B .第二象限C .第三象限D .第四象限14.(2015·甘肃河西五地模拟)下面是关于复数z =21-i的四个命题: p 1:|z |=2, p 2:z 2=2i ,p 3:z 的共轭复数为-1+i, p 4:z 的虚部为1.其中真命题为( ) A .p 2,p 3 B .p 1,p 2 C .p 2,p 4 D .p 3,p 415.(2015·安徽马鞍山模拟)若复数z =(a 2-4)+(a +2)i 为纯虚数,则a +i 2 0151+2i的值为( )A .1B .-1C .iD .-i第十章 推理证明、算法、复数考点35 推理与证明、数学归纳法 【两年高考真题演练】1.A [因为至少有一个的反面为一个也没有,所以要做的假设是方程x 3+ax +b =0没有实根.]2.4n -1[观察等式,第1个等式右边为40=41-1,第2个等式右边为41=42-1,第3个等式右边为42=43-1, 第4个等式右边为43=44-1,所以第n 个等式右边为4n -1.]3.5 [(ⅰ)x 4⊕x 5⊕x 6⊕x 7=1⊕1⊕0⊕1=1,(ⅱ)x 2⊕x 3⊕x 6⊕x 7=1⊕0⊕0⊕1=0;(ⅲ)x 1⊕x 3⊕x 5⊕x 7=1⊕0⊕1⊕1=1.由(ⅰ)(ⅲ)知x 5,x 7有一个错误,(ⅱ)中没有错误,∴x 5错误,故k 等于5.]4.14 [由题意知数列{a n }是以首项a 1=2,公比q =22的等比数列,∴a 7=a 1·q 6=2×⎝ ⎛⎭⎪⎫226=14.] 5.6 [根据题意可分四种情况:(1)若①正确,则a =1,b =1,c ≠2,d =4,符合条件的有序数组有0个;(2)若②正确,则a ≠1,b ≠1,c ≠2,d =4,符合条件的有序数组为(2,3,1,4)和(3,2,1,4);(3)若③正确,则a ≠1,b =1,c =2,d =4,符合条件的有序数组为(3,1,2,4); (4)若④正确,则a ≠1,b =1,c ≠2,d ≠4,符合条件的有序数组为(2,1,4,3),(4,1,3,2),(3,1,4,2).所以共有6个.故答案为6.]6.F +V -E =2 [因为5+6-9=2,6+6-10=2,6+8-12=2,故可猜想F +V -E =2.]7. 解 (1)法一 a 2=2,a 3=2+1. 再由题设条件知(a n +1-1)2=(a n -1)2+1. 从而{(a n -1)2}是首项为0公差为1的等差数列, 故(a n -1)2=n -1,即a n =n -1+1 (n ∈N *).法二 a 2=2,a 3=2+1.可写为a 1=1-1+1,a 2=2-1+1,a 3=3-1+1. 因此猜想a n =n -1+1. 下面用数学归纳法证明上式: 当n =1时结论显然成立.假设n =k 时结论成立,即a k =k -1+1,则a k +1=(a k -1)2+1+1=(k -1)+1+1=(k +1)-1+1.这就是说,当n =k +1时结论成立. 所以a n =n -1+1(n ∈N *). (2)设f (x )=(x -1)2+1-1, 则a n +1=f (a n ).令c =f (c ),即c =(c -1)2+1-1,解得c =14.下用数学归纳法证明加强命题a 2n <c <a 2n +1<1. 当n =1时,a 2=f (1)=0,a 3=f (0)=2-1, 所以a 2<14<a 3<1,结论成立.假设n =k 时结论成立,即a 2k <c <a 2k +1<1. 易知f (x )在(-∞,1]上为减函数, 从而c =f (c )>f (a 2k +1)>f (1)=a 2, 即1>c >a 2k +2>a 2.再由f (x )在(-∞,1]上为减函数得c =f (c )<f (a 2k +2)<f (a 2)=a 3<1. 故c <a 2k +3<1,因此a 2(k +1)<c <a 2(k +1)+1<1. 这就是说,当n =k +1时结论成立.综上,符合条件的c 存在,其中一个值为c =14.【一年模拟试题精练】1. m 2-n 2 [当n =0,m =1时,为第一个式子13+23=1此时1=12-0=m 2-n 2,当n =2,m =4时,为第二个式子73+83+103+113=12;此时12=42-22=m 2-n 2,当n =5,m =8时,为第三个式子163+173+193+203+223+233=39此时39=82-52=m 2-n 2,由归纳推理可知等式:3n +13+3n +23+…+3m -23+3m -13=m 2-n 2.故答案为:m 2-n 2]2.n ·2n -1[S 1=1,S 2=4,当n =3时,S 3=1+2+3+(2-1)+(3-1)+(3-2)+(3-2+1)=12,S 4=1+2+3+4+(2-1)+(3-1)+(4-1)+(3-2)+(4-2)+(4-3)+(3-2+1)+(4-2+1)+(4-3+1)+(4-3+2)+(4-3+2-1)=32,∴根据前4项猜测集合N ={1,2,3,…,n }的每一个非空子集的“交替和”的总和S n=n ·2n -1,故答案为:n ·2n -1.]3.45 [由题意,从23到m 3,正好用去从3开始的连续奇数共2+3+4+…+m =(m +2)(m -1)2个,2 015是从3开始的第1 007个奇数,当m =44时,从23到443,用去从3开始的连续奇数共46×432=989个. 当m =45时,从23到453,用去从3开始的连续奇数共47×442=1 034个.] 4.(1)5 (2)9 [当l =12时,为使n 最大,先考虑截下的线段最短,第1段和第2段长度为1、1,由于任意三段都不能构成三角形,∴第3段的长度为1+1=2,第4段和第5段长度为3、5,恰好分成了5段;(2)当l =100时,依次截下的长度为1、1、2、3、5、8、13、21、34的线段,长度和为88,还余下长为12的线段,因此最后一条线段长度取为34+12=46,故n 的最大值是9.]5.n (n +1)·2n -2[C 1n +22C 2n +32C 3n +…+k 2C k n +…+n 2C n n =n (C 0n -1+2C 1n -1+…+k C k -1n -1+…+n C n -1n -1)=n [(C 0n -1+C 1n -1+…+C k -1n -1+…+C n -1n -1)+(C 1n -1+2C 2n -1+…+(k -1)C k -1n -1+…+(n -1)C n -1n -1)].]6.55 [观察下列等式2+23=223,3+38=338,4+415=4415,…, 照此规律,第7个等式中:a =7,b =72-1=48,∴a +b =55,故答案为:55.] 7.(1)证明 由题设知a 1=f 1(0)-1f 1(0)+2=14,∴a n +1a n =f n +1(0)-1f n +1(0)+2f n (0)-1f n (0)+2=2f n (0)+1-12f n (0)+1+2f n (0)-1f n (0)+2=1-f n (0)2f n (0)+4f n (0)-1f n (0)+2=-12,∴数列{a n }为等比数列,项通次公式为a n =⎝ ⎛⎭⎪⎫-12n +1. (2)解 由(1)知b n =2n,g (b n )=1+12+13+…+12n ,只要证:1+12+13+…+12n ≥n +22,下面用数学归纳证明:n =1时,1+12=1+22,结论成立,假设n =k 时成立,即1+12+13+…+12k >k +22,那么:n =k +1时,1+12+13+…+12k +12k +1+…+12k +1>k +22+12k +1+…+12k +1>k +22+12k +1+12k +1+…+12k +1>k +22+12k +12k =k +32,即n =k +1时,结论也成立, 所以n ∈N ,结论成立.考点36 算法与程序框图【两年高考真题演练】1.C [当i =1,S =0进入循环体运算时,S =0,i =2;S =0+(-1)=-1,i =3;S=-1+0=-1,i =4;∴S =-1+1=0,i =5;S =0+0=0,i =6>5,故选C.]2.B [第一次循环:S =1-1=0,t =1+1=2;x =0,y =2,k =1; 第二次循环:S =0-2=-2,t =0+2=2,x =-2,y =2,k =2;第三次循环:S =-2-2=-4,t =-2+2=0,x =-4,y =0,k =3.输出(-4,0).] 3.C [由程序框图,k 的值依次为0,2,4,6,8,因此S =12+14+16=1112(此时k =6)还必须计算一次,因此可填S ≤1112,选C.]4.B [由题知,若输入a =14,b =18,则第一次执行循环结构时,由a <b 知,a =14,b =b -a =18-14=4; 第二次执行循环结构时,由a >b 知,a =a -b =14-4=10,b =4; 第三次执行循环结构时,由a >b 知,a =a -b =10-4=6,b =4; 第四次执行循环结构时,由a >b 知,a =a -b =6-4=2,b =4; 第五次执行循环结构时,由a <b 知,a =2,b =b -a =4-2=2; 第六次执行循环结构时,由a =b 知,输出a =2,结束,故选B.]5.C [程序框图的执行过程如下:s =1,k =9,s =910,k =8;s =910×89=810,k =7;s =810×78=710,k =6,循环结束.故可填入的条件为s >710.故选C.]6.C [先画出x ,y 满足的约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1,对应的可行域如图中的阴影部分:移动直线l 0:y =-2x .当直线经过点A (1,0)时,y =-2x +S 中截距S 最大,此时S max =2×1+0=2. 再与x ≥0,y ≥0,x +y ≤1不成立时S =1进行比较,可得S max =2.] 【一年模拟试题精练】1.B [由循环程序框图可转化为数列{S n }为1,2,4,…并求S 21,观察规律得S 2-S 1=1,S 3-S 2=2,S 4-S 3=3,……,S 21-S 20=20,把等式相加:S 21-S 1=1+2+…+20=20×1+202 =210,所以S 21=211.故选B.]2.B [根据流程图所示的顺序,该程序的作用是打印如下点:(1,1)、⎝ ⎛⎭⎪⎫2,12、⎝ ⎛⎭⎪⎫3,13、⎝ ⎛⎭⎪⎫4,14、⎝ ⎛⎭⎪⎫5,15、⎝ ⎛⎭⎪⎫6,16 其中(1,1)、⎝ ⎛⎭⎪⎫2,12、⎝ ⎛⎭⎪⎫3,13满足x 2+y 2<10,即在圆x 2+y 2=10内,故打印的点在圆x 2+y 2=10内的共有3个,故选:B.]3.C [ 循环前输入的x 的值为1, 第1次循环,x 2-4x +3=0≤0,满足判断框条件,x =2,n =1,x 2-4x +3=-1≤0,满足判断框条件,x =3,n =2,x 2-4x +3=0≤0,满足判断框条件,x =4,n =3,x 2-4x +3=3>0,不满足判断框条件,输出n :N =3.在区间[-2,3]上随机选取一个数M ,长度为5,M ≤1,长度为3,所以所求概率为35,故选C.]4.C [由程序框图知:算法的功能是计算学生在14次数学考试成绩中,成绩大于等于90的次数,由茎叶图得,在14次测试中,成绩大于等于90的有:93、99、98、98、94、91、95、103、101、114共10次,∴输出n 的值为10.故选C.] 5.C [根据流程图,可知第1次循环:i =2,S =12;第2次循环:i =4,S =12+14;第3次循环:i =6,S =12+14+16…,第1 008次循环:i =2 016, S =12+14+16+…+12 016; 此时,设置条件退出循环,输出S 的值.故判断框内可填入i ≤2 016.对比选项,故选C.]6.C [分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算S 值并输出,模拟程序的运行过程,即可得到答案,程序在运行过程中,各变量的值变化如下所示:S 条件? k循环前 0 / 1 第1圈 1 否 2 第2圈 4 否 3 第3圈 11 否 4 第4圈 26 是得,当k =4时,S =26,此时应该结束循环体并输出S 的值为26,所以判断框应该填入的条件为:k >3?,故选C.]考点37 复 数【两年高考真题演练】1.B [2i 1-i =2i (1+i )(1-i )(1+i )=2i (1+i )2=i -1=-1+i ,其对应点坐标为(-1,1),位于第二象限,故选B.]2.D [因为z =i(3-2i)=2+3i ,所以z =2-3i ,故选D.]3.B [因为a 为实数,且(2+a i)(a -2i)=4a +(a 2-4)i =-4i ,得4a =0且a 2-4=-4,解得a =0,故选B.]4.B [由|z|≤1可得(x -1)2+y 2≤1,表示以(1,0)为圆心,半径为1的圆及其内部,满足y ≥x 的部分为如图阴影所示,由几何概型概率公式可得所求概率为: P =14π×12-12×12π×12=π4-12π =14-12π.] 5.A [由1+z 1-z =i ,得1+z =i -z i ,z =-1+i1+i =i ,∴|z |=|i|=1.]6.C [i 3-2i =-i -2i i 2=-i +2i =i.选C.]7.A [i(2-i)=2i -i 2=1+2i.]8.C [集合A ={i -1,1,-i},B ={1,-1},A ∩B ={1,-1},故选C.]9.D [由(1-i )2z =1+i ,知z =(1-i )21+i =-2i1+i =-1-i ,故选D.]10.A [∵z1-i=i ,∴z =i(1-i)=i -i 2=1+i ,∴z =1-i.] 11.A [复数i(1-2i)=2+i ,在复平面内对应的点的坐标是(2,1),位于第一象限.] 12.A [当a =b =1时,(a +b i)2=(1+i)2=2i ,反之,若(a +b i)2=2i ,则有a =b =-1或a =b =1,因此选A.]13.D [根据已知得a =2,b =1,所以(a +b i)2=(2+i)2=3+4i.]14.3 [由|a +b i|=3得a 2+b 2=3,即a 2+b 2=3,所以(a +b i)(a -b i)=a 2+b 2=3.]15.-2 [(1-2i)(a +i)=a +2+(1-2a )i ,由已知,得a +2=0,1-2a ≠0,∴a =-2.]【一年模拟试题精练】 1.A [z =(6+a i )(3+i )(3-i )(3+i )=18-a +(3a +6)i10.由条件得,18-a =3a +6,∴a=3.]2.B [因为z =(1+2i)i =i +2i 2=-2+i ,所以z 对应的点的坐标是(-2,1),所以在第二象限,故选B.]3.C [z =a +i 1-i =(a +i )(1+i )(1-i )(1+i )=a -1+(1+a )i 2=a -12+1+a2i ,若z 为纯虚数,则a -12=0且1+a2≠0,解a =1,故选:C.] 4.B [∵复数 1+2i 1-i =(1+2i )(1+i )(1+i )(1-i )=-1+3i 2=-12+32i ,∴复数对应的点的坐标是⎝ ⎛⎭⎪⎫-12,32,∴复数1+2i 1-i 在复平面内对应的点位于第二象限,故选B.]5.D [由z i =2+i ,得z =2+i i =-i (2+i )-i2=1-2i ,∴z 的虚部是-2.] 6.A [∵i z =1+i ,∴-i ·i z =-i(1+i),化为z =1-i ,∴z -=1+i.] 7.D [2i 1+i =2i (1-i )(1+i )(1-i )=2+2i2=1+i.]8.D [∵复数z 1=2+i ,z 2=1-2i ,∴z =z 1z 2=2+i 1-2i =(2+i )(1+2i )(1-2i )(1+2i )=5i5=i ,则z =-i.]9.A [2i 2-i =2i (2+i )(2-i )(2+i )=-2+4i 5=-25+45i.]10.B [由题根据所给复数化简求解即可;∵z =1i -1=1+i -2,∴|z |=22.]11.B [由⎝ ⎛⎭⎪⎫2+i 1+m i 2<0,知2+i 1+m i 为纯虚数,∴2+i 1+m i =2+m +(1-2m )i 1+m 2为纯虚数,∴m =-2,故选B.]12.A [∵a +i a -i =a 2-1+2a i a 2+1,∴“a +ia -i为纯虚数”⇔“a =±1”, 故“a =1”是“a +ia -i为纯虚数”的充分不必要条件.] 13.A [由已知z =m -2i 1+2i =(m -2i )(1-2i )(1+2i )(1-2i )=15[(m -4)-2(m +1)i]; 在复平面对应点如果在第一象限,则⎩⎪⎨⎪⎧m -4>0,m +1<0而此不等式组无解.即在复平面上对应的点不可能位于第一象限.故选A.]14.C [p 1:|z |=⎪⎪⎪⎪⎪⎪21-i =2,故命题为假;p 2:z 2=⎝ ⎛⎭⎪⎫21-i 2=41-2i -1=2i ,故命题为真; z =21-i=1+i ,∴z 的共轭复数为1-i ,故命题p 3为假; ∵z =21-i =1+i ,∴p 4:z 的虚部为1,故命题为真.故真命题为p 2,p 4故选C.]15.D [∵z =(a 2-4)+(a +2)i 为纯虚数,∴⎩⎪⎨⎪⎧a 2-4=0,a +2≠0,即⎩⎪⎨⎪⎧a =2或a =-2,a ≠-2,解得a =2,则a +i 2 0151+2i =2+i 31+2i =2-i 1+2i =-i.]。
2016版《一点一练》高考数学(文科)专题演练:第六章 不等式(含两年高考一年模拟)
14.(2015·厦门市质检)点P(x,y)在直线y=kx+2上,记T=|x|+|y|,若使T取得最小值的点P有无数个,则实数k的取值是________.
15.(2015·赤峰市测试)已知O(x,y)为区域内的任意一点,当该区域面积为4时,z=2x-y的最大值为________.
16.(2015·吉林市高三摸底)已知正项等比数列{an}的公比q=2,若存在两项am,an,使得=4a1,则+的最小值为________.
考点20二元一次不等式(组)与简单的线性规划
两年高考真题演练
1.(2015·天津)设变量x,y满足约束条件则目标函数z=3x+y的最大值为()
A.7B.8C.9D.14
6.(2015·贵州七校一联)一个平行四边形的三个顶点的坐标为(-1,2),(3,4),(4,-2),点(x,y)在这个平行四边形的内部或边上,则z=2x-5y的最大值是()
A.16B.18C.20D.36
7.(2015·云南师大附中适应性考试)设x,y满足约束条件若目标函数z=ax+by(a>0,b>0)的最大值为4,则a+b的值为()
甲
乙
原料限额
A(吨)
3
2
12
B(吨)
1
2
8
A.12万元B.16万元
C.17万元D.18万元
5.(2015·四川)设实数x,y满足则xy的最大值为()
A.B.C.12D.14
6.(2015·重庆)若不等式组表示的平面区域为三角形,且其面积等于,则m的值为()
A.-3B.1C.D.3
7.(2015·福建)变量x,y满足约束条件若z=2x-y的最大值为2,则实数m等于()
2016-2017学年高中数学 第一章 推理与证明 4 数学归纳法课后演练提升 北师大版选修2-2
2016-2017学年高中数学 第一章 推理与证明 4 数学归纳法课后演练提升 北师大版选修2-2一、选择题1.用数学归纳法证明等式 1+2+3+…+(n +3)=n +n +2(n ∈N +)时,第一步验证n =1时,左边应取的项是( )A .1B .1+2C .1+2+3D .1+2+3+4解析: 当n =1时,左=1+2+3+(1+3)=1+2+3+4. 答案: D2.用数学归纳法证明“(n +1)(n +2)·…·(n +n )=2n·1·3·…·(2n -1)”,“从n =k 到n =k +1”左端需增乘的代数式为( )A .2k +1B .2(2k +1) C.2k +1k +1D.2k +3k +1解析: ∵当n =k 时,左边=(k +1)(k +2)…2k , 当n =k +1时,左边=(k +2)(k +3)…2k (2k +1)(2k +2). ∴左端“从n =k 到n =k +1”需增乘的代数式为:k +k +k k +k +k +k +k=k +k +k +1=2(2k +1).故选B.答案: B3.在数列{a n }中,a 1=2,a n +1=a n3a n +1(n 是正整数),依次计算a 2,a 3,a 4,归纳推测出{a n }的通项表达式为( )A.24n -3B.26n -5C.24n +3D.22n-1解析: a 1=2,a 2=27,a 3=213,a 4=219,…,可推测a n =26n -5,故选B.答案: B4.F (n )是一个关于自然数n 的命题,若F (k )为真,则F (k +1)真,现已知F (20)不真,那么:①F (21)不真;②F (19)不真;③F (21)真;④F (18)不真;⑤F (18)真.其中正确的结论为( )A .②④B .①②C .③⑤D .①⑤解析: 利用等价命题,若F (k )为真,则F (k +1)为真的等价命题为若F (k +1)不真,则F (k )不真,所以②④正确.答案: A 二、填空题5.设凸k 边形的内角和为f (k ),则凸k +1边形的内角和f (k +1)=f (k )+_____________.解析: 凸k +1边形在凸k 边形的基础上增加了一条边,同时内角和增加了一个三角形的内角和即π.答案: π6.用数学归纳法证明关于n 的恒等式,当n =k 时,表达式为1×4+2×7+…+k (3k +1)=k (k +1)2,则当n =k +1时,表达式为__________________.答案: 1×4+2×7+…+k (3k +1)+(k +1)(3k +4)=(k +1)(k +2)2三、解答题7.用数学归纳法证明:(n +1)(n +2)…(n +n )=2n·1·3·…·(2n -1)(n ∈N +). 证明: (1)当n =1时,左边=1+1=2,右边=2,等式成立. (2)假设当n =k (n ∈N +)时等式成立,即(k +1)(k +2)…(k +k )=2k ·1·3·…·(2k -1). 两边同乘以k +k +k +1得,(k +2)(k +3)…(k +1+k -1)(2k +1)(2k +2) =2k·1·3·…·(2k -1)·2(2k +1) =2k +1·1·3·…·(2k -1)(2k +1).所以当n =k +1时等式成立. 由(1)(2)知对于n ∈N +等式成立.8.已知数列{a n }前n 项和为S n ,a 1=-23,且S n +1S n+2=a n (n ≥2),计算S 1,S 2,S 3,S 4的值,猜想S n 的解析式,并用数学归纳法证明.解析: S 1=a 1=-23S 2+1S 2+2=S 2-⎝ ⎛⎭⎪⎫-23⇒S 2=-34,S 3+1S 3+2=S 3-S 2⇒S 3=-45, S 4+1S 4+2=S 4-S 3⇒S 4=-56. 猜想:S n =-n +1n +2(n ∈N +). 下面用数学归纳法证明.(1)当n =1时,左边=S 1=a 1=-23,右边=-1+11+2=-23.∵左边=右边,∴原等式成立. (2)当n =k 时,假设S k =-k +1k +2成立, 由S k +1+1S k +1+2=S k +1-S k 得1S k +1=-S k -2=k +1k +2-2=k +1-2k -4k +2=-k -3k +2=-k +3k +2, ∴S k +1=-k +2k +3=-k ++1k ++2, ∴当n =k +1时,原等式也成立. 综合(1)(2)得对一切n ∈N +,S n =-n +1n +2成立.9.是否存在常数a 、b ,使等式1×n +2(n -1)+3(n -2)+…+(n -2)×3+(n -1)×2+n ×1=16n (n +a )(n +b )对一切自然数n 都成立,并证明你的结论.解析: 令n =1,得1=16(1+a )(1+b ),令n =2,得4=26(2+a )(2+b ),整理得⎩⎪⎨⎪⎧ab +a +b =5ab +a +b =8,解得a =1,b =2.下面用数学归纳法证明等式:1×n +2×(n -1)+3×(n -2)+…+(n -1)×2+n ×1=16n(n+1)(n+2).(1)当n=1时,由上述解答知等式成立.(2)假设n=k(k≥1)时等式成立,即1×k+2×(k-1)+3×(k-2)+…+(k-1)×2+k×1=16k(k+1)(k+2).当n=k+1时,则1×(k+1)+2×[(k+1)-1]+3×[(k+1)-2]+…+(k-1)×3+k×2+(k+1)×1=1×k+2(k-1)+3(k-2)+…+(k-1)×2+k×1+(1+2+3+…+k+k+1)=16k(k+1)(k+2)+12(k+1)(k+2)=16(k+1)(k+2)(k+3).这表明n=k+1时等式也成立.由(1)(2)知,等式对一切n∈N+都成立.。
高考数学推理与证明
1.合情推理与演绎推理(1)归纳和类比都是合情推理,前者是由特殊到一般,部分到整体的推理,后者是由特殊到特殊的推理,但二者都能由已知推测未知,都能用于猜想,推理的结论不一定为真,有待进一步证明.(2)演绎推理与合情推理不同,是由一般到特殊的推理,是数学中证明的基本推理形式.也是公理化体系所采用的推理形式,另一方面,合情推理与演绎推理又是相辅相成的,前者是后者的前提,后者论证前者的可靠性.2.直接证明与间接证明直接证明和间接证明是数学证明的两类基本证明方法.直接证明的两类基本方法是综合法和分析法:综合法是从已知条件推导出结论的证明方法;分析法是由结论追溯到条件的证明方法,在解决数学问题时,常把它们结合起来使用,间接证法的一种方法是反证法,反证法是从结论反面成立出发,推出矛盾的证明方法.思考反证法通常适用于哪些问题?答案反证法是高中数学的一种重要的证明方法,在不等式和立体几何的证明中经常用到,它所反映出的“正难则反”的解决问题的思想方法更为重要.反证法主要证明:否定性、唯一性命题;至多、至少型问题;几何问题.3.数学归纳法数学归纳法主要用于解决与正整数有关的数学问题.证明时,它的两个步骤缺一不可.它的第一步(归纳奠基)n=n0时结论成立.第二步(归纳递推)假设n=k时,结论成立,推得n=k+1时结论也成立.数学归纳法原理建立在归纳公理的基础上,它可用有限的步骤(两步)证明出无限的命题成立.思考何为探索性命题?其解题思路是什么?答案探索性命题是试题中经常出现的一种题型,此类问题未给出问题结论,需要由特殊情况入手,猜想、证明一般结论的问题称为探求规律性问题,它的解题思想是:从给出的条件出发,通过观察、试验、归纳、猜想,探索出结论,然后再对归纳、猜想的结论进行证明.题型一合情推理及应用例1观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10等于()A.28B.76C.123D.199答案 C解析记a n+b n=f(n),则f(3)=f(1)+f(2)=1+3=4;f(4)=f(2)+f(3)=3+4=7;f(5)=f(3)+f(4)=11.通过观察不难发现f(n)=f(n-1)+f(n-2)(n∈N*,n≥3),则f(6)=f(4)+f(5)=18;f(7)=f(5)+f(6)=29;f(8)=f(6)+f(7)=47;f(9)=f(7)+f(8)=76;f(10)=f(8)+f(9)=123.所以a10+b10=123.反思与感悟归纳推理和类比推理是常用的合情推理,两种推理的结论“合情”但不一定“合理”,其正确性都有待严格证明.尽管如此,合情推理在探索新知识方面有着极其重要的作用.运用合情推理时,要认识到观察、归纳、类比、猜想、证明是相互联系的.在解决问题时,可以先从观察入手,发现问题的特点,形成解决问题的初步思路,然后用归纳、类比的方法进行探索、猜想,最后用逻辑推理方法进行验证.跟踪训练1自然数按下表的规律排列则上起第2 014行,左起第2 015列的数为()A.2 0142B.2 0152C.2 013×2 014D.2 014×2 015答案 D解析 经观察可得这个自然数表的排列特点:①第一列的每个数都是完全平方数,并且恰好等于它所在行数的平方,即第n 行的第1个数为n 2;②第一行第n 个数为(n -1)2+1;③第n 行从第1个数至第n 个数依次递减1; ④第n 列从第1个数至第n 个数依次递增1.故上起第2 014行,左起第2 015列的数,应是第2 015列的第2 014个数,即为[(2 015-1)2+1]+2 013=2 014×2 015. 题型二 直接证明与间接证明例2 已知a >b >0,求证(a -b )28a <a +b 2-ab <(a -b )28b .证明 欲证(a -b )28a <a +b 2-ab <(a -b )28b ,只需证(a -b )28a <(a -b )22<(a -b )28b ,∵a >b >0,∴只需证a -b 22a <a -b 2<a -b22b ,即a +b 2a <1<a +b2b, 欲证a +b 2a <1,只需证a +b <2a ,即b <a ,该式显然成立.欲证1<a +b2b,只需证2b <a +b ,即b <a ,该式显然成立. ∴a +b 2a <1<a +b2b成立. ∴(a -b )28a <a +b 2-ab <(a -b )28b成立.反思与感悟 直接证明方法可具体分为比较法、代换法、放缩法、判别式法、构造函数法等,应用综合法证明问题时,必须首先想到从哪里开始起步,分析法就可以帮助我们克服这种困难,在实际证明问题时,应当把分析法和综合法结合起来使用. 跟踪训练2 已知等差数列{a n }中,首项a 1>0,公差d >0. (1)若a 1=1,d =2,且1a 21,1a 24,1a 2m 成等比数列,求正整数m 的值;(2)求证对任意正整数n ,1a 2n ,1a 2n +1,1a 2n +2都不成等差数列.(1)解 ∵{a n }是等差数列,a 1=1,d =2, ∴a 4=7,a m =2m -1.∵1a 21,1a 24,1a 2m 成等比数列, ∴1492=1(2m -1)2, 即2m -1=49.∴m =25.(2)证明 假设存在n ∈N *,使1a 2n ,1a 2n +1,1a 2n +2成等差数列,即2a 2n +1=1a 2n +1a 2n +2, ∴2a 2n +1=1(a n +1-d )2+1(a n +1+d )2=2a 2n +1+2d2(a 2n +1-d 2)2, 化简得d 2=3a 2n +1.(*)又∵a 1>0,d >0,∴a n +1=a 1+nd >d ,∴3a 2n +1>3d 2>d 2,与(*)式矛盾,因此假设不成立,故命题得证. 题型三 数学归纳法及应用例3 已知a i >0(i =1,2,…,n ),考察: ①a 1·1a 1≥1;②(a 1+a 2)⎝⎛⎭⎫1a 1+1a 2≥4;③(a 1+a 2+a 3)⎝⎛⎭⎫1a 1+1a 2+1a 3≥9.归纳出对a 1,a 2,…,a n 都成立的类似不等式,并用数学归纳法加以证明.解 结论:(a 1+a 2+…+a n )·⎝⎛⎭⎫1a 1+1a2+…+1a n≥n 2(n ∈N *). 证明:①当n =1时,显然成立. ②假设当n =k 时,不等式成立,即(a 1+a 2+…+a k )·⎝⎛⎭⎫1a 1+1a2+…+1a k≥k 2. 当n =k +1时,(a 1+a 2+…+a k +a k +1)·⎝⎛⎭⎫1a 1+1a 2+…+1a k+1ak +1=(a 1+a 2+…+a k )⎝⎛⎭⎫1a 1+1a 2+…+1a k +a k +1·⎝⎛⎭⎫1a 1+1a 2+…+1a k +1a k +1(a 1+a 2+…+a k )+1 ≥k 2+⎝ ⎛⎭⎪⎫a k +1a 1+a 1a k +1+⎝ ⎛⎭⎪⎫a k +1a 2+a 2a k +1+…+⎝ ⎛⎭⎪⎫a k +1a k +a k a k +1+1 ≥k 2+2k +1=(k +1)2.由①②可知,不等式对任意正整数n 都成立.反思与感悟 数学归纳法是推理逻辑,它的第一步称为奠基步骤,是论证的基础保证,即通过验证落实传递的起点,这个基础必须真实可靠;它的第二步称为递推步骤,是命题具有后继传递性的保证,两步合在一起为完全归纳步骤,这两步缺一不可,第二步中证明“当n =k +1时结论正确”的过程中,必须用“归纳假设”,否则就是错误的. 跟踪训练3 数列{a n }满足S n =2n -a n (n ∈N *). (1)计算a 1,a 2,a 3,a 4,并由此猜想通项公式a n ; (2)证明(1)中的猜想.(1)解 当n =1时,a 1=S 1=2-a 1,∴a 1=1; 当n =2时,a 1+a 2=S 2=2×2-a 2,∴a 2=32;当n =3时,a 1+a 2+a 3=S 3=2×3-a 3,∴a 3=74;当n =4时,a 1+a 2+a 3+a 4=S 4=2×4-a 4, ∴a 4=158.由此猜想a n =2n -12n 1(n ∈N *).(2)证明 ①当n =1时,a 1=1,结论成立. ②假设n =k (k ≥1且k ∈N *)时,结论成立, 即a k =2k -12k -1,那么n =k +1时,a k +1=S k +1-S k =2(k +1)-a k +1-2k +a k =2+a k -a k +1, ∴2a k +1=2+a k .∴a k +1=2+a k 2=2+2k -12k -12=2k +1-12k .所以当n =k +1时,结论成立. 由①②知猜想a n =2n -12n -1(n ∈N *)成立.应用反证法证明问题时,因对结论否定不正确致误例4 已知x ,y ∈R ,且x 2+y 2=0,求证x ,y 全为0. 错解 假设结论不成立,则x ,y 全不为0,即x ≠0且y ≠0,∴x 2+y 2>0,与x 2+y 2=0矛盾,故x ,y 全为0.错因分析 x ,y 全为0的否定应为x ,y 不全为0,即至少有一个不是0,得x 2+y 2>0与已知矛盾.正解 假设x ,y 不全为0,则有以下三种可能: ①x =0,y ≠0,得x 2+y 2>0,与x 2+y 2=0矛盾; ②x ≠0,y =0,得x 2+y 2>0, 与x 2+y 2=0矛盾; ③x ≠0,y ≠0,得x 2+y 2>0,与x 2+y 2=0矛盾. ∴假设是错误的, ∴x ,y 全为0.防范措施 应用反证法证明问题时,首先要否定结论,假设结论的反面成立,当结论的反面呈现多样性时,需罗列出各种可能情形,否定一定要彻底.1.下列推理正确的是( )A.把a (b +c )与log a (x +y )类比,则log a (x +y )=log a x +log a yB.把a (b +c )与sin(x +y )类比,则sin(x +y )=sin x +sin yC.把(ab )n 与(x +y )n 类比,则(x +y )n =x n +y nD.把(a +b )+c 与(xy )z 类比,则(xy )z =x (yz ) 答案 D2.在△ABC 中,若sin A sin C >cos A cos C ,则△ABC 一定是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定答案 D解析 由sin A sin C >cos A cos C ,得cos(A +C )<0,即cos B >0, 所以B 为锐角,但并不能确定角A 和C 的情况,故选D.3.猜想数列12×4,14×6,16×8,18×10,…的通项公式是____________________.答案 a n =12n (2n +2)(n ∈N *)解析 分析式子12×4,14×6,16×8,18×10,…的规律,可得分子均为1,分母为连续相邻的两个偶数的乘积.4.如图是由花盆摆成的图案,根据图中花盆摆放的规律,第n 个图形中的花盆数a n =__________.答案 3n 2-3n +1解析 观察知每一个图案中间一行的花盆数为1,3,5,…,其中第n 个图案中间一行的花盆数为2n -1,往上一侧花盆数依次是2n -2,2n -3,…,它们的和为n (2n -1+n )2=n (3n -1)2,往下一侧(含中间一行)花盆数为n (3n -1)2,所以a n =2·n (3n -1)2-(2n -1)=3n 2-3n +1.5.函数列{f n (x )}满足f 1(x )=x1+x 2(x >0),f n +1(x )=f 1(f n (x )). (1)求f 2(x ),f 3(x );(2)猜想f n (x )的表达式,并证明. 解 (1)f 1(x )=x1+x 2(x >0), f 2(x )=x 1+x 21+x 21+x 2=x1+2x 2, f 3(x )=x 1+2x 21+x 21+2x 2=x 1+2x 2+x 2=x1+3x 2. (2)猜想f n (x )=x 1+nx 2(n ∈N *), 下面用数学归纳法证明: ①当n =1时,命题显然成立; ②假设当n =k (k ∈N *)时,f k (x )=x1+kx 2, 那么f k +1(x )=x 1+kx 21+x 21+kx 2=x 1+kx 2+x 2=x1+(k +1)x 2.这就是说当n =k +1时命题也成立. 由①②可知,f n (x )=x 1+nx2对所有n ∈N *均成立.故f n (x )=x 1+nx2(n ∈N *).转化与化归的思想方法是数学最基本的思想方法,数学中一切问题的解决都离不开转化与化归,转化与化归是数学思想方法的灵魂.在本章中,合情推理与演绎推理体现的是一般与特殊的转化,数学归纳法体现的是一般与特殊、有限与无限的转化,反证法体现的是对立与统一的转化.从特殊到一般的思想方法即由特殊情况入手,通过观察、试验、归纳、猜想,探索出结论,然后再对归纳、猜想的结论进行证明.与正整数n 有关的命题,经常要用到归纳猜想,然后用数学归纳法证明,这体现了从特殊到一般的探求规律的思想.一、选择题1.古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,…这些数叫做三角形数,因为这些数(除1外)对应的点可以排成一个正三角形,如图所示,则第n 个三角形数为( )A.nB.n (n +1)2C.n 2-1D.n (n -1)2答案 B解析 观察图形可知,这些三角形数的特点是第n 个三角形数是在前一个三角形数的基础上加上n ,于是第n 个三角形数为1+2+…+n =n (n +1)2.2.有这样一段演绎推理“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,是因为( ) A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误 答案 C解析 演绎推理的一般模式是三段论,大前提是已知的一般性原理,小前提是研究的特殊情况,结论是得出的判断.本题中并非所有的有理数都是真分数,所以推理形式错误.3.如图,椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F (c,0),当AB →⊥FB →时,由b 2=ac 得其离心率为5-12,此类椭圆称为“黄金椭圆”.类比“黄金椭圆”,在“黄金双曲线”x 2a 21-y 2b 21=1中,由b 21=a 1c 1(c 1为黄金双曲线的半焦距)可推出“黄金双曲线”的离心率为( )A.5+12 B.3+12 C.5+13D.7-12答案 A 解析 b 21=a 1c 1,c 21-a 21=b 21=a 1c 1,∴c 21a 21-1=c 1a 1,∴e 2-e -1=0,∴e =5+12(∵e >1).故选A.4.设函数f (x )=2x +1x -1(x <0),则f (x )( )A.有最大值B.有最小值C.为增函数D.为减函数答案 A解析 ∵x <0,∴-x >0,则 (-2x )+⎝⎛⎭⎫-1x ≥2(-2x )⎝⎛⎭⎫-1x =22, ∴-⎣⎡⎦⎤(-2x )+⎝⎛⎭⎫-1x ≤-2 2. ∴f (x )=-⎣⎡⎦⎤(-2x )+⎝⎛⎭⎫-1x -1≤-22-1. 当且仅当-2x =-1x ,即x =-22时取最大值.故选A.5.设集合S ={A 0,A 1,A 2,A 3},在S 上定义运算为:A i A j =A k ,其中k 为i +j 被4除的余数,i ,j =0,1,2,3.则满足关系式(x x A 2=A 0的x (x ∈S )的个数为( )A.1B.2C.3D.4 答案 B解析 当x =A 0时,(x xA 2=A 2≠A 0,当x =A 1时,(x xA 2=A 2A 2=A 0,成立;当x =A 2时,(x xA 2=A 0A 2=A 2≠A 0;当x =A 3时,(x xA 2=A 2A 2=A 0,成立.故选B.6.O 是平面上一定点,A ,B ,C 是平面上不共线的三个点,动点P 满足OP →=OA →+λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|,λ∈[0,+∞),则P 的轨迹一定通过△ABC 的( ) A.外心 B.内心 C.重心 D.垂心 答案 B解析 如图,AB →|AB →|为AB →上的单位向量,AC →|AC →|为AC →上的单位向量,则AB →|AB →|+AC→|AC →|的方向为∠BAC的角平分线AD 的方向.又λ∈[0,+∞),∴λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|的方向与AB →|AB →|+AC →|AC →|的方向相同.而OP →=OA →+λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|,∴点P 在AD 上移动,∴P 的轨迹一定通过△ABC 的内心. 二、填空题7.已知p =a +1a -2(a >2),q =2-a 2+4a -2(a >2),则p ,q 的大小关系为______.答案 p >q解析 p =a -2+1a -2+2≥2(a -2)·1a -2+2=4,-a 2+4a -2=2-(a -2)2<2,∴q <22=4≤p .8.α,β是两个不同的平面,m ,n 是平面α及平面β外两条不同的直线,给出下列四个论断: ①m ⊥n ;②α⊥β;③n ⊥β;④m ⊥α.以其中三个论断作为条件,余下一个论断作为结论,写出一个你认为正确的命题__________. 答案 ②③④⇒①(或①③④⇒②)9.若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1在区间[-1,1]内至少存在一点c ,使f (c )>0,则实数p 的取值范围是__________. 答案 ⎝⎛⎭⎫-3,32 解析 方法一(补集法):令⎩⎪⎨⎪⎧f (-1)≤0,f (1)≤0即⎩⎪⎨⎪⎧ -2p 2+p +1≤0,-2p 2-3p +9≤0即⎩⎨⎧ p ≤-12或p ≥1,p ≤-3或p ≥32.∴p ≤-3或p ≥32,符合题意的解是-3<p <32. 方法二(直接法):依题意,有f (-1)>0或f (1)>0,即2p 2-p -1<0或2p 2+3p -9<0,∴-12<p <1或-3<p <32,∴-3<p <32. 10.设函数y =f (x )在(0,+∞)内有定义,对于给定的正数K ,定义函数f K (x )=⎩⎪⎨⎪⎧f (x ),f (x )≤K ,K ,f (x )>K ,若函数f (x )=ln x +1e x,且恒有f K (x )=f (x ),则K 的最小值为______________. 答案 1e解析 由于f (x )=ln x +1e x ,所以f ′(x )=1x -ln x -1e x ,令g (x )=1x-ln x -1,则g ′(x )=-x -2-1x<0,所以g (x )在(0,+∞)上单调递减,而g (1)=0,所以当x ∈(0,1)时,g (x )>0,此时,f ′(x )>0,当x ∈(1,+∞)时,g (x )<0,此时f ′(x )<0,所以f (x )在(0,1)上单调递增,f (x )在(1,+∞)上单调递减,故f (x )max =f (1)=1e ,又函数f (x )=ln x +1e x,且恒有f K (x )=f (x ),结合新定义可知,K 的最小值为1e. 三、解答题11.如图所示,设在四面体P ABC 中,∠ABC =90°,P A =PB =PC ,D 是AC 的中点,求证:PD ⊥平面ABC .证明 要证明PD ⊥平面ABC ,只需证明PD 与平面ABC 内的两条相交直线垂直即可,由于已知△ACP 为等腰三角形,AP =PC ,D 为AC 的中点,故PD ⊥AC ,从而有△P AD 为直角三角形,且AD =BD ,PD =PD ,AP =PB ,于是△APD ≌△BPD .因此∠PDA =∠PDB =90°,∴PD ⊥BD .又知AC 交BD 于D ,可知PD ⊥平面ABC .12.求证:不论x ,y 取何非零实数,等式1x +1y =1x +y总不成立.证明 假设存在非零实数x ,y 使得等式1x +1y =1x +y成立. 于是有y (x +y )+x (x +y )=xy ,即x 2+y 2+xy =0,即⎝⎛⎭⎫x +y 22+34y 2=0. 由y ≠0,得34y 2>0. 又⎝⎛⎭⎫x +y 22≥0, 所以⎝⎛⎭⎫x +y 22+34y 2>0. 与x 2+y 2+xy =0矛盾,故原命题成立.13.在数列{a n },{b n }中,a 1=2,b 1=4,且a n ,b n ,a n +1成等差数列,b n ,a n +1,b n +1成等比数列(n ∈N *).(1)求a 2,a 3,a 4及b 2,b 3,b 4,由此猜测{a n },{b n }的通项公式,并证明你的结论;(2)求证1a 1+b 1+1a 2+b 2+…+1a n +b n <512. (1)解 由条件得2b n =a n +a n +1,a 2n +1=b n b n +1,a 1=2,b 1=4.由此可得a 2=6,b 2=9,a 3=12,b 3=16,a 4=20,b 4=25.猜测a n =n (n +1),b n =(n +1)2.用数学归纳法证明:①当n =1时,由上可得结论成立.②假设当n =k (k ≥1,k ∈N *)时,结论成立,即a k =k (k +1),b k =(k +1)2,那么,当n =k +1时,a k +1=2b k -a k =2(k +1)2-k (k +1)=(k +1)(k +2),b k +1=a 2k +1b k=(k +2)2. ∴当n =k +1时,结论也成立.由①②可知a n =n (n +1),b n =(n +1)2对一切正整数n 都成立.(2)证明 当n =1时,1a 1+b 1=16<512. n ≥2时,由(1)知a n +b n =(n +1)(2n +1)>2(n +1)n .∴1a n +b n <12⎝⎛⎭⎫1n -1n +1, ∴1a 1+b 1+1a 2+b 2+…+1a n +b n<16+12⎝⎛⎭⎫12-13+13-14+…+1n -1n +1 =16+12⎝⎛⎭⎫12-1n +1<16+14=512.综上,对n ∈N *,1a 1+b 1+1a 2+b 2+…+1a n +b n <512成立.。
