应用数理统计课后习题 清华大学出版社 杨虎 钟波第三章作业参考答案
清华大学 杨虎 应用数理统计课后习题参考答案3
习题五1试检验不同日期生产的钢锭的平均重量有无显著差异?(α=0.05) 解 根据问题,因素A 表示日期,试验指标为钢锭重量,水平为5.假设样本观测值(1,2,3,4)ij y j =来源于正态总体2~(,),1,2,...,5i i Y N i μσ= .检验的问题:01251:,:i H H μμμμ===L 不全相等 .计算结果:表5.1 单因素方差分析表注释: 当=0.001表示非常显著,标记为 ‘***’,类似地,= 0.01,0.05,分别标记为 ‘**’ ,‘*’ .查表0.95(4,15) 3.06F =,因为0.953.9496(4,15)F F =>,或p = 0.02199<0.05, 所以拒绝0H ,认为不同日期生产的钢锭的平均重量有显著差异.2 考察四种不同催化剂对某一化工产品的得率的影响,在四种不同催化剂下分别做试验 试检验在四种不同催化剂下平均得率有无显著差异?(α=0.05)解根据问题,设因素A 表示催化剂,试验指标为化工产品的得率,水平为4 .假设样本观测值(1,2,...,)ij i y j n =来源于正态总体2~(,),1,2,...,5i i Y N i μσ= .其中样本容量不等,i n 分别取值为6,5,3,4 .检验的问题:012341:,:i H H μμμμμ===不全相等 .计算结果:表5.2 单因素方差分析表查表0.95(3,14) 3.34F =,因为0.952.4264(3,14)F F =<,或p = 0.1089 > 0.05,所以接受0H ,认为在四种不同催化剂下平均得率无显著差异 .3 试验某种钢的冲击值(kg ×m/cm2),影响该指标的因素有两个,一是含铜量A ,另试检验含铜量和试验温度是否会对钢的冲击值产生显著差异?(α=0.05) 解 根据问题,这是一个双因素无重复试验的问题,不考虑交互作用.设因素,A B 分别表示为含铜量和温度,试验指标为钢的冲击力,水平为12.假设样本观测值(1,2,3,1,2,3,4)ij y ij ==来源于正态总体2~(,),1,2,3,ij ij Y N i μσ=1,2,3,4j = .记i α⋅为对应于i A 的主效应;记j β⋅为对应于j B 的主效应;检验的问题:(1)10:i H α⋅全部等于零,11:i H α⋅不全等于零;(2)20:j H β⋅全部等于零,21:j H β⋅不全等于零; 计算结果:表5.3 双因素无重复试验的方差分析表查表0.95(2,6) 5.143F =,0.95(3,6) 4.757F =,显然计算值,A B F F 分别大于查表值,或p = 0.0005,0.0009 均显著小于0.05,所以拒绝1020,H H ,认为含铜量和试验温度都会对钢的冲击值产生显著影响作用.设每个工人在每台机器上的日产量都服从正态分布且方差相同 .试检验:(α=0.05)1)操作工之间的差异是否显著? 2)机器之间的差异是否显著?3)它们的交互作用是否显著?解 根据问题,这是一个双因素等重复(3次)试验的问题,要考虑交互作用.设因素,A B 分别表示为机器和操作,试验指标为日产量,水平为12. 假设样本观测值(1,2,3,1,2,3,4)ijk y i j ==来源于正态总体2~(,),1,2,3,ij ij Y N i μσ= 1,2,3,4j =,1,2,3k = .记i α⋅为对应于i A 的主效应;记j β⋅为对应于j B 的主效应;记ij γ为对应于交互作用A B ⨯的主效应; 检验的问题:(1)10:i H α⋅全部等于零,11:i H α⋅不全等于零; (2)20:j H β⋅全部等于零,21:j H β⋅不全等于零; (3)30:ij H γ全部等于零,31:ij H γ不全等于零;计算结果:表5.4 双因素无重复试验的方差分析表查表0.95(3,24) 3.01F =,0.95(2,24) 3.4F =,0.95(6,24) 2.51F =,计算值 3.01,A F <3.4, 2.51B A B F F ⨯>>,或0.05A p >>,而,B A B p p ⨯均显著小于0.05,所以拒绝2030,H H ,接受10H ,认为操作工之间的差异显著,机器之间的差异不显著,它们之间的交互作用显著 . 5 某轴承厂为了提高轴承圈退火的质量,制定因素水平分级如下表所示因素 上升温度℃ 保温时间(h)出炉温度℃水平1 800 6 400 水平28208500试填好正交试验结果分析表并对试验结果进行直观分析和方差分析 .解 根据题意,这是一个3因素2水平的试验问题 .试验指标为硬度的合格率 .应选择正交表44(2)L 来安排试验,随机生成正交试验表如下:方差来源 自由度 平方和 均方 F 值 P 值 因素A 因素B 相互效应A ×B误差 总和3 2 6 24 352.750 27.167 73.5 41.333 144.750.917 13.583 12.250 1.7220.5323 7.8871 7.11290.6645 0.00233** 0.00192**由此可见第三号试验条件为:上升温度800℃、保温时间6h 、出炉温度500℃ . 直观分析需要计算K 值,计算结果如下:表5.6 计算表直观分析 由计算的K 值知,因素A 、B 、C 的极差分别为70,40,40,因此主次关系为A B C >=,B ,C 相当 .由于试验指标为硬度的合格率,应该是越大越好,所以各确定因素的水平分别是121,,A B C ,即最佳的水平组合是121A B C ,即最佳搭配为:上升温度800℃、保温时间8h 、出炉温度400℃.采用方差分析法,计算得下表:表5.7 方差分析表方差来源平方和 自由度均方差 F 值 A 1225 1 1225 1 B 400 1 400 0.33 C 400 1 400 0.33 误差 1225 1 1225 总和32504如果显著性检验水平取0.1α=,则查表得0.9(1,1)39.9F =,显然计算的F 值1,0.33A B C F F F ===均小于查表值,所以认为三个因素对结果影响都显著 .6问应选用哪张正交表安排试验,并写出第8号试验的条件;如果9组试验结果为(单位:kg/100m 2):62.925,57.075,51.6,55.05,58.05,56.55,63.225,50.7,54.45,试对该正交试验结果进行直观分析和方差分析.解 该问题属于3因素3水平的试验问题,试验指标为水稻产量 .根据题意应选择正交表49(3)L 来安排试验,随机生成正交表如下:由表可知,第8号试验的条件:品种(A 3)珍珠矮11号,插值密度(B 2)3.75棵/100m 2 ,施肥量(C 1)0.75kg/100m 2纯氨; 直观分析需要计算K 值,计算结果如下:表5.9 计算表同上题进行直观分析,得出K 值的大小关系为:111312212223333132,,K K K K K K K K K >>>>>>由直观分析看出:本例较好的水平搭配是:113A B C 采用方差分析法,计算得下表:表5.10 方差分析表方差来源平方和自由度 均方差F 值A 1.759 2 0.879 0.0223B 65.861 2 32.931 0.8361C 6.660 2 3.330 0.0845 误差78.776 239.388 39.3880.9(2,2)9F =,所以认为三个因素对结果影响都不显著.7 在阿魏酸的合成工艺考察中,为了提高产量,选取了原料配比A ,吡啶量B 和反应时间C 三个因素,它们各取了7个水平如下:原料配比A :1.0,1.4,1.8,2.2,2.6,3.0,3.4 吡啶量B :10,13,16,19,22,25,28 反应时间C :0.5,1.0,1.5,2.0,2.5,3.0,3.5试选用合适的均匀设计表安排试验,并写出第7号试验的条件;如果7组试验的结果(收率)为:0.33,0.336,0.294,0.476,0.209,0.451,0.482,试对该均匀试验结果进行直观分析并通过回归分析发现可能更好的工艺条件.解 根据题意选择均匀设计表47(7)U 来安排试验,有3个因素,根据使用表,实验安排如:表5.11 试验安排表6 6 5 4 0.4517 7 7 7 0.482 所以第7号实验的条件为:原配料比3.4,吡啶量28ml,反应时间3.5h.通过直观分析,最好的实验条件是:原配料比3.4,吡啶量28ml,反应时间3.5h. 通过回归分析,最合适的实验条件是:原配料比2.6,吡啶量16ml,反应时间0.5h.习题六1 从某中学高二女生中随机选取8名,测得其升高、体重如下:1 2 3 4 5 6 78身高(cm)160 159 160 157 169 162 165 154体重(kg)49 46 53 41 49 50 48 43在绝对距离下,试用最短距离法和离差平方和法对其进行聚类分析.解由R软件,用最短距离(左)和差离平方和法(右)对题目进行聚类分析如下图6.1,表6.1和表6.2:最短距离法离差平方和法图6.1 聚类树形图表6.1 聚类附表(最短距离法)步骤聚类合并系数首次出现的阶段类别下一步组1 组2 组1 组21 1 6 5.000 0 0 22 1 2 10.000 1 0 43 4 8 13.000 0 0 74 1 7 13.000 2 0 55 1 3 13.000 4 0 66 1 5 17.000 5 0 7表6.2 聚类附表(离差平方和法)2 已知五个变量的距离矩阵为03674012340444401592343331).;2);3)036034022020401000⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭试用最短距离法和最长距离法对这些变量进行聚类,并画出聚类图和二分树.解 针对距离矩阵1),采用两种方法计算如下. ①最短距离法的聚类步骤如下:12345036740159036020w w w w w ⎛⎫ ⎪⎪ ⎪ ⎪⎪⎪⎝⎭a )将()236,1w w f h =合并为一类,,{}11456,,,,H w w w h =距离矩阵如下0743023060⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭{}()457457),,,2b w w h w w f h ==合并为一类,{}2167,,,H w h h =距离矩阵如下:034030⎛⎫ ⎪⎪ ⎪⎝⎭{}()()1681689),,3,3c w h h w h f h f h ===合并为一类,最后,,聚类图和树状图如图6.2:图6.2 聚类图(左)与树状图(右)②最长距离法与最短距离法类似,步骤如下: a )()236,1w w f h =合并为一类,{}11456,,,,H w w w h =距离矩阵如下0746025090⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭ {}(){}4574572167),,,2,,,b w w h w w f h H w h h ===合并为一类,距离矩阵如下:067090⎛⎫⎪⎪ ⎪⎝⎭{}()()1681689),,69c w h h w h f h f h ===合并为一类,最后,,,聚类图和树状图如图6.3:图6.3 聚类图(左)与树状图(右)(2)针对距离矩阵2)012340234034040⎛⎫ ⎪⎪ ⎪ ⎪⎪⎪⎝⎭①最短距离法的聚类步骤如下 a )()216,1w w f h =合并为一类,{}13456,,,,0342043040H w w w h =⎛⎫⎪⎪ ⎪ ⎪⎝⎭距离矩阵如下{}()367367),,,2b w h h w h f h ==合并为一类,{}24567,,,,H w w h h =聚类矩阵如下:043040⎛⎫⎪⎪ ⎪⎝⎭{}(){}()4784789879),,3,,4c w h h w h f h h w h f h ====合并为一类,最后,,聚类图和树状图如图6.4:图6.4 聚类图(左)与树状图(右)②由于本题数据的特殊性,最长距离法与最短距离法结果相同(略). (3)044440333022010⎛⎫ ⎪⎪ ⎪ ⎪⎪⎪⎝⎭最短距离法的聚类步骤如下a ) ()456,1w w f h =合并为一类,{}11236,,,,H w w w h =距离矩阵如下0444033020⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭{}(){}36736724567),,,2,,,,b w h h w h f h H w w h h ===合并为一类,距离矩阵如下:044030⎛⎫⎪⎪ ⎪⎝⎭{}(){}()4784789879),,3,,4c w h h w h f h h w h f h ====合并为一类,最后,,,聚类图和树状图如图6.5:图6.5 聚类图(左)与树状图(右)由于本题数据的特殊性,最长距离法与最短距离法结果相同(略).3 在一项关于作物对土壤营养的反应的研究中,要测定土壤的总磷量和总氮量(占干物质重的百分比),今对10份土样测得数据如下:总氮量(%)0.63 1.19 2.30 1.29 0.73 0.52 0.33 0.61 0.47 0.66在绝对距离下,试用重心法对其进行聚类分析.解由R软件得到重心法聚类分析的结果如图6.6与表6.3:图6.6 聚类树形图表6.3 聚类过程记录表步骤聚类合并系数首次出现的阶段类别下一步组 1 组 2 组 1 组 21 1 8 .001 0 0 22 1 10 .002 1 0 43 6 9 .005 0 0 64 15 .010 2 0 75 2 4 .010 0 0 86 67 .027 3 0 77 1 6 .048 4 6 88 1 2 .459 7 5 99 1 3 2.572 8 0 04 1975年Dagnelie收集了11年的气象数据资料如下表变量年序x1x2x3x4其中:x 1—前一年11月12日的降水量;x 2—7月均温;x 3—7月降雨量;x 4—月日辐射,试对这四个气象因子进行主成分分析. 解 由R 软件分析得到如下表6.4,6.5:表6.4 各主成分的重要性:主成分1 主成分2 主成分3 主成分4 标准差 1.6103349 0.9890848 0.53407741 0.37854199 方差贡献率 0.6482947 0.2445722 0.07130967 0.03582351 累积贡献率0.64829470.89286680.964176491.00000000表6.5 因子荷载:主成分1 主成分2 主成分3 主成分4 X1 0.291 0.871 0.332 -0.214 X2 -0.506 0.425 -0.742 -0.111 X3 0.577 0.136 -0.418 0.688 X4-0.5710.2050.4040.685由于前两个主成分对应的累积贡献率已经达到89.287,因此选取主成分的数目为2.5 对某初中12岁的女生进行体检,测量其身高x 1、体重x 2、胸围x 3和坐高x 4,共测得58个样本,并算得1234(,,,)x x x x x ='的样本协方差为19.9410.5023.566.5919.7120.958.637.97 3.937.55S ⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭ 试进行样本主成分分析.