2016届成都一诊数学试题及答案word版(文理科)解析
开始结束是否成都市高2016级“一诊”考试数学试题(文科)一、选择题:本大题共10小题,每小题5分,共50分.1.已知集合{|(1)(2)0}A x x x =+-≤,{|22}B x x =-<<,则AB =(A ){|12}x x -≤≤ (B ){|12}x x -≤< (C ){|12}x x -<< (D ){|21}x x -<≤2.在ABC ∆中,“4A π=”是“2cos 2A =”的(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件3.如图为一个半球挖去一个圆锥后的几何体的三视图,则剩余部分与挖去部分的体积之比为(A )3:1 (B )2:1 (C )1:1(D )1:24.设147()9a-=,159()7b =,27log 9c =,则a , b , c 的大小顺序是 (A )b a c <<(B )c a b << (C )c b a <<(D )b c a <<5.已知n m ,为空间中两条不同的直线,βα,为空间中两个不同的平面,下列命题中正确的是(A )若βα//,//m m ,则βα// (B )若,m m n α⊥⊥,则//n α(C )若n m m //,//α,则α//n (D )若βα//,m m ⊥,则βα⊥6.已知实数,x y 满足402020x y x y y -+≥⎧⎪+-≤⎨⎪-≥⎩,则2z y x =-的最大值是(A )2 (B )4 (C )5 (D )67.执行如图所示程序框图,若使输出的结果不大于50,则输入的整数k 的最大值为(A )4 (B )5 (C )6 (D )78.已知菱形ABCD 边长为2,3B π∠=,点P 满足AP AB λ=,λ∈R .若3BD CP ⋅=-,则λ的值为(A )12 (B )12- (C )13(D ) 13-4正视图侧视图俯视图9.已知双曲线2222:1(0,0)x y E a b a b-=>>的左右焦点分别为1F ,2F ,若E 上存在点P 使12F F P ∆为等腰三角形,且其顶角为23π,则22a b 的值是(A )43(B )233 (C )34(D )3210.已知函数232log (2),0()33,x x kf x x x k x a-≤<⎧=⎨-+≤≤⎩ .若存在实数k 使得函数()f x 的值域为[1,1]-,则实数a 的取值范围是(A )3[,13]2+ (B )[2,13]+ (C )[1,3] (D ) [2,3]二、填空题:本大题共5小题,每小题5分,共25分.11.设复数z 满足i (32i )(1z -=+-(其中i 为虚数单位),则z = .12.已知函数3()sin 1f x xx -=++.若()3f a =,则()f a -= .13.甲、乙两人在5次综合测评中成绩的茎叶图如图所示,其中一个数字被污损,记甲,乙的平均成绩分别为x 甲,x 乙.则x >甲x 乙的概率是 .14. 已知圆422=+y x ,过点(0,1)P 的直线l 交该圆于B A ,两点,O 为坐标原点,则OAB ∆面积的最大值是 .15.某房地产公司要在一块矩形宽阔地面(如图)上开发物业 ,阴影部分是不能开发的古建筑群,且要求用在一条直线上的栏栅进行隔离,古建筑群的边界为曲线2413y x =-的一部分,栏栅与矩形区域边界交于点M ,N .则当能开发的面积达到最大时,OM 的长为 .三、解答题:本大题共6小题,共75分.16.(12分)已知等比数列{}n a 的公比1q >,且212()5n n n a a a +++=.(Ⅰ)求q 的值; (Ⅱ)若2510a a =,求数列{}3nn a 的前n 项和n S . 17.(12分)有编号为129,,,A A A 的9道题,其难度系数如下表:其中难度系数小于0.50的为难题.编号难度系数0.48 0.56 0.52 0.37 0.69 0.47 0.47 0.58 0.50(Ⅰ)从上述9道题中,随机抽取1道,求这道题为难题的概率; (Ⅱ)从难题中随机抽取2道,求这两道题目难度系数相等的概率.甲 乙 4 7 5 8 7 699 24118.已知函数22531()cos sin cos sin 424f x x x x x =--. (Ⅰ)求函数()f x 取得最大值时x 取值的集合; (Ⅱ)设A ,B ,C 为锐角三角形ABC 的三个内角.若3cos 5B =,1()4f C =-,求sin A 的值. 19.(12分)如图,菱形ABCD 与正三角形BCE 的边长均为2,它们所在平面互相垂直,FD ⊥平面ABCD ,且3FD =.(Ⅰ)求证://EF 平面ABCD ;(Ⅱ)若60CBA ∠=︒,求几何体EFABCD 的体积.20.(13分)已知椭圆22:132x y E +=的左右顶点分别为A ,B ,点P 为椭圆上异于,A B 的任意一点.(Ⅰ)求直线PA 与PB 的斜率之积;(Ⅱ)过点3(,0)5Q -作与x 轴不重合的任意直线交椭圆E 于M ,N 两点.证明:以MN 为直径的圆恒过点A . 21.(14分)已知函数21()(1)ln ()2f x ax a x x a =-++-∈R . (Ⅰ)当0a >时,求函数()f x 的单调递减区间;(Ⅱ)当0a =时,设函数()()(2)2g x xf x k x =-++.若函数()g x 在区间1[,)2+∞上有两个零点,求实数k 的取值范围.数学(文科)参考答案及评分意见 第I 卷(选择题,共50分)一、选择题:(本大题共10小题,每小题5分,共50分)1.B ; 2.B ; 3.C ; 4.C ; 5.D ; 6.D ; 7.A ; 8.A ; 9.D ; 10.B .第II 卷(非选择题,共100分)二.填空题:(本大题共5小题,每小题5分,共25分) 11.15i +; 12.-1; 13.25; 14.3; 15.1. 三、解答题:(本大题共6小题,共75分) 16.解:(Ⅰ)212()5,n n n a a a +++=22()5.n n n a a q a q ∴+=由题意,得0n a ≠,∴22520.q q -+=2q ∴=或1.21q >, 2.q ∴= ……………………6分(Ⅱ)2510,a a =42911().a q a q ∴=12a ∴=.∴122[1()]2332.2313n n n n S +-==--……………………12分 17.解:(Ⅰ)记“从9道题中,随机抽取1道为难题”为事件M ,9道题中难题有1A ,4A ,6A ,7A 四道. ∴4().9P M =……………6分(Ⅱ)记“从难题中随机抽取2道难度系数相等”为事件N ,则基本事件为:14{,}A A ,16{,}A A ,17{,}A A ,46{,}A A ,47{,}A A ,67{,}A A 共6个;难题中有且仅有6A ,7A 的难度系数相等. ∴1().6P N =……………12分18.解:(Ⅰ)22531()cos sin cos sin 424f x x x x x =-- 13sin(2).223x π=--……………………3分 要使()f x 取得最大值,须满足sin(2)3x π-取得最小值. ∴,12x k k π=π-∈Z.……………………5分 ∴当()f x 取得最大值时,x 取值的集合为{|,}.12x x k k π=π-∈Z ……………………6分(Ⅱ)由题意,得3sin(2).32C π-=- (0,),2C π∈22(,).333C πππ∴-∈-3C π∴=. ………………9分(0,)2B π∈,4sin .5B ∴=4133433.525210+=⨯+⨯=………………12分 19.解:(Ⅰ)如图,过点E 作EH BC ⊥于H ,连接.HD 平面ABCD ⊥平面BCE ,EH ⊆平面BCE , 平面ABCD平面BCE 于BC ,∴EH ⊥平面.ABCD又FD ⊥平面ABCD , 3.FD =∴四边形EHDF 为平行四边形.EF ⊄平面ABCD ,HD ⊆平面,ABCD//EF ∴平面.ABCD ………6分(Ⅱ)连接,CF HA .由题意,得HA BC ⊥.HA ⊆平面,ABCD 平面ABCD ⊥平面BCE 于BC ,C BDAEFH∴HA ⊥平面BCE .//FD EH ,EH ⊆平面BCE ,FD ⊄平面BCE ,//FD ∴平面.BCE同理,由//HB DA 可证,//DA 平面.BCEFD DA 于D ,FD ⊆平面ADF ,DA ⊆平面ADF ,∴平面BCE //平面.ADFF ∴到平面BCE 的距离等于HA 的长. FD 为四棱锥F ABCD -的高,3.= ……………………………12分20.解:(Ⅰ)(3,0),(3,0)A B -.设点(,)P x y (0)y ≠.则有22132x y +=,即22222(1)(3).33x y x =-=- 22333PA PBy y yk k x x x ∴⋅=⋅=-+-222(3)23.33x x -==-- ……………………4分 (Ⅱ)设11(,)M x y ,22(,)N x y ,MN 与x 轴不重合,∴设直线3:()5MN l x ty t =-∈R . 由223,52360x ty x y ⎧=-⎪⎨⎪+-=⎩得2243144(23)0.525t y ty +--= 由题意,可知0∆>成立,且12212243523.1442523t y y t y y t ⎧⎪+=⎪⎪+⎨⎪-⎪=⎪+⎩……(*)将(*)代入上式,化简得∴AMAN ⊥,即以MN 为直径的圆恒过点A . ………………13分21.解:(Ⅰ)()f x 的定义域为(0,)+∞,(1)(1)()(0).ax x f x a x--'=->①当(0,1)a ∈时,11a >.由()0f x '<,得1x a >或1x <.∴当(0,1)x ∈,1(,)x a∈+∞时,()f x 单调递减.∴()f x 的单调递减区间为(0,1),1(,)a+∞.②当1a =时,恒有()0f x '≤,∴()f x 单调递减. ∴()f x 的单调递减区间为(0,)+∞.③当(1,)a ∈+∞时,11a<. 由()0f x '<,得1x >或1x a <.∴当1(0,)x a ∈,(1,)x ∈+∞时,()f x 单调递减.∴()f x 的单调递减区间为1(0,)a,(1,)+∞.综上,当(0,1)a ∈时,()f x 的单调递减区间为(0,1),1(,)a+∞;当1a =时,()f x 的单调递减区间为(0,)+∞;当(1,)a ∈+∞时,()f x 的单调递减区间为1(0,)a ,(1,)+∞. ………6分(Ⅱ)2()ln (2)2g x x x x k x =--++在1[,)2x ∈+∞上有零点,即关于x 的方程2ln 22x x x k x -+=+在1[,)2x ∈+∞上有两个不相等的实数根.令函数2ln 21(),[,)22x x x h x x x -+=∈+∞+. 则2232ln 4()(2)x x x h x x +--'=+. 令函数21()32ln 4,[,)2p x x x x x =+--∈+∞. 则(21)(2)()x x p x x -+'=在1[,)2+∞上有()0p x '≥.故()p x 在1[,)2+∞上单调递增.(1)0p =,∴当1[,1)2x ∈时,有()0p x <即()0h x '<.∴()h x 单调递减;当(1,)x ∈+∞时,有()0p x >即()0h x '>,∴()h x 单调递增.19ln 2()2105h =+,(1)1,h =10210ln 21021023(10)12123h --=>=>1()2h , ∴k 的取值范围为9ln 2(1,].105+…………14分 成都市高2016届高三第一次诊断考试数学试题(理科)第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{|(1)(2)0}A x x x =∈+-≤Z ,{|22}B x x =-<<,则AB =(A ){|12}x x -≤< (B ){1,0,1}- (C ){0,1,2} (D ){1,1}-开始结束是否2.在ABC ∆中,“4A π=”是“2cos 2A =”的(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件3.如图为一个半球挖去一个圆锥后的几何体的三视图,则剩余部分与挖去部分的体积之比为(A )3:1 (B )2:1 (C )1:1 (D )1:24.设147()9a -=,159()7b =,27log 9c =,则a , b , c 的大小顺序是 (A )b a c <<(B )c a b <<(C )c b a << (D )b c a <<5.已知n m ,为空间中两条不同的直线,βα,为空间中两个不同的平面,下列命题中正确的是(A )若βα//,//m m ,则βα//(B )若,m m n α⊥⊥,则//n α(C )若n m m //,//α,则α//n (D )若βα//,m m ⊥,则βα⊥6.执行如图所示程序框图,若使输出的结果不大于50,则输入的整数k 的最大值为(A )4 (B )5 (C )6 (D )77.已知菱形ABCD 边长为2,3B π∠=,点P 满足AP AB λ=,λ∈R .若3BD CP ⋅=-,则λ的值为(A )12 (B )12- (C )13 (D ) 13-8.过双曲线22221(0,0)x y a b a b -=>>的左顶点A 作斜率为1的直线,该直线与双曲线两条渐近线的交点分别为,B C .若12AB BC =,则此双曲线的离心率为(A )10 (B )5 (C )3 (D )29.设不等式组402020x y x y y -+≤⎧⎪+-≤⎨⎪-≥⎩表示的平面区域为D .若指数函数(0xy a a =>且1)a ≠的图象经过区域D 上的点,则a 的取值范围是(A )[2]3, (B )[3,)+∞ (C )(0]13, (D )1[,1)310.如果数列{}n a 中任意连续三项奇数项与连续三项偶数项均能构成一个三角形的边长,则称{}n a 为“亚三角形”数列;对于“亚三角形”数列{}n a ,如果函数()y f x =使得()n n b f a =仍为一个“亚三角形”数列,则称()y f x =4正视图侧视图俯视图是数列{}n a 的一个“保亚三角形函数”(*n ∈N ).记数列{}n c 的前n 项和为n S ,12016c =,且15410080n n S S +-=,若()lg g x x =是数列{}n c 的“保亚三角形函数”,则{}n c 的项数n 的最大值为 (参考数据:lg 20.301≈,lg 2016 3.304≈) (A )33 (B )34(C )35(D )36第Ⅱ卷(非选择题,共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.设复数z 满足i (32i)(1i)z -=+-(其中i 为虚数单位),则z = .12.7(2)x -的展开式中,2x 的系数是 .13.甲、乙两人在5次综合测评中成绩的茎叶图如图所示,其中一个数字被污损,记甲,乙的平均成绩分别为x 甲,x 乙,则x >甲x 乙的概率是 . 14.如图,某房地产公司要在一块矩形宽阔地面上开发物业 ,阴影部分是不能开发的古建筑群,且要求用在一条直线上的栏栅进行隔离,古建筑群的边界为曲线2413y x =-的一部分,栏栅与矩形区域边界交于点M ,N .则MON ∆面积的最小值为 .15.已知函数232log (2),0()33,x x kf x x x k x a -≤<⎧=⎨-+≤≤⎩.若存在k 使得函数()f x 的值域为[1,1]-,则实数a 的取值范围是 .三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分)已知等比数列{}n a 的公比1q >,且212()5n n n a a a +++=. (Ⅰ)求q 的值;(Ⅱ)若2510a a =,求数列{}3nn a 的前n项和n S . 17.(本小题满分12分)某类题库中有9道题,其中5道甲类题,每题10分,4道乙类题,每题5分.现从中任意选取三道题组成问卷,记随机变量X 为此问卷的总分. (Ⅰ)求X 的分布列;(Ⅱ)求X 的数学期望()E X . 18.(本小题满分12分)已知向量m31(cos 2,sin cos )22x x x =-,n 31(1,sin cos )22x x =-,设函数()f x =m n . (Ⅰ)求函数()f x 取得最大值时x 取值的集合;(Ⅱ)设A ,B ,C 为锐角三角形ABC 的三个内角.若3cos 5B =,1()4f C =-,求sin A 的值.19.(本小题满分12分)如图,菱形ABCD 与正三角形BCE 的边长均为2,它们所在平面互相垂直,FD ⊥平面ABCD ,且3FD =.(Ⅰ)求证://EF 平面ABCD ;(Ⅱ)若60CBA ∠=︒,求二面角A FB E --的余弦值. 20.(本小题满分13分)甲 乙 4 7 5 8 7 699241CDEF已知椭圆22:132x y E +=的左右顶点分别为A ,B ,点P 为椭圆上异于,A B 的任意一点. (Ⅰ)求直线PA 与PB 的斜率之积;(Ⅱ)设(,0)(3)Q t t ≠-,过点Q 作与x 轴不重合的任意直线交椭圆E 于M ,N 两点.则是否存在实数t ,使得以MN 为直径的圆恒过点A ?若存在,求出t 的值;若不存在,请说明理由.21.(本小题满分14分)已知函数21()(1)ln ()2f x ax a x x a =-++-∈R .(Ⅰ)当0a >时,求函数()f x 的单调递减区间;(Ⅱ)当0a =时,设函数()()g x xf x =.若存在区间1[,][,)2m n ⊆+∞,使得函数()g x 在[,]m n 上的值域为[(2)2,(2)2]k m k n +-+-,求实数k 的取值范围.数学(理科)参考答案及评分意见第I 卷(选择题,共50分)一、选择题:(本大题共10小题,每小题5分,共50分)1.B ;2.B ;3.C ;4.C ;5.D ;6.A ;7.A ;8.B ;9.D ; 10.A.第II 卷(非选择题,共100分)二.填空题:(本大题共5小题,每小题5分,共25分) 11.15i +; 12.280-; 13.25; 14.23; 15.[2,13]+. 三、解答题:(本大题共6小题,共75分) 16.解:(Ⅰ)212()5,n n n a a a +++=22()5.n n n a a q a q ∴+= 由题意,得0n a ≠,∴22520.q q -+=2q ∴=或1.21q >, 2.q ∴= ……………………6分(Ⅱ)2510,a a =42911().a q a q ∴=12a ∴=.∴122[1()]2332.2313n n n n S +-==--……………………12分 17.解:(Ⅰ)由题意,X 的所有可能取值为15,20,25,30.∵3439C 1(15)=C 21P X ==,214539C C 5(20)=,C 14P X ⋅==124539C C 10(25)=C 21P X ⋅==,3539C 5(30)=C 42P X ==, ∴X 的分布列为:15202530………………7分(Ⅱ)()E X 151051520253021142142=⨯+⨯+⨯+⨯70.3= ………………12分 18.解:(Ⅰ)231()cos 2(sin cos )22f x x x x =+- 13sin(2).223x π=--……………………3分 要使()f x 取得最大值,须满足sin(2)3x π-取得最小值. ∴,12x k k π=π-∈Z.……………………5分∴当()f x 取得最大值时,x 取值的集合为{|,}.12x x k k π=π-∈Z ……………………6分 (Ⅱ)由题意,得3sin(2).32C π-=- (0,),2C π∈22(,).333C πππ∴-∈-3C π∴=. ………………9分(0,)2B π∈,4sin .5B ∴=4133433.525210+=⨯+⨯= ………………12分 19.解:(Ⅰ)如图,过点E 作EH BC ⊥于H ,连接.HD3EH ∴=.平面ABCD ⊥平面BCE ,EH ⊆平面BCE ,平面ABCD平面BCE 于BC ,∴EH ⊥平面.ABCD又FD ⊥平面ABCD , 3.FD =∴四边形EHDF 为平行四边形.EF ⊄平面ABCD ,HD ⊆平面,ABCD//EF ∴平面.ABCD ………6分(Ⅱ)连接.HA 由(Ⅰ),得H 为BC 中点,又60CBA ∠=︒,ABC ∆为等边三角形,∴.HA BC ⊥分别以,,HB HA HE 为,,x y z 轴建立如图所示的空间直角坐标系H xyz -.则(1,0,0),(2,3,3),(0,03),(0,3,0).B F E A -(3,3,3)BF =-,(1,3,0)BA =-,(1,0,3).BE =-设平面EBF 的法向量为1111(,,)x y z =n .由1100BF BE ⎧⋅=⎪⎨⋅=⎪⎩,n n 得111113330.30x y z x z ⎧-++=⎪⎨-+=⎪⎩令11z =,得1(3,2,1)=n . zyxC BDAEFH C BDAEFH设平面ABF 的法向量为2222(,,)x y z =n .由2200BF BA ⎧⋅=⎪⎨⋅=⎪⎩,n n 得222223330.30x y z x y ⎧-++=⎪⎨-+=⎪⎩令21y =,得2(3,1,2)=n . 故二面角A FB E --的余弦值是78-. ………………………12分 20.解:(Ⅰ)(3,0),(3,0)A B -.设点(,)P x y (0)y ≠.则有22132x y +=,即22222(1)(3).33x y x =-=- 22333PA PBy y y k k x x x ∴⋅=⋅=-+-222(3)23.33x x -==-- …………………4分 (Ⅱ)令11(,)M x y ,22(,)N x y .MN 与x 轴不重合,∴设:()MN l x my t m =+∈R .由222360x my tx y =+⎧⎨+-=⎩,得222(23)4260.m y mty t +++-=22221222122164(23)(26)04.232623m t m t mt y y m t y y m ⎧⎪∆=-+->⎪-⎪∴+=⎨+⎪⎪-⋅=⎪+⎩……(*) 由题意,得AMAN ⊥.即0.AM AN ⋅=将(*)式代入上式,得22222264(1)(3)(3)0.2323t mtm m t t m m --+++++=++ 即2222222222626443(23)(233)0.t m t m m t m t m t t -+---++++= 展开,得22222222222626443243t m t m m t m t m t m t -+---++整理,得256330t t ++=.解得35t =-或3t =-(舍去). 经检验,35t =-能使0∆>成立. 故存在35t =-满足题意. …………………………13分21.解:(Ⅰ)()f x 的定义域为(0,)+∞,(1)(1)()(0).ax x f x a x--'=->①当(0,1)a ∈时,11a >. 由()0f x '<,得1x a >或1x <.∴当(0,1)x ∈,1(,)x a∈+∞时,()f x 单调递减.∴()f x 的单调递减区间为(0,1),1(,)a+∞.②当1a =时,恒有()0f x '≤,∴()f x 单调递减. ∴()f x 的单调递减区间为(0,)+∞.③当(1,)a ∈+∞时,11a<.由()0f x '<,得1x >或1x a <.∴当1(0,)x a ∈,(1,)x ∈+∞时,()f x 单调递减.∴()f x 的单调递减区间为1(0,)a,(1,)+∞.综上,当(0,1)a ∈时,()f x 的单调递减区间为(0,1),1(,)a+∞;当1a =时,()f x 的单调递减区间为(0,)+∞;当(1,)a ∈+∞时,()f x 的单调递减区间为1(0,)a,(1,).+∞ .………6分(Ⅱ)当0a =时,2()ln ,(0,)g x x x x x =-∈+∞,()2ln 1g x x x '=--,1[()]2g x x ''=-.当1[,)2x ∈+∞时,1[()]20g x x ''=-≥,∴()g x '在1[,)2+∞上单调递增. 又1()ln 20,2g '=>1()()02g x g ''∴≥>在1[,)2+∞上恒成立.()g x ∴在1[,)2+∞上单调递增.由题意,得22ln (2)2.ln (2)2m m m k m n n n k n ⎧-=+-⎪⎨-=+-⎪⎩ 原问题转化为关于x 的方程2l n (2)2x xx k x -=+-在1[,)2+∞上有两个不相等的实数根. .……9分即方程2ln 22x x x k x -+=+在1[,)2+∞上有两个不相等的实数根.令函数2ln 21(),[,)22x x x h x x x -+=∈+∞+. 则2232ln 4()(2)x x x h x x +--'=+. 令函数21()32ln 4,[,)2p x x x x x =+--∈+∞. 则(21)(2)()x x p x x -+'=在1[,)2+∞上有()0p x '≥.故()p x 在1[,)2+∞上单调递增.(1)0p =,∴当1[,1)2x ∈时,有()0p x <即()0h x '<.∴()h x 单调递减;当(1,)x ∈+∞时,有()0p x >即()0h x '>,∴()h x 单调递增.19ln 2()2105h =+,(1)1,h =10210ln 21021023(10)12123h --=>=>1()2h , ∴k 的取值范围为9ln 2(1,].105+…………14分。
高中数学 第一章 推理与证明 1 归纳与类比课后演练提升 北师大版选修22
2016-2017学年高中数学 第一章 推理与证明 1 归纳与类比课后演练提升 北师大版选修2-2一、选择题1.数列2,5,11,20,x,47,…中的x 等于( ) A .28 B .32 C .33D .27解析: ∵5-2=3,11-5=6,20-11=9,则x -20=12,47-x =15,所以x =32,故选B.答案: B2.已知扇形的弧长为l ,半径为r ,类比三角形的面积公式:S =底×高2,可推知扇形面积公式S 扇等于( )A.r 22 B.l 22 C.lr2D .不可类比解析: 将扇形的弧类比为三角形的底边,半径类比为三角形的高.所以S 扇=12lr ,故选C.答案: C3.下面使用类比推理恰当的是( )A .“若a ·3=b ·3,则a =b ”类推出“若a ·0=b ·0,则a =b ”B .“(a +b )c =ac +bc ”类推出“a +bc =a c +bc(c ≠0)” C .“(ab )n=a n b n”类推出“(a +b )n=a n+b n” D .“a (bc )=(ab )c ”类推出“a (bc )=(ab )c ” 答案: B4.观察下列各式:55=3 125,56=15 625,57=78 125,…,则52 011的末四位数字为( )A .3 125B .5 625C .0 625D .8 125解析: ∵55=3 125, 56=15 625,57=78 125, 58=390 625,59=1 953 125,510=9 765 625,…∴5n(n ∈N ,且n ≥5)的末四位数是周期性变化,且最小正周期为4. 记5n(n ∈N ,n ≥5)的末四位数为f (n ), ∴f (2 011)=f (501×4+7)=f (7), ∴52 011与57的末四位数相同,为8 125,故选D.答案: D 二、填空题5.如下图所示是由火柴杆拼成的一列图形,第n 个图形由n 个正方形组成:通过观察可以发现:第4个图形中,火柴杆有________________根;第n 个图形中,火柴杆有________________根.解析: 观察得递推关系式a n -a n -1=3(n ≥2,n ∈N +).所以a n =3n +1,∴a 4=13. 答案: 13 3n +16.椭圆与双曲线有许多优美的对偶性质,如对于椭圆有如下命题:AB 是椭圆x 2a 2+y 2b 2=1(a >b >0)的不平行于对称轴且不过原点的弦,M 为AB 的中点,则k OM ·k AB =-b 2a 2,那么对于双曲线则有如下命题:AB 是双曲线x 2a 2-y 2b2=1(a >0,b >0)的不平行于对称轴且不过原点的弦,M 为AB 的中点,则k OM ·k AB =________________.解析: 设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),则有⎩⎪⎨⎪⎧x 0=x 1+x 22y 0=y 1+y22(*)∵x 21a 2-y 21b 2=1,x 22a 2-y 22b2=1, ∴两式相减得x 21-x 22a 2=y 21-y 22b2,即x 1-x 2x 1+x 2a2=y 1-y 2y 1+y 2b2,将(*)式代入,得y 1-y 2x 1-x 2·y 0x 0=b 2a 2,即k OM ·k AB =b 2a2.答案: b 2a2三、解答题7.在数列{a n }中,a 1=1,a n +1=2a n2+a n ,n ∈N +,猜想这个数列的通项公式(不需证明).解析: a n +1=2a n2+a n,n ∈N +,a 1=1时,a 2=2×12+1=23; a 2=23时,a 3=2×232+23=12=24;a 3=12时,a 4=2×122+12=25,…猜想{a n }的通项公式为a n =2n +1. 8.从y =ax 2与y =a (x -h )2+k 的图像变换关系,类比谈谈函数y =f (x +a )+b 的图像是由y =f (x )的图像如何得到的?解析: 根据y =ax 2与y =a (x -h )2+k 的顶点关系,我们可以发现将y =ax 2的图像向右(当h >0时)或向左(当h <0时)平移|h |个单位长度,再向上(当k >0时)或向下(当k <0时)平移|k |个单位长度,就得到y =a (x -h )2+k 的图像.类比以上结论,函数y =f (x +a )+b 的图像是由y =f (x )的图像沿x 轴方向向左(当a >0时)或向右(当a <0时)平行移动|a |个单位长度,再沿y 轴方向向上(当b >0时)或向下(当b <0时)平行移动|b |个单位长度所得.9.某少数民族的刺绣有着悠久的历史,如下图(1)(2)(3)(4)所示为她们刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f (n )个小正方形.(1)求出f (5)的值;(2)利用合情推理的“归纳推理思想”,归纳出f (n +1)与f (n )之间的关系式,并根据你得到的关系式求出f(n)的表达式.解析:(1)f(5)=41.(2)因为f(2)-f(1)=4=4×1,f(3)-f(2)=8=4×2,f(4)-f(3)=12=4×3,f(5)-f(4)=16=4×4,……由上式规律,所以得出f(n+1)-f(n)=4n.因为f(n+1)-f(n)=4n⇒f(n+1)=f(n)+4n⇒f(n)=f(n-1)+4(n-1)=f(n-2)+4(n-1)+4(n-2)=f(n-3)+4(n-1)+4(n-2)+4(n-3)=…=f(1)+4(n-1)+4(n-2)+4(n-3)+…+4=2n2-2n+1。
高考数学压轴专题(易错题)备战高考《推理与证明》技巧及练习题附答案解析
【高中数学】数学《推理与证明》试卷含答案一、选择题1.已知2a b c ++=,则ab bc ca ++的值( )A .大于2B .小于2C .不小于2D .不大于2【答案】B 【解析】 【分析】把已知变形得到a b c +=-,a c b +=-,b c a +=-,把2()ab bc ac ++拆开后提取公因式代入a b c +=-,a c b +=-,b c a +=-,则可判断2()ab bc ac ++的符号,从而得到ab bc ac ++的值的符号. 【详解】解:2a b c ++=Q ,2a b c ∴+=-,2a c b +=-,2b c a +=-.则2()ab bc ac ++222ab ac bc =++ ab ac bc ac ab bc =+++++()()()a b c c b a b a c =+++++ (2)(2)(2)b b a a c c =-+-+- 222222b b a a c c =-+-+-()()2222a b c a b c =-+++++ ()2224a b c =-+++,2a b c ++=Q ,()2220a b c ∴++>,即()2220a b c -++<,2()4ab bc ac ++<Q ,()2ab bc ac ∴++<即ab bc ac ++的值小于2. 故选:B . 【点睛】本题考查不等式的应用,考查了学生的灵活处理问题和解决问题的能力.2.我国南宋数学家杨家辉所著的《详解九章算法》一书中记录了一个由正整数构成的三角形数表,我们通常称之为杨辉三角.以下数表的构造思路就来源于杨辉三角.( )从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数a ,则a 的值为( )A .100820182⨯B .100920182⨯C .100820202⨯D .100920202⨯【答案】C 【解析】 【分析】根据每一行的第一个数的变化规律即可得到结果. 【详解】解:第一行第一个数为:0112=⨯; 第二行第一个数为:1422=⨯; 第三行第一个数为:21232=⨯; 第四行第一个数为:33242=⨯;L L ,第n 行第一个数为:1n 2n n a -=⨯;一共有1010行,∴第1010行仅有一个数:10091008a 1010220202=⨯=⨯; 故选C . 【点睛】本题考查了由数表探究数列规律的问题,考查学生分析解决问题的能力,属于中档题.3.已知点(10,3)P 在椭圆222:199x y C a +=上.若点()00,N x y 在圆222:M x y r +=上,则圆M 过点N 的切线方程为200x x y y r +=.由此类比得椭圆C 在点P 处的切线方程为( )A .13311x y +=B .111099x y += C .11133x y += D .199110x y += 【答案】C【解析】 【分析】先根据点在椭圆上,求得2a ,再类比可得切线方程. 【详解】因为点(10,3)P 在椭圆222:199x y C a +=上,故可得21009199a +=,解得2110a =; 由类比可得椭圆C 在点P 处的切线方程为:103111099x y +=,整理可得11133x y+=. 故选:C. 【点睛】本题考查由椭圆上一点的坐标求椭圆方程,以及类比法的应用,属综合基础题.4.已知函数()f x 的导函数为()f x ',记()()1f x f x '=,()()21f x f x '=,…,()()1n n f x f x +'=(n ∈N *). 若()sin f x x x =,则()()20192021f x f x += ( )A .2cos x -B .2sin x -C .2cos xD .2sin x【答案】D 【解析】 【分析】通过计算()()()()()12345,,,,f x f x f x f x f x ,可得()()()()4342414,,,k k k k f x f x f x f x ---,最后计算可得结果.【详解】由题可知:()sin f x x x =所以()()12sin cos ,2cos sin f x x x x f x x x x =+=-()()343sin cos ,4cos sin f x x x x f x x x x =--=-+()55sin cos ,f x x x x =+⋅⋅⋅所以猜想可知:()()4343sin cos k f x k x x x -=-+()()4242cos sin k f x k x x x -=-- ()()4141sin cos k f x k x x x -=--- ()44cos sin k f x k x x x =-+由201945051,202145063=⨯-=⨯- 所以()20192019sin cos f x x x x =--()20212021sin cos f x x x x =+所以()()201920212sin f x f x x += 故选:D【点睛】本题考查导数的计算以及不完全归纳法的应用,选择题、填空题可以使用取特殊值,归纳猜想等方法的使用,属中档题.5.观察2'()2x x =,4'3()4x x =,'(cos )sin x x =-,由归纳推理可得:若定义在R 上的函数()f x 满足()()f x f x -=,记()g x 为()f x 的导函数,则()g x -= A .()f x B .()f x -C .()g xD .()g x -【答案】D 【解析】由归纳推理可知偶函数的导数是奇函数,因为()f x 是偶函数,则()()g x f x '=是奇函数,所以()()g x g x -=-,应选答案D .6.平面上有n 个圆,其中每两个都相交于两点,每三个都无公共点,它们将平面分成()f n 块区域,有(1)2f =,(2)4f =,(3)8f =,则() f n =( ).A .2nB .22n n -+C .2(1)(2)(3)n n n n ----D .325104n n n -+-【答案】B 【解析】 【分析】分析可得平面内有n 个圆时, 它们将平面分成()f n 块,再添加第1n +个圆时,因为每两个都相交于两点,每三个都无公共点,故会增加2n 个圆.再求和即可. 【详解】由题, 添加第1n +个圆时,因为每两个都相交于两点,每三个都无公共点,故会增加2n 个圆. 又(1)2f =,故()()12f n f n n +-=.即()()()()()()212,32 4...122f f f f f n f n n -=-=--=-. 累加可得()()()21222224 (2222)2n n n n f n n -+-=++++-=-++=.故选:B 【点睛】本题主要考查了根据数列的递推关系求解通项公式的方法,需要画图分析进行理解.或直接计算(4),(5) f f 等利用排除法判断.属于中档题.7.在《中华好诗词大学季》的决赛赛场上,由南京师范大学郦波老师、中南大学杨雨老师、著名历史学者纪连海和知名电视节目主持人赵忠祥四位大学士分别带领的四支大学生团队进行了角逐.将这四支大学生团队分别记作甲、乙、丙、丁,且比赛结果只有一支队伍获得冠军,现有小张、小王、小李、小赵四位同学对这四支参赛团队的获奖结果预测如下:小张说:“甲或乙团队获得冠军”;小王说:“丁团队获得冠军”;小李说“乙、丙两个团队均未获得冠军”;小赵说:“甲团队获得冠军”.若这四位同学中只有两位预测结果是对的,则获得冠军的团队是( ) A .甲 B .乙C .丙D .丁【答案】D 【解析】 【分析】对甲、乙、丙、丁分别获得冠军进行分类讨论,结合四人的说法进行推理,进而可得出结论. 【详解】若甲获得冠军,则小张、小李、小赵的预测都正确,与题意不符; 若乙获得冠军,则小王、小李、小赵的预测不正确,与题意不符; 若丙获得冠军,则四个人的预测都不正确,与题意不符;若丁获得冠军,则小王、小李的预测都正确,小张和小赵预测的都不正确,与题意相符. 故选:D . 【点睛】本题考查合情推理,考查分类讨论思想的应用,属于中等题.8.甲、乙、丙、丁四人通过抓阄的方式选出一人周末值班(抓到“值”字的人值班).抓完阄后,甲说:“我没抓到.”乙说:“丙抓到了.”丙说:“丁抓到了”丁说:“我没抓到."已知他们四人中只有一人说了真话,根据他们的说法,可以断定值班的人是( ) A .甲 B .乙C .丙D .丁【答案】A 【解析】 【分析】可采用假设法进行讨论推理,即可得到结论. 【详解】由题意,假设甲:我没有抓到是真的,乙:丙抓到了,则丙:丁抓到了是假的, 丁:我没有抓到就是真的,与他们四人中只有一个人抓到是矛盾的; 假设甲:我没有抓到是假的,那么丁:我没有抓到就是真的, 乙:丙抓到了,丙:丁抓到了是假的,成立, 所以可以断定值班人是甲. 故选:A. 【点睛】本题主要考查了合情推理及其应用,其中解答中合理采用假设法进行讨论推理是解答的关键,着重考查了推理与分析判断能力,属于基础题.9.二维空间中圆的一维测度(周长)2lr π=,二维测度(面积)2S r π=;三维空间中球的二维测度(表面积)24S r π=,三维测度(体积)343V r π=.若四维空间中“超球”的三维测度38V r π=,猜想其四维测度W =( )A .42r πB .43r πC .44r πD .46r π【答案】A 【解析】分析:由题意结合所给的性质进行类比推理即可确定四维测度W .详解:结合所给的测度定义可得:在同维空间中,1n +维测度关于r 求导可得n 维测度, 结合“超球”的三维测度38V r π=,可得其四维测度42W r π=. 本题选择A 选项.点睛:本题主要考查类比推理,导数的简单应用等知识,意在考查学生的转化能力和计算求解能力.10.在等差数列{}n a 中,若0n a >,公差0d ≠,则有4637a a a a >.类比上述性质,在等比数列{}n b 中,若0n b >,公比1q ≠,则关于5b ,7b ,4b ,8b 的一个不等关系正确的是( ) A .5748b b b b > B .7845b b b b > C .5748b b b b +<+ D .7845b b b b ++<【答案】C 【解析】 【分析】类比等差数列{}n a 与等比数列{}n b 各项均为正数,等差数列中的“和”运算类比到等比数列变为“积”运算,即可得到答案. 【详解】在等差数列{}n a 中,由4637+=+时,有4637a a a a >, 类比到等比数列{}n b 中,由5748+=+时,有4857b b b b +>+,因为4334857444444()(1)(1)b b b b b b q b q b q b q b q q +-+=+--=-+-32244(1)(1)(1)(1)0b q q b q q q =--=-++>,所以4857b b b b +>+成立. 故选:C 【点睛】本题主要考查类比推理,同时考查观察、分析、类比能力及推理论证能力,属于中档题.11.用数学归纳法证明“l+2+3+…+n 3=632n n+,n ∈N*”,则当n=k+1时,应当在n=k 时对应的等式左边加上( ) A .k 3+1B .(k 3+1)+(k 3+2)+…+(k+1)3C .(k+1)3D .63(1)(1)2k k +++【答案】B 【解析】分析:当项数从n k =到1n k =+时,等式左边变化的项可利用两个式子相减得到。
2016版《一点一练》高考数学(文科)专题演练:第十一章 选修4系列(含两年高考一年模拟)
1.如图,在圆O 中,M ,N 是弦AB 的三等分点,弦CD ,CE 分别经过点M ,N .若CM =2,MD =4,CN =3,则线段NE 的长为( )A.83 B .3 C.103 D.52 2.(2015·广东)如图,AB 为圆O 的直径,E 为AB 的延长线上一点,过E 作圆O 的切线,切点为C ,过A 作直线EC 的垂线,垂足为D .若AB =4,CE =23,则AD =________.3.(2015·江苏)如图,在△ABC中,AB=AC,△ABC的外接圆⊙O的弦AE交BC于点D.求证:△ABD∽△AEB.4.(2015·陕西)如图,AB切⊙O于点B,直线AO交⊙O于D,E两点,BC⊥DE,垂足为C.(1)证明:∠CBD=∠DBA;(2)若AD=3DC,BC=2,求⊙O的直径.5.(2014·新课标全国Ⅰ)如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.(1)证明:∠D=∠E;(2)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.1.PBC 经过圆心O ,若PB =OB =1,OD 平分∠AOC ,交圆O 于点D ,连接PD 交圆O 于点E ,则PE 的长等于( )A.77B.377C.577 D.72.(2015·茂名市二模)如图,CD 是圆O 的切线,点B 在圆O 上,BC =23,∠BCD =60°,则圆O 的面积为________.3.(2015·广东揭阳市一模)如图,BE 、CF 分别为钝角△ABC 的两条高,已知AE =1,AB =3,CF =42,则BC 边的长为________.第3题图 第4题图4.(2015·北京丰台区)如图,AB 是圆O 的直径,CD 与圆O 相切于点D ,AB =8,BC =1,则CD =________;AD =________.5.(2015·天津六校联考)如图,PC 、DA 为⊙O 的切线,A 、C 为切点,AB 为⊙O 的直径,若DA =2,CD ∶DP =1∶2,则AB =________.6.(2015·东莞市一模)如图,AB 是⊙O 的直径,PB ,PE 分别切⊙O 于B ,C ,∠ACE =40°,则∠P =________.第6题图 第7题图7.(2015·东莞市三模)如图,AB 为圆O 的直径,AC 切圆O 于点A ,且AC =22,过点C 的割线交AB 的延长线于点D ,若CM =MN =ND ,则BD =________.8.(2015·晋冀豫三省二调)如图,△ABO 三边上的点C 、D 、E 都在⊙O 上,已知AB ∥DE ,AC =CB .(1)求证:直线AB 是⊙O 的切线;(2)若AD =2,且tan ∠ACD =12,求⊙O 的半径r 的长.9.(2015·桂林一调)已知:直线AB过圆心O,交⊙O于A、B,直线AF交⊙O于A、F(不与B重合),直线l与⊙O相切于C,交AB于E,且与A、F垂直,垂足为G,连接AC.(1)求证:∠BAC=∠CAG;(2)求证:AC2=AE·AF.考点36 选修4-4 坐标系与参数方程两年高考真题演练1.(2015·湖南)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,若曲线C 的极坐标方程为ρ=2sin θ,则曲线C 的直角坐标方程为________.2.(2015·广东)在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线C 1的极坐标方程为ρ(cos θ+sin θ)=-2,曲线C 2的参数方程为⎩⎪⎨⎪⎧x =t 2,y =22t(t 为参数),则C 1与C 2交点的直角坐标为________.3.(2014·广东)在极坐标系中,曲线C 1和C 2的方程分别为2ρcos 2θ=sin θ与ρcos θ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1和C 2交点的直角坐标为________.4.(2014·湖南)在平面直角坐标系中,曲线C :⎩⎨⎧x =2+22t ,y =1+22t(t为参数)的普通方程为________.5.(2015·江苏)已知圆C 的极坐标方程为ρ2+22ρsin (θ-π4)-4=0,求圆C 的半径.6.(2015·陕西)在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =3+12t ,y =32t(t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ.(1)写出⊙C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.7.(2014·新课标全国Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cosθ,θ∈⎣⎢⎡⎦⎥⎤0,π2.(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.1.(2015·北京东城区一模)已知点M 的极坐标为⎝⎭⎪5,3,那么将点M 的极坐标化成直角坐标为( )A.⎝ ⎛⎭⎪⎫-532,-52B.⎝ ⎛⎭⎪⎫-532,52C.⎝ ⎛⎭⎪⎫52,532 D.⎝ ⎛⎭⎪⎫-52,532 2.(2015·北京石景山区一模)在极坐标系中,圆ρ=2被直线ρsin θ=1截得的弦长为( )A. 3 B .2 C .23 D .33.(2015·海淀区一模)圆⎩⎪⎨⎪⎧x =-1+2cos θ,y =1+2sin θ(θ为参数)被直线y=0截得的劣弧长为( )A.2π2 B .π C .22π D .4π4.(2015·北京丰台区一模)在极坐标系中,曲线ρ2-6ρcos θ+2ρsin θ+6=0与极轴交于A 、B 两点,则A 、B 两点间的距离等于( )A. 3 B .2 3 C .215 D .45.(2015·安徽桐城市一模)在极坐标系中,曲线C 的方程是ρ=4sinθ,过点⎝⎛⎭⎪⎫4,π6作曲线C 的切线,切线长为( )A .4B .7C .2 2D .3 26.(2015·黄山市质检)在平面直角坐标系内,以原点为极点,x 轴正半轴为极轴,建立极坐标系,两种坐标系取相同的长度单位,曲线C 的极坐标方程是ρ=2cos θ,直线l 的参数方程是⎩⎨⎧x =-3+32ty =2+32t(t为参数),若M ,N 分别是曲线C 与直线l 上的动点,则|MN |的最小值为( )A.2+1 B .32-1 C.2-1 D .32-27.(2015·广东揭阳市一模)在极坐标系中,直线ρsin ⎝⎛⎭⎪⎫θ+π4=2被圆ρ=4,截得的弦长为________.8.(2015·北京朝阳区一模)极坐标系中,设ρ>0,0≤α<2π,曲线ρ=2与曲线ρsin θ=2交点的极坐标为________.9.(2015·东莞一模)在极坐标系中,过点⎝⎛⎭⎪⎫2,π4作圆ρ=2cos θ的切线,切线的极坐标方程为________.10.(2015·天津和平区一模)已知直线l 的参数方程为⎩⎪⎨⎪⎧x =3t +2y =4t +3(t为参数),圆C 的极坐标方程为ρ=2cos θ,则圆C 的圆心到直线l 的距离等于________.11.(2015·芜湖市质检)设M 、N 分别是曲线ρ+2sin θ=0和ρsin ⎝⎛⎭⎪⎫θ+π4=22上的动点,则M 与N 的最小距离是________.12.(2015·天津河北区一模)在以O 为极点的极坐标系中,若圆ρ=2cos θ与直线ρ(cos θ+sin θ)=a 相切,且切点在第一象限,则实数a 的值为________.13.(2015·天津红桥区一模)在极坐标系中,点⎝⎛⎭⎪⎫m ,π6(m >1)到直线ρcos ⎝⎛⎭⎪⎫θ-π6=3的距离为2,则m 的值为________.14.(2015·郑州市一预)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=22cos ⎝ ⎛⎭⎪⎫θ+π4,直线l 的参数方程为⎩⎪⎨⎪⎧x =t ,y =-1+22t (t 为参数),直线l 和圆C 交于A ,B 两点,P 是圆C 上不同于A ,B 的任意一点.(1)求圆心的极坐标; (2)求△P AB 面积的最大值.考点37选修4-5不等式选讲两年高考真题演练1.(2015·江苏)解不等式x+|2x+3|≥2.2.(2015·陕西)已知关于x的不等式|x+a|<b的解集为{x|2<x<4}.(1)求实数a,b的值;(2)求at+12+bt的最大值.3.(2015·新课标全国Ⅰ)已知函数f(x)=|x+1|-2|x-a|,a>0.(1)当a=1时,求不等式f(x)>1的解集;(2)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.4.(2015·新课标全国Ⅱ)设a,b,c,d均为正数,且a+b=c+d.证明:(1)若ab>cd,则a+b>c+d;(2)a+b>c+d是|a-b|<|c-d|的充要条件.5.(2014·江苏)已知x>0,y>0,证明:(1+x+y2)(1+x2+y)≥9xy.6.(2014·新课标全国Ⅰ)若a>0,b>0,且1a+1b=ab.(1)求a3+b3的最小值;(2)是否存在a,b,使得2a+3b=6?并说明理由.1.1是关于x 的绝对值,不等式|x |+|x -1|≤a 有解的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.(2015·内江四模)若f (x )=log 13x ,R =f ⎝ ⎛⎭⎪⎫2a +b ,S =f ⎝⎛⎭⎪⎫1ab ,T =f ⎝⎛⎭⎪⎫2a 2+b 2,a ,b 为正实数,则R ,S ,T 的大小关系为( ) A .T ≥R ≥S B .R ≥T ≥S C .S ≥T ≥R D .T ≥S ≥R3.(2015·湖南十三校二联)已知函数f (x )=|x -a |-|x -4a |(a >0),若对任意x ∈R ,都有f (2x )-1≤f (x ),则实数a 的最大值为( )A.18B.14C.12 D .14.(2015·淮北模拟)若对任意x ∈[0,5],不等式1+m 4x ≤24+x ≤1+n5x 恒成立,则一定有( )A .m ≤12,n ≥-13B .m ≤-12,n ≥-13 C .m ≤-12,n ≥13 D .m <-12,n >-135.(2015·茂名市二模)不等式|x -2|-|x +1|≤1的解集为________. 6.(2015·蚌埠市质检)设m 是实数,若x ∈R ,不等式|x -m |-|x -1|≤1恒成立,求m 的取值范围________.7.(2015·湖南十三校二联)已知函数f (x )=|x -k |+|x -2k |,若对任意的x∈R,f(x)≥f(3)=f(4)都成立,则k的取值范围为________.8.(2015·天津市和平区一模)若不等式2|x|-1>a(x2-1)时满足-1≤a≤1的所有a都成立,则x的取值范围是________.9.(2015·天津和平区一模)若实数x,y>0且xy=1,则x+2y的最小值是________,x2+4y2x+2y的最小值是________.10.(2015·东莞市三模)若关于x的不等式a≥|x+1|-|x-2|存在实数解,则实数a的取值范围是________.11.(2015·淮北模拟)已知m,n,x,y均为正实数,且m≠n,则有m2x+n2y≥(m+n)2x+y,当且仅当mx=ny时等号成立,利用此结论,可求函数f(x)=43x+33-x,x∈(0,2)的最小值为________.12.(2015·郑州市一预)已知函数f(x)=m-|x-1|-2|x+1|.(1)当m=5时,求不等式f(x)>2的解集;(2)若二次函数y=x2+2x+3与函数y=f(x)的图象恒有公共点,求实数m的取值范围.13.(2015·唐山市摸底)f (x )=⎪⎪⎪⎪⎪⎪x -4m +|x +m |(m >0). (1)证明:f (x )≥4;(2)若f (2)>5,求m 的取值范围.参考答案第十一章选修4系列考点35选修4-1几何证明选讲【两年高考真题演练】1.A[由圆的相交弦定理得CM·MD=AM·MB=29AB2=8,CN·NE=AN·NB=29AB2=8,而CN=3,所以NE=83,选A.]2.3[连接OC,则OC⊥DE,∵AD⊥DE,∴OC∥AD,∴OC AD=OEAE,由切割线定理得CE2=BE·AE,∴BE(BE+4)=12.即BE2+4BE-12=0,解得BE=2(舍负),∴AD=OC·AEOE=2×64=3.]3.证明因为AB=AC,所以∠ABD=∠C. 又因为∠C=∠E,所以∠ABD=∠E,又∠BAE为公共角,可知△ABD∽△AEB.4.(1)证明因为DE为⊙O直径,则∠BED+∠EDB=90°,又BC⊥DE,所以∠CBD+∠EDB=90°,从而∠CBD=∠BED,又AB切⊙O于点B,得∠DBA=∠BED,所以∠CBD=∠DBA.(2)解由(1)知BD平分∠CBA,则BABC=ADCD=3,又BC=2,从而AB=32,所以AC=AB2-BC2=4,所以AD=3,由切割线定理得AB2=AD·AE,即AE=AB2AD=6,故DE=AE-AD=3,即⊙O直径为3.5.证明(1)由题设知A,B,C,D四点共圆,所以∠D=∠CBE.由已知CB=CE得∠CBE=∠E,故∠D=∠E.(2)如图设BC的中点为N,连接MN,则由MB=MC知MN⊥BC,故O在直线MN上.又AD不是⊙O的直径,M为AD的中点,故OM⊥AD,即MN⊥AD.所以AD∥BC,故∠A=∠CBE.又∠CBE=∠E,故∠A=∠E.由(1)知,∠D=∠E,所以△ADE为等边三角形.【一年模拟试题精练】1.B[在△POD中,∠POD=120°,OD=1,OP=2,故PD2=OD2+OP2-2OD·OP cos 120°,PD=7,由切割线定理:P A 2=PE ·PD ,得PE =377.]2.4π [连接CO 并延长,交于圆O 于点A ,连接AB , ∵AC 是圆O 的直径,∴∠CBA =90°, ∵∠BCD =60°,∴∠CAB =60°,由AC =2R =BC sin 60°得:R =2,故圆O 的面积为πR 2=π·4=4π.]3.57 [∵AE =1,AB =3,∴BE =AB 2-AE 2=22,由sin ∠F AC =sin ∠EAB =223=FCAC ,得AC =6,由BC 2=BA 2+CA 2-2BA ·CA cos ∠BAC 得BC =57.]4.3 12105 [连接OD ,由切割线定理:CD 2=BC ·AC ,得CD =3,cos ∠AOD =-cos ∠DOC =-45, 由余弦定理:AD 2=AD 2+DO 2-2AD ·DO cos ∠ADO 得,AD =12105.]5.43 [∵CD =AD =2,CD ∶DP =1∶2,∴DP =4, 又∵∠DAP =90°,∴AP =DP 2-AD 2=23,由切割线定理:PC 2=P A ·PB =P A ·(P A +AB ),得:AB =4 3.] 6.80° [连接BC ,∵∠ACE =∠ABC =40°,∠ABP =90°, ∴∠PBC =∠PCB =50°, ∴∠P =180°-2∠PCB =80°.]7.477 [由切割线定理:AC 2=CM ·CN ,可得CM =MN =DN =2,故DC =6,AD =CD 2-AC 2=27,由割线定理:BD ·DA =DN ·DM 得BD =477.] 8.(1)证明 ∵AB ∥DE ,∴OA OD =OBOE ,又OD =OE ,∴OA =OB . 如图,连接OC 1∵AC =CB ,∴OC ⊥AB . 又点C 在⊙O 上,∴直线AB 是⊙O 的切线.(2)解 如图,延长DO 交⊙O 于点F ,连接FC ,由(1)知AB 是⊙O 的切线,∴弦切角∠ACD =∠F , ∴△ACD ∽△AFC , ∴tan ∠ACD =tan ∠F =12, 又∠DCF =90°,∴CD FC =12, ∴AD AC =CD FC =12,而AD =2,得AC =4. 又AC 2=AD ·AF ,∴2·(2+2r )=42,于是r =3.9.证明 (1)连接BC ,由AB 为⊙O 的直径,所以∠BAC +∠CBA =90°,又因为∠CAG +∠GCA =90°,又因为GC 与⊙O 相切于C ,所以∠GCA =∠CBA ,所以∠BAC =∠CAG .(2)由(1)可知∠EAC =∠CAF ,连接CF ,又因为GE 与⊙O 相切于C ,所以∠GCF =∠CAG =∠EAC =∠ECB ,所以∠AFC =90°+∠GCF =90°+∠ECB =∠ACE ,所以△AFC ∽△ACE ,所以AC AE =AF AC ,所以AC 2=AE ·AF .考点36 选修4-4坐标系与参数方程【两年高考真题演练】1.x 2+y 2-2y =0 [将极坐标方程ρ=2sin θ两边同乘ρ得ρ2=2ρsin θ,∴x 2+y 2=2y ,故曲线C 的直角坐标方程为x 2+y 2-2y =0.]2.(2,-4) [∵曲线C 1的极坐标方程为ρ(cos θ+sin θ)=-2,∴曲线C 1的直角坐标方程为x +y =-2.曲线C 2的参数方程为⎩⎪⎨⎪⎧x =t 2,y =22t(t 为参数),则其直角坐标方程为y 2=8x ,联立⎩⎪⎨⎪⎧x +y =-2,y 2=8x ,解得x =2,y =-4,即C 1,C 2的交点坐标为(2,-4).]3.(1,2) [曲线C 1普通方程2x 2=y ;曲线C 2普通方程x =1,联立曲线C 1与曲线C 2,可得⎩⎪⎨⎪⎧2x 2=y ,x =1,解得⎩⎪⎨⎪⎧x =1,y =2,因此两曲线的交点坐标为(1,2).]4.x -y -1=0 [直接化简,两式相减消去参数t 得,x -y =1,整理得普通方程为x -y -1=0.]5.解 以极坐标系的极点为平面直角坐标系的原点O ,以极轴为x 轴的正半轴,建立直角坐标系xOy .圆C 的极坐标方程为ρ2+22ρ⎝ ⎛⎭⎪⎫22sin θ-22cos θ-4=0, 化简,得ρ2+2ρsin θ-2ρcos θ-4=0.则圆C 的直角坐标方程为x 2+y 2-2x +2y -4=0,即(x -1)2+(y +1)2=6,所以圆C 的半径为 6.6.解 (1)由ρ=23sin θ,得ρ2=23ρsin θ, 从而有x 2+y 2=23y ,所以x 2+(y -3)2=3.(2)设P ⎝⎛⎭⎪⎫3+12t ,32t ,又C (0,3), 则|PC |=⎝ ⎛⎭⎪⎫3+12t 2+⎝ ⎛⎭⎪⎫32t -32=t 2+12, 故当t =0时,|PC |取得最小值,此时,P 点的直角坐标为(3,0).7.解 (1)C 的普通方程为(x -1)2+y 2=1(0≤y ≤1).可得C 的参数方程为⎩⎪⎨⎪⎧x =1+cos t ,y =sin t ,(t 为参数,0≤t ≤π). (2)设D (1+cos t ,sin t ).由(1)知C 是以G (1,0)为圆心,1为半径的上半圆.因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同,tan t =3,t =π3.故D 的直角坐标为⎝⎛⎭⎪⎫1+cos π3,sin π3,即⎝ ⎛⎭⎪⎫32,32. 【一年模拟试题精练】1.D [∵x =ρcos θ=5·cos 2π3=-52,y =ρsin θ=532,∴M 的直角坐标为⎝ ⎛⎭⎪⎫-52,532] 2.C [圆ρ=2和直线ρ sin θ=1的直角坐标方程为x 2+y 2=4和y =1.∵圆心(0,0)到y =1的距离为1,∴圆x 2+y 2=4被y =1截得的弦长为:222-12=2 3.]3.A [将圆的参数方程化为直角坐标,方程:(x +1)2+(y -1)2=2,圆心(-1,1)到y =0的距离为1,故截得的劣弧所对圆心角为π2,因此,所截得劣弧长为π2×2=22π.]4.B [将曲线转化为直角坐标方程x 2+y 2-6x +2y +6=0,即(x -3)2+(y +1)2=4,易得A ,B 的横坐标,分别为3+3,3-3,故|AB |=3+3-(3-3)=2 3.]5.C [曲线C 的直角坐标系方程为x 2+(y -2)2=4,点⎝ ⎛⎭⎪⎫4,π6的直角坐标为(23,2).圆心(0,2)到(23,2)的距离为23,故切线长为(23)2-22=2 2.]6.B [曲线C 和直线l 的直角坐标方程为(x -1)2+y 2=1和x -y+5=0,圆心(1,0)到x -y +5=0的距离,d =|1-0+5|12+12=32, 故:|MN |的最小值为d -1=32-1.]7.43 [直线和圆的直角坐标方程为:x +y -22=0和x 2+y 2=16,圆心(0,0)到直线x +y -22=0的距离为: d =|0+0-22|2=2,故所截弦长为242-22=4 3.] 8.⎝⎛⎭⎪⎫2,π2 [ρ=2和ρsin θ=2的直角坐标方程为x 2+y 2=4和y =2,其交点坐标为(0,2),其对应极坐标为⎝⎛⎭⎪⎫2,π2.] 9.ρsin α-1=0 [点⎝⎛⎭⎪⎫2,π4的直角坐标为(1,1), ρ=2cos θ的直角坐标方程为(x -1)2+y 2=1,易得过点(1,1)的圆的切线方程为y =1,故对应极坐标方程为ρsin α-1=0.]10.1 [直线l 和圆C 的直角坐标方程为:4x -3y +1=0和(x -1)2+y 2=1,故圆心(1,0)到4x -3y +1=0的距离为|4×1-3×0+1|5=1.] 11.2-1 [曲线ρ+2sin θ=0和ρsin ⎝⎛⎭⎪⎫θ+π4 =22的直角坐标方程为x 2+(y +1)2=1和x +y -1=0,圆心(0,-1)到x +y -1=0的距离为d =|0-1-1|2=2,故M 与N 的最小距离为d -1=2-1.] 12.1+2 [圆ρ=2cos θ和直线ρ(cos θ+sin θ)=a 的直角坐标方程为(x -1)2+y 2=1和x +y -a =0,∵直线与圆相切,∴圆心(1,0)到直线的距离d =|1+0-a |2=1,即a =1±2,∵切点在第一象限,∴a =1+ 2.]13.5 [点M 的直角坐标为⎝ ⎛⎭⎪⎫32m ,12m , 直线ρcos ⎝⎛⎭⎪⎫θ-π6=3的直角坐标方程为3x +y -6=0. ⎝ ⎛⎭⎪⎫32m ,12m 到3x +y -6=0的距离⎪⎪⎪⎪⎪⎪3·32m +12m -62=2,得m=5或m =1(舍).]14.解 (1)圆C 的普通方程为x 2+y 2-2x +2y =0,即(x -1)2+(y+1)2=2.所以圆心坐标为(1,-1),圆心极坐标为⎝ ⎛⎭⎪⎫2,5π4; (2)直线l 的普通方程:22x -y -1=0,圆心到直线l 的距离 d =|22+1-1|3=223,所以|AB |=22-89=2103,点P 到直线AB 距离的最大值为r +d =2+223=523,S max =12×2103×523=1059.考点37 选修4-5 不等式选讲【两年高考真题演练】1.解 原不等式可化为⎩⎨⎧x <-32,-x -3≥2或⎩⎨⎧x ≥-32,3x +3≥2.解得x ≤-5或x ≥-13.综上,原不等式的解集是⎩⎨⎧⎭⎬⎫x |x ≤-5或x ≥-13. 2.解 (1)由|x +a |<b ,得-b -a <x <b -a ,则⎩⎪⎨⎪⎧-b -a =2,b -a =4,解得a =-3,b =1. (2)-3t +12+t=34-t +t ≤[(3)2+12][(4-t )2+(t )2] =24-t +t =4,当且仅当4-t 3=t 1,即t =1时等号成立, 故(-3t +12+t )max =4.3.解 (1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0. 当x ≤-1时,不等式化为x -4>0,无解;当-1<x <1时,不等式化为3x -2>0,解得23<x <1;当x ≥1时,不等式化为-x +2>0,解得1≤x <2.所以f (x )>1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪23<x <2. (2)由题设可得,f (x )=⎩⎪⎨⎪⎧x -1-2a ,x <-1,3x +1-2a ,-1≤x ≤a ,-x +1+2a ,x >a .所以函数f (x )的图象与x 轴围成的三角形的三个顶点分别为A ⎝ ⎛⎭⎪⎫2a -13,0,B (2a +1,0),C (a ,a +1), △ABC 的面积为23(a +1)2.由题设得23(a +1)2>6,故a >2.所以a 的取值范围为(2,+∞).4.证明 (1)因为(a +b )2=a +b +2ab ,(c +d )2=c +d +2cd ,由题设a +b =c +d ,ab >cd 得(a +b )2>(c +d )2. 因此a +b >c +d .(2)①若|a -b |<|c -d |,则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd .因为a +b =c +d ,所以ab >cd .由(1)得a +b >c +d . ②若a +b >c +d ,则(a +b )2>(c +d )2,即a +b +2ab >c +d +2cd .因为a +b =c +d ,所以ab >cd ,于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2.因此|a -b |<|c -d |. 综上,a +b >c +d 是|a -b |<|c -d |的充要条件.5.证明 因为x >0,y >0,所以1+x +y 2≥33xy 2>0,1+x 2+y ≥33x 2y >0.故(1+x +y 2)(1+x 2+y )≥33xy 2·33x 2y =9xy .6.解 (1)由ab =1a +1b ≥2ab,得ab ≥2,且当a =b =2时等号成立.故a 3+b 3≥2a 3b 3≥42,且当a =b =2时等号成立.所以a 3+b 3的最小值为4 2.(2)由(1)知,2a +3b ≥26·ab ≥4 3.由于43>6,从而不存在a ,b ,使得2a +3b =6.【一年模拟试题精练】1.B [由|a ≥1|得a ≤-1或a ≥1,因为关于x 的不等式|x |+|x -1|≤a 有解,而|x |+|x -1|=|x |+|1-x |≥|x +1-x |=1,所以a ≥1,故|a |≥1是关于x 的绝对值不等式|x |+|x -1|≤a 有解的必要充分条件.]2.A [∵a ,b 为正实数,∴2a +b ≤22ab =1ab , 2a +b =4a 2+b 2+2ab ≤2a 2+b 2≤22a 2b 2=1ab, ∵f (x )=log 13x 在(0,+∞)上为增函数,R =f ⎝ ⎛⎭⎪⎫2a +b , S =f ⎝ ⎛⎭⎪⎫1ab ,T =f ⎝ ⎛⎭⎪⎫2a 2+b 2,∴T ≥R ≥S .] 3.B [令F (x )=f (2x )-f (x )-1=⎩⎪⎪⎨⎪⎪⎧-1,x <a 2,4x -2a -1,a2≤x <a ,2x -1,a ≤x <2a ,-2x +8a -1,2a ≤x <4a ,-1,y ≥4a ,其图象如图所示,由题意得,4a -1≤0,即a ≤14.]4.B[令f (x )=24+x,其图象如图所示,对∀x ∈[0,5],1+m 4x ≤f (x )恒成立,需满足m 4≤f ′(0),即:m ≤-12,对∀x ∈[0,5],f (x )≤1+n 5x恒成立,需满足n 5≥k AB =23-15-0, 即n ≥-13.]5.[0,+∞) [当x <-1时,2-x +x +1=3>1,不满足要求. 当-1≤x ≤2时,2-x -x -1=-2x +1≤1,解得x ∈[0,2], 当x >2时,x -2-x -1=-3≤1恒成立,故x ∈(2,+∞)满足要求,综上所述x ∈[0,+∞).]6.[0,2] [令f (x )=|x -m |-|x -1|,当m =1时,f (x )=0≤1恒成立,当m >1时,f (x )=⎩⎪⎨⎪⎧m -1,x <1-2x +m +1,1≤x ≤m ,-m +1,x >m需满足m -1≤1, 得m ∈(1,2].当m <1时,f (x )=⎩⎪⎨⎪⎧m -1,x <m ,2x -m -1,m ≤x ≤1,1-m ,x >1,需满足1-m ≤1,得m ∈[0,1),综上所述,m ∈(0,2].]7.[2,3] [f (3)=f (4),即|3-k |+|3-2k |-|4-k |-|4-2k |=0,当k ∈⎝ ⎛⎭⎪⎫-∞,32时,3-k +3-2k -4+k -4+2k =-2≠0,不合要求.当k ∈⎣⎢⎡⎭⎪⎫32,2时,3-k +2k -3-4+k -4+2k =4k -8≠0,不合要求.当k ∈[2,3]时,3-k +2k -3-4+k -2k +4=0,符合要求. 当k ∈(3,4]时,k -3+2k -3-4+k -2k +4=2k -6≠0,不合要求.当k ∈(4,+∞)时,k -3+2k -3-k +4-2k +4=2≠0,不合要求.故k ∈[2,3],f (3)=f (4)=k ,f (x )=⎩⎪⎨⎪⎧3k -2x , x <k k , k ≤x ≤2k 2x -3k , x >2k当k ∈[2,3]时,f (x )≥k 恒成立, 故k ∈[2,3].]8.(-2,1-3)∪(3-1,2) [(x 2-1)a +1-2|x |<0,当x 2-1=0时,即x =±1,-1<0,满足要求.当x 2-1>0时,即x ∈(-∞,-1)∪(1,+∞),需满足:(x 2-1)·1+|-2|x |<0,解得x ∈(1,2)∪(-2,-1).当x 2-1<0时,即x ∈(-1,1),需满足(x 2-1)·(-1)+|-2|x |<0, 解得x ∈(-1,1-3)∪(3-1,1),综上所述,x ∈(3-1,2)∪(-2,1-3).]9.22 2 [x +2y ≥2x ·2y =22,x 2+4y 2x +2y =x 2+4xy +4y 2-4xy x +2y =x +2y -4x +2y ≥2x ·2y -42x ·2y =22-2= 2.]10.[-3,+∞)[令f (x )=|x +1|-|x -2|,则f (x )=⎩⎪⎨⎪⎧-3,x <-1,2x -1,-1≤x ≤2,3,x >2,其图象如图所示,若a ≥f (x )存在实数解,则a ∈[-3,+∞).]11.259 [f (x )=43x +33-x =43x +99-3x =223x +329-3x ≥(2+3)23x +9-3x =259,当且仅当23x =39-3x ,即:x =65∈(-10,2).]12.解 (1)当m =5时,f (x )=⎩⎪⎨⎪⎧3x +6,x <-1,-x +2,-1≤x ≤1,4-3x ,x >1,由f (x )>2易得不等式解集为x ∈⎝ ⎛⎭⎪⎫-43,0; (2)由二次函数y =x 2+2x +3=(x +1)2+2,该函数在x =-1时取得最小值2,因为f (x )=⎩⎪⎨⎪⎧3x +1+m ,x <-1-x -3+m ,-1≤x ≤1-3x +m -1,x >1在x =-1处取得最大值m -2,所以要使二次函数y =x 2+2x +3与函数y =f (x )的图象恒有公共点,只需m -2≥2,即m ≥4.13.(1)证明 由m >0,有f (x )=⎪⎪⎪⎪⎪⎪x -4m +|x +m |≥ ⎪⎪⎪⎪⎪⎪-x -4m +x +m =4m+m ≥4,当且仅当4m =m , 即m =2时取“=”,所以f (x )≥4.(2)解 f (2)=⎪⎪⎪⎪⎪⎪2-4m +|2+m |.当4m <2,即m >2时,f (2)=m -4m +4, 由f (2)>5,得m >1+172,当4m ≥2,即0<m ≤2时,f (2)=4m +m , 由f (2)>5,0<m <1.综上,m 的取值范围是(0,1)∪⎝ ⎛⎭⎪⎫1+172,+∞.。
高中数学《推理与证明》练习题(附答案解析)