解 首先计算样本的相关系数矩阵:10.484410.32240.887210.70330.59760.31251⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭设相关系数矩阵的特征值和特征向量分别为d 和v 阵,计算得到0.0546000 0 0.312600= 000.96470 000 2.6681d ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭即四个特征值依次为:2.6681,0.9647,0.3126,0.0546,前两个主成分的累计贡献率为:90.8471%,因此提取主成分为2.四个特征根相应的特征向量为0.06000.70600.5333 0.4620 0.7317 0.17430.34040.5642=0.60570.19320.60400.48060.30690.65870.48460.4870v -⎛⎫ ⎪-⎪ ⎪--- ⎪-⎝⎭ 因此,两个主成分的表达式为:112340.060.73170.60570.3069z x x x x =+-- 212340.7060.17430.19320.6587z x x x x =-+-+6 比较因子分析和主成分分析模型的异同,阐明两者的关系. 解(1)提取公因子的方法主要有主成分法和公因子法.若采取主成分法,则主成分分析和因子分析基本等价,该法从解释变量的变异的角度出发,尽量使变量的方差能被主成分解释;而公因子法主要从解释变量的相关性角度,尽量使变量的相关程度能被公因子解释,当因子分析目的重在确定结构时则用到该法.(2)主成分分析和因子分析都是在多个原始变量中通过他们之间的内部相关性来获得新的变量,达到既减少分析指标个数,又能概括原始指标主要信息的目的.但他们各有其特点:主成分分析是将n 个原始变量提取m 个支配原始变量的公因子,和1个特殊因子,各因子之间可以相关或不相关.(3)统用降维的方法,但差异也很明显:主成分分析把方差划分为不同的正交成分,而因子分析则把方差化分为不同的起因因子;因子分析中的特征值的计算只能从相关系数矩阵出发,且必须把主成分划分为因子.(4)因子分析提取的公因子比主成分分析提取的主成分更具有可解释性.(5)两者分析的实质及重点不同.主成分的数学模型为Y AX =,因子分析的数学模型为X AF ε=+.因而可知主成分分析是实际上是线性变换,无假设检验,而因子分析是统计模型,某些因子模型是可以得到假设检验的;主成分分析主要综合原始数据的信息,而因子分析重在解释原始变量之间的关系.(6)SPSS 数据的实现:两者都通过“analyze data reduction Factor···”过程实现,但主成分分析主要使用“descriptires ”,“extraction ”,“stores ”对话框,而因子分析处使用这些外,还可使用“rotaction ”对话框进行因子旋转.7 试对第4题的变量作因子分析,并将结果和上面的结果进行比较. 解 用SPSS 分析,计算结果如下表6.6-6.8:表6.6 反应压缩比情况表 提取方法: 主成分法计算的相关系数矩阵的特征值和方差贡献率:表6.7 方差解释度提取方法: 主成分法表6.8 主成分矩阵8 为研究某一树种的叶片形态,选取50片叶测量其长度x 1(mm )和宽度x 2(mm ),按样本数据求得其平均值和协方差矩阵为:129048134,92,4845x x S ⎛⎫=== ⎪⎝⎭求出相关系数阵R ,并由R 出发作因子分析;解1)求相关系数矩阵:904810.7303,48900.73031S R ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭ 2)用R 软件求R 的特征根及其相应的特征向量,软件输出结果如下:$values[1] 2.99393809 0.07273809 $vectors[,1] [,2] [1,] 0.7071068 -0.7071068 [2,] 0.7071068 0.7071068122.9939,0.0727,λλ∴==12(),()0.7071,0.7071-0.7071,0.7071T Tηη==3) 求载荷矩阵A :1.22350.19071.22350.1907A -⎛⎫= ⎪⎝⎭4)22121.5333, 1.5333,h h == 0.98810.154*0.98810.154A -⎛⎫= ⎪⎝⎭12121,1,0.3043,0.3043u u v v ===-=,222222000011112,0,()0.9074,20i i iii i i i i i A u B v C u v D u v =========-===∑∑∑∑9 1981年,生物学家Grogan 和Wirth 对两种蠓虫Af 和Apf 根据其触角长度x 1和翼长x 2进行了分类,分类的数据资料如下:Af 1 2 3 4 5 6 7 8 x 1 1.24 1.36 1.38 1.38 1.38 1.40 1.48 1.54 x 2 1.27 1.74 1.64 1.82 1.90 1.70 1.82 1.82 Apf 1 2 3 4 5 6 x 1 1.14 1.18 1.20 1.26 1.28 1.30 x 2 1.78 1.96 1.86 2.00 2.00 1.96 (1)试建立Af 和Apf 的Fisher 判别模型;(2)对样本(1.24,1.80),(1.28,1.84),(1.40,2.04)进行判别分类. 解 (1)建立Fisher 判别模型991122121111(,)(1.42,1.75),(,)(1.23,1.93)99T TT T i i i i i i x x y y μμ======∑∑120.08480.1490.01980.0218,0.1490.39120.02180.039A A ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭12120.0080.0130.0130.0332A A n n ⎛⎫+== ⎪+-⎝⎭∑()120.19,0.18Tμμ-=-,()()121 1.325,1.842T μμ+= 1345.05135.42135.4283.33--⎛⎫= ⎪-⎝⎭∑, 带入Fisher 判别函数 ()12345.05135.42[(,)(1.325,1.84)]0.19,0.18135.4283.33Tx x -⎛⎫-- ⎪-⎝⎭1291.301741.336944.534x x =--(2)把三个样本(1.24,1.80),(1.28,1.84),(1.4,2.04)带入模型,得到结果:三个样本均属于Apf 类.10 在两个玉米品种之间进行判别:137玉米G 1和甜玉米G 2,选取的两个变量是:x 1—玉米果穗长;x 2—玉米果穗直径,两个类的样本容量为n 1=n 2=40,实际算得两个类的样本均值和样本协方差为:121218.5625.348.120 4.4589.661 3.720,,,5.98 4.12 4.458 4.350 3.720 3.410x x S S ⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭试建立G 1,G 2的Bayes 类线性判别函数.解 因为已知两类的样本均值和样本协方差为:12(18.56,5.98),(25.34,4.12)T T x x ==,128.120 4.4589.661 3.720,4.458 4.350 3.720 3.410S S ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭可计算得到修正的公共协方差矩阵和逆矩阵12120.2280.1450.1450.0992A A n n ⎛⎫+== ⎪+-⎝⎭∑,15.6393.738.25147.38--⎛⎫= ⎪-⎝⎭∑()()()121216.78,1.86,21.95,5.052TTμμμμ-=-+= 带入Fisher 判别函数()112121(())()2T W x x μμμμ-=-+-∑ ()()12 5.6393.73[(,)21.95,5.05] 6.78,1.868.25147.38Tx x -⎛⎫=-- ⎪-⎝⎭1274.396.951141.29x x =-+-。
清华大学杨虎应用数理统计后习题的参考答案.doc
清华大学杨虎应用数理统计后习题的参考答案练习1:设定总体的样本量,并写出以下4种情况下样本的联合概率分布。
2);3);4)溶液总体的样本是,1)对于总体,其中:2)就整体而言,其中:3)对于整个4)对于整个2为了研究玻璃产品在集装箱运输过程中的损坏,我们随机选取了XXXX年的人类身高来获取数据(单位: Cm),如下所示:组的下限165 167 169 171 173 175 177组的上限167 169 171 173 175 177 179人3 10 21 23 22 11 5尝试绘制原点高度的直方图,无论它是否近似遵循正态分布密度函数的图形。
为了求解图1.2中的数据直方图,它近似遵循平均值为172、方差为5.64的正态分布。
那是。
4假设总体x的方差为4,平均值为。
现在取容量为100的样本,并尝试确定常数k,以满足。
解因子k更大。
根据中心极限定理: 那么:查找表:,5从总体中抽取容量为36的样本,并计算样本平均值介于50.8和53.8之间的概率。
解决方案6从总体中抽取两个容量分别为10和15的独立样本,并计算它们的平均值之差的绝对值大于0.3的概率。
解决方案6假设两个独立的样本是:并且,相应的样本均值为:还有。
从这个问题的含义来看:并且相互独立;,7集是种群的样本,试确定C,使。
那么,溶液和每个样品是相互独立的,有:那么:检查卡方分位数表:如果c/4=18.31,则c=73.24.8假设总体X具有连续分布函数,是总体X的样本,并定义随机变量:尝试确定统计数据的分布。
该溶液由已知条件获得:其中。
因为它们相互独立,所以它们也相互独立。
根据二项式分布的可加性,有。
9设定为来自群体X的样本,并尝试找出答案。
假设人口的分布是:1) 2) 3) 4)解决方案1) 2) 3) 4) 10从人群中抽取样本,找出总数。
解和因为,所以:11组来自正常人群,定义:能够做某事。
,则集合12是整个总体的样本,这是样本平均值。
《应用数理统计》第三章假设检验课后作业参考答案
第三章 假设检验课后作业参考答案3.1 某电器元件平均电阻值一直保持2.64Ω,今测得采用新工艺生产36个元件的平均电阻值为2.61Ω。
假设在正常条件下,电阻值服从正态分布,而且新工艺不改变电阻值的标准偏差。
已知改变工艺前的标准差为0.06Ω,问新工艺对产品的电阻值是否有显著影响?(01.0=α)解:(1)提出假设64.2:64.2:10≠=μμH H , (2)构造统计量36/06.064.261.2/u 00-=-=-=nX σμ(3)否定域⎭⎬⎫⎩⎨⎧>=⎭⎬⎫⎩⎨⎧>⋃⎭⎬⎫⎩⎨⎧<=--21212αααu u uu u u V (4)给定显著性水平01.0=α时,临界值575.2575.2212=-=-ααuu ,(5) 2αu u <,落入否定域,故拒绝原假设,认为新工艺对电阻值有显著性影响。
3.2 一种元件,要求其使用寿命不低于1000(小时),现在从一批这种元件中随机抽取25件,测得其寿命平均值为950(小时)。
已知这种元件寿命服从标准差100σ=(小时)的正态分布,试在显著水平0.05下确定这批元件是否合格。
解:{}01001:1000, H :1000X 950 100 n=25 10002.5V=u 0.05H x u αμμσμα-≥<====->=提出假设:构造统计量:此问题情形属于u 检验,故用统计量:此题中:代入上式得:拒绝域:本题中:0.950.950u 1.64u 0.0u H =>∴即,拒绝原假设认为在置信水平5下这批元件不合格。
3.3某厂生产的某种钢索的断裂强度服从正态分布()2,σμN ,其中()2/40cm kg =σ。
现从一批这种钢索的容量为9的一个子样测得断裂强度平均值为X ,与以往正常生产时的μ相比,X 较μ大20(2/cm kg )。
设总体方差不变,问在01.0=α下能否认为这批钢索质量显著提高? 解:(1)提出假设0100::μμμμ>=H H , (2)构造统计量5.13/4020/u 00==-=nX σμ (3)否定域{}α->=1u u V(4)给定显著性水平01.0=α时,临界值33.21=-αu(5) α-<1u u ,在否定域之外,故接受原假设,认为这批钢索质量没有显著提高。
最新清华大学-杨虎-应用数理统计课后习题参考答案3
习题五1试检验不同日期生产的钢锭的平均重量有无显著差异?(α=0.05) 解 根据问题,因素A 表示日期,试验指标为钢锭重量,水平为5.假设样本观测值(1,2,3,4)ij y j =来源于正态总体2~(,),1,2,...,5i i Y N i μσ= .检验的问题:01251:,:i H H μμμμ===不全相等 .计算结果:表5.1 单因素方差分析表注释: 当=0.001表示非常显著,标记为 ‘***’,类似地,= 0.01,0.05,分别标记为 ‘**’ ,‘*’ .查表0.95(4,15) 3.06F =,因为0.953.9496(4,15)F F =>,或p = 0.02199<0.05, 所以拒绝0H ,认为不同日期生产的钢锭的平均重量有显著差异.2 考察四种不同催化剂对某一化工产品的得率的影响,在四种不同催化剂下分别做试验 试检验在四种不同催化剂下平均得率有无显著差异?(α=0.05)解根据问题,设因素A 表示催化剂,试验指标为化工产品的得率,水平为4 .假设样本观测值(1,2,...,)ij i y j n =来源于正态总体2~(,),1,2,...,5i i Y N i μσ= .其中样本容量不等,i n 分别取值为6,5,3,4 .检验的问题:012341:,:i H H μμμμμ===不全相等 .计算结果:表5.2 单因素方差分析表查表0.95(3,14) 3.34F =,因为0.952.4264(3,14)F F =<,或p = 0.1089 > 0.05,所以接受0H ,认为在四种不同催化剂下平均得率无显著差异 .3 试验某种钢的冲击值(kg ×m/cm2),影响该指标的因素有两个,一是含铜量A ,另试检验含铜量和试验温度是否会对钢的冲击值产生显著差异?(α=0.05) 解 根据问题,这是一个双因素无重复试验的问题,不考虑交互作用.设因素,A B 分别表示为含铜量和温度,试验指标为钢的冲击力,水平为12.假设样本观测值(1,2,3,1,2,3,4)ij y ij ==来源于正态总体2~(,),1,2,3,ij ij Y N i μσ=1,2,3,4j = .记i α⋅为对应于i A 的主效应;记j β⋅为对应于j B 的主效应;检验的问题:(1)10:i H α⋅全部等于零,11:i H α⋅不全等于零;(2)20:j H β⋅全部等于零,21:j H β⋅不全等于零; 计算结果:表5.3 双因素无重复试验的方差分析表查表0.95(2,6) 5.143F =,0.95(3,6) 4.757F =,显然计算值,A B F F 分别大于查表值,或p = 0.0005,0.0009 均显著小于0.05,所以拒绝1020,H H ,认为含铜量和试验温度都会对钢的冲击值产生显著影响作用.设每个工人在每台机器上的日产量都服从正态分布且方差相同 .试检验:(α=0.05)1)操作工之间的差异是否显著? 2)机器之间的差异是否显著?3)它们的交互作用是否显著?解 根据问题,这是一个双因素等重复(3次)试验的问题,要考虑交互作用.设因素,A B 分别表示为机器和操作,试验指标为日产量,水平为12. 假设样本观测值(1,2,3,1,2,3,4)ijk y i j ==来源于正态总体2~(,),1,2,3,ij ij Y N i μσ= 1,2,3,4j =,1,2,3k = .