高中数学《推理与证明》练习题(附答案解析)一、单选题1.记凸k 边形的内角和为f (k ),则凸k +1边形的内角和f (k +1)=f (k )+( ) A .2π B .πC .32π D .2π2.用数学归纳法证明()11111231n n n n ++++>∈+++N ,在验证1n =时,左边的代数式为( ) A .111234++ B .1123+C .12D .13.两个正方体1M 、2M ,棱长分别a 、b ,则对于正方体1M 、2M 有:棱长的比为a:b ,表面积的比为22:a b ,体积比为33:a b .我们把满足类似条件的几何体称为“相似体”,下列给出的几何体中是“相似体”的是( ) A .两个球B .两个长方体C .两个圆柱D .两个圆锥4.用数学归纳法证明1115 (1236)n n n +++≥++时,从n k =到1n k =+,不等式左边需添加的项是( ) A .111313233k k k +++++ B .11113132331k k k k ++-++++ C .131k + D .133k + 5.现有下列四个命题: 甲:直线l 经过点(0,1)-; 乙:直线l 经过点(1,0); 丙:直线l 经过点(1,1)-; 丁:直线l 的倾斜角为锐角.如果只有一个假命题,则假命题是( ) A .甲B .乙C .丙D .丁6.用数学归纳法证明242123()2n n n n N *+++++=∈,则当1n k =+时,等式左边应该在n k =的基础上加上( ) A .21k +B .2(1)k +C .2(2)k +D .222(1)(2)(1)k k k ++++++7.已知数列{}n a 中,11a =,()*111nn na a n a +=+∈+N ,用数学归纳法证明:1n n a a +<,在验证1n =成立时,不等式右边计算所得结果是( )A .12B .1C .32D .28.设平面内有k 条直线,其中任何两条不平行,任何三条不共点,设k 条直线的交点个数为()f k ,则()1f k +与()f k 的关系是( ) A .()()11f k f k k +=++ B .()()11f k f k k +=+- C .()()1f k f k k +=+D .()()12f k f k k +=++9.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为 ( ) A .甲、乙、丙 B .乙、甲、丙 C .丙、乙、甲D .甲、丙、乙10.在正整数数列中,由1开始依次按如下规则取它的项:第一次取1;第二次取2个连续偶数2,4;第三次取3个连续奇数5,7,9;第四次取4个连续偶数10,12,14,16;第五次取5个连续奇数17,19,21,23,25,按此规律取下去,得到一个子数列1,2,4,5,7,9,10,12,14,16,17,19…,则在这个子数列中第2 020个数是( ) A .3976 B .3974 C .3978D .3973二、填空题11.用数学归纳法证明111111111234212122n n n n n-+-++-=+++-++(n 为正整数)时,第一步应验证的等式是______.12.用数学归纳法证明命题“1+1123++…+1222n n +>(n ∈N +,且n ≥2)”时,第一步要证明的结论是________.13.用反证法证明“自然数a ,b ,c 中至多有一个偶数”时,假设应为_______.14.已知等差数列{}()*n a n N ∈中,若10100a =,则等式()121220192019,*n n a a a a a a n n N -+++=+++<∈恒成立;运用类比思想方法,可知在等比数列{}()*n b n N ∈中,若1001b =,则与此相应的等式_________________恒成立.三、解答题15.(1)请用文字语言叙述异面直线的判定定理;(2)把(1)中的定理写成“已知:...,求证:...”的形式,并用反证法证明.16.把空间图形“正四面体”与平面图形“正三角形”对应,类比“正三角形内一点到三边距离之和是一个定值”得到的相应结论为___________.17.下列各题在应用数学归纳法证明的过程中,有没有错误?如果有错误,错在哪里? (1)求证:当N*n ∈时,1=+n n .证明:假设当(*)n k k N =∈时,等式成立,即1k k =+. 则当1n k =+时,左边1(11)k k =+=++=右边. 所以当1n k =+时,等式也成立.由此得出,对任何N*n ∈,等式1=+n n 都成立. (2)用数学归纳法证明等差数列的前n 项和公式是1()2n n n a a S +=. 证明,∈当1n =时,左边=11S a =,右边1a =,等式成立. ∈假设当(*)n k k N =∈时,等式成立,即1()2k k k a a S +=.则当1n k =+时, 11231k k k S a a a x a a ++=+++++, 11121k k k k S a a a a a ++-=+++++.上面两式相加并除以2,可得 111(1)()2k k k a a S ++++=,即当1n k =+时,等式也成立.由∈∈可知,等差数列的前n 项和公式是1()2n n n a a S +=18.一本旧教材上有一个关于正整数n 的恒等式22211223(1)(1)12n n n n ⨯+⨯+++=+? 其中问号处由于年代久远,只能看出它是关于n 的二次三项式,具体的系数已经看不清楚了.请你猜想这个恒等式的形式,并用数学归纳法证明.参考答案与解析:1.B【分析】根据题意相当于增加了一个三角形,从而得出选项. 【详解】由凸k 边形变为凸k +1边形时, 增加了一个三角形,故f (k +1)=f (k )+π. 故选:B 2.A【分析】将1n =代入计算可得结果. 【详解】解:1111231n n n ++++++代入1n =为:111234++. 故选:A 3.A【分析】分别使用表面积公式、体积公式计算后即可发现结论. 【详解】设两个球的半径分别为R ,r . 这两个球的半径比为::R r , 表面积比为:22224:4:R r R r ππ=, 体积比为:333344::33R r R r ππ=, 所以,两个球是相似体. 故选:A . 4.B【分析】比较n k =、1n k =+时不等式左边代数式的差异后可得需添加的项,从而得到正确的选项. 【详解】当n k =时,所假设的不等式为1115 (1236)k k k +++≥++, 当1n k =+时,要证明的不等式为1111115 (2233132336)k k k k k k ++++++≥+++++, 故需添加的项为:11113132331k k k k ++-++++, 故选:B.【点睛】本题考查数学归纳法,应用数学归纳法时,要注意归纳证明的结论和归纳假设之间的联系,必要时和式的开端和结尾处需多写几项,便于寻找差异.本题属于基础题. 5.C【分析】设(0,1)A -,(1,0)B ,(1,1)C -,计算AB k 和BC k ,可判断三点共线,可知假命题是甲、乙、丙中的一个,再由斜率即可求解.【详解】设(0,1)A -,(1,0)B ,(1,1)C -则10101AB k --==-,101112BC k -==---,因为AB BC k k ≠,所以,,A B C 三点不共线,所以假命题必是甲、乙、丙中的一个,丁是真命题,即直线l 的斜率大于0, 而0AB k >,0BC k <,0AC k <,故丙是假命题. 故选:C. 6.D【分析】由n =k+1时,等式左端2123k =+++++222(1)(2)(1)k k k ++++++可得答案.【详解】当n =k 时,等式左端2123k =++++,当n =k+1时,等式左端2123k =+++++222(1)(2)(1)k k k ++++++,增加了项222(1)(2)(1)k k k ++++++.故选:D . 7.C【分析】将1n =代入即可得结果. 【详解】当1n =时,不等式右边为1211311122a a a =+=+=+. 故选:C. 8.C【分析】考虑当1n k =+时,任取其中1条直线,记为l ,由于直线l 与前面n 条直线任何两条不平行,任何三条不共点,所以要多出k 个交点,从而得出结果. 【详解】当1n k =+时,任取其中1条直线,记为l , 则除l 外的其他k 条直线的交点的个数为()f k , 因为已知任何两条直线不平行,所以直线l 必与平面内其他k 条直线都相交(有k 个交点); 又因为任何三条直线不过同一点, 所以上面的k 个交点两两不相同,且与平面内其它的()f k 个交点也两两不相同, 从而1n k =+时交点的个数是()()1f k k f k +=+, 故选:C 9.A【分析】利用逐一验证的方法进行求解.【详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A .【点睛】本题将数学知识与时政结合,主要考查推理判断能力.题目有一定难度,注重了基础知识、逻辑推理能力的考查. 10.A【分析】根据题意分析出第n 次取n 个数,前n 次共取(1)2n n +个数,且第n 次取的最后一个数为n 2,然后算出前63次共取了2016个数,从而能得到数列中第2 020个数是3976.【详解】由题意可得,奇数次取奇数个数,偶数次取偶数个数,前n 次共取了(1)1232n n n ++++⋯+=个数,且第n 次取的最后一个数为n 2, 当63n =时,()6363120162⨯+=, 即前63次共取了2016个数,第63次取的数都为奇数,并且最后一个数为2633969=, 即第2 016个数为3 969,所以当n =64时,依次取3 970,3 972,3 974,3 976,…,所以第2 020个数是3 976. 故选:A. 11.11122-= 【分析】根据数学归纳法的一般步骤,令1n =即可得出结论. 【详解】依题意,当1n =时, 1112121-=⨯⨯, 即11122-=, 故答案为:11122-=.12.1112212342++++> 【解析】根据数学归纳法的步骤可知第一步要证明2n =时的不等式成立.【详解】因为n ≥2,所以第一步要证的是当n=2时结论成立,即1+111222342+++>. 故答案为:1112212342++++> 13.a ,b ,c 中至少有两个偶数【分析】用反证法证明某命题是,应先假设命题的否定成立,所以找出命题的否定是解题的关键. 【详解】用反证法证明某命题是,应先假设命题的否定成立.因为“自然数a ,b ,c 中至多有一个偶数”的否定是:“a ,b ,c 中至少有两个偶数”,所以用反证法证明“自然数a ,b ,c 中至多有一个偶数”时,假设应为“a ,b ,c 中至少有两个偶数”, 故答案为:a ,b ,c 中至少有两个偶数. 14.()*12112199199,N n n n b b b b b b b n n --=<∈【解析】根据等差数列的性质有12019101020n n a a a +-+==,等比数列的性质有21199100=1n n b b b +-=,类比即可得到结论.【详解】已知等差数列{}()*n a n N ∈中,12122019n n a a a a a a -+++=+++ 1122019n n n a a a a a +-++=++++,12201820190n n n a a a a ++-∴++++=.10100a =,由等差数列的性质得, 1201922018101020n n n n a a a a a +-+-+=+===.等比数列{}()*n b n N ∈,且1001b =,有等比数列的性质得,211992198100===1n n n n b b b b b +-+-=.所以类比等式()*121220192019,n n a n a a a a a n N -+++=+++<∈,可得()*12112199199,N n n n b b b b b b b n n --=<∈. 故答案为:()*12112199199,N n n n b b b b b b b n n --=<∈.【点睛】本题考查等差数列和等比数列的性质,结合类比的规则,和类比积,加类比乘,得出结论,属于中档题.15.(1)见解析; (2)见解析.【分析】(1)将判定定理用文字表述即可;(2)根据(1)中的前提和结论可得定理的形式,利用反证法可证该结论.【详解】(1)异面直线的判定定理:平面外一点与平面内一点的连线与平面内不过该点直线是异面直线. (2)(1)中的定理写成“已知:...,求证:...”的形式如下: ,,,P Q l Q l ααα∉∈⊂∉,求证:,PQ l 为异面直线.证明:若,PQ l 不为异面直线,则,PQ l 共面于β,故,,Q l ββ∈⊂ 而Q l ∉,故,αβ为同一平面,而P β∈,故P α∈, 这与P α∉矛盾,故,PQ l 为异面直线.16.正四面体内一点到四个面的距离之和为定值 【分析】将边类比为面,从而得出正确结论.【详解】把空间图形“正四面体”与平面图形“正三角形”对应,类比“正三角形内一点到三边距离之和是一个定值”得到的相应结论为“正四面体内一点到四个面的距离之和为定值”. 故答案为:正四面体内一点到四个面的距离之和为定值 17.(1)有错误,理由见解析;(2)有错误,理由详见解析.【分析】根据数学归纳法分为两步,∈证明当1n =时,结论成立,∈假设当n k =时,结论成立,当1n k =+时,应用归纳假设,证明1n k =+时,命题也成立,根据数学归纳法的步骤判断过程的错误之处. 【详解】(1)有错误,错误在于没有证明第(1)步,即没有证明1n =时等式成立;(2)有错误,错误在于证明1n k =+时,没有应用n k =时的假设,而是应用了倒序相加法,这不符合数学归纳法的证明过程. 18.222211223(1)(1)(31110)12n n n n n n ⨯+⨯+++=+++,证明见解析 【分析】设222()1223(1)f n n n =⋅+⋅+⋅⋅⋅++即可求得f (1),f (2),f (3);假设存在常数a ,b ,c 使得2(1)()()12n n f n an bn c +=++对一切自然数n 都成立,由f (1),f (2),f (3)的值可求得a ,b ,c ;再用数学归纳法证明即可.【详解】设222()1223(1)f n n n =⋅+⋅+⋅⋅⋅++, f ∴(1)2124=⋅=,f (2)22122322=⋅+⋅=, f (3)22212233470⋅+⋅+⋅=; 假设存在常数a ,b ,c 使得2(1)()()12n n f n an bn c +=++对一切自然数n 都成立, 则f (1)12()412a b c ⨯=++=, 24a b c ∴++=∈,同理,由f (2)22=得4244a b c ++=∈, 由f (3)70=得9370a b c ++=∈ 联立∈∈∈,解得3a =,11b =,10c =.2(1)()(31110)12n n f n n n +∴=++. 证明:1︒当1n =时,显然成立;2︒假设n k =时,2(1)(1)(2)(35)()(31110)1212k k k k k k f k k k ++++=++=, 则1n k =+时,2(1)()(1)[(1)1]f k f k k k +=++++2(1)(2)(35)(1)[(1)1]12k k k k k k +++=++++2(1)(2)(31724)12k k k k ++=++ (1)(2)(3)(38)12k k k k ++++=(1)[(1)1][(2)1][3(1)5]12k k k k +++++++=,即1n k =+时,结论也成立.综合1︒,2︒知,存在常数3a =,11b =,10c =使得2(1)()(31110)12n n f n n n +=++对一切自然数n 都成立。
高考数学压轴专题最新备战高考《推理与证明》经典测试题附答案解析
高考数学《推理与证明》练习题一、选择题1.幻方最早起源于我国,由正整数1,2,3,……,2n 这2n 个数填入n n ⨯方格中,使得每行、每列、每条对角线上的数的和相等,这个正方形数阵就叫n 阶幻方.定义()f n 为n 阶幻方对角线上所有数的和,如(3)15f =,则(10)f =( )A .55B .500C .505D .5050【答案】C 【解析】 【分析】因为幻方的每行、每列、每条对角线上的数的和相等,可得2123()n f n n+++⋅⋅⋅+=,即得解. 【详解】因为幻方的每行、每列、每条对角线上的数的和相等,所以n 阶幻方对角线上数的和()f n 就等于每行(或每列)的数的和,又n 阶幻方有n 行(或n 列),因此,2123()n f n n+++⋅⋅⋅+=,于是12399100(10)50510f +++⋅⋅⋅++==.故选:C 【点睛】本题考查了数阵问题,考查了学生逻辑推理,数学运算的能力,属于中档题.2.甲、乙、丙、丁四个孩子踢球打碎了玻璃.甲说:“是丙或丁打碎的.”乙说:“是丁打碎的.”丙说:“我没有打碎玻璃.”丁说:“不是我打碎的.”他们中只有一人说了谎,请问是( )打碎了玻璃. A .甲 B .乙C .丙D .丁【答案】D 【解析】 【分析】假设其中一个人说了谎,针对其他的回答逐个判断对错即可,正确答案为丁. 【详解】假设甲打碎玻璃,甲、乙说了谎,矛盾,假设乙打碎了玻璃,甲、乙说了谎,矛盾, 假设丙打碎了玻璃,丙、乙说了谎,矛盾, 假设丁打碎了玻璃,只有丁说了谎,符合题意, 所以是丁打碎了玻璃; 故选:D 【点睛】本题考查了进行简单的合情推理,采用逐一检验的方法解题,属基础题.3.观察下图:12343456745678910LL则第 行的各数之和等于22017( ) A .2017 B .1009C .1010D .1011【答案】B 【解析】 【分析】由图可得:第n 行的第一个数为n ,有21n -个数,且这21n -个数成公差为1的等差数列,利用等差数列求和公式算出即可 【详解】由图可得:第n 行的第一个数为n ,有21n -个数 且这21n -个数成公差为1的等差数列 所以第n 行的各数之和为:()()()()22122211212n n n n n ---+⨯=-令212017n -=,得1009n = 故选:B 【点睛】本题考查的是推理和等差数列的知识,较简单.4.设a ,b ,c 都大于0,则三个数1a b +,1b c +,1c a+的值( ) A .至少有一个不小于2 B .至少有一个不大于2 C .至多有一个不小于2 D .至多有一个不大于2【答案】A 【解析】 【分析】根据基本不等式,利用反证法思想,即可得出答案【详解】因为a ,b ,c 都大于0 1111111112226a b c a b c a b c b c a a b c a b c+++++=+++++≥⋅+⋅+⋅= 当且仅当1a b c ===时取得最小值若12a b +<,12b c+<,12c a +<则1116a b c b c a+++++<,与前面矛盾所以三个数1a b +,1b c +,1c a+的值至少有一个不小于2 故选:A 【点睛】本题是一道关于基本不等式应用的题目,掌握基本不等式是解题的关键.5.用“算筹”表示数是我国古代计数方法之一,计数形式有纵式和横式两种,如图1所示.金元时期的数学家李冶在《测圆海镜》中记载:用“天元术”列方程,就是用算筹来表示方程中各项的系数.所谓“天元术”,即是一种用数学符号列方程的方法,“立天元一为某某”,意即“设x 为某某”.如图2所示的天元式表示方程10110n n n n a x a x a x a --++⋅⋅⋅++=,其中0a ,1a ,…,1n a -,n a 表示方程各项的系数,均为筹算数码,在常数项旁边记一“太”字或在一次项旁边记一“元”字,“太”或“元”向上每层减少一次幂,向下每层增加一次幂.试根据上述数学史料,判断图3天元式表示的方程是( ) A .228617430x x ++= B .4227841630x x x +++= C .2174328610x x ++= D .43163842710x x x +++=【答案】C 【解析】 【分析】根据“算筹”法表示数可得题图3中从上至下三个数字分别为1,286,1743,结合“天元术”列方程的特征即可得结果. 【详解】由题意可得,题图3中从上至下三个数字分别为1,286,1743, 由“元”向上每层减少一次幂,向下每层增加一次幂.可得天元式表示的方程为2174328610x x ++=.故选:C. 【点睛】本题主要是以数学文化为背景,考查数学阅读及理解能力,充分理解“算筹”法表示数和“天元术”列方程的概念是解题的关键,属于中档题.6.已知0x >,不等式12x x +≥,243x x +≥,3274x x+≥,…,可推广为1n ax n x+≥+ ,则a 的值为( ) A .2n B .n nC .2nD .222n -【答案】B 【解析】 【分析】由题意归纳推理得到a 的值即可. 【详解】由题意,当分母的指数为1时,分子为111=; 当分母的指数为2时,分子为224=; 当分母的指数为3时,分子为3327=; 据此归纳可得:1n ax n x+≥+中,a 的值为n n . 本题选择B 选项. 【点睛】归纳推理是由部分到整体、由特殊到一般的推理,由归纳推理所得的结论不一定正确,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法.7.甲、乙、丙三人参加某公司的面试,最终只有一人能够被该公司录用,得到面试结果以后甲说:丙被录用了;乙说:甲被录用了;丙说:我没被录用.若这三人中仅有一人说法错误,则下列结论正确的是( ) A .丙被录用了 B .乙被录用了C .甲被录用了D .无法确定谁被录用了 【答案】C 【解析】 【分析】假设若甲被录用了,若乙被录用了,若丙被录用了,再逐一判断即可. 【详解】解:若甲被录用了,则甲的说法错误,乙,丙的说法正确,满足题意, 若乙被录用了,则甲、乙的说法错误,丙的说法正确,不符合题意, 若丙被录用了,则乙、丙的说法错误,甲的说法正确,不符合题意, 综上可得甲被录用了, 故选:C. 【点睛】本题考查了逻辑推理能力,属基础题.8.已知2a b c ++=,则ab bc ca ++的值( ) A .大于2 B .小于2C .不小于2D .不大于2【答案】B 【解析】 【分析】把已知变形得到a b c +=-,a c b +=-,b c a +=-,把2()ab bc ac ++拆开后提取公因式代入a b c +=-,a c b +=-,b c a +=-,则可判断2()ab bc ac ++的符号,从而得到ab bc ac ++的值的符号. 【详解】解:2a b c ++=Q ,2a b c ∴+=-,2a c b +=-,2b c a +=-.则2()ab bc ac ++222ab ac bc =++ ab ac bc ac ab bc =+++++()()()a b c c b a b a c =+++++ (2)(2)(2)b b a a c c =-+-+-222222b b a a c c =-+-+-()()2222a b c a b c =-+++++ ()2224a b c =-+++,2a b c ++=Q ,()2220a b c ∴++>,即()2220a b c -++<,2()4ab bc ac ++<Q ,()2ab bc ac ∴++<即ab bc ac ++的值小于2. 故选:B . 【点睛】本题考查不等式的应用,考查了学生的灵活处理问题和解决问题的能力.9.观察下列等式:332123+=,33321236++=,33332123410+++=,记()3333123f n n =+++⋅⋅⋅+.根据上述规律,若()225f n =,则正整数n 的值为( )A .8B .7C .6D .5【答案】D 【解析】 【分析】由规律得()()()22211234n n f n n +=+++⋅⋅⋅+=再解方程即可 【详解】由已知等式的规律可知()()()22211234n n f n n +=+++⋅⋅⋅+=,当()225f n =时,可得5n =. 故选:D 【点睛】本题考查归纳推理,熟记等差数列求和公式是关键,考查观察转化能力,是基础题10.学业水平测试成绩按照考生原始成绩从高到低分为A 、B 、C 、D 、E 五个等级.某班共有36名学生且全部选考物理、化学两科,这两科的学业水平测试成绩如图所示.该班学生中,这两科等级均为A 的学生有5人,这两科中仅有一科等级为A 的学生,其另外一科等级为B ,则该班( )A.物理化学等级都是B的学生至多有12人B.物理化学等级都是B的学生至少有5人C.这两科只有一科等级为B且最高等级为B的学生至多有18人D.这两科只有一科等级为B且最高等级为B的学生至少有1人【答案】D【解析】【分析】根据题意分别计算出物理等级为A,化学等级为B的学生人数以及物理等级为B,化学等级为A的学生人数,结合表格中的数据进行分析,可得出合适的选项.【详解】-+-=人根据题意可知,36名学生减去5名全A和一科为A另一科为B的学生105858(其中物理A化学B的有5人,物理B化学A的有3人),表格变为:对于A选项,物理化学等级都是B的学生至多有13人,A选项错误;对于B选项,当物理C和D,化学都是B时,或化学C和D,物理都是B时,物理、化--=(人),B选项错误;学都是B的人数最少,至少为13724对于C选项,在表格中,除去物理化学都是B的学生,剩下的都是一科为B且最高等级为B的学生,因为都是B的学生最少4人,所以一科为B且最高等级为B的学生最多为1391419++-=(人),C选项错误;对于D选项,物理化学都是B的最多13人,所以两科只有一科等级为B且最高等级为B -=(人),D选项正确.的学生最少14131故选:D.【点睛】本题考查合情推理,考查推理能力,属于中等题.11.甲、乙、丙、丁四人参加数学竞赛,四人在成绩公布前作出如下预测:甲预测说:获奖者在乙、丙、丁三人中;乙预测说:我不会获奖,丙获奖丙预测说:甲和丁中有一人获奖;丁预测说:乙的猜测是对的成绩公布后表明,四人的猜测中有两人的预测与结果相符.另外两人的预测与结果不相符,已知有两人获奖,则获奖的是() A .甲和丁 B .乙和丁 C .乙和丙 D .甲和丙 【答案】B 【解析】 【分析】从四人的描述语句中可以看出,乙、丁的表述要么同时与结果相符,要么同时与结果不符,再进行判断 【详解】若乙、丁的预测成立,则甲、丙的预测不成立,推出矛盾.故乙、丙预测不成立时,推出获奖的是乙和丁 答案选B 【点睛】真假语句的判断需要结合实际情况,作出合理假设,才可进行有效论证12.如图所示的“数字塔”有以下规律:每一层最左与最右的数字均为2,除此之外每个数字均为其两肩的数字之积,则该“数字塔”前10层的所有数字之积最接近()lg 20.3≈( )A .30010B .40010C .50010D .60010【答案】A 【解析】 【分析】结合所给数字特征,我们可将每层数字表示成2的指数的形式,观察可知,每层指数的和成等比数列分布,结合等比数列前n 项和公式和对数恒等式即可求解 【详解】如图,将数字塔中的数写成指数形式,可发现其指数恰好构成“杨辉三角”,前10层的指数之和为29101222211023+++⋅⋅⋅+=-=,所以原数字塔中前10层所有数字之积为10231023lg 230021010=≈.故选:A 【点睛】本题考查与“杨辉三角”有关的规律求解问题,逻辑推理,等比数列前n 项和公式应用,属于中档题13.《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:223344552,33,4,55338815152424====888n n=“穿墙术”,则n =( ) A .35 B .48C .63D .80【答案】C 【解析】 【分析】通过观察四个等式,发现存在相同性质,从而得出78763n =⨯+=即可. 【详解】 因为22222233121==⨯+33333388232==⨯⨯+ 444441515343==⨯⨯+,5555552424454==⨯⨯+ 所以8888888878763n n ==⨯=⨯+63n =. 故选:C. 【点睛】归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).14.三角形面积为()12S a b c r =++,a ,b ,c 为三角形三边长,r 为三角形内切圆半径,利用类比推理,可以得出四面体的体积为( ) A .13V abc =B .13V Sh = C .()13V ab bc ac h =++⋅(h 为四面体的高) D .()123413V s s s s r =+++⋅(其中1s ,2s ,3s ,4s 分别为四面体四个面的面积,r 为四面体内切球的半径,设四面体的内切球的球心为O ,则球心O 到四个面的距离都是r ) 【答案】D 【解析】 【分析】根据平面与空间的类比推理,由点类比直线,由直线类比平面,由内切圆类比内切球,由平面图形的面积类比立体图形的体积,结合求三角形的面积的方法类比四面体的体积计算方法,即可求解. 【详解】设四面体的内切球的球心为O ,则球心O 到四个面的距离都是r , 根据三角形的面积的求解方法:利用分割法,将O 与四个顶点连起来,可得四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥的体积之和, 即()123413V s s s s r =+++⋅,故选D . 【点睛】本题主要考查了类比推理的应用,其中解答中类比推理是将已知的一类数学对象的性质类比到另一类数学对象上去,通常一般步骤:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质取推测另一类事物的性质,得出一个明确的命题,本题属于基础题.15.观察下列一组数据11a = 235a =+ 37911a =++ 413151719a =+++…则20a 从左到右第一个数是( ) A .379 B .383C .381D .377【答案】C 【解析】 【分析】先计算前19行数字的个数,进而可得20a 从左到右第一个数. 【详解】由题意可知,n a 可表示为n 个连续的奇数相加,从1a 到19a 共有()119191902+⨯=个奇数, 所以20a 从左到右第一个数是第191个奇数,第n 个奇数为21n -,所以第191个奇数为21911381⨯-=.故选:C.【点睛】本小题主要考查归纳推理、等差数列求和公式等基础知识,考查运算求解能力,属于中档题.16.分形几何是美籍法国数学家芒德勃罗在20世纪70年代创立的一门数学新分支,其中的“谢尔宾斯基”图形的作法是:先作一个正三角形,挖去一个“中心三角形”(即以原三角形各边的中点为顶点的三角形),然后在剩下的每个小正三角形中又挖去一个“中心三角形”.按上述方法无限连续地作下去直到无穷,最终所得的极限图形称为“谢尔宾斯基”图形(如图所示),按上述操作7次后,“谢尔宾斯基”图形中的小正三角形的个数为( )A .53B .63C .73D .83【答案】C【解析】【分析】 根据题意分别求出第1,2,3次操作后,图形中的小正三角形的个数,然后可归纳出一般结论,得到答案.【详解】如图,根据题意第1次操作后,图形中有3个小正三角.第2次操作后,图形中有3×3=23个小正三角.第3次操作后,图形中有9×3=33个小正三角.…………………………所以第7次操作后,图形中有73 个小正三角.故选:C【点睛】本题考查归纳推理,属于中档题.17.为了调节高三学生学习压力,某校高三年级举行了拔河比赛,在赛前三位老师对前三名进行了预测,于是有了以下对话:老师甲:“7班男生比较壮,7班肯定得第一名”.老师乙:“我觉得14班比15班强,14班名次会比15班靠前”.老师丙:“我觉得7班能赢15班”.最后老师丁去观看完了比赛,回来后说:“确实是这三个班得了前三名,且无并列,但是你们三人中只有一人预测准确”.那么,获得一、二、三名的班级依次为( )A.7班、14班、15班B.14班、7班、15班C.14班、15班、7班D.15班、14班、7班【答案】C【解析】【分析】分别假设甲、乙、丙预测准确,分析三个人的预测结果,由此能求出一、二、三名的班级.【详解】假设甲预测准确,则乙和丙都预测错误,14∴班名次比15班靠后,7班没能赢15班,故甲预测错误;假设乙预测准确,则甲和乙都预测错误,7∴班不是第一名,14班名次比15班靠前,7班没能赢15班,则获得一、二、三名的班级依次为14班,15班,7班;假设丙预测准确,则甲和乙都预测错误,7∴班不是第一名,14班名次比15班靠后,7班能赢15班,不合题意.综上,得一、二、三名的班级依次为14班,15班,7班.故选:C.【点睛】本题考查获得一、二、三名的班级的判断,考查合情推理等基础知识,考查运算求解能力,是基础题.18.三角形的面积为1()2S a b c r=++⋅,其中,,a b c为三角形的边长,r为三角形内切圆的半径,则利用类比推理,可得出四面体的体积为()A.13V abc =B.13V Sh =C.1()3V ab bc ca h=++,(h为四面体的高)D .()123413V S S S S r =+++,(1234,,,S S S S 分别为四面体的四个面的面积,r 为四面体内切球的半径)【答案】D【解析】【分析】设四面体的内切球的球心为O ,则球心O 到四个面的距离都是r ,根据体积公式得到答案.【详解】设四面体的内切球的球心为O ,则球心O 到四个面的距离都是r ,将O 与四顶点连起来, 可得四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥体积的和, ∴V 13=(S 1+S 2+S 3+S 4)r . 故选:D .【点睛】本题考查了类比推理,意在考查学生的空间想象能力和推断能力.19.设x 、y 、0z >,1a x y =+,1b y z =+,1c z x =+,则a 、b 、c 三数( ) A .都小于2B .至少有一个不大于2C .都大于2D .至少有一个不小于2【答案】D【解析】【分析】利用基本不等式计算出6a b c ++≥,于此可得出结论.【详解】 由基本不等式得111111a b c x y z x y z y z x x y z ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++=+++++=+++++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭6≥=, 当且仅当1x y z ===时,等号成立,因此,若a 、b 、c 三数都小于2,则6a b c ++<与6a b c ++≥矛盾,即a 、b 、c 三数至少有一个不小于2,故选D.【点睛】本题考查了基本不等式的应用,考查反证法的基本概念,解题的关键就是利用基本不等式求最值,考查分析问题和解决问题的能力,属于中等题.20.设x ,y ,z >0,则三个数,,y y z z x x x z x y z y+++ ( )A.都大于2 B.至少有一个大于2 C.至少有一个不小于2 D.至少有一个不大于2【答案】C【解析】【分析】【详解】假设这三个数都小于2,则三个数之和小于6,又yx+yz+zx+zy+xz+xy=(yx+xy)+(yz+zy)+(zx+xz)≥2+2+2=6,当且仅当x=y=z时取等号,与假设矛盾,故这三个数至少有一个不小于2.。
高考数学(北师大版)· 一轮精品课时(基础+提升)训练第
第十篇推理证明、算法、复数第1讲归纳与类比基础巩固题组(建议用时:40分钟)一、选择题1.正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,因此f(x)=sin(x2+1)是奇函数,以上推理().A.结论正确B.大前提不正确C.小前提不正确D.全不正确解析f(x)=sin(x2+1)不是正弦函数而是复合函数,所以小前提不正确.答案 C2.观察(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,由归纳推理得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=().A.f(x) B.-f(x)C.g(x) D.-g(x)解析由已知得偶函数的导函数为奇函数,故g(-x)=-g(x).答案 D3.(2012·江西卷)观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10等于().A.28 B.76C.123 D.199解析从给出的式子特点观察可推知,等式右端的值,从第三项开始,后一个式子的右端值等于它前面两个式子右端值的和,照此规律,则a10+b10=123.答案 C4.(2014·西安模拟)类比“两角和与差的正弦公式”的形式,对于给定的两个函数:S(x)=a x-a-x,C(x)=a x+a-x,其中a>0,且a≠1,下面正确的运算公式是().①S(x+y)=S(x)C(y)+C(x)S(y);②S(x-y)=S(x)C(y)-C(x)S(y);③2S (x +y )=S (x )C (y )+C (x )S (y ); ④2S (x -y )=S (x )C (y )-C (x )S (y ). A .①② B .③④ C .①④D .②③解析 经验证易知①②错误.依题意,注意到2S (x +y )=2(a x +y -a -x -y ),S (x )C (y )+C (x )S (y )=2(a x +y -a -x -y ),因此有2S (x +y )=S (x )C (y )+C (x )S (y );同理有2S (x -y )=S (x )C (y )-C (x )S (y ).综上所述,选B. 答案 B5.由代数式的乘法法则类比推导向量的数量积的运算法则:①“mn =nm ”类比得到“a ·b =b ·a ”;②“(m +n )t =mt +nt ”类比得到“(a +b )·c =a ·c +b ·c ”; ③“(m ·n )t =m (n ·t )”类比得到“(a ·b )·c =a ·(b ·c )”;④“t ≠0,mt =xt ⇒m =x ”类比得到“p ≠0,a ·p =x ·p ⇒a =x ”; ⑤“|m ·n |=|m |·|n |”类比得到“|a ·b |=|a |·|b |”; ⑥“ac bc =a b ”类比得到“a ·c b ·c =a b ”.以上式子中,类比得到的结论正确的个数是 ( ).A .1B .2C .3D .4解析 ①②正确;③④⑤⑥错误. 答案 B 二、填空题6.(2014·西安五校联考)观察下式:1=12;2+3+4=32;3+4+5+6+7=52;4+5+6+7+8+9+10=72,…,则得出结论:________.解析 各等式的左边是第n 个自然数到第3n -2个连续自然数的和,右边是中间奇数的平方,故得出结论:n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2. 答案 n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2 7.若等差数列{a n }的首项为a 1,公差为d ,前n 项的和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 为等差数列,且通项为S n n =a 1+(n -1)·d2,类似地,请完成下列命题:若各项均为正数的等比数列{b n }的首项为b 1,公比为q ,前n 项的积为T n ,则________.答案数列{nT n}为等比数列,且通项为nT n=b1(q)n-18.给出下列等式:2=2cos π4,2+2=2cosπ8,2+2+2=2cosπ16,请从中归纳出第n个等式:2+…+2+2=________.答案2cosπ2n+1三、解答题9.给出下面的数表序列:其中表n(n=1,2,3,…)有n行,第1行的n个数是1,3,5,…,2n-1,从第2行起,每行中的每个数都等于它肩上的两数之和.写出表4,验证表4各行中的数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n(n≥3)(不要求证明).解表4为13574812122032它的第1,2,3,4行中的数的平均数分别是4,8,16,32,它们构成首项为4,公比为2的等比数列.将这一结论推广到表n(n≥3),即表n(n≥3)各行中的数的平均数按从上到下的顺序构成首项为n,公比为2的等比数列.10.f(x)=13x+3,先分别求f(0)+f(1),f(-1)+f(2),f(-2)+f(3),然后归纳猜想一般性结论,并给出证明.解f(0)+f(1)=130+3+131+3=11+3+13(1+3)=33(1+3)+13(1+3)=33,同理可得:f(-1)+f(2)=33,f(-2)+f(3)=33.由此猜想f(x)+f(1-x)=3 3.证明:f(x)+f(1-x)=13x+3+131-x+3=13x+3+3x3+3·3x=13x+3+3x3(3+3x)=3+3x3(3+3x)=33.能力提升题组(建议用时:25分钟)一、选择题1.(2012·江西卷)观察下列事实:|x|+|y|=1的不同整数解(x,y)的个数为4,|x|+|y|=2的不同整数解(x,y)的个数为8,|x|+|y|=3的不同整数解(x,y)的个数为12,…,则|x|+|y|=20的不同整数解(x,y)的个数为().A.76 B.80]C.86 D.92解析由|x|+|y|=1的不同整数解的个数为4,|x|+|y|=2的不同整数解的个数为8,|x|+|y|=3的不同整数解的个数为12,归纳推理得|x|+|y|=n的不同整数解的个数为4n,故|x|+|y|=20的不同整数解的个数为80.故选B.答案 B2.古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是().A.289 B.1 024C.1 225 D.1 378解析观察三角形数:1,3,6,10,…,记该数列为{a n},则a1=1,a 2=a 1+2, a 3=a 2+3, …a n =a n -1+n .∴a 1+a 2+…+a n =(a 1+a 2+…+a n -1)+(1+2+3+…+n )⇒a n =1+2+3+…+n =n (n +1)2,观察正方形数:1,4,9,16,…,记该数列为{b n },则b n =n 2.把四个选项的数字,分别代入上述两个通项公式,可知使得n 都为正整数的只有1 225. 答案 C 二、填空题3.(2013·湖北卷)在平面直角坐标系中,若点P (x ,y )的坐标x ,y 均为整数,则称点P 为格点.若一个多边形的顶点全是格点,则称该多边形为格点多边形.格点多边形的面积记为S ,其内部的格点数记为N ,边界上的格点数记为L .例如图中△ABC 是格点三角形,对应的S =1,N =0,L =4.(1)图中格点四边形DEFG 对应的S ,N ,L 分别是________;(2)已知格点多边形的面积可表示为S =aN +bL +c ,其中a ,b ,c 为常数.若某格点多边形对应的N =71,L =18,则S =________(用数值作答).解析 (1)四边形DEFG 是一个直角梯形,观察图形可知:S =(2+22)×2×12=3,N =1,L =6.(2)由(1)知,S 四边形DEFG =a +6b +c =3. S △ABC =4b +c =1.在平面直角坐标系中,取一“田”字型四边形,构成边长为2的正方形,该正方形中S =4,N =1,L =8.则S =a +8b +c =4.联立解得a =1,b =12.c = -1. ∴S =N +12L -1,∴若某格点多边形对应的N =71,L =18,则S =71+12×18-1=79.答案 (1)3,1,6 (2)79 三、解答题4.(2012·福建卷)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin 213°+cos 217°-sin 13°cos 17°; ②sin 215°+cos 215°-sin 15°cos 15°; ③sin 218°+cos 212°-sin 18°cos 12°; ④sin 2(-18°)+cos 248°-sin(-18°)cos 48°; ⑤sin 2(-25°)+cos 255°-sin(-25°)cos 55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. 解 (1)选择②式,计算如下:sin 215°+cos 215°-sin 15°cos 15°=1-12sin 30°=1-14=34. (2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34. 证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α·(cos 30°cos α+sin 30°sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α=34sin 2α+34cos 2α=34.。
高考数学模拟题复习试卷习题资料高考数学试卷文科附详细答案104