记i α⋅为对应于i A 的主效应;记j β⋅为对应于j B 的主效应;记ij γ为对应于交互作用A B ⨯的主效应; 检验的问题:(1)10:i H α⋅全部等于零,11:i H α⋅不全等于零; (2)20:j H β⋅全部等于零,21:j H β⋅不全等于零; (3)30:ij H γ全部等于零,31:ij H γ不全等于零;计算结果:表5.4 双因素无重复试验的方差分析表查表0.95(3,24) 3.01F =,0.95(2,24) 3.4F =,0.95(6,24) 2.51F =,计算值 3.01,A F <3.4,2.51B A B F F ⨯>>,或0.05A p >>,而,B A B p p ⨯均显著小于0.05,所以拒绝2030,H H ,接受10H ,认为操作工之间的差异显著,机器之间的差异不显著,它们之间的交互作用显著 . 5 某轴承厂为了提高轴承圈退火的质量,制定因素水平分级如下表所示因素 上升温度℃ 保温时间(h)出炉温度℃水平1 800 6 400 水平28208500试填好正交试验结果分析表并对试验结果进行直观分析和方差分析 .解 根据题意,这是一个3因素2水平的试验问题 .试验指标为硬度的合格率 .应选择正交表44(2)L 来安排试验,随机生成正交试验表如下:方差来源 自由度 平方和 均方 F 值 P 值 因素A 因素B 相互效应A ×B误差 总和3 2 6 24 352.750 27.167 73.5 41.333 144.750.917 13.583 12.250 1.7220.5323 7.8871 7.11290.6645 0.00233** 0.00192**由此可见第三号试验条件为:上升温度800℃、保温时间6h 、出炉温度500℃ . 直观分析需要计算K 值,计算结果如下:表5.6 计算表直观分析 由计算的K 值知,因素A 、B 、C 的极差分别为70,40,40,因此主次关系为A B C >=,B ,C 相当 .由于试验指标为硬度的合格率,应该是越大越好,所以各确定因素的水平分别是121,,A B C ,即最佳的水平组合是121A B C ,即最佳搭配为:上升温度800℃、保温时间8h 、出炉温度400℃.采用方差分析法,计算得下表:表5.7 方差分析表方差来源平方和 自由度 均方差 F 值 A 1225 1 1225 1 B 400 1 400 0.33 C 400 1 400 0.33 误差 1225 11225 总和32504如果显著性检验水平取0.1α=,则查表得0.9(1,1)39.9F =,显然计算的F 值1,0.33A B C F F F ===均小于查表值,所以认为三个因素对结果影响都显著 .6 某良种繁殖场为了提高水稻产量,制定试验的因素位级表如下:问应选用哪张正交表安排试验,并写出第8号试验的条件;如果9组试验结果为(单位:kg/100m 2):62.925,57.075,51.6,55.05,58.05,56.55,63.225,50.7,54.45,试对该正交试验结果进行直观分析和方差分析.解 该问题属于3因素3水平的试验问题,试验指标为水稻产量 .根据题意应选择正交表49(3)L 来安排试验,随机生成正交表如下:由表可知,第8号试验的条件:品种(A 3)珍珠矮11号,插值密度(B 2)3.75棵/100m 2 ,施肥量(C 1)0.75kg/100m 2纯氨; 直观分析需要计算K 值,计算结果如下:表5.9 计算表同上题进行直观分析,得出K 值的大小关系为:111312212223333132,,K K K K K K K K K >>>>>>由直观分析看出:本例较好的水平搭配是:113A B C 采用方差分析法,计算得下表:表5.10 方差分析表方差来源平方和自由度 均方差F 值A 1.759 2 0.879 0.0223B 65.861 2 32.931 0.8361C 6.660 2 3.330 0.0845 误差78.776 239.388 39.3880.9(2,2)9F =,所以认为三个因素对结果影响都不显著.7 在阿魏酸的合成工艺考察中,为了提高产量,选取了原料配比A ,吡啶量B 和反应时间C 三个因素,它们各取了7个水平如下:原料配比A :1.0,1.4,1.8,2.2,2.6,3.0,3.4 吡啶量B :10,13,16,19,22,25,28 反应时间C :0.5,1.0,1.5,2.0,2.5,3.0,3.5试选用合适的均匀设计表安排试验,并写出第7号试验的条件;如果7组试验的结果(收率)为:0.33,0.336,0.294,0.476,0.209,0.451,0.482,试对该均匀试验结果进行直观分析并通过回归分析发现可能更好的工艺条件.解 根据题意选择均匀设计表47(7)U 来安排试验,有3个因素,根据使用表,实验安排如:表5.11 试验安排表所以第7号实验的条件为:原配料比3.4,吡啶量28ml,反应时间3.5h.通过直观分析,最好的实验条件是:原配料比3.4,吡啶量28ml,反应时间3.5h.通过回归分析,最合适的实验条件是:原配料比2.6,吡啶量16ml,反应时间0.5h.习题六1 从某中学高二女生中随机选取8名,测得其升高、体重如下:在绝对距离下,试用最短距离法和离差平方和法对其进行聚类分析.解由R软件,用最短距离(左)和差离平方和法(右)对题目进行聚类分析如下图6.1,表6.1和表6.2:最短距离法离差平方和法图6.1 聚类树形图表6.1 聚类附表(最短距离法)2 1 2 10.000 1 0 434 8 13.000 0 0 7 4 1 7 13.000 2 05 5 1 3 13.000 4 06 6 1 5 17.000 5 07 71429.00063表6.2 聚类附表(离差平方和法)2 已知五个变量的距离矩阵为03674012340444401592343331).;2);3)036034022020401000⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭试用最短距离法和最长距离法对这些变量进行聚类,并画出聚类图和二分树.解 针对距离矩阵1),采用两种方法计算如下. ①最短距离法的聚类步骤如下:12345036740159036020w w w w w ⎛⎫ ⎪⎪ ⎪ ⎪⎪⎪⎝⎭a )将()236,1w w f h =合并为一类,,{}11456,,,,H w w w h =距离矩阵如下0743023060⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭ {}()457457),,,2b w w h w w f h ==合并为一类,{}2167,,,H w h h =距离矩阵如下:034030⎛⎫⎪⎪ ⎪⎝⎭{}()()1681689),,3,3c w h h w h f h f h ===合并为一类,最后,,聚类图和树状图如图6.2:图6.2 聚类图(左)与树状图(右)②最长距离法与最短距离法类似,步骤如下: a )()236,1w w f h =合并为一类,{}11456,,,,H w w w h =距离矩阵如下0746025090⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭{}(){}4574572167),,,2,,,b w w h w w f h H w h h ===合并为一类,距离矩阵如下:067090⎛⎫⎪⎪ ⎪⎝⎭{}()()1681689),,69c w h h w h f h f h ===合并为一类,最后,,,聚类图和树状图如图6.3:图6.3 聚类图(左)与树状图(右)(2)针对距离矩阵2)012340234034040⎛⎫ ⎪⎪ ⎪ ⎪⎪⎪⎝⎭①最短距离法的聚类步骤如下 a )()216,1w w f h =合并为一类,{}13456,,,,0342043040H w w w h =⎛⎫⎪⎪ ⎪ ⎪⎝⎭距离矩阵如下{}()367367),,,2b w h h w h f h ==合并为一类,{}24567,,,,H w w h h =聚类矩阵如下:043040⎛⎫⎪⎪ ⎪⎝⎭{}(){}()4784789879),,3,,4c w h h w h f h h w h f h ====合并为一类,最后,,聚类图和树状图如图6.4:图6.4 聚类图(左)与树状图(右)②由于本题数据的特殊性,最长距离法与最短距离法结果相同(略). (3)044440333022010⎛⎫ ⎪⎪ ⎪ ⎪⎪⎪⎝⎭最短距离法的聚类步骤如下a ) ()456,1w w f h =合并为一类,{}11236,,,,H w w w h =距离矩阵如下0444033020⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭{}(){}36736724567),,,2,,,,b w h h w h f h H w w h h ===合并为一类,距离矩阵如下:044030⎛⎫⎪⎪ ⎪⎝⎭{}(){}()4784789879),,3,,4c w h h w h f h h w h f h ====合并为一类,最后,,,聚类图和树状图如图6.5:图6.5 聚类图(左)与树状图(右)由于本题数据的特殊性,最长距离法与最短距离法结果相同(略).3在一项关于作物对土壤营养的反应的研究中,要测定土壤的总磷量和总氮量(占干物质重的百分比),今对10份土样测得数据如下:在绝对距离下,试用重心法对其进行聚类分析.解由R软件得到重心法聚类分析的结果如图6.6与表6.3:图6.6 聚类树形图表6.3 聚类过程记录表4 1975年Dagnelie 收集了11年的气象数据资料如下表其中:x 1—前一年11月12日的降水量;x 2—7月均温;x 3—7月降雨量;x 4—月日辐射,试对这四个气象因子进行主成分分析. 解 由R 软件分析得到如下表6.4,6.5:表6.4 各主成分的重要性:主成分1 主成分2 主成分3 主成分4 标准差 1.6103349 0.9890848 0.53407741 0.37854199 方差贡献率 0.6482947 0.2445722 0.07130967 0.03582351 累积贡献率0.64829470.89286680.964176491.00000000表6.5 因子荷载:主成分1 主成分2 主成分3 主成分4 X1 0.291 0.871 0.332 -0.214 X2 -0.506 0.425 -0.742 -0.111 X3 0.577 0.136 -0.418 0.688 X4-0.5710.2050.4040.685由于前两个主成分对应的累积贡献率已经达到89.287,因此选取主成分的数目为2.5 对某初中12岁的女生进行体检,测量其身高x 1、体重x 2、胸围x 3和坐高x 4,共测得58个样本,并算得1234(,,,)x x x x x ='的样本协方差为19.9410.5023.566.5919.7120.958.637.97 3.937.55S ⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭试进行样本主成分分析.解 首先计算样本的相关系数矩阵:10.484410.32240.887210.70330.59760.31251⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭设相关系数矩阵的特征值和特征向量分别为d 和v 阵,计算得到0.0546000 0 0.312600= 000.96470 000 2.6681d ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭即四个特征值依次为:2.6681,0.9647,0.3126,0.0546,前两个主成分的累计贡献率为:90.8471%,因此提取主成分为2.四个特征根相应的特征向量为0.06000.70600.5333 0.4620 0.7317 0.17430.34040.5642=0.60570.19320.60400.48060.30690.65870.48460.4870v -⎛⎫ ⎪-⎪ ⎪--- ⎪-⎝⎭因此,两个主成分的表达式为:112340.060.73170.60570.3069z x x x x =+-- 212340.7060.17430.19320.6587z x x x x =-+-+6 比较因子分析和主成分分析模型的异同,阐明两者的关系. 解(1)提取公因子的方法主要有主成分法和公因子法.若采取主成分法,则主成分分析和因子分析基本等价,该法从解释变量的变异的角度出发,尽量使变量的方差能被主成分解释;而公因子法主要从解释变量的相关性角度,尽量使变量的相关程度能被公因子解释,当因子分析目的重在确定结构时则用到该法.(2)主成分分析和因子分析都是在多个原始变量中通过他们之间的内部相关性来获得新的变量,达到既减少分析指标个数,又能概括原始指标主要信息的目的.但他们各有其特点:主成分分析是将n 个原始变量提取m 个支配原始变量的公因子,和1个特殊因子,各因子之间可以相关或不相关.(3)统用降维的方法,但差异也很明显:主成分分析把方差划分为不同的正交成分,而因子分析则把方差化分为不同的起因因子;因子分析中的特征值的计算只能从相关系数矩阵出发,且必须把主成分划分为因子.(4)因子分析提取的公因子比主成分分析提取的主成分更具有可解释性.(5)两者分析的实质及重点不同.主成分的数学模型为Y AX =,因子分析的数学模型为X AF ε=+.因而可知主成分分析是实际上是线性变换,无假设检验,而因子分析是统计模型,某些因子模型是可以得到假设检验的;主成分分析主要综合原始数据的信息,而因子分析重在解释原始变量之间的关系.(6)SPSS 数据的实现:两者都通过“analyze data reduction Factor···”过程实现,但主成分分析主要使用“descriptires ”,“extraction ”,“stores ”对话框,而因子分析处使用这些外,还可使用“rotaction ”对话框进行因子旋转.7 试对第4题的变量作因子分析,并将结果和上面的结果进行比较. 解 用SPSS 分析,计算结果如下表6.6-6.8:表6.6 反应压缩比情况表 提取方法: 主成分法计算的相关系数矩阵的特征值和方差贡献率:表6.7 方差解释度提取方法: 主成分法表6.8 主成分矩阵8 为研究某一树种的叶片形态,选取50片叶测量其长度x 1(mm )和宽度x 2(mm ),按样本数据求得其平均值和协方差矩阵为:129048134,92,4845x x S ⎛⎫=== ⎪⎝⎭求出相关系数阵R ,并由R 出发作因子分析;解1)求相关系数矩阵:904810.7303,48900.73031S R ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭ 2)用R 软件求R 的特征根及其相应的特征向量,软件输出结果如下:$values[1] 2.99393809 0.07273809 $vectors[,1] [,2] [1,] 0.7071068 -0.7071068 [2,] 0.7071068 0.7071068122.9939,0.0727,λλ∴==12(),()0.7071,0.7071-0.7071,0.7071T Tηη==3) 求载荷矩阵A :1.22350.19071.22350.1907A -⎛⎫= ⎪⎝⎭4)22121.5333, 1.5333,h h == 0.98810.154*0.98810.154A -⎛⎫=⎪⎝⎭12121,1,0.3043,0.3043u u v v ===-=,222222000011112,0,()0.9074,20i i iii i i i i i A u B v C u v D u v =========-===∑∑∑∑9 1981年,生物学家Grogan 和Wirth 对两种蠓虫Af 和Apf 根据其触角长度x 1和翼长x 2进行了分类,分类的数据资料如下:Af 1 2 3 4 5 6 7 8 x 1 1.24 1.36 1.38 1.38 1.38 1.40 1.48 1.54 x 2 1.27 1.74 1.64 1.82 1.90 1.70 1.82 1.82 Apf 1 2 3 4 5 6 x 1 1.14 1.18 1.20 1.26 1.28 1.30 x 2 1.78 1.96 1.86 2.00 2.00 1.96(1)试建立Af 和Apf 的Fisher 判别模型;(2)对样本(1.24,1.80),(1.28,1.84),(1.40,2.04)进行判别分类.解 (1)建立Fisher 判别模型991122121111(,)(1.42,1.75),(,)(1.23,1.93)99T TT T i i i i i i x x y y μμ======∑∑120.08480.1490.01980.0218,0.1490.39120.02180.039A A ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭12120.0080.0130.0130.0332A A n n ⎛⎫+== ⎪+-⎝⎭∑()120.19,0.18Tμμ-=-,()()121 1.325,1.842T μμ+= 1345.05135.42135.4283.33--⎛⎫= ⎪-⎝⎭∑, 带入Fisher 判别函数 ()12345.05135.42[(,)(1.325,1.84)]0.19,0.18135.4283.33Tx x -⎛⎫-- ⎪-⎝⎭1291.301741.336944.534x x =--(2)把三个样本(1.24,1.80),(1.28,1.84),(1.4,2.04)带入模型,得到结果:三个样本均属于Apf 类.10 在两个玉米品种之间进行判别:137玉米G 1和甜玉米G 2,选取的两个变量是:x 1—玉米果穗长;x 2—玉米果穗直径,两个类的样本容量为n 1=n 2=40,实际算得两个类的样本均值和样本协方差为:121218.5625.348.120 4.4589.661 3.720,,,5.98 4.12 4.458 4.350 3.720 3.410x x S S ⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭试建立G 1,G 2的Bayes 类线性判别函数.解 因为已知两类的样本均值和样本协方差为:12(18.56,5.98),(25.34,4.12)T T x x ==,128.120 4.4589.661 3.720,4.458 4.350 3.720 3.410S S ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭可计算得到修正的公共协方差矩阵和逆矩阵12120.2280.1450.1450.0992A A n n ⎛⎫+== ⎪+-⎝⎭∑,1 5.6393.738.25147.38--⎛⎫= ⎪-⎝⎭∑()()()121216.78,1.86,21.95,5.052TT μμμμ-=-+= 带入Fisher 判别函数()112121(())()2T W x x μμμμ-=-+-∑ ()()12 5.6393.73[(,)21.95,5.05] 6.78,1.868.25147.38Tx x -⎛⎫=-- ⎪-⎝⎭1274.396.951141.29x x =-+-。
概率论与数理统计第三章课后习题及参考答案
概率论与数理统计第三章课后习题及参考答案1.设二维随机变量),(Y X 只能取下列数组中的值:)0,0(,)1,1(-,31,1(-及)0,2(,且取这几组值的概率依次为61,31,121和125,求二维随机变量),(Y X 的联合分布律.解:由二维离散型随机变量分布律的定义知,),(Y X 的联合分布律为2.某高校学生会有8名委员,其中来自理科的2名,来自工科和文科的各3名.现从8名委员中随机地指定3名担任学生会主席.设X ,Y 分别为主席来自理科、工科的人数,求:(1)),(Y X 的联合分布律;(2)X 和Y 的边缘分布律.解:(1)由题意,X 的可能取值为0,1,2,Y 的可能取值为0,1,2,3,则561)0,0(3833====C C Y X P ,569)1,0(381323====C C C Y X P ,569)2,0(382313====C C C Y X P ,561)3,0(3833====C C Y X P ,283)0,1(382312====C C C Y X P ,289)1,1(38131312====C C C C Y X P ,283)2,1(382312====C C C Y X P ,0)3,1(===Y X P ,563)0,2(381322====C C C Y X P ,563)1,2(381322====C C C Y X P ,0)2,2(===Y X P ,0)3,2(===Y X P .),(Y X 的联合分布律为:(2)X 的边缘分布律为X 012P1452815283Y 的边缘分布律为Y 0123P285281528155613.设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其他.,0,42,20),6(),(y x y x k y x f 求:(1)常数k ;(2))3,1(<<Y X P ;(3))5.1(<Y P ;(4))4(≤+Y X P .解:方法1:(1)⎰⎰⎰⎰--==+∞∞-+∞∞-422d d )6(d d ),(1yx y x k y x y x f ⎰--=42202d |)216(y yx x x k k y y k 8d )210(42=-=⎰,∴81=k .(2)⎰⎰∞-∞-=<<31d d ),()3,1(y x y x f Y X P ⎰⎰--=32102d d )216(yx yx x x ⎰--=32102d |)216(81y yx x x 83|)21211(81322=-=y y .(3)),5.1()5.1(+∞<<=<Y X P X P ⎰⎰+∞∞-∞---=5.1d d )6(81yx y x ⎰⎰--=425.10d d )6(81y x y x y yx x x d )216(81422⎰--=3227|)43863(81422=-=y y .(4)⎰⎰≤+=≤+4d d ),()4(y x y x y x f Y X P ⎰⎰---=2042d )6(d 81x y y x x ⎰+-⋅=202d )812(2181x x x 32|)31412(1612032=+-=x x x .方法2:(1)同方法1.(2)20<<x ,42<<y 时,⎰⎰∞-∞-=yxv u v u f y x F d d ),(),(⎰⎰--=y xv u v u 20d d )6(81⎰--=y xv uv u u 202d |)216(81⎰--=y v xv x x 22d )216(81y xv v x xv 222|)21216(81--=)1021216(81222x xy y x xy +---=,其他,0),,(=y x F ,∴⎪⎩⎪⎨⎧<<<<+---=其他.,0,42,20),1021216(81),(222y x x x xy y x xy y x F 83)3,1()3,1(==<<F Y X P .(3))42,5.1(),5.1()5.1(<<<=+∞<<=<Y X P Y X P X P )2,5.1()4,5.1(<<-<<=Y X P Y X P 3227)2,5.1()4,5.1(=-=F F .(4)同方法1.4.设随机变量),(Y X 的概率密度为⎩⎨⎧>>=--其他.,0,0,0,e ),(2y x A y x f y x 求:(1)常数A ;(2)),(Y X 的联合分布函数.解:(1)⎰⎰⎰⎰+∞+∞--+∞∞-+∞∞-==02d d e d d ),(1yx A y x y x f y x ⎰⎰+∞+∞--=002d e d e y x A y x2|)e 21(|)e (020A A y x =-⋅-=∞+-∞+-,∴2=A .(2)0>x ,0>y 时,⎰⎰∞-∞-=y xv u v u f y x F d d ),(),(⎰⎰--=yxv u vu 02d d e 2yv x u 020|)e 21(|)e (2---⋅-=)e 1)(e 1(2y x ----=,其他,0),(=y x F ,∴⎩⎨⎧>>--=--其他.,0,0,0),e 1)(e 1(),(2y x y x F y x .5.设随机变量),(Y X 的概率密度为⎩⎨⎧≤≤≤≤=其他.,0,10,10,),(y x Axy y x f 求:(1)常数A ;(2)),(Y X 的联合分布函数.解:(1)2121d d d d ),(11010⋅⋅===⎰⎰⎰⎰+∞∞-+∞∞-A y y x x A y x y x f ,∴4=A .(2)10≤≤x ,10≤≤y 时,⎰⎰∞-∞-=y xv u v u f y x F d d ),(),(⎰⎰=yxv u uv 0d d 4220202||y x v u yx =⋅=,10≤≤x ,1>y 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=100d d 4xv u uv 210202||x v u x =⋅=,10≤≤y ,1>x 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=100d d 4yu v uv 202102||y v u y =⋅=,1>x ,1>y 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=101d d 4v u uv 1||102102=⋅=v u,其他,0),(=y x F ,∴⎪⎪⎪⎩⎪⎪⎪⎨⎧>>≤≤>>≤≤≤≤≤≤=其他.,0,1,1,1,10,1,,1,10,,10,10,),(2222y x y x y y x x y x y x y x F .6.把一枚均匀硬币掷3次,设X 为3次抛掷中正面出现的次数,Y 表示3次抛掷中正面出现次数与反面出现次数之差的绝对值,求:(1)),(Y X 的联合分布律;(2)X 和Y 的边缘分布律.解:由题意知,X 的可能取值为0,1,2,3;Y 的可能取值为1,3.易知0)1,0(===Y X P ,81)3,0(===Y X P ,83)1,1(===Y X P ,0)3,1(===Y X P 83)1,2(===Y X P ,0)3,2(===Y X P ,0)1,3(===Y X P ,81)3,3(===Y X P 故),(Y X 得联合分布律和边缘分布律为:7.在汽车厂,一辆汽车有两道工序是由机器人完成的:一是紧固3只螺栓;二是焊接2处焊点,以X 表示由机器人紧固的螺栓紧固得不牢的数目,以Y 表示由机器人焊接的不良焊点的数目,且),(Y X 具有联合分布律如下表:求:(1)在1=Y 的条件下,X 的条件分布律;(2)在2=X 的条件下,Y 的条件分布律.解:(1)因为)3,3()1,2()1,1()1,0()1(==+==+==+====Y X P Y X P Y X P Y X P Y P 08.0002.0008.001.006.0=+++=,所以43)1()1,0()1|0(=======Y P Y X P Y X P ,81)1()1,1()1|1(=======Y P Y X P Y X P ,101)1()1,2()1|2(=======Y P Y X P Y X P ,401)1()1,3()1|3(=======Y P Y X P Y X P ,故在1=Y 的条件下,X 的条件分布律为X 0123P4381101401(2)因为)2,2()1,2()0,2()2(==+==+====Y X P Y X P Y X P X P 032.0004.0008.002.0=++=,所以85)2()0,2()2,0(=======X P Y X P X Y P ,4)2()1,2()2,1(=======X P Y X P X Y P ,81)2()2,2()2,2(=======X P Y X P X Y P ,故在2=X 的条件下,Y 的分布律为:Y 012P8541818.设二维随机变量),(Y X 的概率密度函数为⎩⎨⎧>>=+-其他.,0,0,0,e ),()2(y x c y x f y x 求:(1)常数c ;(2)X 的边缘概率密度函数;(3))2(<+Y X P ;(4)条件概率密度函数)|(|y x f Y X ,)|(|x y f X Y .解:(1)⎰⎰⎰⎰+∞+∞+-+∞∞-+∞∞-==0)2(d d e d d ),(1yx c y x y x f y x⎰⎰+∞+∞--=002d e d ey x c y x2|)e (|)e 21(002c c y x =-⋅-=∞+-∞+-,∴2=c .(2)0>x 时,⎰+∞∞-=y y x f x f X d ),()(⎰+∞+-=0)2(d e 2y y x x y x 202e 2|)e (e 2-+∞--=-=,0≤x 时,0)(=x f X ,∴⎩⎨⎧≤>=-.0,0,0,e 2)(2x x x f x X ,同理⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y .(3)⎰⎰<+=<+2d d ),()2(y x y x y x f Y X P ⎰⎰---=2202d d e 2xy x yx 422202e e 21d e d e 2-----+-==⎰⎰xy x y x .(4)由条件概率密度公式,得,当0>y 时,有⎩⎨⎧>=⎪⎩⎪⎨⎧>==----其他.其他.,0,0,e 2,0,0,e e 2)(),()|(22|x x y f y x f y x f xy y x Y Y X ,0≤y 时,0)|(|=y x f Y X ,所以⎩⎨⎧>>=-其他.,0,0,0,e 2)|(2|y x y x f x Y X ;同理,当0>x 时,有⎩⎨⎧>=⎪⎩⎪⎨⎧>==----其他.其他.,0,0,e ,0,0,2e e 2)(),()|(22|y y x f y x f x y f yx y x X X Y 0≤x 时,0)|(|=x y f X Y ,所以⎩⎨⎧>>=-其他.,0,0,0,e )|(|y x x y f y X Y .9.设二维随机变量),(Y X 的概率密度函数为⎩⎨⎧<<<<=其他.,0,0,10,3),(x y x x y x f求:(1)关于X 、Y 的边缘概率密度函数;(2)条件概率密度函数)|(|y x f Y X ,)|(|x y f X Y .解:(1)10<<x 时,⎰+∞∞-=y y x f x f X d ),()(203d 3x y x x==⎰,其他,0)(=x f X ,∴⎩⎨⎧<<=其他.,0,10,3)(2x x x f X ,密度函数的非零区域为}1,10|),{(}0,10|),{(<<<<=<<<<x y y y x x y x y x ,∴10<<y 时,⎰+∞∞-=x y x f y f Y d ),()()1(23d 321y x x y-==⎰,其他,0)(=y f Y ,∴⎪⎩⎪⎨⎧<<-=其他.,0,10),1(23)(2y y y f Y .