高考数学模拟题复习试卷习题资料高考数学试卷(文科)(附详细答案)(10)一、选择题(共10小题,每小题5分,共50分)1.(5分)函数f(x)=cos(2x+)的最小正周期是()A. B.π C.2π D.4π2.(5分)设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=()A.[0,1]B.(0,1)C.(0,1]D.[0,1)3.(5分)已知复数z=2﹣i,则z•的值为()A.5B.C.3D.4.(5分)根据如图所示的框图,对大于2的整数N,输出的数列的通项公式是()A.an=2nB.an=2(n﹣1)C.an=2nD.an=2n﹣15.(5分)将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是()A.4πB.3πC.2πD.π6.(5分)从正方形四个顶点及其中心这5个点中任取2个点,则这2个点的距离小于该正方形边长的概率为()A. B. C. D.7.(5分)下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是()A.f(x)=x3B.f(x)=3xC.f(x)=xD.f(x)=()x8.(5分)原命题为“若<an,n∈N+,则{an}为递减数列”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()A.真、真、真B.假、假、真C.真、真、假D.假、假、假9.(5分)某公司10位员工的月工资(单位:元)为x1,x2,…,x10,其均值和方差分别为和s2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为()A.,s2+1002B.+100,s2+1002C.,s2D.+100,s210.(5分)如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切),已知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为()A.y=x3﹣x2﹣xB.y=x3+x2﹣3xC.y=x3﹣xD.y=x3+x2﹣2x二、填空题(共4小题,每小题5分,共25分)11.(5分)抛物线y2=4x的准线方程是.12.(5分)已知4a=2,lgx=a,则x=.13.(5分)设0<θ<,向量=(sin2θ,cosθ),=(1,﹣cosθ),若•=0,则tanθ=.14.(5分)已知f(x)=,x≥0,若f1(x)=f(x),fn+1(x)=f(fn(x)),n∈N+,则f(x)的表达式为.选考题(请在1517三题中任选一题作答,如果多做,则按所做的第一题评分)不等式选做题15.(5分)设a,b,m,n∈R,且a2+b2=5,ma+nb=5,则的最小值为.几何证明选做题16.如图,△ABC中,BC=6,以BC为直径的半圆分别交AB、AC于点E、F,若AC=2AE,则EF=.坐标系与参数方程选做题17.在极坐标系中,点(2,)到直线的距离是.三、解答题(共6小题,共75分)18.(12分)△ABC的内角A、B、C所对的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,且c=2a,求cosB的值.19.(12分)四面体ABCD及其三视图如图所示,平行于棱AD,BC的平面分别交四面体的棱AB、BD、DC、CA于点E、F、G、H.(Ⅰ)求四面体ABCD的体积;(Ⅱ)证明:四边形EFGH是矩形.20.(12分)在直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2),点P (x,y)在△ABC 三边围成的区域(含边界)上,且=m +n(m,n∈R)(Ⅰ)若m=n=,求||;(Ⅱ)用x,y表示m﹣n,并求m﹣n的最大值.21.(12分)某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:0 1000 2000 3000 4000赔付金额(元)500 130 100 150 120 车辆数(辆)(Ⅰ)若每辆车的投保金额均为2800元,估计赔付金额大于投保金额的概率;(Ⅱ)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.22.(13分)已知椭圆+=1(a>b>0)经过点(0,),离心率为,左右焦点分别为F1(﹣c,0),F2(c,0).(Ⅰ)求椭圆的方程;(Ⅱ)若直线l:y=﹣x+m与椭圆交于A、B两点,与以F1F2为直径的圆交于C、D两点,且满足=,求直线l的方程.23.(14分)设函数f(x)=lnx+,m∈R.(Ⅰ)当m=e(e为自然对数的底数)时,求f(x)的极小值;(Ⅱ)讨论函数g(x)=f′(x)﹣零点的个数;(Ⅲ)若对任意b>a>0,<1恒成立,求m的取值范围.高考模拟题复习试卷习题资料高考数学试卷(文科)(附详细答案)(10)参考答案与试题解析一、选择题(共10小题,每小题5分,共50分)1.(5分)函数f(x)=cos(2x+)的最小正周期是()A. B.π C.2π D.4π【分析】由题意得ω=2,再代入复合三角函数的周期公式求解.【解答】解:根据复合三角函数的周期公式得,函数f(x)=cos(2x+)的最小正周期是π,故选:B.【点评】本题考查了三角函数的周期性,以及复合三角函数的周期公式应用,属于基础题.2.(5分)设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=()A.[0,1]B.(0,1)C.(0,1]D.[0,1)【分析】先解出集合N,再求两集合的交即可得出正确选项.【解答】解:∵M={x|x≥0,x∈R},N={x|x2<1,x∈R}={x|﹣1<x<1,x∈R},∴M∩N=[0,1).故选:D.【点评】本题考查交的运算,理解好交的定义是解答的关键.3.(5分)已知复数z=2﹣i,则z•的值为()A.5B.C.3D.【分析】由z求出,然后直接利用复数代数形式的乘法运算求解.【解答】解:由z=2﹣i,得z•=(2﹣i)(2+i)=4﹣i2=5.故选:A.【点评】本题考查了复数代数形式的乘法运算,是基础的计算题.4.(5分)根据如图所示的框图,对大于2的整数N,输出的数列的通项公式是()A.an=2nB.an=2(n﹣1)C.an=2nD.an=2n﹣1【分析】根据框图的流程判断递推关系式,根据递推关系式与首项求出数列的通项公式. 【解答】解:由程序框图知:ai+1=2ai,a1=2,∴数列为公比为2的等比数列,∴an=2n.故选:C.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程判断递推关系式是解答本题的关键.5.(5分)将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是()A.4πB.3πC.2πD.π【分析】边长为1的正方形,绕其一边所在直线旋转一周,得到的几何体为圆柱,从而可求圆柱的侧面积.【解答】解:边长为1的正方形,绕其一边所在直线旋转一周,得到的几何体为圆柱,则所得几何体的侧面积为:1×2π×1=2π,故选:C.【点评】本题是基础题,考查旋转体的侧面积的求法,考查计算能力.6.(5分)从正方形四个顶点及其中心这5个点中任取2个点,则这2个点的距离小于该正方形边长的概率为()A. B. C. D.【分析】设正方形边长为1,则从正方形四个顶点及其中心这5个点中任取2个点,共有10条线段,4条长度为1,4条长度为,两条长度为,即可得出结论.【解答】解:设正方形边长为1,则从正方形四个顶点及其中心这5个点中任取2个点,共有10条线段,4条长度为1,4条长度为,两条长度为,∴所求概率为=.故选:B.【点评】本题考查概率的计算,列举基本事件是关键.7.(5分)下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是()A.f(x)=x3B.f(x)=3xC.f(x)=xD.f(x)=()x【分析】对选项一一加以判断,先判断是否满足f(x+y)=f(x)f(y),然后考虑函数的单调性,即可得到答案.【解答】解:A.f(x)=x3,f(y)=y3,f(x+y)=(x+y)3,不满足f(x+y)=f(x)f (y),故A错;B.f(x)=3x,f(y)=3y,f(x+y)=3x+y,满足f(x+y)=f(x)f(y),且f(x)在R上是单调增函数,故B正确;C.f(x)=,f(y)=,f(x+y)=,不满足f(x+y)=f(x)f(y),故C 错;D.f(x)=,f(y)=,f(x+y)=,满足f(x+y)=f(x)f(y),但f (x)在R上是单调减函数,故D错.故选:B.【点评】本题主要考查抽象函数的具体模型,同时考查幂函数和指数函数的单调性,是一道基础题.8.(5分)原命题为“若<an,n∈N+,则{an}为递减数列”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()A.真、真、真B.假、假、真C.真、真、假D.假、假、假【分析】先根据递减数列的定义判定命题的真假,再判断否命题的真假,根据命题与其逆否命题同真性及四种命题的关系判断逆命题与逆否命题的真假.【解答】解:∵<an=⇔an+1<an,n∈N+,∴{an}为递减数列,命题是真命题;其否命题是:若≥an,n∈N+,则{an}不是递减数列,是真命题;又命题与其逆否命题同真同假,命题的否命题与逆命题是互为逆否命题,∴命题的逆命题,逆否命题都是真命题.故选:A.【点评】本题考查了四种命题的定义及真假关系,判断命题的真假及熟练掌握四种命题的真假关系是解题的关键.9.(5分)某公司10位员工的月工资(单位:元)为x1,x2,…,x10,其均值和方差分别为和s2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为()A.,s2+1002B.+100,s2+1002C.,s2D.+100,s2【分析】根据变量之间均值和方差的关系和定义,直接代入即可得到结论.【解答】解:由题意知yi=xi+100,则=(x1+x2+…+x10+100×10)=(x1+x2+…+x10)=+100,方差s2=[(x1+100﹣(+100)2+(x2+100﹣(+100)2+…+(x10+100﹣(+100)2]=[(x1﹣)2+(x2﹣)2+…+(x10﹣)2]=s2.故选:D.【点评】本题主要考查样本数据的均值和方差之间的关系,利用均值和方差的定义是解决本题的关键,要求熟练掌握相应的计算公式.10.(5分)如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切),已知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为()A.y=x3﹣x2﹣xB.y=x3+x2﹣3xC.y=x3﹣xD.y=x3+x2﹣2x【分析】由题设,“需要一段环湖弯曲路段与两条直道平滑连接(相切)“可得出此两点处的切线正是两条直道所在直线,由此规律验证四个选项即可得出答案.【解答】解:由函数图象知,此三次函数在(0,0)上处与直线y=﹣x相切,在(2,0)点处与y=3x﹣6相切,下研究四个选项中函数在两点处的切线.A、,将0,2代入,解得此时切线的斜率分别是﹣1,3,符合题意,故A 正确;B、,将0代入,此时导数为﹣3,不为﹣1,故B错误;C、,将2代入,此时导数为﹣1,与点(2,0)处切线斜率为3矛盾,故C 错误;D、,将0代入,此时导数为﹣2,与点(0,0)处切线斜率为﹣1矛盾,故D错误.故选:A.【点评】本题考查导数的几何意义在实际问题中的应用,导数的几何意义是导数主要应用之一.二、填空题(共4小题,每小题5分,共25分)11.(5分)抛物线y2=4x的准线方程是 x=﹣1 .【分析】先根据抛物线的标准方程形式求出p,再根据开口方向,写出其准线方程.【解答】解:∵2p=4,∴p=2,开口向右,∴准线方程是x=﹣1.故答案为x=﹣1.【点评】根据抛物线的方程求其焦点坐标和准线方程,一定要先化为标准形式,求出的值,再确定开口方向,否则,极易出现错误.12.(5分)已知4a=2,lgx=a,则x=.【分析】化指数式为对数式求得a,代入lgx=a后由对数的运算性质求得x的值.【解答】解:由4a=2,得,再由lgx=a=,得x=.故答案为:.【点评】本题考查了指数式与对数式的互化,考查了对数的运算性质,是基础题.13.(5分)设0<θ<,向量=(sin2θ,cosθ),=(1,﹣cosθ),若•=0,则tanθ=.【分析】由条件利用两个向量的数量积公式求得2sinθcosθ﹣cos2θ=0,再利用同角三角函数的基本关系求得tanθ【解答】解:∵=sin2θ﹣cos2θ=2sinθcosθ﹣cos2θ=0,0<θ<,∴2sinθ﹣cosθ=0,∴tanθ=,故答案为:.【点评】本题主要考查两个向量的数量积公式,同角三角函数的基本关系,属于基础题.14.(5分)已知f(x)=,x≥0,若f1(x)=f(x),fn+1(x)=f(fn(x)),n∈N+,则f(x)的表达式为.【分析】由题意,可先求出f1(x),f2(x),f3(x)…,归纳出fn(x)的表达式,即可得出f(x)的表达式【解答】解:由题意...…故f(x)=故答案为:【点评】本题考查逻辑推理中归纳推理,由特殊到一般进行归纳得出结论是此类推理方法的重要特征.选考题(请在1517三题中任选一题作答,如果多做,则按所做的第一题评分)不等式选做题15.(5分)设a,b,m,n∈R,且a2+b2=5,ma+nb=5,则的最小值为.【分析】根据柯西不等式(a2+b2)(c2+d2)≥(ac+bd)2当且仅当ad=bc取等号,问题即可解决.【解答】解:由柯西不等式得,(ma+nb)2≤(m2+n2)(a2+b2)∵a2+b2=5,ma+nb=5,∴(m2+n2)≥5∴的最小值为故答案为:【点评】本题主要考查了柯西不等式,解题关键在于清楚等号成立的条件,属于中档题.几何证明选做题16.如图,△ABC中,BC=6,以BC为直径的半圆分别交AB、AC于点E、F,若AC=2AE,则EF= 3 .【分析】证明△AEF∽△ACB,可得,即可得出结论.【解答】解:由题意,∵以BC为直径的半圆分别交AB、AC于点E、F,∴∠AEF=∠C,∵∠EAF=∠CAB,∴△AEF∽△ACB,∴,∵BC=6,AC=2AE,∴EF=3.故答案为:3.【点评】本题考查三角形相似的判定与运用,考查学生的计算能力,属于基础题.坐标系与参数方程选做题17.在极坐标系中,点(2,)到直线的距离是 1 .【分析】把极坐标化为直角坐标,再利用点到直线的距离公式即可得出.【解答】解:点P(2,)化为=,y=2=1,∴P.直线展开化为:=1,化为直角坐标方程为:,即=0.∴点P到直线的距离d==1.故答案为:1.【点评】本题考查了极坐标化为直角坐标的公式、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.三、解答题(共6小题,共75分)18.(12分)△ABC的内角A、B、C所对的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,且c=2a,求cosB的值.【分析】(Ⅰ)由a,b,c成等差数列,利用等差数列的性质得到a+c=2b,再利用正弦定理及诱导公式变形即可得证;(Ⅱ)由a,b,c成等比数列,利用等比数列的性质列出关系式,将c=2a代入表示出b,利用余弦定理表示出cosB,将三边长代入即可求出cosB的值.【解答】解:(Ⅰ)∵a,b,c成等差数列,∴a+c=2b,由正弦定理得:sinA+sinC=2sinB,∵sinB=sin[π﹣(A+C)]=sin(A+C),则sinA+sinC=2sin(A+C);(Ⅱ)∵a,b,c成等比数列,∴b2=ac,将c=2a代入得:b2=2a2,即b=a,∴由余弦定理得:cosB===.【点评】此题考查了余弦定理,等差、等比数列的性质,熟练掌握余弦定理是解本题的关键.19.(12分)四面体ABCD及其三视图如图所示,平行于棱AD,BC的平面分别交四面体的棱AB、BD、DC、CA于点E、F、G、H.(Ⅰ)求四面体ABCD的体积;(Ⅱ)证明:四边形EFGH是矩形.【分析】(Ⅰ)证明AD⊥平面BDC,即可求四面体ABCD的体积;(Ⅱ)证明四边形EFGH是平行四边形,EF⊥HG,即可证明四边形EFGH是矩形.【解答】(Ⅰ)解:由题意,BD⊥DC,BD⊥AD,AD⊥DC,BD=DC=2,AD=1,∴AD⊥平面BDC,∴四面体ABCD的体积V==;(Ⅱ)证明:∵BC∥平面EFGH,平面EFGH∩平面BDC=FG,平面EFGH∩平面ABC=EH,∴BC∥FG,BC∥EH,∴FG∥EH.同理EF∥AD,HG∥AD,∴EF∥HG,∴四边形EFGH是平行四边形,∵AD⊥平面BDC,∴AD⊥BC,∴EF⊥FG,∴四边形EFGH是矩形.【点评】本题考查线面垂直,考查线面平行性质的运用,考查学生分析解决问题的能力,属于中档题.20.(12分)在直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2),点P (x,y)在△ABC三边围成的区域(含边界)上,且=m+n(m,n∈R)(Ⅰ)若m=n=,求||;(Ⅱ)用x,y表示m﹣n,并求m﹣n的最大值.【分析】(Ⅰ)由点的坐标求出向量和的坐标,结合m=n=,再由=m+n求得的坐标,然后由模的公式求模;(Ⅱ)由=m+n得到,作差后得到m﹣n=y﹣x,令y﹣x=t,然后利用线性规划知识求得m﹣n的最大值.【解答】解:(Ⅰ)∵A(1,1),B(2,3),C(3,2),∴,又m=n=,∴.∴;(Ⅱ)∵,∴,两式相减得,m﹣n=y﹣x.令y﹣x=t,由图可知,当直线y=x+t过点B(2,3)时,t取得最大值1,故m﹣n的最大值为:1.【点评】本题考查了平面向量的数乘及坐标加法运算,考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.21.(12分)某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:0 1000 2000 3000 4000赔付金额(元)500 130 100 150 120 车辆数(辆)(Ⅰ)若每辆车的投保金额均为2800元,估计赔付金额大于投保金额的概率;(Ⅱ)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.【分析】(Ⅰ)设A表示事件“赔付金额为3000元,”B表示事件“赔付金额为4000元”,以频率估计概率,求得P(A),P(B),再根据投保额为2800元,赔付金额大于投保金额得情形是3000元和4000元,问题得以解决.(Ⅱ)设C表示事件“投保车辆中新司机获赔4000元”,分别求出样本车辆中车主为新司机人数和赔付金额为4000元的车辆中车主为新司机人数,再求出其频率,最后利用频率表示概率.【解答】解:(Ⅰ)设A表示事件“赔付金额为3000元,”B表示事件“赔付金额为4000元”,以频率估计概率得P(A)=,P(B)=,由于投保额为2800元,赔付金额大于投保金额得情形是3000元和4000元,所以其概率为P(A)+P(B)=0.15+0.12=0.27.(Ⅱ)设C表示事件“投保车辆中新司机获赔4000元”,由已知,样本车辆中车主为新司机的有0.1×1000=100,而赔付金额为4000元的车辆中车主为新司机的有0.2×120=24,所以样本中车辆中新司机车主获赔金额为4000元的频率为,由频率估计概率得P(C)=0.24.【点评】本题主要考查了用频率来表示概率,属于中档题.23.(14分)设函数f(x)=lnx+,m∈R.(Ⅰ)当m=e(e为自然对数的底数)时,求f(x)的极小值;(Ⅱ)讨论函数g(x)=f′(x )﹣零点的个数;(Ⅲ)若对任意b>a>0,<1恒成立,求m的取值范围.【分析】(Ⅰ)m=e时,f(x)=lnx+,利用f′(x)判定f(x)的增减性并求出f(x)的极小值;(Ⅱ)由函数g(x)=f′(x)﹣,令g(x)=0,求出m;设φ(x)=m,求出φ(x)的值域,讨论m的取值,对应g(x)的零点情况;(Ⅲ)由b>a>0,<1恒成立,等价于f(b)﹣b<f(a)﹣a恒成立;即h (x)=f(x)﹣x在(0,+∞)上单调递减;h′(x)≤0,求出m的取值范围.【解答】解:(Ⅰ)当m=e时,f(x)=lnx+,∴f′(x)=;∴当x∈(0,e)时,f′(x)<0,f(x)在(0,e)上是减函数;当x∈(e,+∞)时,f′(x)>0,f(x)在(e,+∞)上是增函数;∴x=e时,f(x)取得极小值为f(e)=lne+=2;(Ⅱ)∵函数g(x)=f′(x)﹣=﹣﹣(x>0),令g(x)=0,得m=﹣x3+x(x>0);设φ(x)=﹣x3+x(x>0),∴φ′(x)=﹣x2+1=﹣(x﹣1)(x+1);当x∈(0,1)时,φ′(x)>0,φ(x)在(0,1)上是增函数,当x∈(1,+∞)时,φ′(x)<0,φ(x)在(1,+∞)上是减函数;∴x=1是φ(x)的极值点,且是极大值点,∴x=1是φ(x)的最大值点,∴φ(x)的最大值为φ(1)=;又φ(0)=0,结合y=φ(x)的图象,如图;可知:①当m>时,函数g(x)无零点;②当m=时,函数g(x)有且只有一个零点;③当0<m<时,函数g(x)有两个零点;④当m≤0时,函数g(x)有且只有一个零点;综上,当m>时,函数g(x)无零点;当m=或m≤0时,函数g(x)有且只有一个零点;当0<m<时,函数g(x)有两个零点;(Ⅲ)对任意b>a>0,<1恒成立,等价于f(b)﹣b<f(a)﹣a恒成立;设h(x)=f(x)﹣x=lnx+﹣x(x>0),则h(b)<h(a).∴h(x)在(0,+∞)上单调递减;∵h′(x)=﹣﹣1≤0在(0,+∞)上恒成立,∴m≥﹣x2+x=﹣+(x>0),∴m≥;对于m=,h′(x)=0仅在x=时成立;∴m的取值范围是[,+∞).【点评】本题考查了导数的综合应用问题,解题时应根据函数的导数判定函数的增减性以及求函数的极值和最值,应用分类讨论法,构造函数等方法来解答问题,是难题.22.(13分)已知椭圆+=1(a>b>0)经过点(0,),离心率为,左右焦点分别为F1(﹣c,0),F2(c,0).(Ⅰ)求椭圆的方程;(Ⅱ)若直线l:y=﹣x+m与椭圆交于A、B两点,与以F1F2为直径的圆交于C、D两点,且满足=,求直线l的方程.【分析】(Ⅰ)由题意可得,解出即可.(Ⅱ)由题意可得以F1F2为直径的圆的方程为x2+y2=1.利用点到直线的距离公式可得:圆心到直线l的距离d及d<1,可得m的取值范围.利用弦长公式可得|CD|=2.设A (x1,y1),B(x2,y2).把直线l的方程与椭圆的方程联立可得根与系数的关系,进而得到弦长|AB|=.由=,即可解得m.【解答】解:(Ⅰ)由题意可得,解得,c=1,a=2.∴椭圆的方程为.(Ⅱ)由题意可得以F1F2为直径的圆的方程为x2+y2=1.∴圆心到直线l的距离d=,由d<1,可得.(*)∴|CD|=2==.设A(x1,y1),B(x2,y2).联立,化为x2﹣mx+m2﹣3=0,可得x1+x2=m,.∴|AB|==.由=,得,解得满足(*).因此直线l的方程为.【点评】本题中考查了椭圆与圆的标准方程及其性质、直线与椭圆及圆相交的弦长问题、点到直线的距离公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.高考数学试卷(理科)一、选择题,在每小题给出的四个选项中,只有一项符合题目要求(共10小题,每小题5分,满分50分)1.(5分)设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=()A.[0,1] B.[0,1)C.(0,1] D.(0,1)2.(5分)函数f(x)=cos(2x﹣)的最小正周期是()A.B.πC.2πD.4π3.(5分)定积分(2x+ex)dx的值为()A.e+2 B.e+1 C.e D.e﹣14.(5分)根据如图所示的框图,对大于2的整数N,输出的数列的通项公式是()A.an=2n B.an=2(n﹣1)C.an=2n D.an=2n﹣15.(5分)已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一球面上,则该球的体积为()A.B.4πC.2πD.6.(5分)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为()A.B.C.D.7.(5分)下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是()A.f(x)=x B.f(x)=x3 C.f(x)=()x D.f(x)=3x8.(5分)原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()A.真,假,真 B.假,假,真 C.真,真,假 D.假,假,假9.(5分)设样本数据x1,x2,…,x10的均值和方差分别为1和4,若yi=xi+a(a为非零常数,i=1,2,…,10),则y1,y2,…,y10的均值和方差分别为()A.1+a,4 B.1+a,4+a C.1,4 D.1,4+a10.(5分)如图,某飞行器在4千米高空飞行,从距着陆点A的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图象的一部分,则该函数的解析式为()A.y=﹣x B.y=x3﹣xC.y=x3﹣x D.y=﹣x3+x二、填空题(考生注意:请在15、16、17三题中任选一题作答,如果多做,则按所做的第一题评分,共4小题,每小题5分,满分20分)11.(5分)已知4a=2,lgx=a,则x=.12.(5分)若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为.13.(5分)设0<θ<,向量=(sin2θ,cosθ),=(cosθ,1),若∥,则tanθ=.14.(5分)观察分析下表中的数据:多面体面数(F)顶点数棱数(E)(V)三棱柱 5 6 9五棱锥 6 6 10立方体 6 8 12猜想一般凸多面体中F,V,E所满足的等式是.(不等式选做题)15.(5分)设a,b,m,n∈R,且a2+b2=5,ma+nb=5,则的最小值为.(几何证明选做题)16.如图,△ABC中,BC=6,以BC为直径的半圆分别交AB、AC于点E、F,若AC=2AE,则EF=.(坐标系与参数方程选做题)17.在极坐标系中,点(2,)到直线的距离是.三、解答题:解答题应写出文字说明、证明过程或盐酸步骤(共6小题,满分75分)18.(12分)△ABC的内角A,B,C所对应的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,求cosB的最小值.19.(12分)如图1,四面体ABCD及其三视图(如图2所示),过棱AB的中点E作平行于AD,BC的平面分别交四面体的棱BD,DC,CA于点F,G,H.(Ⅰ)证明:四边形EFGH是矩形;(Ⅱ)求直线AB与平面EFGH夹角θ的正弦值.20.(12分)在直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2),点P (x,y)在△ABC三边围成的区域(含边界)上.(Ⅰ)若++=,求||;(Ⅱ)设=m +n(m,n∈R),用x,y表示m﹣n,并求m﹣n的最大值.21.(12分)在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如表:300 500作物产量(kg)概率0.5 0.56 10作物市场价格(元/kg)概率0.4 0.6(Ⅰ)设X表示在这块地上种植1季此作物的利润,求X的分布列;(Ⅱ)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.22.(13分)如图,曲线C由上半椭圆C1:+=1(a>b>0,y≥0)和部分抛物线C2:y=﹣x2+1(y≤0)连接而成,C1与C2的公共点为A,B,其中C1的离心率为.(Ⅰ)求a,b的值;(Ⅱ)过点B的直线l与C1,C2分别交于点P,Q(均异于点A,B),若AP⊥AQ,求直线l的方程.23.(14分)设函数f(x)=ln(1+x),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的导函数.(Ⅰ)令g1(x)=g(x),gn+1(x)=g(gn(x)),n∈N+,求gn(x)的表达式;(Ⅱ)若f(x)≥ag(x)恒成立,求实数a的取值范围;(Ⅲ)设n∈N+,比较g(1)+g(2)+…+g(n)与n﹣f(n)的大小,并加以证明.高考数学试卷(理科)参考答案与试题解析一、选择题,在每小题给出的四个选项中,只有一项符合题目要求(共10小题,每小题5分,满分50分)1.(5分)设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=()A.[0,1] B.[0,1)C.(0,1] D.(0,1)【分析】先解出集合N,再求两集合的交即可得出正确选项.【解答】解:∵M={x|x≥0,x∈R},N={x|x2<1,x∈R}={x|﹣1<x<1,x∈R},∴M∩N=[0,1).故选:B.【点评】本题考查交集的运算,理解好交集的定义是解答的关键.2.(5分)函数f(x)=cos(2x﹣)的最小正周期是()A.B.πC.2πD.4π【分析】由题意得ω=2,再代入复合三角函数的周期公式求解.【解答】解:根据复合三角函数的周期公式得,函数f(x)=cos(2x﹣)的最小正周期是π,故选:B.【点评】本题考查了三角函数的周期性,以及复合三角函数的周期公式应用,属于基础题.3.(5分)定积分(2x+ex)dx的值为()A.e+2 B.e+1 C.e D.e﹣1【分析】根据微积分基本定理计算即可.【解答】解:(2x+ex)dx=(x2+ex)|=(1+e)﹣(0+e0)=e.故选:C.【点评】本题主要考查了微积分基本定理,关键是求出原函数.4.(5分)根据如图所示的框图,对大于2的整数N,输出的数列的通项公式是()A.an=2n B.an=2(n﹣1)C.an=2n D.an=2n﹣1【分析】根据框图的流程判断递推关系式,根据递推关系式与首项求出数列的通项公式.【解答】解:由程序框图知:ai+1=2ai,a1=2,∴数列为公比为2的等比数列,∴an=2n.故选:C.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程判断递推关系式是解答本题的关键.5.(5分)已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一球面上,则该球的体积为()A.B.4πC.2πD.【分析】由长方体的对角线公式,算出正四棱柱体对角线的长,从而得到球直径长,得球半径R=1,最后根据球的体积公式,可算出此球的体积.【解答】解:∵正四棱柱的底面边长为1,侧棱长为,∴正四棱柱体对角线的长为=2又∵正四棱柱的顶点在同一球面上,∴正四棱柱体对角线恰好是球的一条直径,得球半径R=1根据球的体积公式,得此球的体积为V=πR3=π.故选:D.【点评】本题给出球内接正四棱柱的底面边长和侧棱长,求该球的体积,考查了正四棱柱的性质、长方体对角线公式和球的体积公式等知识,属于基础题.6.(5分)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为()A.B.C.D.【分析】设正方形边长为1,则从正方形四个顶点及其中心这5个点中任取2个点,共有10条线段,4条长度为1,4条长度为,两条长度为,即可得出结论.【解答】解:设正方形边长为1,则从正方形四个顶点及其中心这5个点中任取2个点,共有10条线段,4条长度为1,4条长度为,两条长度为,∴所求概率为=.故选:C.【点评】本题考查概率的计算,列举基本事件是关键.7.(5分)下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是()A.f(x)=x B.f(x)=x3 C.f(x)=()x D.f(x)=3x【分析】对选项一一加以判断,先判断是否满足f(x+y)=f(x)f(y),然后考虑函数的单调性,即可得到答案.【解答】解:A.f(x)=,f(y)=,f(x+y)=,不满足f(x+y)=f(x)f (y),故A错;B.f(x)=x3,f(y)=y3,f(x+y)=(x+y)3,不满足f(x+y)=f(x)f(y),故B错;C.f(x)=,f(y)=,f(x+y)=,满足f(x+y)=f(x)f(y),但f(x)在R上是单调减函数,故C错.D.f(x)=3x,f(y)=3y,f(x+y)=3x+y,满足f(x+y)=f(x)f(y),且f(x)在R上是单调增函数,故D正确;故选:D.【点评】本题主要考查抽象函数的具体模型,同时考查幂函数和指数函数的单调性,是一道基础题.8.(5分)原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()A.真,假,真 B.假,假,真 C.真,真,假 D.假,假,假【分析】根据共轭复数的定义判断命题的真假,根据逆命题的定义写出逆命题并判断真假,再利用四种命题的真假关系判断否命题与逆否命题的真假.【解答】解:根据共轭复数的定义,原命题“若z1,z2互为共轭复数,则|z1|=|z2|”是真命题;其逆命题是:“若|z1|=|z2|,则z1,z2互为共轭复数”,例|1|=|﹣1|,而1与﹣1不是互为共轭复数,∴原命题的逆命题是假命题;根据原命题与其逆否命题同真同假,否命题与逆命题互为逆否命题,同真同假,∴命题的否命题是假命题,逆否命题是真命题.故选:B.【点评】本题考查了四种命题的定义及真假关系,考查了共轭复数的定义,熟练掌握四种命题的真假关系是解题的关键.9.(5分)设样本数据x1,x2,…,x10的均值和方差分别为1和4,若yi=xi+a(a为非零常数,i=1,2,…,10),则y1,y2,…,y10的均值和方差分别为()A.1+a,4 B.1+a,4+a C.1,4 D.1,4+a【分析】方法1:根据变量之间均值和方差的关系直接代入即可得到结论.方法2:根据均值和方差的公式计算即可得到结论.【解答】解:方法1:∵yi=xi+a,∴E(yi)=E(xi)+E(a)=1+a,方差D(yi)=D(xi)+E(a)=4.方法2:由题意知yi=xi+a,则=(x1+x2+…+x10+10×a)=(x1+x2+…+x10)=+a=1+a,方差s2=[(x1+a﹣(+a)2+(x2+a﹣(+a)2+…+(x10+a﹣(+a)2]=[(x1﹣)2+(x2﹣)2+…+(x10﹣)2]=s2=4.故选:A.【点评】本题主要考查样本数据的均值和方差之间的关系,若变量y=ax+b,则Ey=aEx+b,Dy=a2Dx,利用公式比较简单或者使用均值和方差的公式进行计算.10.(5分)如图,某飞行器在4千米高空飞行,从距着陆点A的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图象的一部分,则该函数的解析式为()。
2016年浙江省高考文科数学试卷及参考答案解析
绝密★考试结束前2016年普通高等学校招生全国统一考试(浙江卷)数学(文科)本试题卷分选择题和非选择题两部分。
全卷共5页,选择题部分1至3页,非选择题部分4至5页。
满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试题卷上。
参考公式如果事件,A B 互斥 ,那么 ()()()P A B P A P B +=+ 如果事件,A B 相互独立,那么 ()()()P A B P A P B •=•如果事件A 在一次试验中发生的概率为P ,那么n 次独立重复试验中事件A 恰好发生k 次的概率()(1)(0,1,2,...,)k kn k n n P k C p p k n -=-=台体的体积公式11221()3V h S S S S =其中1S ,2S 分别表示台体的上、下面积,h 表示台体的高柱体体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高 锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高 球的表面积公式24S R π= 球的体积公式343V R π=其中R 表示球的半径第Ⅰ卷(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知全集U ={1,2,3,4,5,6},集合P ={1,3,5},Q ={1,2,4},则U P Q U ()ð= A.{1}B.{3,5}C.{1,2,4,6}D.{1,2,3,4,5}2. 已知互相垂直的平面αβ,交于直线l .若直线m ,n 满足m ∥α,n ⊥β,则(A )//m l (B )//m n (C )n l ⊥ (D )m n ⊥3. 函数y =sin x 2的图象是A .B .C .D .4. 若平面区域30,230,230x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是 A.355B.2C.322D.55. 已知a ,b >0,且a ≠1,b ≠1,若4log >1b ,则 A.(1)(1)0a b --<B. (1)()0a a b -->C. (1)()0b b a --<D. (1)()0b b a -->6. 已知函数f (x )=x 2+bx ,则“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的 A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7. 已知函数()f x 满足:()f x x ≥且()2,x f x x ≥∈R . A.若()f a b ≤,则a b ≤ B.若()2b f a ≤,则a b ≤ C.若()f a b ≥,则a b ≥ D.若()2b f a ≥,则a b ≥8. 如图,点列{}{},n n A B 分别在某锐角的两边上,且*1122,,n n n n n n A A A A A A n ++++=≠∈N ,*1122,,n n n n n n B B B B B B n ++++=≠∈N .(P ≠Q 表示点P 与Q 不重合)若n n n d A B =,n S 为1n n n A B B +△的面积,则A.{}n S 是等差数列B.{}2n S 是等差数列 C.{}n d 是等差数列 D.{}2n d 是等差数列第Ⅰ卷(非选择题 共110分)二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.) 9. 某几何体的三视图如图所示(单位:cm ),则该几何体的表 面积是______cm 2,体积是______cm 3.10. 已知a ∈R ,方程222(2)4850a x a y x y a +++++=表示圆, 则圆心坐标是_____,半径是______.11. 某几何体的三视图如图所示(单位:cm ),则该几何体的 表面积是_____cm 2,体积是_____cm 3.12. 设函数f (x )=x 3+3x 2+1.已知a ≠0,且f (x )–f (a )=(x –b )(x –a )2,x ∈R ,则实数a =_____,b =______. 13.设双曲线x 2–23y =1的左、右焦点分别为F 1,F 2.若点P 在双曲线上, 且△F 1PF 2为锐角三角形,则|PF 1|+|PF 2|的取值范围是_______.14.如图,已知平面四边形ABCD ,AB =BC =3,CD =1,AD =5,∠ADC =90°. 沿直线AC 将△ACD 翻折成△ACD',直线AC 与BD'所成角的余弦的最大值是______. 15.已知平面向量a ,b ,|a |=1,|b |=2,a ·b =1.若e 为平面单位向量,则|a ·e |+|b ·e |的最大值是______.三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.) 16.(本题满分14分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a cos B .(Ⅰ)证明:A =2B ; (Ⅱ)若cos B =23,求cos C 的值.17.(本题满分15分)设数列{n a }的前n 项和为n S .已知2S =4,1n a +=2n S +1,*N n ∈. (I )求通项公式n a ;(II )求数列{2n a n --}的前n 项和.18.(本题满分15分)如图,在三棱台ABC -DEF 中,平面BCFE ⊥平面ABC ,∠ACB =90°,BE=EF=FC =1,BC =2,AC =3. (I )求证:BF ⊥平面ACFD ;(II )求直线BD 与平面ACFD 所成角的余弦值.19.(本题满分15分)如图,设抛物线22(0)y px p =>的焦点为F ,抛物线上的点A 到y 轴的距离等于|AF |-1. (I )求p 的值;(II )若直线AF 交抛物线于另一点B ,过B 与x 轴平行的直线和过F 与AB 垂直的直线交于点N ,AN 与x 轴交于点M .求M 的横坐标的取值范围.20.(本题满分15分)设函数()f x =311x x++,[0,1]x ∈.证明: (I )()f x 21x x ≥-+; (II )34<()f x 32≤.2016年浙江省高考数学试卷(文科)数 学·参考答案一、选择题1.C2.C3.D4.B5.D6.A7.B8.A 二、填空题9. 80 ;40. 10. (2,4)--;5. 11. 2;1. 12.-2;1.13.(27,8). 146 157三、解答题16.本题主要考查三角函数及其变换、正弦和余弦定理等基础知识,同时考查运算求解能力. 解:(1)由正弦定理得sin sin 2sin cos B C A B +=,故2sin cos sin sin()sin sin cos cos sin A B B A B B A B A B =++=++, 于是,sin sin()B A B =-,又,(0,)A B π∈,故0A B π<-<,所以()B A B π=--或B A B =-, 因此,A π=(舍去)或2A B =, 所以,2A B =. (2)由2cos 3B =,得5sin B =,21cos 22cos 19B B =-=-,故1cos 9A =-,45sin A =22cos cos()cos cos sin sin 27C A B A B A B =-+=-+=. 17. 本题主要考查等差、等比数列的基础知识,同时考查数列基本思想方法,以及推理论证能力.解:(1)由题意得:1221421a a a a +=⎧⎨=+⎩,则1213a a =⎧⎨=⎩,又当2n ≥时,由11(21)(21)2n n n n n a a S S a +--=+-+=,得13n n a a +=, 所以,数列{}n a 的通项公式为1*3,n n a n N -=∈.(2)设1|32|n n b n -=--,*n N ∈,122,1b b ==. 当3n ≥时,由于132n n ->+,故132,3n n b n n -=--≥. 设数列{}n b 的前n 项和为n T ,则122,3T T ==.当3n ≥时,229(13)(7)(2)351131322n n n n n n n T --+---+=+-=-,所以,2*2,13511,2,2n n n T n n n n N =⎧⎪=⎨--+≥∈⎪⎩. 18. 本题主要考查空间点、线、面位置关系、线面角等基础知识,同时考查空间想象能力和运算求解能力.证明:(1)延长,,AD BE CF 相交于一点K ,如图所示, 因为平面BCFE ⊥平面ABC ,且AC BC ⊥,所以AC ⊥平面BCK ,因此BF AC ⊥,又因为//EF BC ,1BE EF FC ===,2BC =,所以BCK ∆为等边三角形,且F 为CK 的中点,则BF CK ⊥, 所以BF ⊥平面ACFD .(2)因为BF ⊥平面ACK ,所以BDF ∠是直线BD 与平面ACFD 所成的角, 在Rt BFD ∆中,33,2BF DF ==,得21cos BDF ∠=,所以直线BD 与平面ACFD 所成的角的余弦值为21. 19.本题主要考查抛物线的几何性质、直线与抛物线的位置关系等基础知识,同时考查解析几何的基本思想方法和综合解题方法.解:(Ⅰ)由题意可得抛物线上点A 到焦点F 的距离等于点A 到直线x=-1的距离. 由抛物线的第一得12p=,即p=2. (Ⅱ)由(Ⅰ)得抛物线的方程为()24,F 1,0y x =,可设()2,2,0,1A t t t t ≠≠±.因为AF 不垂直于y 轴,可设直线AF:x=sy+1,()0s ≠,由241y xx sy ⎧=⎨=+⎩消去x 得2440y sy --=,故124y y =-,所以212,B tt ⎛⎫- ⎪⎝⎭.又直线AB 的斜率为212tt-,故直线FN 的斜率为212t t --,从而的直线FN:()2112t y x t -=--,直线BN:2y t =-,所以2232,1t N t t ⎛⎫+- ⎪-⎝⎭,设M(m,0),由A,M,N 三点共线得:222222231t t t t t m t t +=+---, 于是2221t m t =-,经检验,m<0或m>2满足题意.20. 本题主要考查函数的单调性与最值、分段函数等基础知识,同时考查推理论证能力、分析问题和解决问题的能力.解:(Ⅰ)因为()()4423111,11x x x x x x x----+-==--+ 由于[]0,1x ∈,有411,11x x x -≤++即23111x x x x-≤-++, 所以()21.f x x x ≥-+ (Ⅱ)由01x ≤≤得3x x ≤, 故()()()()312111333311222122x x f x x x x x x -+=+≤+-+=+≤+++, 所以()32f x ≤. 由(Ⅰ)得()221331244f x x x x ⎛⎫≥-+=-+≥ ⎪⎝⎭,又因为11932244f ⎛⎫=> ⎪⎝⎭,所以()34f x >, 综上,()33.42f x <≤绝密★考试结束前2016年普通高等学校招生全国统一考试(浙江卷)数学(文科)本试题卷分选择题和非选择题两部分。
2016年高考文科数学全国卷3含答案
19.(本小题满分 12 分)
如 图 , 四 棱 锥 P ABCD 中 , PA 底 面 ABCD , AD BC , AB AD AC 3 , PA BC 4 , M 为 线 段 AD 上 一 点, AM 2MD , N 为 PC 的中点. (Ⅰ)证明 MN 平面 PAB ; (Ⅱ)求四面体 N BCM 的体积.
24.(本小题满分 10 分)选修 4—5:不等式选讲 已知函数 f (x) | 2x a | a . (Ⅰ)当 a 2 时,求不等式 f (x)≤6 的解集; (Ⅱ)设函数 g(x) | 2x 1| .当 x R 时, f (x) g(x)≥3 ,求 a 的取值范围.
2016 年普通高等学校招生全国统一考试(全国新课标卷 3)
A. {4, 8}
B.{0, 2,6}
()
C.{0, 2,6,10}
2.若 z 4 3i ,则 z
题
|z|
D.{0, 2, 4,6,8,10}
()
A.1
B. 1
C. 4 3 i
D. 4 3 i
55
55
3.已知向量
BA
(
1
,
3
),
BC
(
3 , 1) ,则 ABC
与 x 轴交于 C , D 两点.则 | CD |
.
16.已知 f (x) 为偶函数,当 x≤0 时, f (x) ex1 x ,则曲线 y f (x) 在点 (1, 2) 处的切线方
程是
.
三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分 12 分)
已知各项都为正数的数列 an 满足 a1 1 , an2 (2an1 1)an 2an1 0 .
【3年高考】(新课标)2016版高考数学一轮复习 11.1推理与证明
【3年高考】(新课标)2016版高考数学一轮复习 11.1推理与证明A组2012—2014年高考·基础题组1.(2014北京,8,5分)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有( )A.2人B.3人C.4人D.5人2.(2012辽宁,12,5分)若x∈[0,+∞),则下列不等式恒成立的是( )A.e x≤1+x+x2B.≤1-x+x2C.cos x≥1-x2D.ln(1+x)≥x-x23.(2013陕西,14,5分)观察下列等式12=112-22=-312-22+32=612-22+32-42=-10……照此规律,第n个等式可为.4.(2012陕西,11,5分)观察下列不等式1+<,1++<,1+++<,……照此规律,第五个...不等式为.5.(2014湖北,22,14分)π为圆周率,e=2.718 28…为自然对数的底数.(1)求函数f(x)=的单调区间;(2)求e3,3e,eπ,πe,3π,π3这6个数中的最大数与最小数;(3)将e3,3e,eπ,πe,3π,π3这6个数按从小到大的顺序排列,并证明你的结论.6.(2014江苏,23,10分)已知函数f0(x)=(x>0),设f n(x)为f n-1(x)的导数,n∈N*.(1)求2f1+f2的值;(2)证明:对任意的n∈N*,等式=都成立.7.(2012天津,18,13分)已知{a n}是等差数列,其前n项和为S n,{b n}是等比数列,且a1=b1=2,a4+b4=27,S4-b4=10.(1)求数列{a n}与{b n}的通项公式;(2)记T n=a n b1+a n-1b2+…+a1b n,n∈N*,证明T n+12=-2a n+10b n(n∈N*).8.(2012课标全国,21,12分)已知函数f(x)满足f(x)=f '(1)e x-1-f(0)x+x2.(1)求f(x)的解析式及单调区间;(2)若f(x)≥x2+ax+b,求(a+1)b的最大值.9.(2013江苏,19,16分)设{a n}是首项为a,公差为d的等差数列(d≠0),S n是其前n项的和.记b n=,n∈N*,其中c为实数.(1)若c=0,且b1,b2,b4成等比数列,证明:S nk=n2S k(k,n∈N*);(2)若{b n}是等差数列,证明:c=0.B组2012—2014年高考·提升题组1.(2012江西,5,5分)下列命题中,假命题为( )A.存在四边相等的四边形不.是正方形B.z1,z2∈C,z1+z2为实数的充分必要条件是z1,z2互为共轭复数C.若x,y∈R,且x+y>2,则x,y至少有一个大于1D.对于任意n∈N+,++…+都是偶数2.(2013湖北,14,5分)古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,…,第n个三角形数为=n2+n.记第n个k边形数为N(n,k)(k≥3),以下列出了部分k边形数中第n个数的表达式:三角形数N(n,3)=n2+n,正方形数N(n,4)=n2,五边形数N(n,5)=n2-n,六边形数N(n,6)=2n2-n,……可以推测N(n,k)的表达式,由此计算N(10,24)= .3.(2014陕西,21,14分)设函数f(x)=ln(1+x),g(x)=xf '(x),x≥0,其中f '(x)是f(x)的导函数.(1)令g1(x)=g(x),g n+1(x)=g(g n(x)),n∈N+,求g n(x)的表达式;(2)若f(x)≥ag(x)恒成立,求实数a的取值范围;(3)设n∈N+,比较g(1)+g(2)+…+g(n)与n-f(n)的大小,并加以证明.4.(2013江西,21,14分)已知函数f(x)=a,a为常数且a>0.(1)证明:函数f(x)的图象关于直线x=对称;(2)若x0满足f(f(x0))=x0,但f(x0)≠x0,则称x0为函数f(x)的二阶周期点.如果f(x)有两个二阶周期点x1,x2,试确定a的取值范围;(3)对于(2)中的x1,x2和a,设x3为函数f(f(x))的最大值点,A(x1, f(f(x1))),B(x2,f(f(x2))),C(x3,0).记△ABC的面积为S(a),讨论S(a)的单调性.5.(2013重庆,22,12分)对正整数n,记I n={1,2,…,n},P n=.(1)求集合P7中元素的个数;(2)若P n的子集A中任意两个元素之和不是..整数的平方,则称A为“稀疏集”.求n的最大值,使P n能分成两个不相交的稀疏集的并.6.(2012安徽,21,13分)数列{x n}满足x1=0,x n+1=-+x n+c(n∈N*).(1)证明:{x n}是递减数列的充分必要条件是c<0;(2)求c的取值范围,使{x n}是递增数列.7.(2014北京,20,13分)对于数对序列P:(a1,b1),(a2,b2),…,(a n,b n),记T1(P)=a1+b1,T k(P)=b k+max{T k-1(P),a1+a2+…+a k}(2≤k≤n),其中max{T k-1(P),a1+a2+…+a k}表示T k-1(P)和a1+a2+…+a k两个数中最大的数.(1)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;(2)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P':(c,d),(a,b),试分别对m=a和m=d两种情况比较T2(P)和T2(P')的大小;(3)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值.(只需写出结论)A组2012—2014年高考·基础题组1.B 设学生人数为n,因为成绩评定只有“优秀”“合格”“不合格”三种情况,所以当n≥4时,语文成绩至少有两人相同,若此两人数学成绩也相同,与“任意两人成绩不全相同”矛盾;若此两人数学成绩不同,则此两人有一人比另一人成绩好,也不满足条件.因此:n<4,即n≤3.当n=3时,评定结果分别为“优秀,不合格”“合格,合格”“不合格,优秀”,符合题意,故n=3,选B.2.C 对于A,分别画出y=e x,y=1+x+x2在[0,+∞)上的大致图象(如图),知e x≤1+x+x2不恒成立,A错;对于B,令f(x)=1-x+x2,则f '(x)=+·-+x=.∴x∈时, f '(x)<0, f(x)为减函数,x∈时, f '(x)>0, f(x)为增函数.∴f(x)最小值为f, f=×1-×+×2=×=<1,B错;对于C,结合图象(如图)知正确;对于D,当x=4时,ln 5<ln e2=2=4-×42,D错.故选C.3.答案12-22+32-42+…+(-1)n-1·n2=(-1)n-1·解析左边为平方项的(-1)n-1倍的和,右边为(1+2+3+…+n)的(-1)n-1倍,用数学归纳法证明成立.4.答案1+++++<解析先观察左边,第一个不等式为2项相加,第二个不等式为3项相加,第三个不等式为4项相加,则第五个不等式应为6项相加,右边分子为分母的2倍减1,分母即为所对应项数,故应填1+++++<.5.解析(1)函数f(x)的定义域为(0,+∞).因为f(x)=,所以f '(x)=.当f '(x)>0,即0<x<e时,函数f(x)单调递增;当f '(x)<0,即x>e时,函数f(x)单调递减.故函数f(x)的单调递增区间为(0,e),单调递减区间为(e,+∞).(2)因为e<3<π,所以eln 3<eln π,πln e<πln 3,即ln 3e<ln πe,ln eπ<ln 3π.于是根据函数y=ln x,y=e x,y=πx在定义域上单调递增,可得3e<πe<π3,e3<eπ<3π.故这6个数的最大数在π3与3π之中,最小数在3e与e3之中.由e<3<π及(1)的结论,得f(π)<f(3)<f(e),即<<.由<,得ln π3<ln 3π,所以3π>π3;由<,得ln 3e<ln e3,所以3e<e3.综上,6个数中的最大数是3π,最小数是3e.(3)由(2)知,3e<πe<π3<3π,3e<e3.又由(2)知,<,得πe<eπ.故只需比较e3与πe和eπ与π3的大小.由(1)知,当0<x<e时, f(x)<f(e)=,即<.在上式中,令x=,又<e,则ln<,从而2-ln π<,即得ln π>2-.①由①得,eln π>e>2.7×>2.7×(2-0.88)=3.024>3,即eln π>3,亦即ln πe>ln e3,所以e3<πe.又由①得,3ln π>6->6-e>π,即3ln π>π,所以eπ<π3.综上可得,3e<e3<πe<eπ<π3<3π,即6个数从小到大的顺序为3e,e3,πe,eπ,π3,3π.6.解析(1)由已知,得f 1(x)=f '0(x)='=-,于是f2(x)=f '1(x)='-'=--+,所以f1=-, f2=-+. 故2f1+f2=-1.(2)证明:由已知,得xf0(x)=sin x,等式两边分别对x求导,得f0(x)+xf '0(x)=cos x,即f0(x)+xf1(x)=cos x=sin,类似可得2f1(x)+xf2(x)=-sin x=sin(x+π),3f2(x)+xf3(x)=-cos x=sin,4f3(x)+xf4(x)=sin x=sin(x+2π).下面用数学归纳法证明等式nf n-1(x)+xf n(x)=sin对所有的n∈N*都成立.(i)当n=1时,由上可知等式成立.(ii)假设当n=k时等式成立,即kf k-1(x)+xf k(x)=sin.因为[kf k-1(x)+xf k(x)]'=kf 'k-1(x)+f k(x)+xf 'k(x)=(k+1)f k(x)+xf k+1(x),'=cos·'=sin,所以(k+1)f k(x)+xf k+1(x)=sin.因此当n=k+1时,等式也成立.综合(i),(ii)可知等式nf n-1(x)+xf n(x)=sin对所有的n∈N*都成立.令x=,可得nf n-1+f n=sin(n∈N*).所以=(n∈N*).7.解析(1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q.由a1=b1=2,得a4=2+3d,b4=2q3,S4=8+6d.由条件,得方程组解得所以a=3n-1,b=2n,n∈N*.(2)证明:证法一:由(1)得T n=2a n+22a n-1+23a n-2+…+2n a1,①2T n=22a n+23a n-1+…+2n a2+2n+1a1.②由②-①,得T n=-2(3n-1)+3×22+3×23+…+3×2n+2n+2=+2n+2-6n+2=10×2n-6n-10.而-2a n+10b n-12=-2(3n-1)+10×2n-12=10×2n-6n-10,故T n+12=-2a n+10b n,n∈N*.证法二:数学归纳法(i)当n=1时,T1+12=a1b1+12=16,-2a1+10b1=16,故等式成立;(ii)假设当n=k时等式成立,即T k+12=-2a k+10b k,则当n=k+1时,有:T k+1=a k+1b1+a k b2+a k-1b3+…+a1b k+1=a k+1b1+q(a k b1+a k-1b2+…+a1b k)=a k+1b1+qT k=a k+1b1+q(-2a k+10b k-12)=2a k+1-4(a k+1-3)+10b k+1-24=-2a k+1+10b k+1-12,即T k+1+12=-2a k+1+10b k+1.因此n=k+1时等式也成立.由(i)和(ii)可知,对任意n∈N*,T n+12=-2a n+10b n成立.8.解析(1)由已知得f '(x)=f '(1)e x-1-f(0)+x,所以f '(1)=f '(1)-f(0)+1,即f(0)=1. 又f(0)=f '(1)e-1,所以f '(1)=e.从而f(x)=e x-x+x2.由于f '(x)=e x-1+x,故当x∈(-∞,0)时, f '(x)<0;当x∈(0,+∞)时, f '(x)>0.从而, f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增.(2)由已知条件得e x-(a+1)x≥b.①(i)若a+1<0,则对任意常数b,当x<0,且x<时,可得e x-(a+1)x<b,因此①式不成立.(ii)若a+1=0,则(a+1)b=0.(iii)若a+1>0,设g(x)=e x-(a+1)x,则g'(x)=e x-(a+1).当x∈(-∞,ln(a+1))时,g'(x)<0;当x∈(ln(a+1),+∞)时,g'(x)>0.从而g(x)在(-∞,ln(a+1))上单调递减,在(ln(a+1),+∞)上单调递增.故g(x)有最小值g(ln(a+1))=a+1-(a+1)·ln(a+1).所以f(x)≥x2+ax+b等价于b≤a+1-(a+1)·ln(a+1).②因此(a+1)b≤(a+1)2-(a+1)2ln(a+1).设h(a)=(a+1)2-(a+1)2ln(a+1),则h'(a)=(a+1)[1-2ln(a+1)].所以h(a)在(-1,-1)上单调递增,在(-1,+∞)上单调递减,故h(a)在a=-1处取得最大值.从而h(a)≤,即(a+1)b≤.当a=-1,b=时,②式成立,故f(x)≥x2+ax+b.综合得,(a+1)b的最大值为.9.解析由题意得,S=na+d.(1)由c=0,得b n==a+d.又因为b1,b2,b4成等比数列,所以=b1b4,即=a,化简得d2-2ad=0.因为d≠0,所以d=2a.因此,对于所有的m∈N*,有S m=m2a.从而对于所有的k,n∈N*,有S nk=(nk)2a=n2k2a=n2S k.(2)设数列{b n}的公差是d1,则b n=b1+(n-1)d1,即=b1+(n-1)d1,n∈N*,代入S n的表达式,整理得,对于所有的n∈N*,有n3+n2+cd1n=c(d1-b1).令A=d1-d,B=b1-d1-a+d,D=c(d1-b1),则对于所有的n∈N*,有An3+Bn2+cd1n=D.(*)在(*)式中分别取n=1,2,3,4,得A+B+cd1=8A+4B+2cd1=27A+9B+3cd1=64A+16B+4cd1,从而有由②,③得A=0,cd1=-5B,代入方程①,得B=0,从而cd1=0.即d1-d=0,b1-d1-a+d=0,cd1=0.若d1=0,则由d1-d=0,得d=0,与题设矛盾,所以d1≠0.又因为cd1=0,所以c=0.B组2012—2014年高考·提升题组1.B 不是正方形的菱形四边相等,故A是真命题.若z1=1+i,z2=2-i,则z1+z2∈R,但z1与z2不是共轭复数,故B为假命题.假设x,y都不大于1,即x≤1,且y≤1,则有x+y≤2与x+y>2矛盾,故C是真命题.因++…+=2n为偶数,故D是真命题,故选B.2.答案 1 000解析由N(n,3)=n2+n,N(n,4)=n2+n,N(n,5)=+n,N(n,6)=n2+n,推测N(n,k)=n2-n,k≥3.从而N(n,24)=11n2-10n,N(10,24)=1 000.3.解析由题设得,g(x)=(x≥0).(1)由已知,得g1(x)=,g2(x)=g(g1(x))==,g3(x)=,…,可得g n(x)=.下面用数学归纳法证明.①当n=1时,g1(x)=,结论成立.②假设n=k时结论成立,即g k(x)=.那么,当n=k+1时,g k+1(x)=g(g k(x))===,即结论成立.由①②可知,结论对n∈N成立.(2)已知f(x)≥ag(x)恒成立,即ln(1+x)≥恒成立.设φ(x)=ln(1+x)-(x≥0),即φ'(x)=-=,当a≤1时,φ'(x)≥0(仅当x=0,a=1时等号成立),∴φ(x)在[0,+∞)上单调递增,又φ(0)=0,∴φ(x)≥0在[0,+∞)上恒成立,∴a≤1时,ln(1+x)≥恒成立(仅当x=0时等号成立).当a>1时,对x∈(0,a-1]有φ'(x)<0,∴φ(x)在(0,a-1]上单调递减,∴φ(a-1)<φ(0)=0. 即a>1时,存在x>0,使φ(x)<0,故知ln(1+x)≥不恒成立,综上可知,a的取值范围是(-∞,1].(3)由题设知g(1)+g(2)+…+g(n)=++…+,n-f(n)=n-ln(n+1),比较结果为g(1)+g(2)+…+g(n)>n-ln(n+1).证明如下:证法一:上述不等式等价于++…+<ln(n+1),在(2)中取a=1,可得ln(1+x)>,x>0.令x=,n∈N+,则<ln.下面用数学归纳法证明.①当n=1时,<ln 2,结论成立.②假设当n=k时结论成立,即++…+<ln(k+1).那么,当n=k+1时,++…++<ln(k+1)+<ln(k+1)+ln=ln(k+2),即结论成立.由①②可知,结论对n∈N+成立.证法二:上述不等式等价于++…+<ln(n+1),在(2)中取a=1,可得ln(1+x)>,x>0.令x=,n∈N+,则ln>.故有ln 2-ln 1>,ln 3-ln 2>,……ln(n+1)-ln n>,上述各式相加可得ln(n+1)>++…+.结论得证.证法三:如图,dx是由曲线y=,x=n及x轴所围成的曲边梯形的面积,而++…+是图中所示各矩形的面积和,∴++…+>dx=dx=n-ln(n+1),结论得证.4.解析(1)证明:因为f=a(1-2|x|), f=a(1-2|x|),有f=f,所以函数f(x)的图象关于直线x=对称.(2)当0<a<时,有f(f(x))=所以f(f(x))=x只有一个解x=0,又f(0)=0,故0不是二阶周期点.当a=时,有f(f(x))=所以f(f(x))=x有解集,又当x≤时, f(x)=x,故中的所有点都不是二阶周期点.当a>时,有f(f(x))=所以f(f(x))=x有四个解0,,,,又f(0)=0, f=, f≠, f≠,故只有,是f(x)的二阶周期点. 综上所述,所求a的取值范围为a>.(3)由(2)得x1=,x2=,因为x3为函数f(f(x))的最大值点,所以x3=或x3=.当x3=时,S(a)=,求导得:S'(a)=-,所以当a∈时,S(a)单调递增,当a∈时,S(a)单调递减;当x3=时,S(a)=,求导得:S'(a)=,因a>,从而有S'(a)=>0,所以当a∈时,S(a)单调递增.5.解析(1)当k=4时,中有3个数与I 7中的3个数重复,因此P7中元素的个数为7×7-3=46.(2)先证:当n≥15时,P n不能分成两个不相交的稀疏集的并.若不然,设A,B为不相交的稀疏集,使A∪B=P n⊇I n.不妨设1∈A,则因1+3=22,故3∉A,即3∈B.同理6∈A,10∈B,又推得15∈A,但1+15=42,这与A为稀疏集矛盾.再证P14符合要求.当k=1时,=I14可分成两个稀疏集之并,事实上,只要取A1={1,2,4,6,9,11,13},B1={3,5,7,8,10,12,14},则A1,B1为稀疏集,且A1∪B1=I14.当k=4时,集中除整数外剩下的数组成集,可分解为下面两稀疏集的并:A2=,B2= .当k=9时,集中除正整数外剩下的数组成集,,,,…,,,可分解为下面两稀疏集的并:A3=,B3= .最后,集C=m∈I14,k∈I14,且k≠1,4,9中的数的分母均为无理数,它与P14中的任何其他数之和都不是整数,因此,令A=A1∪A2∪A3∪C,B=B1∪B2∪B3.则A和B是不相交的稀疏集,且A∪B=P14.综上,所求n的最大值为14.注:对P的分拆方法不是唯一的.6.解析(1)证明:先证充分性,若c<0,由于x n+1=-+x n+c≤x n+c<x n,故{x n}是递减数列;再证必要性,若{x n}是递减数列,则由x2<x1可得c<0.(2)(i)假设{x n}是递增数列.由x1=0,得x2=c,x3=-c2+2c.由x1<x2<x3,得0<c<1.由x n<x n+1=-+x n+c知,对任意n≥1都有x n<,①注意到-x n+1=-x n-c+=(1--x n)(-x n),②由①式和②式可得1--x n>0,即x n<1-,由②式和x n≥0还可得,对任意n≥1都有-x n+1≤(1-)(-x n).③反复运用③式,得-x n≤(1-)n-1(-x1)<(1-)n-1.x n<1-和-x n<(1-)n-1两式相加,知2-1<(1-)n-1对任意n≥1成立.根据指数函数y=(1-)x的性质,得2-1≤0,c≤,故0<c≤.(ii)若0<c≤,要证数列{x n}为递增数列,即x n+1-x n=-+c>0.即证x n<对任意n≥1成立.下面用数学归纳法证明当0<c≤时,x n<对任意n≥1成立.a.当n=1时,x1=0<≤,结论成立.b.假设当n=k(k∈N*)时结论成立,即x k<.因为函数f(x)=-x2+x+c在区间内单调递增,所以x k+1=f(x k)<f()=,这就是说当n=k+1时,结论也成立.故x n<对任意n≥1成立.因此,x n+1=x n-+c>x n,即{x n}是递增数列.由(i)(ii)知,使得数列{x n}单调递增的c的范围是.7.解析(1)T1(P)=2+5=7,T2(P)=1+max{T1(P),2+4}=1+max{7,6}=8.(2)T2(P)=max{a+b+d,a+c+d},T2(P')=max{c+d+b,c+a+b}.当m=a时,T2(P')=max{c+d+b,c+a+b}=c+d+b.因为a+b+d≤c+b+d,且a+c+d≤c+b+d,所以T2(P)≤T2(P').当m=d时,T2(P')=max{c+d+b,c+a+b}=c+a+b.因为a+b+d≤c+a+b,且a+c+d≤c+a+b,所以T2(P)≤T2(P').所以无论m=a还是m=d,T2(P)≤T2(P')都成立.(3)数对序列P:(4,6),(11,11),(16,11),(11,8),(5,2)的T5(P)值最小,T1(P)=10,T2(P)=26,T3(P)=42,T4(P)=50,T5(P)=52.11。
2016版《一点一练》高考数学(文科)专题演练:第三章 三角函数、解三角形(含两年高考一年模拟)
1.(2015·福建)若sin α=-513,且α为第四象限角,则tan α的值等于( )A.125 B .-125 C.512 D .-5122.(2015·四川)下列函数中,最小正周期为π的奇函数是( )A .y =sin ⎝ ⎛⎭⎪⎫2x +π2B .y =cos ⎝⎛⎭⎪⎫2x +π2C .y =sin 2x +cos 2xD .y =sin x +cos x 3.(2014·新课标全国Ⅰ)如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数f (x ),则y =f (x )在[0,π]上的图象大致为( )4.(2014·安徽)设函数f (x )(x ∈R )满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝ ⎛⎭⎪⎫23π6=( ) A.12 B.32 C .0 D .-125.(2015·四川)已知sin α+2cos α=0,则2sin αcos α-cos 2α的值是________.6.(2015·广东)已知tan α=2.(1)求tan ⎝⎛⎭⎪⎫α+π4的值;(2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.7.(2015·浙江)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知tan ⎝ ⎛⎭⎪⎫π4+A =2.(1)求sin 2Asin 2A +cos 2 A的值;(2)若B =π4,a =3,求△ABC 的面积.1.(2015·济南一中高三期中)若点(4,a )在y =x 12的图象上,则tan a6π的值为( )A .0 B.33 C .1 D. 32.(2015·贵州调研)点P 从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为( )A.⎝ ⎛⎭⎪⎫-12,32B.⎝ ⎛⎭⎪⎫-32,-12C.⎝ ⎛⎭⎪⎫-12,-32D.⎝⎛⎭⎪⎫-32,123.(2015·乐山市调研)若点P 在-10π3角的终边上,且P 的坐标为(-1,y ),则y 等于( )A .-33 B.33 C .- 3 D. 34.(2015·山西省二诊)cos ⎝⎛⎭⎪⎫2 014π3的值为( ) A.12 B.32 C .-12 D .-325.(2015·厦门市质检)若α∈⎝ ⎛⎭⎪⎫π2,π,sin(π-α)=35,则tan α=( )A .-43 B.43 C .-34 D.346.(2015·泗水二调)设α是第二象限角,P (x ,4)为其终边上的一点,且cos α=15x ,则tan α=( )A.43B.34 C .-34 D .-437.(2015·湖北八校一联)下列函数中 ,对于任意x ∈R ,同时满足条件f (x )=f (-x )和f (x -π)=f (x )的函数是( )A .f (x )=sin xB .f (x )=sin x cos xC .f (x )=cos xD .f (x )=cos 2x -sin 2x8.(2015·南充市第一次适应性考试)已知角α的终边经过点P (2,-1),则sin α-cos αsin α+cos α=( )A .3 B.13 C .-13 D .-39.(2015·江西省质检三)已知sin(α-π)=log 814,且α∈⎝⎛⎭⎪⎫-3π2,-π2,则tan(-α)的值为( )A .-255 B.255 C .-52 D.5210.(2014·郑州预测)若sin ⎝ ⎛⎭⎪⎫π3-α=14,则cos ⎝ ⎛⎭⎪⎫π6+α=________.11.(2015·黄冈中学检测)已知sin 2α=-sin α,α∈⎝ ⎛⎭⎪⎫π2,π,则tan α的值是________.12.(2015·湛江市调研)已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6+m ,且f ⎝ ⎛⎭⎪⎫π6=6.(1)求m 的值;(2)若f (θ)=285,且θ∈⎝ ⎛⎭⎪⎫π6,5π12,求sin ⎝⎛⎭⎪⎫4θ+π3的值.13.(2015·深圳五校一联)已知函数f (x )=cos 2x2-sin x 2cos x 2-12. (1)求函数f (x )的最小正周期和值域; (2)若f (α)=3210,求sin 2α的值.1.(2015·160°sin 10°=( )A .-32 B.32 C .-12 D.122.(2015·重庆)若tan α=13,tan(α+β)=12,则tan β=( ) A.17 B.16 C.57 D 563.(2015·重庆)若tan α=2tan π5,则cos ⎝⎛⎭⎪⎫α-3π10sin ⎝⎛⎭⎪⎫α-π5=( )A .1B .2C .3D .44.(2015·浙江)函数f (x )=sin 2 x +sin x cos x +1的最小正周期是________,最小值是________.5.(2015·湖北)函数f (x )=4cos 2x2cos ⎝ ⎛⎭⎪⎫π2-x -2sin x -|ln(x +1)|的零点个数为________.6.(2014·新课标全国Ⅱ)函数f (x )=sin(x +φ)-2sin φcos x 的最大值为________.7.(2015·安徽)已知函数f (x )=(sin x +cos x )2+cos 2x . (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值.8.(2015·重庆)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x .(1)求f (x )的最小正周期和最大值;(2)讨论f (x )在⎣⎢⎡⎦⎥⎤π6,2π3上的单调性.9.(2014·四川)已知函数f (x )=sin ⎝⎛⎭⎪⎫3x +π4.(1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝ ⎛⎭⎪⎫α3=45cos ⎝⎛⎭⎪⎫α+π4cos 2α,求cos α-sin α的值.1.(2015·北京东城区高三期末)已知cos α=34,α∈⎝ ⎛⎭⎪⎫-π2,0,则sin 2α的值为( )A.38 B .-38 C.378 D .-3782.(2015·大庆市质检二)已知sin α=52,则sin 2α-cos 2α的值为( )A .-15B .-35 C.15 D.353.(2015·玉溪一中高三检测)已知sin α=23,则cos(π-2α)=( )A .-53B .-19 C.19 D.534.(2015·山东省实验中学二诊)已知α∈⎝ ⎛⎭⎪⎫π,32π,cos α=-45,则tan ⎝ ⎛⎭⎪⎫π4-α等于( )A .7 B.17 C .-17 D .-75.(2014·云南统考)若sin ⎝ ⎛⎭⎪⎫π3-α=14,则cos ⎝ ⎛⎭⎪⎫π3+2α=( )A .-78B .-14 C.14 D.786.(2015·成都市一诊)已知cos ⎝ ⎛⎭⎪⎫5π2+α=35,-π2<α<0,则sin 2α的值是( )A.2425B.1225 C .-1225 D .-24257.(2015·绵阳市一诊)已知cos ⎝ ⎛⎭⎪⎫π4-x =35,那么sin 2x =( )A.1825 B .±2425 C .-725 D.7258.(2015·山西省二诊)已知α为第三象限角,且sin α+cos α=2m ,sin 2α=m 2,则m 的值为( )A.33 B .-33 C .-13 D .-239.(2015·泰安市检测)已知sin ⎝⎛⎭⎪⎫α+3π2=13,则cos 2α=________.10.(2015·南京市调研)函数f (x )=cos 2x -sin 2x 的最小正周期为________.11.(2015·乐山市调研)已知函数f (x )=sin(ωx +φ)(ω>0,0≤φ≤π)为偶函数,其图象上相邻的两个最高点间的距离为2π.(1)求f (x )的解析式;(2)若α为锐角,且f ⎝ ⎛⎭⎪⎫α+π3=13,求sin ⎝ ⎛⎭⎪⎫3π2+α的值.1.(2015·山东)要得到函数y =sin ⎝⎭⎪4x -3的图象,只需将函数y=sin 4x 的图象( )A .向左平移π12个单位B .向右平移π12个单位 C .向左平移π3个单位 D .向右平移π3个单位 2.(2015·新课标全国Ⅰ)函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( )A.⎝ ⎛⎭⎪⎫k π-14,k π+34,k ∈Z B.⎝ ⎛⎭⎪⎫2k π-14,2k π+34,k ∈Z C.⎝ ⎛⎭⎪⎫k -14,k +34,k ∈Z D.⎝ ⎛⎭⎪⎫2k -14,2k +34,k ∈Z 3.(2014·安徽)若将函数f (x )=sin 2x +cos 2x 的图象向右平移φ个单位,所得图象关于y 轴对称,则φ的最小正值是( )A.π8B.π4C.3π8D.5π44.(2014·新课标全国Ⅰ)在函数①y =cos|2x |,②y =|cos x |,③y=cos ⎝ ⎛⎭⎪⎫2x +π6,④y =tan ⎝⎛⎭⎪⎫2x -π4中,最小正周期为π的所有函数为( )A .②④B .①③④C .①②③D .①③ 5.(2015·陕西)如图,某港口一天6时到18时的水深变化曲线近似满足函数y=3sin ⎝ ⎛⎭⎪⎫π6x +φ+k ,据此函数可知,这段时间水深(单位:m)的最大值为________.6.(2015·天津)已知函数f (x )=sin ωx +cos ωx (ω>0),x ∈R .若函数f (x )在区间(-ω,ω)内单调递增,且函数y =f (x )的图象关于直线x =ω对称,则ω的值为________.7.(2015·湖南)已知ω>0,在函数y =2sin ωx 与y =2cos ωx 的图象的交点中,距离最短的两个交点的距离为23,则ω=________.8.(2015·重庆)已知函数f (x )=12sin 2x -3cos 2x . (1)求f (x )的最小正周期和最小值;(2)将函数f (x )的图象上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g (x )的图象,当x ∈⎣⎢⎡⎦⎥⎤π2,π时,求g (x )的值域.1.( ) A.12 B .2 C .2π D .π2.(2015·泰安市检测)设a =sin 31°,b =cos 58°,c =tan 32°,则( )A .a >b >cB .c >b >aC .c >a >bD .b >c >a3.(2015·宝鸡市质检)设x 是三角形的最小内角,则函数y =sin x +cos x 的值域是( )A .(0,2]B .[-2,2]C .(1,2] D.⎝ ⎛⎦⎥⎤1,3+12 4.(2015·绵阳市一诊)在(0,2π)内,使|sin x |≥cos x 成立的x 的取值范围是( )A.⎣⎢⎡⎦⎥⎤π4,7π4 B.⎣⎢⎡⎦⎥⎤π4,5π4 C.⎣⎢⎡⎦⎥⎤0,5π4 D.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎦⎥⎤7π4,2π 5.(2015·赤峰市统考)已知函数y =sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,0<φ≤π2,且此函数的图象如图所示,由点P (ω,φ)的坐标是( )A.⎝ ⎛⎭⎪⎫2,π2B.⎝ ⎛⎭⎪⎫2,π4C.⎝ ⎛⎭⎪⎫4,π2D.⎝⎛⎭⎪⎫4,π46.(2015·黄冈市质检)已知函数y =2015cos(ωx +φ)(ω>0,0<φ<π),满足f (-x )=-f (x ),其图象与直线y =0的某两个交点的横坐标分别为x 1,x 2,|x 1-x 2|的最小值为π,则( )A .ω=2,φ=π4B .ω=2,φ=π2C .ω=1,φ=π4D .ω=1,φ=π27.(2015·四川省统考)点P ⎝ ⎛⎭⎪⎫-π6,2是函数f (x )=sin(ωx +φ)+m (ω>0,|φ|<π2)的图象的一个对称中心,且点P 到该图象的对称轴的距离的最小值为π2,则( )A .f (x )的最小正周期是πB .m 的值为1C .f (x )的初相φ为π3D .f (x )在⎣⎢⎡⎦⎥⎤43π,2π上单调递增8.(2015·怀化市监测)函数y =2sin ⎝ ⎛⎭⎪⎫π3-2x 单调增区间为________.9.(2015·烟台市检测)将函数y =f (x )图象向上平移一个单位长度,再向左平移π4个单位长度,则所得图象对应的函数y =2cos 2x ,则f (x )=________.10.(2015·武汉市调研)已知函数f (x )=cos x (sin x +cos x )-12.(1)若sin ⎝ ⎛⎭⎪⎫π4+α=22,且0<α<π,求f (α)的值; (2)当f (x )取得最小值时,求自变量x 的集合.1.(2015·a ,b ,c .若a =2,c =23,cos A =32,且b <c ,则b =( )A. 3 B .2 2 C .2 D. 32.(2014·新课标全国Ⅱ)钝角三角形ABC 的面积是12,AB =1,BC =2,则AC =( )A .5 B. 5 C .2 D .13.(2015·北京)在△ABC 中,a =3,b =6,∠A =2π3,则∠B =________.4.(2015·重庆)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sin B ,则c =________.5.(2015·湖北)如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD =________m.6.(2014·福建)在△ABC 中,A =60°,AC =4,BC =23,则△ABC 的面积等于________.7.(2015·天津)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知△ABC 的面积为315,b -c =2,cos A =-14.(1)求a 和sin C 的值;(2)求cos ⎝⎛⎭⎪⎫2A +π6的值.8.(2015·新课标全国Ⅰ)已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,sin 2B =2sin A sin C .(1)若a =b ,求cos B ;(2)设B =90°,且a =2,求△ABC 的面积.1.(2015·B ,C 所对应的边分别为a ,b ,c ,若a =9,b =6,A =60°,则sin B =( )A .-13 B.13 C.33 D .-332.