(2)当10<<y 时,有⎪⎩⎪⎨⎧<<-=⎪⎪⎩⎪⎪⎨⎧<<-==其他.其他.,0,1,12,0,1,)1(233)(),()|(22|x y y x x y y xy f y x f y x f Y Y X ,其他,0)|(|=y x f Y X ,故⎪⎩⎪⎨⎧<<<<-=其他.,0,10,1,12)|(2|y x y y xy x f Y X .当10<<x 时,有⎪⎩⎪⎨⎧<<=⎪⎩⎪⎨⎧<<==其他.其他.,0,0,1,0,0,33)(),()|(2|x y x x y x x x f y x f x y f X X Y ,其他,0)|(|=x y f X Y ,故⎪⎩⎪⎨⎧<<<<=其他.,0,10,0,1)|(|x x y x x y f X Y .10.设条件密度函数为⎪⎩⎪⎨⎧<<<=其他.,0,10,3)|(32|y x yx y x f Y X Y 的概率密度函数为⎩⎨⎧<<=其他.,0,10,5)(4y y y f Y 求21(>X P .解:⎩⎨⎧<<<==其他.,0,10,15)|()(),(2|y x y x y x f y f y x f Y X Y ,则6447d )(215d d 15d d ),(21(121421211221=-===>⎰⎰⎰⎰⎰>x x x x y y x y x y x f X P xx .11.设二维随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧<<<<+=其他.,0,20,10,3),(2y x xyx y x f 求:(1)),(Y X 的边缘概率密度;(2)X 与Y 是否独立;(3))),((D Y X P ∈,其中D 为曲线22x y =与x y 2=所围区域.解:(1)10<<x 时,x x y xy x y y x f x f X 322d )3(d ),()(222+=+==⎰⎰+∞∞-,其他,0)(=x f X ,∴⎪⎩⎪⎨⎧<<+=其他.,0,10,322)(2x x x x f X ,20<<y 时,⎰+∞∞-=x y x f y f Y d ),()(316)d 3(12+=+=⎰y x xy x ,其他,0)(=y f Y ,∴⎪⎩⎪⎨⎧<<+=其他.,0,20,316)(y y y f Y .(2)),()()(y x f y f x f Y X ≠,∴X 与Y 不独立.(3)}22,10|),{(2x y x x y x D ≤≤<<=,∴⎰⎰+=∈102222d d )3()),((x xx y xy x D Y X P 457d )32238(10543=--=⎰x x x x .12.设二维随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧>>+=-其他.,0,0,0,e )1(),(2y x y x y x f x试讨论X ,Y 的独立性.解:当0>x 时,xx x X x yx y y x y y x f x f -∞+-∞+-∞+∞-=+-=+==⎰⎰e |11e d )1(e d ),()(002,当0≤x 时,0)(=x f X ,故⎩⎨⎧≤>=-.0,0,0,e )(x x x x f x X ,同理,可得⎪⎩⎪⎨⎧≤>+=.0,0,0,)1(1)(2y y y y f Y ,因为)()(),(y f x f y x f Y X =,所以X 与Y 相互独立.13.设随机变量),(Y X 在区域}|),{(a y x y x g ≤+=上服从均匀分布,求X 与Y 的边缘概率密度,并判断X 与Y 是否相互独立.解:由题可知),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧≤+=其他.,0,,21),(2a y x a y x f ,当0<<-x a 时,有)(1d 21d ),()(2)(2x a ay a y y x f x f xa x a X +===⎰⎰++-+∞∞-,当a x <≤0时,有)(1d 21d ),()(2)(2x a a y a y y x f x f x a x a X -===⎰⎰---+∞∞-,当a x ≥时,0d ),()(==⎰+∞∞-y y x f x f X ,故⎪⎩⎪⎨⎧≥<-=.a x a x x a a x f X ,0,),(1)(2,同理,由轮换对称性,可得⎪⎩⎪⎨⎧≥<-=.a y a y y a a y f Y ,0,),(1)(2,显然)()(),(y f x f y x f Y X ≠,所以X 与Y 不相互独立.14.设X 和Y 时两个相互独立的随机变量,X 在)1,0(上服从均匀分布,Y 的概率密度为⎪⎩⎪⎨⎧≤>=-.0,0,0,e 21)(2y y y f yY (1)求X 和Y 的联合概率密度;(2)设含有a 的二次方程为022=++Y aX a ,试求a 有实根的概率.解:(1)由题可知X 的概率密度函数为⎩⎨⎧<<=其他.,0,10,1)(x x f X ,因为X 与Y 相互独立,所以),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧><<==-其他.,0,0,10,e 21)()(),(2y x y f x f y x f yY X ,(2)题设方程有实根等价于}|),{(2X Y Y X ≤,记为D ,即}|),{(2X Y Y X D ≤=,设=A {a 有实根},则⎰⎰=∈=Dy x y x f D Y X P A P d d ),()),(()(⎰⎰⎰---==1021002d )e 1(d d e 2122xx y x x y⎰--=102d e12x x ⎰--=12e 21212x x ππππ23413.01)]0()1([21-=Φ-Φ-=.15.设i X ~)4.0,1(b ,4,3,2,1=i ,且1X ,2X ,3X ,4X 相互独立,求行列式4321X X X X X =的分布律.解:由i X ~)4.0,1(b ,4,3,2,1=i ,且1X ,2X ,3X ,4X 相互独立,易知41X X ~)84.0,16.0(b ,32X X ~)84.0,16.0(b .因为1X ,2X ,3X ,4X 相互独立,所以41X X 与32X X 也相互独立,又32414321X X X X X X X X X -==,则X 的所有可能取值为1-,0,1,有)1()0()1,0()1(32413241======-=X X P X X P X X X X P X P 1344.016.084.0=⨯=,)1,1()0,0()0(32413241==+====X X X X P X X X X P X P )1()1()0()0(32413241==+===X X P X X P X X P X X P 7312.016.016.084.084.0=⨯+⨯=,)0()1()0,1()1(32413241=======X X P X X P X X X X P X P 1344.084.016.0=⨯=,故X 的分布律为X 1-01P1344.07312.01344.016.设二维随机变量),(Y X 的概率密度为⎩⎨⎧>>=+-其他.,0,0,0,e 2),()2(y x y x f y x 求Y X Z 2+=的分布函数及概率密度函数.解:0≤z 时,若0≤x ,则0),(=y x f ;若0>x ,则0<-=x z y ,也有0),(=y x f ,即0≤z 时,0),(=y x f ,此时,0d d ),()2()()(2==≤+=≤=⎰⎰≤+zy x Z y x y x f z Y X P z Z P z F .0>z 时,若0≤x ,则0),(=y x f ;只有当z x ≤<0且02>-=xz y 时,0),(≠y x f ,此时,⎰⎰≤+=≤+=≤=zy x Z yx y x f z Y X P z Z P z F 2d d ),()2()()(⎰⎰-+-=zx z y x y x 020)2(d e 2d z z z ----=e e 1.综上⎩⎨⎧≤>--=--.0,0,0,e e 1)(z z z z F z z Z ,所以⎩⎨⎧≤<='=-.0,0,0,e )()(z z z z F z f z Z Z .17.设X ,Y 是相互独立的随机变量,其概率密度分别为⎩⎨⎧≤≤=其他.,0,10,1)(x x f X ,⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y 求Y X Z +=的概率密度.解:0<z 时,若0<x ,则0)(=x f X ;若0≥x ,则0<-=x z y ,0)(=-x z f Y ,即0<z 时,0)()(=-x z f x f Y X ,此时,0d )()()(=-=⎰+∞∞-x x z f x f z f Y X Z .10≤≤z 时,若0<x ,则0)(=x f X ;只有当z x ≤≤0且0>-=x z y 时0)()(≠-x z f x f Y X ,此时,z zx z Y X Z x x x z f x f z f ---+∞∞--==-=⎰⎰e 1d e d )()()(0)(.1>z 时,若0<x ,0)(=x f X ;若1>x ,0)(=x f X ;若10≤≤x ,则0>-=x z y ,此时,0)()(≠-x z f x f Y X ,z x z Y X Z x x x z f x f z f ---+∞∞--==-=⎰⎰e )1e (d e d )()()(1)(.综上,⎪⎩⎪⎨⎧<>-≤≤-=--.0,0,1,e )1e (,10,e 1)(z z z z f z z Z .18.设随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧>>+=+-其他.,0,0,0,e)(21),()(y x y x y x f y x (1)X 和Y 是否相互独立?(2)求Y X Z +=的概率密度.解:(1)),()()(y x f y f x f Y X ≠,∴X 与Y 不独立.(2)0≤z 时,若0≤x ,则0)(=x f X ;若0>x ,则0<-=x z y ,0),(=y x f ,此时,0d ),()(=-=⎰+∞∞-x x z x f z f Z .0≥z 时,若0≤x ,则0)(=x f X ;只有当z x <<0且0>-=x z y 时0),(≠y x f ,此时,⎰+∞∞--=x x z x f z f Z d ),()(⎰+-+=zy x x y x 0)(d e )(21⎰-=z z x z 0d e 21z z -=e 212,所以⎪⎩⎪⎨⎧≤>=-.0,0,0,e 21)(2z z z z f zZ .19.设X 和Y 时相互独立的随机变量,它们都服从正态分布),0(2σN .证明:随机变量22Y X Z +=具有概率密度函数⎪⎩⎪⎨⎧<≥=-.0,0,0,e )(2222z z z z f z Z σσ.解:因为X 与Y 相互独立,均服从正态分布),0(2σN ,所以其联合密度函数为2222)(2e 121),(σσπy x y xf +-⋅=,(+∞<<∞-y x ,)当0≥z 时,有⎰⎰≤+=≤+=≤=zy x Z yx y x f z Y X P z Z P z F 22d d ),()()()(22⎰⎰≤++-⋅=zy x y x y x 22222d e 1212)(2σσπ⎰⎰-⋅=πσθσπ2022d ed 12122zr r r ⎰-=zr r r 022d e122σσ,此时,2222e)(σσz Z z z f -=;当0<z 时,=≤+}{22z Y X ∅,所以0)()()(22=≤+=≤=z Y X P z Z P z F Z ,此时,0)(=z f Z ,综上,⎪⎩⎪⎨⎧<≥=-.0,0,0,e )(2222z z z z f z Z σσ.20.设),(Y X 在矩形区域}10,10|),{(≤≤≤≤=y x Y X G 上服从均匀分布,求},min{Y X Z =的概率密度.解:由题可知),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧≤≤≤≤=其他.,0,20,10,21),(y x y x f ,易证,X ~]1,0[U ,Y ~]2,0[U ,且X 与Y 相互独立,⎪⎩⎪⎨⎧≥<≤<=.1,1,10,,0,0)(x x x x x F X ,⎪⎪⎩⎪⎪⎨⎧≥<≤<=.2,1,20,2,0,0)(y y yy y F Y ,可得)](1)][(1[1)(z F z F z F Y X Z ---=)()()()(z F z F z F z F Y X Y X -+=⎪⎪⎩⎪⎪⎨⎧≥<≤-<=.1,1,10,223,0,02z z z z z ,求导,得⎪⎩⎪⎨⎧<<-=其他.,0,10,23)(z z z f Z .21.设随机变量),(Y X 的概率密度为⎩⎨⎧+∞<<<<=+-其他.,0,0,10,e ),()(y x b y x f y x (1)试确定常数b ;(2)求边缘概率密度)(x f X 及)(y f Y ;(3)求函数},max{Y X U =的分布函数.解:(1)⎰⎰⎰⎰+∞+-+∞∞-+∞∞-==01)(d d e d d ),(1yx b y x y x f y x ⎰⎰+∞--=10d e d e y x b y x)e 1(|)e(|)e (10102-+∞---=-⋅=b b y x ,∴1e11--=b .(2)10<<x 时,1)(1e1e d e e 11d ),()(--∞++--∞+∞--=-==⎰⎰x y x X y y y x f x f ,其他,0)(=x f X ,∴⎪⎩⎪⎨⎧<<-=--其他.,0,10,e 1e )(1x x f xX ,0>y 时,⎰+∞∞-=x y x f y f Y d ),()(yy x x -+--=-=⎰e d e e 1110)(1,0≤y 时,0)(=y f Y ,∴⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y .(3)0≤x 时,0)(=x F X ,10<<x 时,101e1e 1d e 1e d )()(----∞---=-==⎰⎰xxt xX X t t t f x F ,1≥x 时,1)(=x F X ,∴⎪⎪⎩⎪⎪⎨⎧≥<<--≤=--.1,1,10,e 1e1,0,0)(1x x x x F x X ;0≤y 时,0)(=y F Y ,0>y 时,y yv y Y Y v v v f y F --∞--===⎰⎰e 1d e d )()(0,∴⎩⎨⎧≤>-=-.0,0,0,e 1)(y y y F y Y ,故有)()()(y F x F u F Y X U =⎪⎪⎩⎪⎪⎨⎧≥-<≤--<=---.1,e 1,10,e 1e1,0,01u u u uu .。
《应用数理统计》习题解答
2214243.(1)[||]0.140(2)[||]0.144(,4),(,),(0,)[||]20.1800255(3){||0.1}2(10.9521.9615372tnE a D nnE aN a N a t a NnnE t t dtnP t Pnξξξξξξπ-+∞-==≤⇒=-≤=-==≤==≤=≤=Φ-≥=⇒≥⎰《应用数理统计》参考答案习题一0.51.(,0.5)(,){||0.1}0.9972.97442N a N anP a Pnξξξξ⇒-<=<==⇒=2242.(,4)(,)100||(1)(||)()0.90,0.330.20.2(2):P(||)N a N aa UP a U P Uaξξξξσξεε⇒--<=<==-≥≤挈比学夫不等式(5)(5)125515(3){15}1{15}1{15,15,,15}1215121[{}]221[1(1.5)]0.292P P P P ξξξξξξ>=-≤=-≤≤≤--=->=--Φ=1121212111()(1){}{,,,}{1,1,,1}()()(1)(1)k n n nn m nm n m n m ni i P k pq P M m P m m m P m m m pqpq q q ξξξξξξξ----======≤≤≤-≤-≤-≤-=-=---∑∑4.5. 6. 13.0)25(1}8.012138.012{}13{)54,12(~)1()4,12(~=Φ-=->-=>ξξξξP P N N (1)(1)1255511515(2){10}1{10}1{10,10,,10}1[{10}]1[1{10}]1210121[1{}]221[11(1)]0.579P P P P P P ξξξξξξξξ<=-≥=->>>=->=--≤--=--≤=--+Φ=6(1)0.001567.2800~(0.0015)(1){800}[{800}][0.0015]x E P P e dx e ξξξ∞-->=>==⎰6(6)30000.00156 4.56(2){3000}[{3000}][0.0015](1)x P P e dx e ξξ--<=<==-⎰1212(2){}{,,,}{1,1,,1}n n nn P K k P k k k P k k k ξξξξξξ==≥≥≥-≥+≥+≥+7.8.均值的和(差)等于和的均值,方差的和差都等于方差的和9.由中心极限定理:10.11.22222(1)(1)(1)()222~()()()[()](,)it itit n e n n e n e it i t t tn it it n n nn p t e t t ee n e e e N n λξλλξξλλλλλξλϕϕϕλξλ---+--∴=∴======∴12121233~(20,3),~(20,),~(20,)10151~(0,)2{||0.3}1220.67N N N N P P ξξξξξξξξξ-∴->=->=-Φ=2(),(),E a D ξξσ==121(0,1)(0,1)~(,)n n i i i ni i na a n N N N a n nξξσξσξ==--∴∴=∑∑∑22222222,(),()()(),(),(),(,)k k k k k k k k k k k k k kk k E a E a D E E a a a a E A a D A n a a A N a nξξξξξ===-=--∴==-∴22121212222(),()(),()0,()()()2,()()()2,i i E E a D D E D D D E E D ξξξξσξξξξξξσξξξξξξσ====∴-=-=+=∴-=-+-=13.14.15.16.2212221221,(),(),()()0,()()()(1),11[()](1)1niii ii i iniiniiE a E a D DnE D D DnDn D nDES n Dn nE ES Dn n nσξξξσξξξξξξξσξξξξξξξ=======∴-=-=+--===--==--∑∑∑222222222424222(1),11()(1)()2(1)21 ()2(1)() nsnns nE n Es On nns nD n Ds On n n χσσσσσσσ--=-⇒==+-=-⇒==+112323''' '2(121)(1)()()()()5231()(121)23023021AD E E E EA E E A AVar Aξξξξξξηξηηηηηξξξξξ⎛⎫⎪-+=-==⎪⎪⎝⎭=--=--⎛⎫⎛⎫⎪⎪==--=⎪⎪⎪⎪⎝⎭⎝⎭11223''''110(2)(,)111()()()()5231()(121)23023021BE E E EB E E B BVar Bξηηηξξξηηηηξξξξξ⎛⎫⎛⎫ ⎪===⎪ ⎪⎝⎭ ⎪⎝⎭∑=--=--⎛⎫⎛⎫⎪⎪==--=⎪⎪⎪⎪⎝⎭⎝⎭11222211()2822121(2)||2241128116xx xxe dx dxπ⎛⎫⎛⎫- ⎪⎪∞∞⎝⎭⎝⎭-∞-∞-=∑-⎛⎫⎛⎫∑==⎪ ⎪-⎝⎭⎝⎭⎰⎰17.18.21.22.()11223'122'111110(,),211151,1101221111111100130111100310110N A A AAA Aξηξηξηηθθ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭∑⎛⎫⎛⎫⎛⎫⎪==⎪ ⎪⎪⎝⎭⎝⎭⎪⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪∑=-=⎪ ⎪⎪⎪⎝⎭⎝⎭⎪⎪⎝⎭⎝⎭‘=,由引理1.2.3,则-的联合分布为--11223''12111111~(,),1011111432111111121301111210.2N A A AA Aξηξξηξηθρρρρρρρρρηη⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪-⎝⎭⎝⎭ ⎪⎝⎭∴∑⎛⎫⎛⎫+--⎛⎫⎛⎫⎪⎪∑=-=⎪ ⎪⎪⎪---⎝⎭⎝⎭⎪⎪-⎝⎭⎝⎭∴--=⇒=-==A,--时与独立2''44''22'''''' 44224(0,)(,)()()2()()()()()cov(,)(,)()() ()()2()()()2()nN IE A B tr A tr B tr ABE A E B tr A tr BA B E A B E A E Btr A tr B tr AB tr A tr B tr AB ζσζζζζσσζζζζσσζζζζζζζζζζζζσσσσσ=+=∴=-=+-=()11112222121122,1,1,0822177,122477yay y Qyba babθθθθθθθ--⎛⎫⎛⎫--=⎪⎪-⎝⎭⎝⎭⇒===-=⎛⎫⎪⎛⎫⎛⎫∴=∑== ⎪⎪ ⎪⎪⎝⎭⎝⎭⎪⎝⎭23.24.又 则令 则与 独立,则 与独立,且26.则2212221~(,),~(0,),~(1),(0,1)/(1)n n N a N n n ns n N T t n σξξξσξξχσξξ++----=-'11111(,,),(,,)111(,,),()11n n n ij n n n n i i i ia a B D nn n ξξθξσσσσδσσ⨯======-∑∑'2,0,D D D BD ===221(,)(,)1()n ni i nnB N a N I ηξθσσ===∑,i i i aξγσ-=2'11,()()()ni i i a D n ηγζγγξθξθσ=-==-=--∑∑B nηξ=ξηζ)1(~2-n χζ11(,)22U ξθθ-+(1)()121111221111()2201()121()()[1()]1[]21()()[()][]2(,)(1)()()[()()](1)[]n x n n n n n n n x f x other F x dx x f x nf x F x n x f x nf x F x n x f x y n n f x f y F y F x n n y x ξξθξξθθθθθ-------⎧-<<+⎪=⎨⎪⎩==-+∴=-=⋅⋅-+==⋅+-=--=⋅-⋅-⎰27.33.2222122222212222(0,),1()||2 ()()()()22(1)iyniniiY a NE d Y dynaD dE d E d Ennn nσξσσξσσσπσσσππ-∞-∞===-==-=-=-=⋅-=-∑⎰∑2222122122210.3(0,0.3),(0,)1010()(9)0.310()100.18{}0.30.3{(2}0.01iniiniiniN NPPξξξξχξξξ===--⨯<=<=∑∑∑222(2)(0,1),(1)0.3(9){0.9}0.9932nsN ntP Psnξχσξξξ--<=<=12121222221221212(3)(0,0.18),(0,0.18)(0,1),(0,1)0.18(1),()(1)0.18{()40}0.9N NN NPξξξξχχξξξξ+-+-+<=-224132244(4)~(1),~(0,0.12),10.73 {10.73}{}0.95NP Pξχξξξξ-<=<=34.《应用数理统计》参考答案2211222212222211(1)(0,),(0,)(1),()(1)11,()()(2)nn miii i n nniii nn mi i i i n N n N m n m m a b n m a b n m ξσξσξξχχσσσξξχ+==+=+==+--==++-∑∑∑∑∑∑222211112(2)(),(0,)(0,1),/(),n mni ii n i nniii i i m N n N t m c m n ξχξσσξξσσ+=+===∴=∑∑∑∑∑2222221121221(3)(),()()/(1,1),/nn mi i i i n ni i n mi i n n m n mF n m d nm ξξχχσσξσξσ+==+=+=+--∴=∑∑∑∑1. 由矩估计法2. (1) 由矩估计法(2)(3)(4)(5)818226212266174.00281610(74.002)88610 6.85710181ii i i a X x S x n S S n σ=-=--⎧===⎪⎪⎨⎪==⨯=-⎪⎩∴==⨯⨯=⨯--∑∑11'1202()33A x EX x dx θαξθθαξθθξ==-====∴=⎰111'101(1)2211A EX x x dx θαξθαθξθξθξ==+==+==+-∴=-⎰1211211122222221212222222121112()2x x n i i e xdx e x dx A X n A S S S θθθθθθαθθξθαθθξθξθξθθξθξθ--+∞--+∞==⋅=+==⋅===+∴=+==-+⎧=-⎪∴⎨=⎪⎩⎰∑⎰111(1)122Ni N NA x N NN ξξ=+===⋅⇒=∑11102()1A dx ξξθξ===⇒=-⎰2∞3.4.2()2{0},(){0}{}()0.7,110.7,0.525x aA X AP A P dxa aP a pp aξξξ--=<=<=--=<=Φ-=≈∴≈=-⎰设表示出现的次数,(1)11111(1)()ln()[ln ln(1)ln]ln()1[ln ln]ln ln0 ln lnniiniin ni ii iniiL c xL c xLc x n c xnnx n cθθθθθθθθθθθθθ-+=======+-+∂=+-=+-=∂=-∏∑∑∑∑1111221(2)()ln()[ln1)ln]ln()]0(ln)niniiniiniiLL xLxnxθθθθθ======+∂=+=∂=∑∑∑11()()()()11(3)()ln()lnln()11,,,,()0,0,11,()()nnin nn nnn nnnLL nL nLother otherL Lθθθθθθθθξξθξθθθθθξθξθξ====-∂=-=∂⎧⎧≤≤⎪⎪==⎨⎨⎪⎪⎩⎩≤≤=∏11()()()()11(3)()ln()lnln()11,,,,()0,0,11,()()nnin nn nnn nnnLL nL nLother otherL Lθθθθθθθθξξθξθθθθθξθξθξ====-∂=-=∂⎧⎧≤≤⎪⎪==⎨⎨⎪⎪⎩⎩≤≤=∏5.221()212212241(5)()()ln()[ln]22()2()ln()[022in xiniini iiLxLx xLθθθθθθθθθθθθθξθ--====-=-----∂==∂=∑∑(1)11(1)11(1)(1)(6)()ln()[ln ln(1)ln]ln()(),,,()()nc ciiniinc ci niL c xL c c c xL ncL c xL Lθθθθθθθθθθθξξθξθξ-+==-+===--+∂=-=∂=≤≤⇒=∏∑∏不能解出,所以由22111(7)()1)(1)ln()[2ln(2)ln(1)ln(1)]2ln()22]01inxiini iiniiL xL x xx nL nθθθθθθθθθθθξ-====--=+--+--∂=-=⇒=∂-∏∑∑(~(,0)11nUξθ∏6.7.所以不唯一。
清华大学 杨虎 应用数理统计课后习题参考答案3
习题五1试检验不同日期生产的钢锭的平均重量有无显著差异?(α=0.05) 解 根据问题,因素A 表示日期,试验指标为钢锭重量,水平为5.假设样本观测值(1,2,3,4)ij y j =来源于正态总体2~(,),1,2,...,5i i Y N i μσ= .检验的问题:01251:,:i H H μμμμ===L 不全相等 .计算结果:表5.1 单因素方差分析表注释: 当=0.001表示非常显著,标记为 ‘***’,类似地,= 0.01,0.05,分别标记为 ‘**’ ,‘*’ .查表0.95(4,15) 3.06F =,因为0.953.9496(4,15)F F =>,或p = 0.02199<0.05, 所以拒绝0H ,认为不同日期生产的钢锭的平均重量有显著差异.2 考察四种不同催化剂对某一化工产品的得率的影响,在四种不同催化剂下分别做试验 试检验在四种不同催化剂下平均得率有无显著差异?(α=0.05)解根据问题,设因素A 表示催化剂,试验指标为化工产品的得率,水平为4 .假设样本观测值(1,2,...,)ij i y j n =来源于正态总体2~(,),1,2,...,5i i Y N i μσ= .其中样本容量不等,i n 分别取值为6,5,3,4 .检验的问题:012341:,:i H H μμμμμ===不全相等 .计算结果:表5.2 单因素方差分析表查表0.95(3,14) 3.34F =,因为0.952.4264(3,14)F F =<,或p = 0.1089 > 0.05,所以接受0H ,认为在四种不同催化剂下平均得率无显著差异 .3 试验某种钢的冲击值(kg ×m/cm2),影响该指标的因素有两个,一是含铜量A ,另试检验含铜量和试验温度是否会对钢的冲击值产生显著差异?(α=0.05) 解 根据问题,这是一个双因素无重复试验的问题,不考虑交互作用.设因素,A B 分别表示为含铜量和温度,试验指标为钢的冲击力,水平为12.假设样本观测值(1,2,3,1,2,3,4)ij y ij ==来源于正态总体2~(,),1,2,3,ij ij Y N i μσ=1,2,3,4j = .记i α⋅为对应于i A 的主效应;记j β⋅为对应于j B 的主效应;检验的问题:(1)10:i H α⋅全部等于零,11:i H α⋅不全等于零;(2)20:j H β⋅全部等于零,21:j H β⋅不全等于零; 计算结果:表5.3 双因素无重复试验的方差分析表查表0.95(2,6) 5.143F =,0.95(3,6) 4.757F =,显然计算值,A B F F 分别大于查表值,或p = 0.0005,0.0009 均显著小于0.05,所以拒绝1020,H H ,认为含铜量和试验温度都会对钢的冲击值产生显著影响作用.设每个工人在每台机器上的日产量都服从正态分布且方差相同 .试检验:(α=0.05)1)操作工之间的差异是否显著? 2)机器之间的差异是否显著?3)它们的交互作用是否显著?解 根据问题,这是一个双因素等重复(3次)试验的问题,要考虑交互作用.