(2015·北京西城区高三期末)在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =2b ,sin B =34,则( )A .A =π3B .A =π6C .sin A =33D .sin A =233.(2015·北京昌平区高三期末)在△ABC 中,∠A =60°,AC =2,BC =3,则∠B 等于( )A .120°B .90°C .60°D .45°4.(2015·黄冈中学检测)在锐角△ABC 中,角A 、B 、C 所对应的边分别为a ,b ,c ,若b =2a sin B ,则角A 等于( )A .30°B .45°C .60°D .75°5.(2015·临川一中检测)已知△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且2S =(a +b )2-c 2,则tan C 等于( )A.34B.43 C .-34 D .-436.(2015·福州市质检)若△ABC 中B =60°,点D 为BC 边中点,且AD =2,∠ADC =120°,则△ABC 的面积等于( )A .2B .3 C. 3 D .2 3 7.(2015·北京朝阳区期末)如图,塔AB 底部为点B ,若C ,D 两点相距为100 m 并且与点B 在同一水平线上,现从C ,D 两点测得塔顶A 的仰角分别为45°和30°,则塔AB 的高约为(精确到0.1 m ,3≈1.73,2≈1.41)( )A .36.5B .115.6C .120.5D .136.58.(2015·湛江市调研)在△ABC 中,边a 、b 所对的角分别为A 、B ,若cos A =-35,B =π6,b =1,则a =( )A.85B.45C.165D.589.(2015·成都市一诊)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若c =2a ,b =4,cos B =14,则边c 的长度为________.10.(2015·潍坊市质检)某中学举行升旗仪式,如图所示,在坡度为15°的看台上,从正对旗杆的一列的第一排到最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离AB =10 6 m ,则旗杆CD 的高度为________m.11.(2015·山西省二诊)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,满足(a -b )(sin A -sin B )=c sin C -a sin B .(1)求角C 的大小;(2)若c =7,a >b ,且△ABC 的面积为323,求ba 的值. 12.(2015·衡水中学二调)如图,△ABC 中,sin 12∠ABC =33,AB =2,点D 在线段AC 上,且AD =2DC ,BD =433.(1)求BC 的长; (2)求△DBC 的面积.参考答案第三章 三角函数、解三角形 考点10 三角函数的概念【两年高考真题演练】1.D [∵sin α=-513,且α为第四象限角,∴cos α=1213,∴tan α=sin αcos α=-512,故选D.]2.B [y =sin ⎝ ⎛⎭⎪⎫2x +π2=cos 2x 为偶函数,y =cos ⎝⎛⎭⎪⎫2x +π2=-sin2x 是周期为π的奇函数,故选B.]3.B [由题意知,f (x )=|cos x |·sin x ,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=cos x ·sin x =12sin 2x ;当x ∈⎝ ⎛⎦⎥⎤π2,π时,f (x )=-cos x ·sin x =-12sin2x ,故选B.]4.A [f ⎝ ⎛⎭⎪⎫23π6=f ⎝ ⎛⎭⎪⎫17π6+sin 17π6=f ⎝ ⎛⎭⎪⎫11π6+sin 17π6+sin 11π6=f ⎝ ⎛⎭⎪⎫5π6+sin 17π6+sin 11π6+sin 5π6=2sin 5π6+sin ⎝ ⎛⎭⎪⎫-π6=12.] 5.-1 [sin α+2cos α=0, ∴sin α=-2cos α,∴tan α=-2,又∵2sin αcos α-cos 2α=2sin α·cos α-cos 2x sin 2α+cos 2α=2tan α-1tan 2α+1,∴原式=2³(-2)-1(-2)2+1=-1.]6.解 (1)tan ⎝ ⎛⎭⎪⎫α+π4=tan α+tan π41-tan αtan π4=tan α+11-tan α=2+11-2=-3;(2)sin 2αsin 2α+sin αcos α-cos 2α-1 =2sin αcos αsin 2α+sin αcos α-(2cos 2α-1)-1 =2sin αcos αsin 2α+sin αcos α-2cos 2α =2tan αtan 2α+tan α-2=2³222+2-2=1. 7.解 (1)由tan ⎝ ⎛⎭⎪⎫π4+A =2,得tan A =13.所以sin 2A sin 2A +cos 2A =2tan A 2tan A +1=25.(2)由tan A =13,A ∈(0,π),得sin A =1010,cos A =31010. 又由a =3,B =π4及正弦定理a sin A =bsin B ,得b =3 5.由sin C =sin(A +B )=sin ⎝⎛⎭⎪⎫A +π4得sin C =255,设△ABC 的面积为S ,则S =12ab sin C =9. 【一年模拟试题精练】1.D [∵a =412=2,∴tan a6π=tan π3= 3.]2.A [由三角形函数定义可知Q 点的坐标(x ,y )满足x =cos 2π3=-12,y =sin 2π3=32,故选A.]3.D [-10π3=-4π+2π3,所以-10π3与2π3的终边相同, 所以tan 2π3=-3=-y ,则y = 3.]4.C [cos ⎝ ⎛⎭⎪⎫2 014π3=cos ⎝ ⎛⎭⎪⎫670π+4π3=cos 4π3=cos ⎝⎛⎭⎪⎫π+π3=-cos π3=-12.]5.C [∵sin(π-α)=sin α=35,α∈⎝ ⎛⎭⎪⎫π2,π, ∴cos α=-45,故tan α=sin αcos α=-34.]6.D [由题意知:x <0,r =|OP |=x 2+16,故cos α=xr =x x 2+16,又cos α=15x ,∴x x 2+16=15x ,解之得:x =-3,∴tan α=y x =-43.]7.D [由f (x )=f (-x ),f (x -π)=f (x )得f (x )是R 上周期为π的偶函数,f (x )=cos 2x -sin 2x =cos 2x 满足要求.]8.D [因为角α终边经过点P (2,-1),所以tan α=-12,则sin α-cos αsin α+cos α=tan α-1tan α+1=-12-1-12+1=-3,故选D.]9.B [sin (α-π)=-sin α,log 814=-23,故sin α=23,又α∈⎝⎛⎭⎪⎫-3π2,-π2,得cosα=-1-sin 2α=-53,tan(-α)=-sin αcos α=255.] 10.14 [⎝ ⎛⎭⎪⎫π6+α+⎝ ⎛⎭⎪⎫π3-α=π2,故cos ⎝ ⎛⎭⎪⎫π6+α=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π3-α=sin ⎝ ⎛⎭⎪⎫π3-α=14.]11.-3 [-sin α=sin 2α=2sin αcos α,即sin α(2cos α+1)=0,∵α∈⎝ ⎛⎭⎪⎫π2,π,∴sin α≠0,故cos α=-12,sin α=32,故tan α=sin αcos α=- 3.]12.解 (1)∵f ⎝ ⎛⎭⎪⎫π6=2sin ⎝ ⎛⎭⎪⎫π3+π6+m =2+m =6,∴m =4.(2)由f (θ)=285,得2sin ⎝⎛⎭⎪⎫2θ+π6+4=285,即sin ⎝⎛⎭⎪⎫2θ+π6=45,∵θ∈⎝ ⎛⎭⎪⎫π16,5π12,∴2θ+π6∈⎝ ⎛⎭⎪⎫π2,π.∴cos ⎝⎛⎭⎪⎫2θ+π6=-1-sin 2⎝⎛⎭⎪⎫2θ+π6=-35.sin ⎝ ⎛⎭⎪⎫4θ+π3=2sin ⎝⎛⎭⎪⎫2θ+π6cos ⎝ ⎛⎭⎪⎫2θ+π6=-2425.13.解 (1)由已知,f (x )=cos 2x2-sin x 2cos x 2-12得f (x )=12(1+cos x )-12sin x -12=12(cos x -sin x )=22cos ⎝ ⎛⎭⎪⎫x +π4,所以f (x )的最小正周期为2π,值域为⎣⎢⎡⎦⎥⎤-22,22.(2)由(1)知,f (α)=22cos ⎝ ⎛⎭⎪⎫α+π4=3210,所以cos ⎝ ⎛⎭⎪⎫α+π4=35.所以sin 2α=-cos ⎝ ⎛⎭⎪⎫π2+2α=-cos 2⎝ ⎛⎭⎪⎫α+π4=1-2cos 2⎝⎛⎭⎪⎫α+π4=1-1825=725,或由f (α)=12(cos α-sin α)=3210得:cos α-sin α=325, 两边平方得:1-sin 2α=1825,所以sin 2α=725.考点11 三角恒等变换【两年高考真题演练】1.D [sin 20°cos 10°-cos 160°sin 10°=sin 20°cos 10°+cos 20°sin 10°=sin 30°=12.]2.A [tan β=tan[(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan α=12-131+12³13=17.] 3.C [cos ⎝ ⎛⎭⎪⎫α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=sin ⎝ ⎛⎭⎪⎫π2+α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=sin ⎝⎛⎭⎪⎫α+π5sin ⎝⎛⎭⎪⎫α-π5 =sin αcos π5+cos αsin π5sin α·cos π5-cos αsin π5=tan αtan π5+1tan αtan π5-1=2+12-1=3.]4.π 3-22 [函数f (x )=sin 2x +sin x cos x +1=1-cos 2x 2+12sin 2x +1=22sin ⎝⎛⎭⎪⎫2x -π4+32.最小正周期为π.最小值为3-22.]5.2 [f (x )=4cos 2x2sin x -2sin x -|ln(x +1)|=2sin x ·⎝ ⎛⎭⎪⎫2cos 2x 2-1-|ln(x +1)|=sin 2x -|ln(x +1)|,令f (x )=0,得sin 2x =|ln(x +1)|.在同一坐标系中作出两个函数y =sin 2x 与函数y=|ln(x +1)|的大致图象如图所示.观察图象可知,两函数图象有2个交点,故函数f (x )有2个零点.] 6.1 [f (x )=sin(x +φ)-2sin φcos x =sin x cos φ+cos x sin φ-2sin φcos x =sin x cos φ-cos x sin φ=sin(x -φ).∴f (x )max =1.]7.解 (1)因为f (x )=sin 2 x +cos 2 x +2sin x cos x +cos 2x =1+sin2x +cos 2x =2sin ⎝⎛⎭⎪⎫2x +π4+1,所以函数f (x )的最小正周期为T =2π2=π.(2)由(1)的计算结果知,f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π4+1.当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x +π4∈⎣⎢⎡⎦⎥⎤π4,5π4, 由正弦函数y =sin x 在⎣⎢⎡⎦⎥⎤π4,5π4上的图象知,当2x +π4=π2,即x =π8时,f (x )取最大值2+1; 当2x +π4=5π4,即x =π2时,f (x )取最小值0.综上,f (x )在⎣⎢⎡⎦⎥⎤0,π2上的最大值为2+1,最小值为0.8.解 (1)f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x =cos x sin x -32(1+cos2x )=12sin 2x -32cos 2x -32=sin ⎝⎛⎭⎪⎫2x -π3-32,因此f (x )的最小正周期为π,最大值为2-32.(2)当x ∈⎣⎢⎡⎦⎥⎤π6,2π3时,0≤2x -π3≤π,从而当0≤2x -π3≤π2,即π6≤x ≤5π12时,f (x )单调递增, 当π2≤2x -π3≤π,即5π12≤x ≤2π3时,f (x )单调递减.综上可知,f (x )在⎣⎢⎡⎦⎥⎤π6,5π12上单调递增;在⎣⎢⎡⎦⎥⎤5π12,2π3上单调递减.9.解 (1)因为函数y =sin x 的单调递增区间为⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π,k ∈Z . 由-π2+2k π≤3x +π4≤π2+2k π,k ∈Z , 得-π4+2k π3≤x ≤π12+2k π3,k ∈Z . 所以,函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤-π4+2k π3,π12+2k π3,k ∈Z . (2)由已知,有sin ⎝ ⎛⎭⎪⎫α+π4=45cos ⎝⎛⎭⎪⎫α+π4(cos 2α-sin 2α),所以,sin αcos π4+cos αsin π4=45⎝ ⎛⎭⎪⎫cos αcos π4-sin αsin π4(cos 2 α-sin 2 α),即sin α+cos α=45(cos α-sin α)2(sin α+cos α). 当sin α+cos α=0时,由α是第二象限角,知α=3π4+2k π,k ∈Z .此时,cos α-sin α=- 2.当sin α+cos α≠0时,有(cos α-sin α)2=54.由α是第二象限角,知cos α-sin α<0,此时cos α-sin α=-52.综上所述,cos α-sin α=-2或-52.【一年模拟试题精练】1.D [∵α∈⎝ ⎛⎭⎪⎫-π2,0,cos α=34,∴sin α=-74,∴sin 2α=2sin αcos α=-378.]2.B [sin 2α-cos 2α=-cos 2α=2sin 2α-1=-35.] 3.B [cos(π-2α)=-cos 2α=-(1-2sin 2α)=-19.]4.B [∵α∈⎝ ⎛⎭⎪⎫π,3π2,cos α=-45,∴sin α=-35,故tan α=sin αcos α=34,因此tan ⎝ ⎛⎭⎪⎫π4-α=1-tan α1+tan α=17.]5.A [cos ⎝ ⎛⎭⎪⎫π3+2α=cos ⎣⎢⎡⎦⎥⎤π-2⎝ ⎛⎭⎪⎫π3-α=-cos 2⎝ ⎛⎭⎪⎫π3-α =2sin 2⎝ ⎛⎭⎪⎫π3-α-1=2³⎝ ⎛⎭⎪⎫142-1=-78.] 6.D [∵cos ⎝ ⎛⎭⎪⎫5π2+α=-sin α=35,即sin α=-35,α∈⎝ ⎛⎭⎪⎫-π2,0 ∴cos α=45,故sin 2α=2sin αcos α=-2425.]7.C [因为cos ⎝ ⎛⎭⎪⎫π4-x =35,所以cos 2⎝ ⎛⎭⎪⎫π4-x=2cos 2⎝ ⎛⎭⎪⎫π4-x -1=-725,即cos ⎝ ⎛⎭⎪⎫π2-2x =sin 2x =-725.] 8.B [把sin α+cos α=2m 两边平方可得1+sin 2α=4m 2, 又sin 2α=m 2,∴3m 2=1,解得m =±33,又α为第三象限角,∴m =-33.]9.-79 [∵sin ⎝⎛⎭⎪⎫α+3π2=13,∴cos α=-13,∴cos 2α=2cos 2α-1=-79.]10.π [∵f (x )=cos 2x -sin 2x =cos 2x , ∴f (x )的最小正周期为2π|ω|=2π2=π.]11.解 (1)∵图象上相邻的两个最高点间的距离为2π, ∴T =2π,即ω=2πT =1,又f (x )为偶函数,则φ=k π+π2(k ∈Z ). 又∵φ∈[0,π],∴φ=π2, ∴f (x )=sin ⎝ ⎛⎭⎪⎫x +π2=cos x . (2)∵α∈⎝ ⎛⎭⎪⎫0,π2,cos ⎝ ⎛⎭⎪⎫α+π3=13,∴sin ⎝⎛⎭⎪⎫α+π3=1-cos 2⎝⎛⎭⎪⎫α+π3=223,故sin ⎝ ⎛⎭⎪⎫3π2+α=-cos α=-cos ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫α+π3-π3=-cos ⎝ ⎛⎭⎪⎫α+π3cos π3-sin ⎝⎛⎭⎪⎫α+π3sin π3=-1+266.考点12三角函数的图象和性质【两年高考真题演练】1.B [∵y =sin ⎝ ⎛⎭⎪⎫4x -π3=sin ⎣⎢⎡⎦⎥⎤4⎝⎛⎭⎪⎫x -π12,∴要得到函数y =sin ⎝⎛⎭⎪⎫4x -π3的图象,只需将函数y =sin 4x 的图象向右平移π12个单位.]2.D [由图象知T 2=54-14=1,∴T =2.由选项知D 正确.]3.C [f (x )=sin 2x +cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π4,将其图象向右平移φ个单位得到g (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π8-φ=2sin ⎝ ⎛⎭⎪⎫2x +π4-2φ的图象.∵g (x )=2sin ⎝ ⎛⎭⎪⎫2x +π4-2φ的图象关于y 轴对称,即函数g (x )为偶函数,∴π4-2φ=k π+π2,k ∈Z ,即φ=-k π2-π8,k ∈Z ,因为当k =-1时,φ有最小正值3π8.]4.C [①y =cos|2x |=cos 2x ,T =π. ②由图象知,函数的周期T =π. ③T =π. ④T =π2.综上可知,最小正周期为π的所有函数为①②③.]5.8 [由题干图易得y min =k -3=2,则k =5,∴y max =k +3=8.]6.π2 [f (x )=sin ωx +cos ωx =2sin ⎝⎛⎭⎪⎫ωx +π4,由-π2+2k π≤ωx +π4≤π2+2k π,k ∈Z ,得-3π4+2k π≤ωx ≤π4+2k π,由题意f (x )在区间(-ω,ω)内单调递增,可知k =0,ω≥π2,又函数y =f (x )的图象关于直线x =ω对称,所以,sin ⎝⎛⎭⎪⎫ω2+π4=1,ω2+π4=π2,∴ω=π2.]7.π2 [由⎩⎪⎨⎪⎧y =2sin ωx ,y =2cos ωx ,知sin ωx =cos ωx , 即sin ωx -cos ωx =0,∴2sin ⎝⎛⎭⎪⎫ωx -π4=0,∴ωx =π4+k π,x =1ω⎝ ⎛⎭⎪⎫π4+k π(k ∈Z ),∴两函数交点坐标为⎝ ⎛⎭⎪⎫1ω⎝ ⎛⎭⎪⎫π4+k π,2(k =0,2,4,…)或⎝ ⎛⎭⎪⎫1ω⎝ ⎛⎭⎪⎫π4+k π,-2(k =…,-3,-1,1,3,…)∴最短距离为(22)2+π2ω2=23,∴π2ω2=4,∴ω=π2.]8.解 (1)f (x )=12sin 2x -3cos 2x =12sin 2x -32(1+cos 2x ).=12sin 2x -32cos 2x -32=sin ⎝⎛⎭⎪⎫2x -π3-32,因此f (x )的最小正周期为π,最小值为-2+32.(2)由条件可知,g (x )=sin ⎝⎛⎭⎪⎫x -π3-32.当x ∈⎣⎢⎡⎦⎥⎤π2,π时,有x -π3∈⎣⎢⎡⎦⎥⎤π6,2π3,从而sin ⎝ ⎛⎭⎪⎫x -π3的值域为⎣⎢⎡⎦⎥⎤12,1,那么sin ⎝ ⎛⎭⎪⎫x -π3-32的值域为⎣⎢⎡⎦⎥⎤1-32,2-32. 故g (x )在区间⎣⎢⎡⎦⎥⎤π2,π上的值域是⎣⎢⎡⎦⎥⎤1-32,2-32. 【一年模拟试题精练】 1.D [∵f (x )=cos 2x ,∴f (x )的最小正周期为2π|ω|=π.]2.B [∵a =sin 31°=cos 59°<cos 58°,∴a <b , ∵tan 32°=sin 32°cos 32°=cos 58°cos 32°>cos 58°,∴c >b ,故c >b >a .]3.C [∵x 为三角形最小内角,∴x ∈⎝ ⎛⎦⎥⎤0,π3,y =sin x +cos x =2sin ⎝ ⎛⎭⎪⎫x +π4,x +π4∈⎝ ⎛⎦⎥⎤π4,7π12,∴sin ⎝⎛⎭⎪⎫x +π4∈⎝ ⎛⎦⎥⎤22,1,故y ∈(1,2].]4.A [当x ∈(0,π]时,不等式为sin x ≥cos x ,解得x ∈⎣⎢⎡⎦⎥⎤π4,π;当x ∈(π,2π)时,不等式为-sin x ≥cos x 即sin x +cos x ≤0,解得x ∈⎝ ⎛⎦⎥⎤π,7π4,综上得x ∈⎣⎢⎡⎦⎥⎤π4,7π4.]5.B [由图象可得函数的周期T =2³⎝ ⎛⎭⎪⎫7π8-3π8=π,∴2πω=π,得ω=2,将⎝ ⎛⎭⎪⎫3π8,0代入y =sin(2x +φ)可得sin ⎝ ⎛⎭⎪⎫3π4+φ=0,∴3π4+φ=π+2k π(注意此点位于函数减区间上), ∴φ=π4+2k π,k ∈Z , 由0<φ≤π2可得φ=π4,∴点(ω,φ)的坐标是⎝⎛⎭⎪⎫2,π4.]6.D [∵f (-x )=-f (x ),2又∵φ∈(0,π), ∴φ=π2,故y =-2 015sin ωx ∵ω>0,∴T =2πω,又∵|x 1-x 2|min =π, ∴12T =πω=π,得ω=1.]7.D [∵点P 是函数y =f (x )的一个对称中心, ∴m =2,-π6ω+φ=k π(k ∈Z ), 又T =4³π2=2π,则ω=1, 由|φ|<π2得φ=π6, 作图可知选项D 正确.]8.⎣⎢⎡⎦⎥⎤5π12+k π,11π12+k π(k ∈Z ) [f (x )=2sin ⎝ ⎛⎭⎪⎫π3-2x =2cos ⎝⎛⎭⎪⎫2x +π6,π+2k π≤2x +π6≤2π+2k π,k ∈Z .即5π12+k π≤x≤11π12+k π,k ∈Z .]9.sin 2x [y =f (x )是由y =2cos 2x =cos 2x +1向右平移π4个单位,再向下平移一个单位得到f (x )=cos 2⎝⎛⎭⎪⎫x -π4+1-1=sin 2x .]10.解 (1)∵0<α<π,444又∵sin ⎝ ⎛⎭⎪⎫π4+α=22,∴π4+α=3π4,∴α=π2, ∴f (α)=cos α(sin α+cos α)-12 =cos π2⎝ ⎛⎭⎪⎫sin π2+cos π2-12=-12;(2)f (x )=sin x cos x +cos 2x -12=12sin 2x +1+cos 2x 2-12 =12sin 2x +12cos 2x =22sin ⎝ ⎛⎭⎪⎫2x +π4,∴当2x +π4=2k π-π2,k ∈Z ,即x =k π-3π8,k ∈Z 时,f (x )取得最小值,此时自变量x 的集合为⎩⎨⎧⎭⎬⎫x |x =k π-3π8,k ∈Z .考点13 解三角形【两年高考真题演练】1.C [由余弦定理a 2=b 2+c 2-2bc cos A ,得4=b 2+12-2³b ³23³32,即b 2-6b +8=0,∴b =4或b =2,又b <c ,∴b =2.]2.B [S △ABC =12AB ·BC sin B =12³1³2sin B =12,∴sin B =22,若B =45°,则由余弦定理得AC =1,∴△ABC 为直角三角形,不符合题意,因此B =135°,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos B =1+2-2³1³2³⎝ ⎛⎭⎪⎫-22=5,∴AC = 5.故选B.]3.π4 [由正弦定理得sin ∠B =b sin ∠A a =6sin 2π33=22,因为∠A 为钝角,所以∠B =π4.]4.4 [由3sin A =2sin B ,得3a =2b ,∴b =32a =32³2=3,在△ABC中,由余弦定理,得c 2=a 2+b 2-2ab cos C =22+32-2³2³3³⎝⎛⎭⎪⎫-14=16,解得c =4.]5.1006 [依题意,在△ABC 中,AB =600,∠BAC =30°,∠ACB =45°,由正弦定理得600sin 45°=BCsin 30°,得BC =3002,在Rt △BCD 中,CD =BC ·tan 30°=1006(m).]6.23 [在△ABC 中,根据正弦定理,得AC sin B =BC sin A ,所以4sin B=23sin 60°,解得sin B =1,因为0°<B <120°,所以B =90°,所以C =30°,所以△ABC 的面积S △ABC =12·AC ·BC ·sin C =2 3.]7.解 (1)在△ABC 中,由cos A =-14,可得sin A =154. 由S △ABC =12bc sin A =315,得bc =24,又由b -c =2,解得b =6,c =4. 由a 2=b 2+c 2-2bc cos A ,可得a =8. 由a sin A =c sin C ,得sin C =158.(2)cos ⎝⎛⎭⎪⎫2A +π6=cos 2A ²cos π6-sin 2A ²sin π6=32(2cos 2A -1)-12³2sin A ²cos A =15-7316. 8.解 (1)由题设及正弦定理可得b 2=2ac . 又a =b ,可得b =2c ,a =2c . 由余弦定理可得cosB =a 2+c 2-b 22ac =14. (2)由(1)知b 2=2ac .因为B =90°,由勾股定理得a 2+c 2=b 2. 故a 2+c 2=2ac ,得c =a = 2. 所以△ABC 的面积为1. 【一年模拟试题精练】1.C [由正弦定理:a sin A =b sin B 得:sin B =33.] 2.A [由正弦定理:a sin A =b sin B 得sin A =32,∵△ABC 为锐角三角形, ∴A =π3.]3.D [由正弦定理:BC sin A =AC sin B ,得sin B =22,∵AC <BC , ∴B <A ,∴B =45°.]4.A [由正弦定理:a sin A =b sin B =2a sin B sin B ,得:sin A =12, ∵△ABC 为锐角三角形,∴A =30°.]5.D [2S =(a +b )2-c 2=a 2+2ab +b 2-c 2=2³12ab sin C 即:c 2=a 2+b 2+2ab -abc sin C ,由余弦定理c 2=a 2+b 2-2ab cos C 得:sin C -2cos C = 2,又∵sin 2C +cos 2C =1,得:cos C =-35或 cos C =-1(舍),∴sin C =45,故tan C =sin C cos C =-43.]6.D [∵∠B =60°,∠ADC =120°,∴∠ADB =60°,故△ABD 为等边三角形,故BD =DC =AB =2,因此S △ABC =12AB ·BC ·sin B =12³2³4³32=2 3.]7.D [∵∠ACB =45°,∴AB =BC ,tan ∠ADB =tan 30°=ABBD =AB AB +100,故AB =1003-1≈136.5.]8.A [由题意得,0<A <π,sin A >0. 故sin A =1-cos 2A =45,由正弦定理知,a sin A =b sin B ⇒a =sin A ·b sin B =45³1sin π6=85.]9.4 [由余弦定理:b 2=a 2+c 2-2ac cos B 得:a =2,故c =4.] 10.30 [∵∠DBA =45°,∠DAC =60°, ∴∠DAB =105°,故∠BDA =30°,由正弦定理:AD sin ∠DBA =ABsin ∠BDA 得AD =203,CD =AD ·sin 60°=30.]11.解 (1)△ABC 中,由(a -b )(sin A -sin B )=c sin C -a sin B , 利用正弦定理可得(a -b )(a -b )=c 2-ab , 即a 2+b 2-c 2=ab .再利用余弦定理可得,cos C =a 2+b 2-c 22ab =12,∴C =π3. (2)由(1)可得即a 2+b 2-ab =7①, 又△ABC 的面积为12ab ²sin C =323, ∴ab =6②. ①②可得b a =23.12.解 (1)因为sin 12∠ABC =33, 所以cos ∠ABC =1-2³13=13. △ABC 中,设BC =a ,AC =3b , 则由余弦定理可得9b 2=a 2+4-4a3① 在△ABD 和△DBC 中,由余弦定理可得cos ∠ADB =4b 2+163-41633b,cos ∠BDC =b 2+163-a 2833b.因为cos ∠ADB =-cos ∠BDC , 所以有4b 2+163-41633b =-b 2+163-a 2833b,所以3b 2-a 2=-6,②由①②可得a =3,b =1,即BC =3.(2)由(1)得△ABC 的面积为12³2³3³223=22,所以△DBC 的面积为223.。
高考数学压轴专题新备战高考《推理与证明》单元汇编及答案
【高中数学】数学《推理与证明》复习知识点一、选择题1.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为A .甲、乙、丙B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙【答案】A 【解析】 【分析】利用逐一验证的方法进行求解. 【详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A . 【点睛】本题将数学知识与时政结合,主要考查推理判断能力.题目有一定难度,注重了基础知识、逻辑推理能力的考查.2.用“算筹”表示数是我国古代计数方法之一,计数形式有纵式和横式两种,如图1所示.金元时期的数学家李冶在《测圆海镜》中记载:用“天元术”列方程,就是用算筹来表示方程中各项的系数.所谓“天元术”,即是一种用数学符号列方程的方法,“立天元一为某某”,意即“设x 为某某”.如图2所示的天元式表示方程10110n n n n a x a x a x a --++⋅⋅⋅++=,其中0a ,1a ,…,1n a -,n a 表示方程各项的系数,均为筹算数码,在常数项旁边记一“太”字或在一次项旁边记一“元”字,“太”或“元”向上每层减少一次幂,向下每层增加一次幂.试根据上述数学史料,判断图3天元式表示的方程是( ) A .228617430x x ++= B .4227841630x x x +++= C .2174328610x x ++= D .43163842710x x x +++=【答案】C 【解析】 【分析】根据“算筹”法表示数可得题图3中从上至下三个数字分别为1,286,1743,结合“天元术”列方程的特征即可得结果. 【详解】由题意可得,题图3中从上至下三个数字分别为1,286,1743, 由“元”向上每层减少一次幂,向下每层增加一次幂.可得天元式表示的方程为2174328610x x ++=.故选:C. 【点睛】本题主要是以数学文化为背景,考查数学阅读及理解能力,充分理解“算筹”法表示数和“天元术”列方程的概念是解题的关键,属于中档题.3.已知函数()f x 的导函数为()f x ',记()()1f x f x '=,()()21f x f x '=,…,()()1n n f x f x +'=(n ∈N *). 若()sin f x x x =,则()()20192021f x f x += ( )A .2cos x -B .2sin x -C .2cos xD .2sin x【答案】D 【解析】 【分析】通过计算()()()()()12345,,,,f x f x f x f x f x ,可得()()()()4342414,,,k k k k f x f x f x f x ---,最后计算可得结果.【详解】由题可知:()sin f x x x =所以()()12sin cos ,2cos sin f x x x x f x x x x =+=-()()343sin cos ,4cos sin f x x x x f x x x x =--=-+ ()55sin cos ,f x x x x =+⋅⋅⋅所以猜想可知:()()4343sin cos k f x k x x x -=-+()()4242cos sin k f x k x x x -=--()()4141sin cos k f x k x x x -=--- ()44cos sin k f x k x x x =-+由201945051,202145063=⨯-=⨯- 所以()20192019sin cos f x x x x =--()20212021sin cos f x x x x =+所以()()201920212sin f x f x x += 故选:D 【点睛】本题考查导数的计算以及不完全归纳法的应用,选择题、填空题可以使用取特殊值,归纳猜想等方法的使用,属中档题.4.甲、乙、丙三人中,一人是工人,一人是农民,一人是知识分子.已知:丙的年龄比知识分子大;甲的年龄和农民不同;农民的年龄比乙小.根据以上情况,下列判断正确的是( )A .甲是工人,乙是知识分子,丙是农民B .甲是知识分子,乙是农民,丙是工人C .甲是知识分子,乙是工人,丙是农民D .甲是农民,乙是知识分子,丙是工人 【答案】C 【解析】“甲的年龄和农民不同”和“农民的年龄比乙小”可以推得丙是农民,所以丙的年龄比乙小;再由“丙的年龄比知识分子大”,可知甲是知识分子,故乙是工人,故选C.5.《九章算术》“少广”算法中有这样一个数的序列:列出“全步”(整数部分)及诸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去约其分子,将所得能通分之分数进行通分约简,又用最下面的分母去遍乘诸(未通者)分子和以通之数,逐个照此同样方法,直至全部为整数,例如:2n =及3n =时,如图:记n S为每个序列中最后一列数之和,则6S为()A.147 B.294 C.882 D.1764【答案】A【解析】【分析】根据题目所给的步骤进行计算,由此求得6S的值.【详解】依题意列表如下:上列乘6上列乘5上列乘2163060123153013210201 432152151 565612161510所以6603020151210147S=+++++=.故选:A【点睛】本小题主要考查合情推理,考查中国古代数学文化,属于基础题.6.分子间作用力只存在于分子与分子之间或惰性气体原子间的作用力,在一定条件下两个原子接近,则彼此因静电作用产生极化,从而导致有相互作用力,称范德瓦尔斯相互作用.今有两个惰性气体原子,原子核正电荷的电荷量为q ,这两个相距R 的惰性气体原子组成体系的能量中有静电相互作用能U .其计算式子为212121111U kcq R R x x R x R x ⎛⎫=+-- ⎪+-+-⎝⎭,其中,kc 为静电常量,1x 、2x 分别表示两个原子的负电中心相对各自原子核的位移.已知12121x x R x x R R -⎛⎫+-=+⎪⎝⎭,111x R x R R ⎛⎫+=+ ⎪⎝⎭,221x R x R R ⎛⎫-=- ⎪⎝⎭,且()1211x x x -+≈-+,则U 的近似值为( )A .2123kcq x x R B .2123kcq x x R - C .21232kcq x x R D .21232kcq x x R- 【答案】D 【解析】 【分析】将12121x x R x x R R -⎛⎫+-=+⎪⎝⎭,111x R x R R ⎛⎫+=+ ⎪⎝⎭,221x R x R R ⎛⎫-=- ⎪⎝⎭代入U ,结合()1211x x x -+≈-+化简计算可得出U 的近似值.【详解】221212121211111111111U kcq kcq x x x x R R x x R x R x R R R R R R R ⎡⎤⎢⎥⎛⎫⎢⎥=+--=+-- ⎪-+-+-⎛⎫⎛⎫⎛⎫⎢⎥⎝⎭++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2222121211221111x x x x x x x x kcq RR R R R R R ⎡⎤--⎛⎫⎛⎫⎛⎫=+-+-+----⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦21232kcq x x R =-. 故选:D. 【点睛】本题考查U 的近似计算,充分理解题中的计算方法是解答的关键,考查推理能力与计算能力,属于中等题.7.观察下列各式:2749=,37343=,472401=,…,则10097的末两位数字为( ) A .49 B .43C .07D .01【答案】C 【解析】 【分析】先观察前5个式子的末两位数的特点,寻找规律,结合周期性进行判断即可. 【详解】观察2749=,37343=,472401=,572401716807=⨯=,67168077117649=⨯=,…,可知末两位每4个式子一个循环,2749=到10097一共有1008个式子,且10084252÷=,则10097的末两位数字与57的末两位数字相同,为07. 故选:C. 【点睛】本题主要考查归纳推理的应用,根据条件寻找周期性是解决本题的关键.8.某单位实行职工值夜班制度,己知A ,B ,C ,D ,E 5名职工每星期一到星期五都要值一次夜班,且没有两人同时值夜班,星期六和星期日不值夜班,若A 昨天值夜班,从今天起B ,C 至少连续4天不值夜班,D 星期四值夜班,则今天是星期几 A .二 B .三C .四D .五【答案】C 【解析】分析:A 昨天值夜班,D 周四值夜班,得到今天不是周一也不是周五,假设今天是周二,则周二与周三B ,C 至少有一人值夜班,与已知从今天起B ,C 至少连续4天不值夜班矛盾;若今天是周三,则周五与下周一B ,C 至少有一人值夜班,与已知从今天起B ,C 至少连续4天不值夜班矛盾;由此得到今天是周四.