设因素,A B 分别表示为机器和操作,试验指标为日产量,水平为12. 假设样本观测值(1,2,3,1,2,3,4)ijk y i j ==来源于正态总体2~(,),1,2,3,ij ij Y N i μσ= 1,2,3,4j =,1,2,3k = .记i α⋅为对应于i A 的主效应;记j β⋅为对应于j B 的主效应;记ij γ为对应于交互作用A B ⨯的主效应; 检验的问题:(1)10:i H α⋅全部等于零,11:i H α⋅不全等于零; (2)20:j H β⋅全部等于零,21:j H β⋅不全等于零; (3)30:ij H γ全部等于零,31:ij H γ不全等于零;计算结果:表5.4 双因素无重复试验的方差分析表查表0.95(3,24) 3.01F =,0.95(2,24) 3.4F =,0.95(6,24) 2.51F =,计算值 3.01,A F <3.4, 2.51B A B F F ⨯>>,或0.05A p >>,而,B A B p p ⨯均显著小于0.05,所以拒绝2030,H H ,接受10H ,认为操作工之间的差异显著,机器之间的差异不显著,它们之间的交互作用显著 . 5 某轴承厂为了提高轴承圈退火的质量,制定因素水平分级如下表所示因素 上升温度℃ 保温时间(h)出炉温度℃水平1 800 6 400 水平28208500试填好正交试验结果分析表并对试验结果进行直观分析和方差分析 .解 根据题意,这是一个3因素2水平的试验问题 .试验指标为硬度的合格率 .应选择正交表44(2)L 来安排试验,随机生成正交试验表如下:方差来源 自由度 平方和 均方 F 值 P 值 因素A 因素B 相互效应A ×B误差 总和3 2 6 24 352.750 27.167 73.5 41.333 144.750.917 13.583 12.250 1.7220.5323 7.8871 7.11290.6645 0.00233** 0.00192**由此可见第三号试验条件为:上升温度800℃、保温时间6h 、出炉温度500℃ . 直观分析需要计算K 值,计算结果如下:表5.6 计算表直观分析 由计算的K 值知,因素A 、B 、C 的极差分别为70,40,40,因此主次关系为A B C >=,B ,C 相当 .由于试验指标为硬度的合格率,应该是越大越好,所以各确定因素的水平分别是121,,A B C ,即最佳的水平组合是121A B C ,即最佳搭配为:上升温度800℃、保温时间8h 、出炉温度400℃.采用方差分析法,计算得下表:表5.7 方差分析表方差来源平方和 自由度均方差 F 值 A 1225 1 1225 1 B 400 1 400 0.33 C 400 1 400 0.33 误差 1225 1 1225 总和32504如果显著性检验水平取0.1α=,则查表得0.9(1,1)39.9F =,显然计算的F 值1,0.33A B C F F F ===均小于查表值,所以认为三个因素对结果影响都显著 .6问应选用哪张正交表安排试验,并写出第8号试验的条件;如果9组试验结果为(单位:kg/100m 2):62.925,57.075,51.6,55.05,58.05,56.55,63.225,50.7,54.45,试对该正交试验结果进行直观分析和方差分析.解 该问题属于3因素3水平的试验问题,试验指标为水稻产量 .根据题意应选择正交表49(3)L 来安排试验,随机生成正交表如下:由表可知,第8号试验的条件:品种(A 3)珍珠矮11号,插值密度(B 2)3.75棵/100m 2 ,施肥量(C 1)0.75kg/100m 2纯氨; 直观分析需要计算K 值,计算结果如下:表5.9 计算表同上题进行直观分析,得出K 值的大小关系为:111312212223333132,,K K K K K K K K K >>>>>>由直观分析看出:本例较好的水平搭配是:113A B C 采用方差分析法,计算得下表:表5.10 方差分析表方差来源平方和自由度 均方差F 值A 1.759 2 0.879 0.0223B 65.861 2 32.931 0.8361C 6.660 2 3.330 0.0845 误差78.776 239.388 39.3880.9(2,2)9F =,所以认为三个因素对结果影响都不显著.7 在阿魏酸的合成工艺考察中,为了提高产量,选取了原料配比A ,吡啶量B 和反应时间C 三个因素,它们各取了7个水平如下:原料配比A :1.0,1.4,1.8,2.2,2.6,3.0,3.4 吡啶量B :10,13,16,19,22,25,28 反应时间C :0.5,1.0,1.5,2.0,2.5,3.0,3.5试选用合适的均匀设计表安排试验,并写出第7号试验的条件;如果7组试验的结果(收率)为:0.33,0.336,0.294,0.476,0.209,0.451,0.482,试对该均匀试验结果进行直观分析并通过回归分析发现可能更好的工艺条件.解 根据题意选择均匀设计表47(7)U 来安排试验,有3个因素,根据使用表,实验安排如:表5.11 试验安排表6 6 5 4 0.4517 7 7 7 0.482 所以第7号实验的条件为:原配料比3.4,吡啶量28ml,反应时间3.5h.通过直观分析,最好的实验条件是:原配料比3.4,吡啶量28ml,反应时间3.5h. 通过回归分析,最合适的实验条件是:原配料比2.6,吡啶量16ml,反应时间0.5h.习题六1 从某中学高二女生中随机选取8名,测得其升高、体重如下:1 2 3 4 5 6 78身高(cm)160 159 160 157 169 162 165 154体重(kg)49 46 53 41 49 50 48 43在绝对距离下,试用最短距离法和离差平方和法对其进行聚类分析.解由R软件,用最短距离(左)和差离平方和法(右)对题目进行聚类分析如下图6.1,表6.1和表6.2:最短距离法离差平方和法图6.1 聚类树形图表6.1 聚类附表(最短距离法)步骤聚类合并系数首次出现的阶段类别下一步组1 组2 组1 组21 1 6 5.000 0 0 22 1 2 10.000 1 0 43 4 8 13.000 0 0 74 1 7 13.000 2 0 55 1 3 13.000 4 0 66 1 5 17.000 5 0 7表6.2 聚类附表(离差平方和法)2 已知五个变量的距离矩阵为03674012340444401592343331).;2);3)036034022020401000⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭试用最短距离法和最长距离法对这些变量进行聚类,并画出聚类图和二分树.解 针对距离矩阵1),采用两种方法计算如下. ①最短距离法的聚类步骤如下:12345036740159036020w w w w w ⎛⎫ ⎪⎪ ⎪ ⎪⎪⎪⎝⎭a )将()236,1w w f h =合并为一类,,{}11456,,,,H w w w h =距离矩阵如下0743023060⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭{}()457457),,,2b w w h w w f h ==合并为一类,{}2167,,,H w h h =距离矩阵如下:034030⎛⎫ ⎪⎪ ⎪⎝⎭{}()()1681689),,3,3c w h h w h f h f h ===合并为一类,最后,,聚类图和树状图如图6.2:图6.2 聚类图(左)与树状图(右)②最长距离法与最短距离法类似,步骤如下: a )()236,1w w f h =合并为一类,{}11456,,,,H w w w h =距离矩阵如下0746025090⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭ {}(){}4574572167),,,2,,,b w w h w w f h H w h h ===合并为一类,距离矩阵如下:067090⎛⎫⎪⎪ ⎪⎝⎭{}()()1681689),,69c w h h w h f h f h ===合并为一类,最后,,,聚类图和树状图如图6.3:图6.3 聚类图(左)与树状图(右)(2)针对距离矩阵2)012340234034040⎛⎫ ⎪⎪ ⎪ ⎪⎪⎪⎝⎭①最短距离法的聚类步骤如下 a )()216,1w w f h =合并为一类,{}13456,,,,0342043040H w w w h =⎛⎫⎪⎪ ⎪ ⎪⎝⎭距离矩阵如下{}()367367),,,2b w h h w h f h ==合并为一类,{}24567,,,,H w w h h =聚类矩阵如下:043040⎛⎫⎪⎪ ⎪⎝⎭{}(){}()4784789879),,3,,4c w h h w h f h h w h f h ====合并为一类,最后,,聚类图和树状图如图6.4:图6.4 聚类图(左)与树状图(右)②由于本题数据的特殊性,最长距离法与最短距离法结果相同(略). (3)044440333022010⎛⎫ ⎪⎪ ⎪ ⎪⎪⎪⎝⎭最短距离法的聚类步骤如下a ) ()456,1w w f h =合并为一类,{}11236,,,,H w w w h =距离矩阵如下0444033020⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭{}(){}36736724567),,,2,,,,b w h h w h f h H w w h h ===合并为一类,距离矩阵如下:044030⎛⎫⎪⎪ ⎪⎝⎭{}(){}()4784789879),,3,,4c w h h w h f h h w h f h ====合并为一类,最后,,,聚类图和树状图如图6.5:图6.5 聚类图(左)与树状图(右)由于本题数据的特殊性,最长距离法与最短距离法结果相同(略).3 在一项关于作物对土壤营养的反应的研究中,要测定土壤的总磷量和总氮量(占干物质重的百分比),今对10份土样测得数据如下:总氮量(%)0.63 1.19 2.30 1.29 0.73 0.52 0.33 0.61 0.47 0.66在绝对距离下,试用重心法对其进行聚类分析.解由R软件得到重心法聚类分析的结果如图6.6与表6.3:图6.6 聚类树形图表6.3 聚类过程记录表步骤聚类合并系数首次出现的阶段类别下一步组 1 组 2 组 1 组 21 1 8 .001 0 0 22 1 10 .002 1 0 43 6 9 .005 0 0 64 15 .010 2 0 75 2 4 .010 0 0 86 67 .027 3 0 77 1 6 .048 4 6 88 1 2 .459 7 5 99 1 3 2.572 8 0 04 1975年Dagnelie收集了11年的气象数据资料如下表变量年序x1x2x3x4其中:x 1—前一年11月12日的降水量;x 2—7月均温;x 3—7月降雨量;x 4—月日辐射,试对这四个气象因子进行主成分分析. 解 由R 软件分析得到如下表6.4,6.5:表6.4 各主成分的重要性:主成分1 主成分2 主成分3 主成分4 标准差 1.6103349 0.9890848 0.53407741 0.37854199 方差贡献率 0.6482947 0.2445722 0.07130967 0.03582351 累积贡献率0.64829470.89286680.964176491.00000000表6.5 因子荷载:主成分1 主成分2 主成分3 主成分4 X1 0.291 0.871 0.332 -0.214 X2 -0.506 0.425 -0.742 -0.111 X3 0.577 0.136 -0.418 0.688 X4-0.5710.2050.4040.685由于前两个主成分对应的累积贡献率已经达到89.287,因此选取主成分的数目为2.5 对某初中12岁的女生进行体检,测量其身高x 1、体重x 2、胸围x 3和坐高x 4,共测得58个样本,并算得1234(,,,)x x x x x ='的样本协方差为19.9410.5023.566.5919.7120.958.637.97 3.937.55S ⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭ 试进行样本主成分分析.解 首先计算样本的相关系数矩阵:10.484410.32240.887210.70330.59760.31251⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭设相关系数矩阵的特征值和特征向量分别为d 和v 阵,计算得到0.0546000 0 0.312600= 000.96470 000 2.6681d ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭即四个特征值依次为:2.6681,0.9647,0.3126,0.0546,前两个主成分的累计贡献率为:90.8471%,因此提取主成分为2.四个特征根相应的特征向量为0.06000.70600.5333 0.4620 0.7317 0.17430.34040.5642=0.60570.19320.60400.48060.30690.65870.48460.4870v -⎛⎫ ⎪-⎪ ⎪--- ⎪-⎝⎭ 因此,两个主成分的表达式为:112340.060.73170.60570.3069z x x x x =+-- 212340.7060.17430.19320.6587z x x x x =-+-+6 比较因子分析和主成分分析模型的异同,阐明两者的关系. 解(1)提取公因子的方法主要有主成分法和公因子法.若采取主成分法,则主成分分析和因子分析基本等价,该法从解释变量的变异的角度出发,尽量使变量的方差能被主成分解释;而公因子法主要从解释变量的相关性角度,尽量使变量的相关程度能被公因子解释,当因子分析目的重在确定结构时则用到该法.(2)主成分分析和因子分析都是在多个原始变量中通过他们之间的内部相关性来获得新的变量,达到既减少分析指标个数,又能概括原始指标主要信息的目的.但他们各有其特点:主成分分析是将n 个原始变量提取m 个支配原始变量的公因子,和1个特殊因子,各因子之间可以相关或不相关.(3)统用降维的方法,但差异也很明显:主成分分析把方差划分为不同的正交成分,而因子分析则把方差化分为不同的起因因子;因子分析中的特征值的计算只能从相关系数矩阵出发,且必须把主成分划分为因子.(4)因子分析提取的公因子比主成分分析提取的主成分更具有可解释性.(5)两者分析的实质及重点不同.主成分的数学模型为Y AX =,因子分析的数学模型为X AF ε=+.因而可知主成分分析是实际上是线性变换,无假设检验,而因子分析是统计模型,某些因子模型是可以得到假设检验的;主成分分析主要综合原始数据的信息,而因子分析重在解释原始变量之间的关系.(6)SPSS 数据的实现:两者都通过“analyze data reduction Factor···”过程实现,但主成分分析主要使用“descriptires ”,“extraction ”,“stores ”对话框,而因子分析处使用这些外,还可使用“rotaction ”对话框进行因子旋转.7 试对第4题的变量作因子分析,并将结果和上面的结果进行比较. 