详解:∵A 昨天值夜班,D 周四值夜班,∴今天不是周一也不是周五,若今天是周二,则周一A 值夜班,周四D 值夜班,则周二与周三B ,C 至少有一人值夜班,与已知从今天起B ,C 至少连续4天不值夜班矛盾;若今天是周三,则A 周二值夜班,D 周四值夜班,则周五与下周一B ,C 至少有一人值夜班,与已知从今天起B ,C 至少连续4天不值夜班矛盾;若今天是周四,则周三A 值夜班,周四D 值夜班,周五E 值夜班,符合题意. 故今天是周四. 故选:C .点睛:本题考查简单的推理,考查合情推理等基础知识,考查推理论证能力,属于中档题.9.平面内的一条直线将平面分成2部分,两条相交直线将平面分成4部分,三条两两相交且不共点的直线将平面分成7部分,…则平面内的六条两两相交且任意三条不共点的直线将平面分成的部分数为( ) A .20 B .21C .22D .23【答案】C 【解析】 【分析】一条直线可以把平面分成两部分,两条直线最多可以把平面分成4部分,三条直线最多可以把平面分成7部分,四条直线最多可以把平面分成11部分,可以发现,两条直线时多了2部分,三条直线比原来多了3部分,四条直线时比原来多了4部分,即可求得答案. 【详解】设画n 条直线,最多可将面分成()f n 个部分,1,(1)112n f ==+=Q ; 2,(2)(1)24n f f ==+=; 3,(3)(2)37n f f ==+=;,4,(4)(3)411n f f ==+=; ,5,(5)(4)516n f f ==+=; 6,(6)(5)622n f f ==+=.故选:C. 【点睛】本题解题关键是掌握根据题意能写出函数递推关系,在求解中寻找规律,考查了分析能力和推理能力,属于中档题.10.设x ,y ,z >0,则三个数,,y y z z x xx z x y z y+++ ( )A .都大于2B .至少有一个大于2C .至少有一个不小于2D .至少有一个不大于2【答案】C 【解析】 【分析】 【详解】假设这三个数都小于2,则三个数之和小于6,又y x +y z +z x +z y +xz +x y =(y x+x y )+(yz +z y )+(z x +x z)≥2+2+2=6,当且仅当x =y =z 时取等号,与假设矛盾,故这三个数至少有一个不小于2.11.明代朱载堉创造了音乐学上极为重要的“等程律”.在创造律制的过程中,他不仅给出了求解三项等比数列的等比中项的方法,还给出了求解四项等比数列的中间两项的方法.比如,若已知黄钟、大吕、太簇、夹钟四个音律值成等比数列,则有大吕大吕太簇数列{}n a 中,k a =( )A .n -B .n -C .D .【答案】C 【解析】 【分析】根据题意可得三项等比数列的中项可由首项和末项表示,四项等比数列的第2、第3项均可由首项和末项表示,从而类比出正项等比数列{}n a 中的k a 可由首项1a 和末项n a 表示. 【详解】因为三项等比数列的中项可由首项和末项表示, 四项等比数列的第2、第3项均可由首项和末项表示, 所以正项等比数列{}n a 中的k a 可由首项1a 和末项n a 表示,因为11n n a a q -=,所以=q所以11=k k a a -⎛ ⎝1111=k n n a a a --⎛⎫ ⎪⎝⎭1111=n k k n n na a ----⋅=故选:C. 【点睛】本题以数学文化为背景,考查类比推理能力和逻辑推理能力,求解时要先读懂题目的文化背景,再利用等比数列的通项公式进行等价变形求解.12.新课程改革后,某校的甲、乙、丙三位同学都选了A 、B 、C 三门课中的两门,且任何两位同学选修的课程有且仅有一门相同.其中甲、乙共同选修的课不是B ,乙、丙共同选修的课不是A ,B 和C 两门课程有一个丙没有选,则甲选修的两门课程是( ) A .A 和B B .B 和CC .A 和CD .无法判断【答案】C 【解析】 【分析】根据题意可知丙一定选了A 课程,结合题意进行推理,可得出甲所选修的两门课程,由此可得出结论. 【详解】B 和C 两门课程有一个丙没有选,所以丙肯定选了A ,乙、丙共同选修的课不是A ,则乙选择了B 、C 两门课程,由于甲、乙共同选修的课不是B ,则甲、乙共同选修的是C ,但甲不能选择B 课程. 因此,甲选修是A 、C 两门课程. 故选:C. 【点睛】本题考查简单的合情推理问题,考查推理能力,属于中等题.13.三角形面积为()12S a b c r =++,a ,b ,c 为三角形三边长,r 为三角形内切圆半径,利用类比推理,可以得出四面体的体积为( ) A .13V abc = B .13V Sh = C .()13V ab bc ac h =++⋅(h 为四面体的高) D .()123413V s s s s r =+++⋅(其中1s ,2s ,3s ,4s 分别为四面体四个面的面积,r 为四面体内切球的半径,设四面体的内切球的球心为O ,则球心O 到四个面的距离都是r ) 【答案】D 【解析】 【分析】根据平面与空间的类比推理,由点类比直线,由直线类比平面,由内切圆类比内切球,由平面图形的面积类比立体图形的体积,结合求三角形的面积的方法类比四面体的体积计算方法,即可求解. 【详解】设四面体的内切球的球心为O ,则球心O 到四个面的距离都是r , 根据三角形的面积的求解方法:利用分割法,将O 与四个顶点连起来,可得四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥的体积之和, 即()123413V s s s s r =+++⋅,故选D . 【点睛】本题主要考查了类比推理的应用,其中解答中类比推理是将已知的一类数学对象的性质类比到另一类数学对象上去,通常一般步骤:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质取推测另一类事物的性质,得出一个明确的命题,本题属于基础题.14.下面几种推理中是演绎推理的为( )A .高二年级有12个班,1班51人,2班53人,3班52人,由此推测各班都超过50人B .猜想数列111,,122334⋯⋯⨯⨯⨯的通项公式为()1(1)n a n N n n +=∈+ C .半径为r 的圆的面积2S r π=,则单位圆的面积S π= D .由平面三角形的性质推测空间四面体的性质 【答案】C 【解析】 【分析】根据归纳推理,类比推理和演绎推理的定义分别进行判断即可.【详解】对于A ,高二年级有12个班,1班51人,2班53人,3班52人,由此推测各班都超过50人,是归纳推理;对于B ,归纳出{}n a 的通项公式,是归纳推理;对于C ,半径为r 的圆的面积2πS r =,则单位圆的面积πS =,演绎推理; 对于D ,由平面三角形的性质推测空间四面体的性质,为类比推理.故选C . 【点睛】该题考查的是有关演绎推理的判断,涉及到的知识点有判断一个推理是合情推理还是演绎推理,关键是要明确合情推理和演绎推理的定义,属于简单题目.15.观察下列各式:5678953125,515625,578125,5390625,51953125,=====L ,则20205的末四位数字为( ) A .3125 B .5625 C .0625 D .8125【答案】C 【解析】 【分析】根据5678953125,515625,578125,5390625,51953125,=====L ,分析次数与末四位数字的关系,归纳其变化规律求解. 【详解】因为5678953125,515625,578125,5390625,51953125,=====L , 观察可知415k +的末四位数字3125,425k +的末四位数字5625, 435k +的末四位数字8125, 445k +的末四位数字0625,又202045044=⨯+,则20205的末四位数字为0625. 故选:C 【点睛】本题主要考查数列中的归纳推理,还考查了理解辨析推理的能力,属于中档题.16.观察下列一组数据11a = 235a =+ 37911a =++ 413151719a =+++…则20a 从左到右第一个数是( )A .379B .383C .381D .377【答案】C【解析】【分析】 先计算前19行数字的个数,进而可得20a 从左到右第一个数.【详解】由题意可知,n a 可表示为n 个连续的奇数相加,从1a 到19a 共有()119191902+⨯=个奇数,所以20a 从左到右第一个数是第191个奇数,第n 个奇数为21n -,所以第191个奇数为21911381⨯-=.故选:C.【点睛】本小题主要考查归纳推理、等差数列求和公式等基础知识,考查运算求解能力,属于中档题.17.在正整数数列中,由1开始依次按如下规则,将某些数取出.先取1;再取1后面两个偶数2,4;再取4后面最邻近的3个连续奇数5,7,9;再取9后面的最邻近的4个连续偶数10,12,14,16;再取此后最邻近的5个连续奇数17,19,21,23,25.按此规则一直取下去,得到一个新数列1,2,4,5,7,9,10,12,14,16,17,…,则在这个新数列中,由1开始的第2 019个数是( )A .3 971B .3 972C .3 973D .3 974 【答案】D【解析】【分析】先对数据进行处理能力再归纳推理出第n 组有n 个数且最后一个数为n 2,则前n 组共1+2+3+…+n ()12n n +=个数,运算即可得解. 【详解】解:将新数列1,2,4,5,7,9,10,12,14,16,17,…,分组为(1),(2,4),(5,7,9,),(10,12,14,16),(17,19,21,23,25)…则第n 组有n 个数且最后一个数为n 2,则前n 组共1+2+3+…+n ()12n n +=个数,设第2019个数在第n 组中,则()()120192120192n nn n⎧+≥⎪⎪⎨-⎪⎪⎩<,解得n=64,即第2019个数在第64组中,则第63组最后一个数为632=3969,前63组共1+2+3+…+63=2016个数,接着往后找第三个偶数则由1开始的第2019个数是3974,故选:D.【点睛】本题考查了对数据的处理能力及归纳推理能力,考查等差数列前n项和公式,属中档题.18.一场考试之后,甲、乙、丙三位同学被问及语文、数学、英语三个科目是否达到优秀时,甲说:有一个科目我们三个人都达到了优秀;乙说:我的英语没有达到优秀;丙说:乙达到优秀的科目比我多.则可以完全确定的是()A.甲同学三个科目都达到优秀B.乙同学只有一个科目达到优秀C.丙同学只有一个科目达到优秀D.三位同学都达到优秀的科目是数学【答案】C【解析】【分析】根据题意推断出乙有两科达到优秀,丙有一科达到优秀,甲至少有一科优秀,从而得出答案.【详解】甲说有一个科目每个人都达到优秀,说明甲乙丙三个人每个人优秀的科目至少是一科,乙说英语没有达到优秀,说明他至多有两科达到优秀,而丙优秀的科目不如乙多,说明只能是乙有两科达到优秀,丙有一科达到优秀,故B错误,C正确;至于甲有几个科目优秀,以及三人都优秀的科目到底是语文还是数学,都无法确定故选:C【点睛】本题主要考查了学生的推理能力,属于中档题.19.下列表述正确的是()①归纳推理是由特殊到一般的推理;②演绎推理是由一般到特殊的推理;③类比推理是由特殊到一般的推理;④分析法是一种间接证明法;A.②④ B.①③ C.①④ D.①②【答案】D【解析】分析:根据题意,结合合情推理、演绎推理的定义,依次分析4个命题,综合即可得答案.详解:根据题意,依次分析4个命题:对于①,归纳推理是由特殊到一般的推理,符合归纳推理的定义,所以正确; 对于②,演绎推理是由一般到特殊的推理,符合演绎推理的定义,所以正确; 对于③,类比推理是由特殊到特殊的推理,所以错误;对于④,分析法、综合法是常见的直接证明法,所以错误;则正确的是①②,故选D.点睛:该题考查的是有关推理的问题,对归纳推理、演绎推理和类比推理的定义要明确,以及清楚哪些方法是直接证明方法,哪些方法是间接证明方法,就可以得结果.20.已知2a b c ++=,则ab bc ca ++的值( )A .大于2B .小于2C .不小于2D .不大于2 【答案】B【解析】【分析】把已知变形得到a b c +=-,a c b +=-,b c a +=-,把2()ab bc ac ++拆开后提取公因式代入a b c +=-,a c b +=-,b c a +=-,则可判断2()ab bc ac ++的符号,从而得到ab bc ac ++的值的符号.【详解】解:2a b c ++=Q ,2a b c ∴+=-,2a c b +=-,2b c a +=-.则2()ab bc ac ++222ab ac bc =++ab ac bc ac ab bc =+++++()()()a b c c b a b a c =+++++(2)(2)(2)b b a a c c =-+-+-222222b b a a c c =-+-+-()()2222a b c a b c =-+++++()2224a b c =-+++,2a b c ++=Q ,()2220a b c ∴++>,即()2220a b c -++<,2()4ab bc ac ++<Q ,()2ab bc ac ∴++<即ab bc ac ++的值小于2.故选:B.【点睛】本题考查不等式的应用,考查了学生的灵活处理问题和解决问题的能力.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.y ∈Z },B ={(x ,y )||x |≤2,|y |≤2,x ,y ∈Z },定义集合A ⊕B ={(x 1+x 2,y 1+y 2)|(x 1,y 1)∈A ,(x 2,y 2)∈B },则A ⊕B 中元素的个数为( )A .77B .49C .45D .302.(2015·广东)若集合E ={(p ,q ,r ,s )|0≤p <s ≤4,0≤q <s ≤4,0≤r <s ≤4且p ,q ,r ,s ∈N },F ={(t ,u ,v ,w )|0≤t <u ≤4,0≤v <w ≤4且t ,u ,v ,w ∈N },用card(X )表示集合X 中的元素个数,则card(E )+card(F )=( )A .200B .150C .100D .503.(2015·陕西)观察下列等式1-12=121-12+13-14=13+14 1-12+13-14+15-16=14+15+16……据此规律,第n 个等式可为________.4.(2014·陕西)已知f (x )=x 1+x,x ≥0,若f 1(x )=f (x ),f n +1(x )=f (f n (x )),n ∈N +则f 2 014(x )的表达式为______.5.(2014·北京)顾客请一位工艺师把A ,B 两件玉石原料各制成一件工艺品.工艺师带一位徒弟完成这项任务.每件原料先由徒弟完成粗加工,再由工艺师进行精加工完成制作,两件工艺品都完成后交付顾客.两件原料每道工序所需时间(单位:工作日)如下:6.(2015·江苏)设a 1,a 2,a 3,a 4是各项为正数且公差为d (d ≠0)的等差数列.(1)证明:2a 1,2a 2,2a 3,2a 4依次构成等比数列;(2)是否存在a 1,d ,使得a 1,a 22,a 33,a 44依次构成等比数列?并说明理由;(3)是否存在a 1,d 及正整数n ,k ,使得a n 1,a n +k 2,a n +2k 3,a n +3k 4依次构成等比数列?并说明理由.1.(2015·吉林四校调研)设a 、b 、c 都是正数,则a +1b ,b +1c ,c +1a 三个数( )A .都大于2B .至少有一个大于2C .至少有一个不大于2D .至少有一个不小于22.(2015·河北保定模拟)定义A B ,B C ,C D ,D B 分别对应下列图形( )那么下列图形中,可以表示A D ,A C 的分别是( )A .(1)(2)B .(2)(3)C .(2)(4)D .(1)(4)3.(2015·宜昌调研)给出下列两种说法:①已知p 3+q 3=2,求证p +q ≤2,用反证法证明时,可假设p +q ≥2;②已知a ,b ∈R ,|a |+|b |<1,求证方程x 2+ax +b =0的两根的绝对值都小于1,用反证法证明时,可假设方程有一根x 1的绝对值大于或等于1,即假设|x 1|≥1.以下结论正确的是( )A .①与②的假设都错误B .①与②的假设都正确C .①的假设正确;②的假设错误D .①的假设错误;②的假设正确4.(2015·淮南模拟)从1开始的自然数按如图所示的规则排列,现有一个三角形框架在图中上下或左右移动,使每次恰有九个数在此三角形内,则这九个数的和可以为( )A .2 011B .2 012C .2 013D .2 0145.(2015·泉州模拟)设△ABC 的三边长分别为a ,b ,c ,△ABC的面积为S ,内切圆半径为r ,则r =2S a +b +c;类比这个结论可知,四面体ABCD 的四个面的面积分别为S 1,S 2,S 3,S 4,四面体ABCD 的体积为V ,内切球半径为R ,则R =________.6.(2015·黄山模拟)在矩形ABCD 中,对角线AC 与相邻两边所成的角为α,β,则有cos 2α+cos 2β=1.类比到空间中的一个正确命题是:在长方体ABCD -A 1B 1C 1D 1中,对角线AC 1与相邻三个面所成的角为α,β,γ,则________.7.(2015·莱芜模拟)如果函数f (x )在区间D 上是凸函数,那么对于区间D 内的任意x 1,x 2,…,x n ,都有f (x 1)+f (x 2)+…+f (x n )n≤f ⎝ ⎛⎭⎪⎫x 1+x 2+…+x n n .若y =sin x 在区间(0,π)上是凸函数,那么在△ABC 中,sin A +sin B +sin C 的最大值是________.8.(2015·北京模拟)若f (a +b )=f (a )f (b )(a ,b ∈N *),且f (1)=2,则f (2)f (1)+f (4)f (3)+…+f (2 014)f (2 013)=________.9.(2015·昆明一中检测)甲、乙、丙三名同学中只有一人考了满分,当他们被问到谁考了满分时,甲说:丙没有考满分;乙说:是我考的;丙说:甲说真话.事实证明:在这三名同学中,只有一人说的是假话,那么得满分的同学是________.10.(2015·湖北八校一联)观察下列等式:12=1,12-22=-3,12-22+32=6,12-22+32-42=-10,……,由以上等式推测出一个一般性的结论:对于n∈N*,12-22+32-42+…+(-1)n+1n2=________.11.(2015·宝鸡市质检)观察等式:①13×13+12×12+16×1=12,②13×23+12×22+16×2=12+22,③13×33+12×32+16×3=12+22+32,…,以上等式都是成立的,照此写下去,第2 015个成立的等式是________.12.(2015·武汉市调研)平面几何中有如下结论:如图1,设O是等腰Rt△ABC底边BC的中点,AB=1,过点O的动直线与两腰或其延长线的交点分别为Q,R,则有1AQ+1AR=2.类比此结论,将其拓展到空间有:如图2,设O是正三棱锥A-BCD底面BCD的中心,AB,AC,AD两两垂直,AB=1,过点O的动平面与三棱锥的三条侧棱或其延长线的交点分别为Q,R,P,则有________.1.(2015·输入x的值为1,则输出y的值为()A.2 B.7 C.8 D.128第1题图第2题图2.(2015·天津)阅读上边的程序框图,运行相应的程序,则输出i的值为()A.2 B.3 C.4 D.53.(2015·北京)执行如图所示的程序框图,输出的k值为() A.3 B.4 C.5 D.64.(2015·四川)执行如图所示的程序框图,输出S的值为()A.-32 B.32C.-12 D.12第3题图 第4题图 第5题图5.(2015·重庆)执行如图所示的程序框图,则输出s 的值为( ) A.34 B.56 C.1112 D.25246.(2014·新课标Ⅰ)执行下面的程序框图,若输入的a ,b ,k 分别为1,2,3,则输出的M =( )A.203B.165C.72D.158第6题图 第7题图 7.(2014·新课标Ⅱ)执行上面的程序框图,如果输入的x ,t 均为2,则输出的S =( )A .4B .5C .6D .78.(2015·新课标全国Ⅰ)已知复数z 满足(z -1)i =1+i ,则z =( )A .-2-iB .-2+iC .2-iD .2+i9.(2015·新课标全国Ⅱ)若a 为实数,且2+a i 1+i=3+i ,则a =( ) A .-4 B .-3 C .3 D .410.(2015·广东)已知i 是虚数单位,则复数(1+i)2=( )A .2iB .-2iC .2D .-211.(2015·山东)若复数z 满足z 1-i=i ,其中i 为虚数单位,则z =( )A .1-iB .1+iC .-1-iD .-1+i12.(2015·安徽)设i 是虚数单位,则复数(1-i)(1+2i)=( )A .3+3iB .-1+3iC .3+iD .-1+i13.(2014·重庆)实部为-2,虚部为1的复数所对应的点位于复平面的( )A .第一象限B .第二象限C .第三象限D .第四象限14.(2014·福建)复数z =(3-2i)i 的共轭复数z 等于( )A .-2-3iB .-2+3iC .2-3iD .2+3i1.(2015·x 的值为( )A .4B .5C .6D .7第1题图 第2题图 2.(2015·云南名校统考)执行如图所示的程序框图,输出的S 值为-4时,则输入的S 0的值为( ) A .7 B .8 C .9 D .103.(2015·湖北八校一联)如图给出的是计算12+14+16+…+12 014的值的程序框图,其中判断框内应填入的是( )A .i ≤2 013?B .i ≤2 015?C .i ≤2 017?D .i ≤2 019?第3题图 第4题图 4.(2015·宝鸡市质检)某程序框图如图所示,则该程序运行后输出的S 的值等于( )A .1 B.14 C.12 D.185.(2015·四川省统考)某程序框图如图所示,若输出的S =57,则判断框内应填( )A .k >4?B .k >5?C .k >6?D .k >7?第5题图 第6题图 6.(2015·晋冀豫三省调研)执行如图所示的程序框图,输出S 的值为( )A .3B .-6C .10D .127.(2015·贵阳市模拟)复数z =3-2i ,i 是虚数单位,则z 的虚部是( )A .2iB .-2iC .2D .-28.(2015·郑州一预)设i 是虚数单位,若复数m +103+i(m ∈R )是纯虚数,则m 的值为( )A .-3B .-1C .1D .39.(2015·邯郸市质检)已知i 是虚数单位,则复数z =4+3i 3-4i的虚部是( )A .0B .iC .-iD .110.(2015·汕头市监测)复数21-i的实部与虚部之和为( ) A .-1 B .2 C .1 D .011.(2015·唐山一期检测)若复数z =a +3i 1-2i(a ∈R ,i 是虚数单位)是纯虚数,则z 的值为( )A .2B .3C .3iD .2i12.(2015·唐山摸底)复数z =1-3i 1+2i,则( ) A .|z |=2 B .z 的实部为1C .z 的虚部为-iD .z 的共轭复数为-1+i13.(2015·福州市质检)在复平面内,两共轭复数所对应的点( )A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .关于直线y =x参考答案第十章推理与证明、算法与复数考点33推理与证明【两年高考真题演练】1.C[如图,集合A表示如图所示的所有圆点“”,集合B表示如图所示的所有圆点“”+所有圆点“”,集合A⊕B显然是集合{(x,y)||x|≤3,|y|≤3,x,y∈Z}中除去四个点{(-3,-3),(-3,3),(3,-3),(3,3)}之外的所有整点(即横坐标与纵坐标都为整数的点),即集合A⊕B表示如图所示的所有圆点“”+所有“”圆点+所有圆点“”,共45个.故A⊕B中元素的个数为45.故选C.]2.A[当s=4时,p,q,r都可取0,1,2,3中的一个,有43=64种,当s=3时,p,q,r都可取0,1,2中的一个,有33=27种,当s=2时,p,q,r都可取0,1中的一个,有23=8种,当s=1时,p,q,r都可取0,有1种,∴card(E)=64+27+8+1=100.当t=0时,u可取1,2,3,4中的一个,有4种,当t=1时,u取2,3,4中的一个,有3种,当t=2时,u可取3,4中的一个,有2种,当t=3时,u可取4,有一种,∴t,u取值有1+2+3+4=10种,同样地,v,w的取值也有10种,则card(F)=10×10=100种,∴card(E)+card(F)=100+100=200种.]3.1-12+13-14+…+12n-1-12n=1n+1+1n+2+…+12n[等式左边的特征:第1个等式有2项,第2个有4项,第3个有6项,且正负交错,故第n 个等式左边有2n 项且正负交错,应为1-12+13-14+…+12n -1-12n;等式右边的特征:第1个有1项,第2个有2项,第3个有3项,故第n 个有n 项,且有前几个的规律不难发现第n 个等式右边应为1n +1+1n +2+…+12n .] 4.f 2 014(x )=x 1+2 014x [f 1(x )=x 1+x ,f 2(x )=x1+x 1+x 1+x=x 1+2x ,f 3(x )=x1+2x 1+x 1+2x=x 1+3x ,…,由数学归纳法得f 2 014(x )=x 1+2 014x .] 5.42 [为使交货期最短,需徒弟先对原料B 进行粗加工,用时6个工作日,再由工艺师对原料B 进行精加工,用时21个工作日,在此期间徒弟再对原料A 进行粗加工,不会影响工艺师加工完原料B 后直接对原料A 进行精加工,所以最短交货期为6+21+15=42(个)工作日.]6.(1)证明 因为2a n +12a n=2a n +1-a n =2d (n =1,2,3)是同一个常数,所以2a 1,2a 2,2a 3,2a 4依次构成等比数列,(2)解 令a 1+d =a ,则a 1,a 2,a 3,a 4分别为a -d ,a ,a +d ,a +2d (a >d ,a >-2d ,d ≠0).假设存在a 1,d ,使得a 1,a 22,a 33,a 44依次构成等比数列,则a 4=(a -d )(a +d )3,且(a +d )6=a 2(a +2d )4.令t =d a ,则1=(1-t )(1+t )3,且(1+t )6=(1+2t )4⎝ ⎛⎭⎪⎫-12<t <1,t ≠0, 化简得t 3+2t 2-2=0(*),且t 2=t +1.将t 2=t +1代入(*)式,t (t +1)+2(t +1)-2=t 2+3t =t +1+3t =4t +1=0,则t =-14. 显然t =-14不是上面方程的解,矛盾,所以假设不成立.因此不存在a 1,d ,使得a 1,a 22,a 33,a 44依次构成等比数列.(3)解 假设存在a 1,d 及正整数n ,k ,使得a n 1,a n +k 2,a n +2k 3,a n +3k 4依次构成等比数列,则a n 1(a 1+2d )n +2k =(a 1+d )2(n +k ),且(a 1+d )n +k (a 1+3d )n +3k =(a 1+2d )2(n +2k ).分别在两个等式的两边同除以a 2(n +k )1及a 2(n +2k )1, 并令t =d a 1⎝⎛⎭⎪⎫t >-13,t ≠0, 则(1+2t )n +2k =(1+t )2(n +k ),且(1+t )n +k (1+3t )n +3k =(1+2t )2(n +2k ).将上述两个等式两边取对数,得(n +2k )ln(1+2t )=2(n +k )ln(1+t ),且(n +k )ln(1+t )+(n +3k )ln(1+3t )=2(n +2k )ln(1+2t ).化简得2k [ln(1+2t )-ln(1+t )]=n [2ln(1+t )-ln(1+2t )],且3k [ln(1+3t )-ln(1+t )]=n [3ln(1+t )-ln(1+3t )].再将这两式相除,化简得ln(1+3t )ln(1+2t )+3ln(1+2t )ln(1+t )=4ln(1+3t )ln(1+t )(**). 令g (t )=4ln(1+3t )ln(1+t )-ln(1+3t )ln(1+2t )-3ln(1+2t )ln(1+t ),则g ′(t )=错误!.令φ(t )=(1+3t )2ln(1+3t )-3(1+2t )2ln(1+2t )+3(1+t )2ln(1+t ), 则φ′(t )=6[(1+3t )ln(1+3t )-2(1+2t )ln(1+2t )+(1+t )ln(1+t )]. 令φ1(t )=φ′(t ),则φ1′(t )=6[3ln(1+3t )-4ln(1+2t )+ln(1+t )].令φ2(t )=φ1′(t ),则φ2′(t )=12(1+t )(1+2t )(1+3t )>0. 由g (0)=φ(0)=φ1(0)=φ2(0)=0,φ′2(t )>0,知φ2(t ),φ1(t ),φ(t ),g (t )在⎝ ⎛⎭⎪⎫-13,0和(0,+∞)上均单调. 故g (t )只有唯一零点t =0,即方程(**)只有唯一解t =0,故假设不成立.所以不存在a 1,d 及正整数n ,k ,使得a n 1,a n +k 2,a n +2k 3,a n +3k 4依次构成等比数列.【一年模拟试题精练】1.D [利用反证法证明.假设三个数都小于2,则a +1b +b +1c +c +1a <6,而a +1b +b +1c +c +1a ≥2+2+2=6,与假设矛盾.故选D.]2.C [由A B ,B C 知,B 是大正方形,A 是|,C 是—,由C D 知,D 是小正方形,∴A D 为小正方形中有竖线,即(2)正确,A C 为+,即(4)正确.故选C.]3.D [反证法的实质是否定结论,对于①,其结论的反面是p +q >2,所以①错误;对于②,其假设正确.]4.B [设最小的数为x ,则其它8个数分别为x +7,x +8,x +9,x +14,x +15,x +16,x +17,x +18,故9个数之和为x +3(x +8)+5(x +16)=9x +104,当x =212时,9x +104=2 012.]5.3V S 1+S 2+S 3+S 4[V =13S 1·R +13S 2·R +13S 3·R +13S 4·R =13(S 1+S 2+S 3+S 4)R ,R =3V S 1+S 2+S 3+S 4.] 6.cos 2α+cos 2β+cos 2γ=2 [设α,β,γ是AC 1分别与面ABCD 1,面ABB 1A 1,面BCC 1B 1所成的角.cos α=AC AC 1,cos β=AB 1AC 1,cos γ=BC 1AC 1,cos 2α+cos 2β+cos 2γ=2(AB 2+BC 2+CC 21)AC 21=2.] 7.332 [f (x )=sin x ,f (A )+f (B )+f (C )3≤f ⎝ ⎛⎭⎪⎫A +B +C 3 即sin A +sin B +sin C ≤3sin A +B +C 3=3sin π3=332.故sin A +sin B +sin C 的最大值为332.]8.2 014 [令a =n ,b =1,则f (n +1)=f (n )·f (1),即:f (n +1)f (n )=f (1)=2,故:f (2)f (1)+f (4)f (3)+…+f (2 014)f (2 013)=2×1 007=2 014.] 9.甲 [假设甲说的是假话,即丙考满分,则乙也是假话,不成立;假设乙说的是假话,即乙没有考满分,又丙没有考满分,故甲考满分;故答案为:甲.]10.(-1)n +1·n (n +1)2 [12=1=(-1)21×22;12-22=-3=(-1)32×32;12-22+32=6=(-1)43×42;12-22+32-42=-10=(-1)54×52,…,12-22+32-42+…+(-1)n +1·n 2=(-1)n +1·n (n +1)2.]11.13×2 0153+12×2 0152+16×2 015=12+22+…+20152 [①:13×13+12×12+16×1=12;②:13×23+12×22+16×2=12+22;③:13×33+12×32+16×3=12+22+32,……;2 015:13×2 0153+12×2 0152+16×2 015=12+22+…+2 0152]12.1AQ +1AR +1AP =3 [设O 到各个平面的距离为d ,而V R -AQP =13S △AQP ·AR =13·12·AQ ·AP ·AR =16AQ ·AP ·AR ,又∵V R -AQP =V O -AQP +V O -ARP +V O -AQR=13S △AQP ·d +13S △ARP ·d +13S △AQR ·d=16(AQ ·AP +AR ·AP +AQ ·AR )d16AQ ·AP ·AR =16(AQ ·AP +AR ·AP +AQ ·AR )d , 即1AQ +1AR +1AP =d ,而V A -BDC =13S △BDC ·h=13·34·2·33=16,V O -ABD =13V A -BDC =118, 即13·S △ABD ·d =13·12·d =118⇒d =3, ∴1AQ +1AR +1AP =3.]考点34 算法与复数【两年高考真题演练】1.C [当x =1时,执行y =9-1=8.输出y 的值为8,故选C.]2.C [运行相应的程序.第1次循环:i =1,S =10-1=9;第2次循环:i =2,S =9-2=7;第3次循环:i =3,S =7-3=4;第4次循环:i =4,S =4-4=0;满足S =0≤1,结束循环,输出i =4.故选C.]3.B [第一次循环:a =3×12=32,k =1;第二次循环:a =32×12=34,k =2;第三次循环:a =34×12=38,k =3;第四次循环:a =38×12=316<14,k =4.故输出k =4.]4.D [每次循环的结果为k =2,k =3,k =4,k =5>4,∴S =sin 5π6=12.]5.D [s =12+14+16+18=2524,即输出s 的值为2524.]6.D [当n =1时,M =1+12=32,a =2,b =32;当n =2时,M =2+23=83,a =32,b =83;当n =3时,M =32+38=158,a =83,b =158;n =4时,终止循环.输出M =158.]7.D [k =1,M =11×2=2,S =2+3=5;k =2,M =22×2=2,S =2+5=7;k =3,3>t ,∴输出S =7,故选D.]8.C [由(z -1)i =1+i ,两边同乘以-i ,则有z -1=1-i ,所以z =2-i.]9.D [由2+a i 1+i=3+i ,得2+a i =(3+i)(1+i)=2+4i ,即a i =4i ,因为a 为实数,所以a =4.故选D.]10.A [(1+i)2=1+2i +i 2=1+2i -1=2i.]11.A [∵z 1-i=i ,∴z =i(1-i)=i -i 2=1+i ,∴z =1-i.] 12.C [(1-i)(1+2i)=1+2i -i -2i 2=1+i +2=3+i ,故选C.]13.B [实部为-2,虚部为1的复数为-2+i ,所对应的点位于复平面的第二象限,选B.]14.C [因为复数z =(3-2i)i =2+3i ,所以z =2-3i ,故选C. ]【一年模拟试题精练】1.C [x =3,y =23=8<10+3+3=33;x =3+1=4.y =24=16<10×4+3=43;x =4+1=5,y =25=32<10×5+3=53;x =5+1=6,y =26=64>10×6+3=63,故输出的x 值为6.]2.D [由题意知S 0应为偶数,排除选项A 、C.当S 0=8时,i =1<4,S =8-2=6;i =2<4,S =6-22=2;i =3<4,S =2-23=-6;i =4=4,输出S =-6,排除B ,故选D.]3.B [i =2,S =0;S =0+12,i =4;S =12+14,i =6;…,S =12+14+…+12012,i =2 014;要计算S =12+14+…+12 012+12 014,应满足i ≤2 015.]4.C [S =1=1,k =1<2 015;S =18<1,k =2<2 015;s =2×12=14<1,k =3<2 015;S =14×2=12<1,k =4<2015;S =12×2=1,k =5<2 015 循环周期为4,2 015=4×503+3,S =1=1,k =2 013<2 015;S =18,k =2 014<2 015;S =18×2=14<1,k =2 015=2 015, S =14×2=12<1,k =2 016>2 015,输出S =12.]5.A [k =1,S =1;k =2,S =2×1+2=4;k =3,S =2×4+3=11;k =4,S =2×11+4=26;k =5,S =2×26+5=57要输出S =57,需k >4.]6.C [当i =1时,1<5为奇数,S =-1,i =2; 当i =2时,2<5为偶数,S =-1+4=3,i =3; 当i =3时,3<5为奇数,S =3-33=-5,i =4; 当i =4时,4<5为偶数,S =-6+42=10,i =5; 当i =5时,5≥5,输出S =10.]7.D [z =3-2i 的虚部为-2.]8.A [∵m +103+i =m +3-i 为纯虚数,∴m +3=0,即m =-3.]9.D [∵z =4+3i 3-4i =i ,∴z 的虚部为1.]10.B[21-i=1+i,故其实部与虚部之和为1+1=2.]11.C[∵z=a+3i1-2i=a-65+2a+35i为纯虚数,∴a-65=0,即a=6,∴z=3i.]12.D[∵z=1-3i1+2i=-1-i,∴|z|=2,z的实部为-1,虚部为-1,z的共轭复数为-1+i,故选D.]13.A[∵z=a+b i的共轭复数z=a-b i,∴z和z关于x轴对称.]。