解 用SPSS 分析,计算结果如下表6.6-6.8:表6.6 反应压缩比情况表 提取方法: 主成分法计算的相关系数矩阵的特征值和方差贡献率:表6.7 方差解释度提取方法: 主成分法表6.8 主成分矩阵8 为研究某一树种的叶片形态,选取50片叶测量其长度x 1(mm )和宽度x 2(mm ),按样本数据求得其平均值和协方差矩阵为:129048134,92,4845x x S ⎛⎫=== ⎪⎝⎭求出相关系数阵R ,并由R 出发作因子分析;解1)求相关系数矩阵:904810.7303,48900.73031S R ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭ 2)用R 软件求R 的特征根及其相应的特征向量,软件输出结果如下:$values[1] 2.99393809 0.07273809 $vectors[,1] [,2] [1,] 0.7071068 -0.7071068 [2,] 0.7071068 0.7071068122.9939,0.0727,λλ∴==12(),()0.7071,0.7071-0.7071,0.7071T Tηη==3) 求载荷矩阵A :1.22350.19071.22350.1907A -⎛⎫= ⎪⎝⎭4)22121.5333, 1.5333,h h == 0.98810.154*0.98810.154A -⎛⎫= ⎪⎝⎭12121,1,0.3043,0.3043u u v v ===-=,222222000011112,0,()0.9074,20i i iii i i i i i A u B v C u v D u v =========-===∑∑∑∑9 1981年,生物学家Grogan 和Wirth 对两种蠓虫Af 和Apf 根据其触角长度x 1和翼长x 2进行了分类,分类的数据资料如下:Af 1 2 3 4 5 6 7 8 x 1 1.24 1.36 1.38 1.38 1.38 1.40 1.48 1.54 x 2 1.27 1.74 1.64 1.82 1.90 1.70 1.82 1.82 Apf 1 2 3 4 5 6 x 1 1.14 1.18 1.20 1.26 1.28 1.30 x 2 1.78 1.96 1.86 2.00 2.00 1.96 (1)试建立Af 和Apf 的Fisher 判别模型;(2)对样本(1.24,1.80),(1.28,1.84),(1.40,2.04)进行判别分类. 解 (1)建立Fisher 判别模型991122121111(,)(1.42,1.75),(,)(1.23,1.93)99T TT T i i i i i i x x y y μμ======∑∑120.08480.1490.01980.0218,0.1490.39120.02180.039A A ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭12120.0080.0130.0130.0332A A n n ⎛⎫+== ⎪+-⎝⎭∑()120.19,0.18Tμμ-=-,()()121 1.325,1.842T μμ+= 1345.05135.42135.4283.33--⎛⎫= ⎪-⎝⎭∑, 带入Fisher 判别函数 ()12345.05135.42[(,)(1.325,1.84)]0.19,0.18135.4283.33Tx x -⎛⎫-- ⎪-⎝⎭1291.301741.336944.534x x =--(2)把三个样本(1.24,1.80),(1.28,1.84),(1.4,2.04)带入模型,得到结果:三个样本均属于Apf 类.10 在两个玉米品种之间进行判别:137玉米G 1和甜玉米G 2,选取的两个变量是:x 1—玉米果穗长;x 2—玉米果穗直径,两个类的样本容量为n 1=n 2=40,实际算得两个类的样本均值和样本协方差为:121218.5625.348.120 4.4589.661 3.720,,,5.98 4.12 4.458 4.350 3.720 3.410x x S S ⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭试建立G 1,G 2的Bayes 类线性判别函数.解 因为已知两类的样本均值和样本协方差为:12(18.56,5.98),(25.34,4.12)T T x x ==,128.120 4.4589.661 3.720,4.458 4.350 3.720 3.410S S ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭可计算得到修正的公共协方差矩阵和逆矩阵12120.2280.1450.1450.0992A A n n ⎛⎫+== ⎪+-⎝⎭∑,15.6393.738.25147.38--⎛⎫= ⎪-⎝⎭∑()()()121216.78,1.86,21.95,5.052TTμμμμ-=-+= 带入Fisher 判别函数()112121(())()2T W x x μμμμ-=-+-∑ ()()12 5.6393.73[(,)21.95,5.05] 6.78,1.868.25147.38Tx x -⎛⎫=-- ⎪-⎝⎭1274.396.951141.29x x =-+-。
清华大学 杨虎 应用数理统计课后习题参考答案2
习题三1 正常情况下,某炼铁炉的铁水含碳量2(4.55,0.108)X N .现在测试了5炉铁水,其含碳量分别为 4.28,4.40,4.42,4.35,4.37. 如果方差没有改变,问总体的均值有无显著变化?如果总体均值没有改变,问总体方差是否有显著变化(0.05α=)?解 由题意知 2~(4.55,0.108),5,0.05X N n α==,1/20.975 1.96u u α-==,设立统计原假设 0010:,:H H μμμμ=≠拒绝域为 {}00K x c μ=->,临界值1/2 1.960.108/0.0947c u α-==⋅=,由于 0 4.364 4.550.186x c μ-=-=>,所以拒绝0H ,总体的均值有显著性变化.设立统计原假设 22220010:,:H H σσσσ=≠由于0μμ=,所以当0.05α=时 22220.0250.97511()0.03694,(5)0.83,(5)12.83,n i i S X n μχχ==-===∑ 2210.02520.975(5)/50.166,(5)/5 2.567c c χχ====拒绝域为 {}222200201//K s c s c σσ=><或 由于220/ 3.167 2.567S σ=>,所以拒绝0H ,总体的方差有显著性变化.2 一种电子元件,要求其寿命不得低于1000h .现抽测25件,得其均值为x =950h .已知该种元件寿命2(100,)XN σ,问这批元件是否合格(0.05α=)?解 由题意知 2(100,)X N σ,设立统计原假设0010:,:,100.0.05.H H μμμμσα≥<==拒绝域为 {}00K x c μ=->临界值为 0.050.0532.9c u u =⋅=⋅=-由于 050x c μ-=-<,所以拒绝0H ,元件不合格.3 某食品厂用自动装罐机装罐头食品,每罐标准重量为500g,现从某天生产的罐头中随机抽测9罐,其重量分别为510,505,498,503,492,502,497,506,4α=)?95(g),假定罐头重量服从正态分布. 问 (1)机器工作是否正常(0.052)能否认为这批罐头重量的方差为5.52(0.05α=)?解 (1)设X 表示罐头的重量(单位:g). 由题意知2(,)X N μσ,μ已知设立统计原假设 0010:500,:H H μμμμ==≠,拒绝域 {}00K x c μ=->当0.05α=时,2500.89,34.5, 5.8737x s s ===临界值 1(1) 4.5149c t n α-=-⋅=,由于00.8889x c μ-=<,所以接受0H ,机器工作正常.(2)设X 表示罐头的重量(单位:g). 由题意知2(,)X N μσ,σ已知设立统计原假设 222220010: 5.5,:H H σσσσ==≠拒绝域为 {}{}222200102K s c s c σσ=<> 当α=0.05时,可得2220.0250.97512500.89,34.5,(5) 2.7,(5)19.02,0.3, 2.11x s c c χχ======由于22001.0138s K σ=∈,所以接受0H ,可以认为方差为25.5.4 某部门对当前市场的鸡蛋价格情况进行调查,抽查某市20个集市上鸡蛋的平均售价为3.399(元/500克),标准差为0.269(元/500克).已知往年的平均售价一直稳定在 3.25(元/500克)左右, 问该市当前的鸡蛋售价是否明显高于往年?(0.05α=)解 设X 表示市场鸡蛋的价格(单位:元/克),由题意知2(,)X N μσ设立统计原假设 0010: 3.25,:H H μμμμ==>, 拒绝域为 {}00K x c μ=->当α=0.05时,13.399,0.269,20,0.0992x n c ασμ-====⋅=临界值由于0 3.399 3.250.149.x c μ-=-=>所以拒绝0H ,当前的鸡蛋售价明显高于往年.5 已知某厂生产的维尼纶纤度2(,0.048)X N μ,某日抽测8根纤维,其纤度分别为 1.32,1.41,1.55,1.36,1.40,1.50,1.44,1.39,问这天生产的维尼纶纤度的方差2σ是否明显变大了(0.05α=)?解 由题意知 2(,0.048)X N μ,0.05α=设立统计原假设 2222220010:0.048,:0.048H H σσσσ==>=拒绝域为{}2200K s c σ=>, 当0.05α=时, 2220.950.951.4213,0.0055,(7)14.07,(7)7 2.0096x s c χχ=====由于220 2.3988s c σ=>,所以拒绝0H ,认为强度的方差明显变大.6 某种电子元件,要求平均寿命不得低于2000h ,标准差不得超过130h .现从一批该种元件中抽取25只,测得寿命均值1950h ,标准差148h s =.设元件寿命服从正态分布,试在显著水平 α=0.05下, 确定这批元件是否合格.解 设X 表示电子元件的平均寿命(单位:h ),由题意知2(,)XN μσ 设立统计原假设 0010:=2000H <H μμμμ≥,:拒绝域为 {}00K x c μ=-<当0.05α=时,1950,148,(1)50.64x s c t n α===-=-临界值由于 050x c μ-=->,所以接受0H ,即这批电子元件的寿命是合格的.7 设n X X X ,...,,21为来自总体(,4)X N μ的样本,已知对统计假01:1;: 2.5H H μμ== 的拒绝域为0K {}2>=X .1)当9=n 时,求犯两类错的概率α与β;2)证明:当n →∞时,α→0,β→0.解 (1)由题意知 {}010~(,4),:1;: 2.5,2,9.X N H H K X n μμμ===>=犯第一类错误的概率为 ()21 1.51(1.5)0.0668.X P X P αμ⎫=>==>==-Φ=⎪⎭犯第二类错误的概率为 ()2 2.50.75(0.75)1(0.75)0.2266.X P X P βμ⎫=≤==≤=-⎪⎭=Φ-=-Φ= (2)若0:1H μ=成立,则(1,4)X N}{}{00000()=11)n P H H P X c P X c nc αμμσ=≥+=-<+=-Φ否定成立 当n →∞时,0)1nc σΦ→,所以0()n n α→→∞同理 }{0010=<+=+c )/)()=0()n P X c n βμμμσΦ-→Φ-∞→∞8 设需要对某一正态总体,4()N μ的均值进行假设检验H 0:μ= 15,H 1:μ<15取检验水平α=0.05,试写出检验H 0的统计量和拒绝域.若要求当H 1中的μ=13时犯第二类错误的概率不超过β=0.05,估计所需的样本容量n .解 由题意知 (,4)X N μ,σ已知, 设立统计原假设 01:15,:15H H μμ=<则拒绝域为}{015K X c =-<,其中临界值0.05c μ=⋅=-犯第二类错误的概率1513130.05P X P Xβ⎛⎫⎛⎫=->==->≤⎪⎭⎝⎝即1.65)0.95Φ≥, 化简得23.311n≥≈.9 设nXXX,...,,21为来自总体X~2(,)Nμσ的样本,2σ为已知, 对假设:0011:;:H Hμμμμ==其中01μμ≠,试证明:22011212()()nαβσμμμμ--=+⋅-解(1)10>μμ当时,由题意知00110:;:;H Hμμμμμ==>犯第一,二类错误分别为,αβ,则有001(|)P X c c uααμμμ-=>+=⇒=011100(|))XP X c P uαβμμμμμ-=≤+==≤=⇒()()220 11111120010 u u u u n u u ββααβαβσμμμ------=-=⇒+==+-(2)10μμ≤当时由题意知00110:,:H Hμμμμμ==≤,犯第一,二类错误分别为,αβ,则有00(|)P X c c uααμμμ=<+=⇒=()()01100220 1111120010 (|))XP X c P uu u u u n u uαβααβαββμμμμμσμμ-----=≥+==≥+=⇒=⇒+==+-10设171,...,XX为总体2(0,)X N σ样本,对假设:2201:9,: 2.905H Hσσ==的拒绝域为}{24.93K s=<. 求犯第Ⅰ类错误的概率α和犯第Ⅱ类错的概率β.解由题意知2(0,)X N σ,222~().nsnχσ统计假设为2201:9,: 2.905H Hσσ==. 拒绝域为}{24.93K s=<则犯第一,二类错误的概率,αβ分别是()()22222221717417174497.3040.0259999171744 3.319120.48810.750.253.319 3.319s s P s P P s P s P ασβσ⎛⎫⎛⎫⨯⨯=<==<=<== ⎪ ⎪⎝⎭⎝⎭⎛⎫⨯=<==-<==-= ⎪⎝⎭ 11 设总体是密度函数是1,01(;)0,x x f x θθθ-<<=⎧⎨⎩其他统计假设 01:1,:2H H θθ==.现从总体中抽取样本21,X X ,拒绝域2134ΚX X =≤⎧⎫⎨⎬⎩⎭,求:两类错误的概率,αβ 解 由题意知 010213:1;:2,, 2.4H H K X n X θθ⎧⎫===≤=⎨⎬⎩⎭当12121,0,11(;1) 1.~(0,1),(,)0,x x f x X U f x x θ<<⎧===⎨⎩时,其他 此时 212121231431(,)0.250.75ln 0.75.4x x P X f x x dx dx X αθ≤⎛⎫=≤===+ ⎪⎝⎭⎰⎰当1212122,014,0,12(;2).(,)0,0,x x x x x x f x f x x θ<<<<⎧⎧===⎨⎨⎩⎩时,其他其他 此时 21212123143992(,)ln 0.75.4168x x P X f x x dx dx X βθ>⎛⎫=>===+ ⎪⎝⎭⎰⎰ 12 设总体2(,)XN μσ,根据假设检验的基本原理,对统计假设:00110:,:()()H Hμμμμμσ==>已知;0010:,:H H μμμμσ≥<(未知),试分析其拒绝域.解 由题意知 2(,)X N μσ,当00110:,:()H H μμμμμ==>成立时()01X P X c P αμμμ=->==>=-Φ {}1100,u c u K X c ααμ--===-> 所以拒绝域为 }{00K X c μ=->当0010:,:H H μμμμ≥<成立时00()()X P X c P X c P αμμμμ⎛⎛⎫⎫=-<≥≥-<=<=Φ}{00,c K X c ααμμμ===-< 所以拒绝域为}{00K X c μ=-<13 设总体2(,)X N μσ根据假设检验的基本原理,对统计假设:(1)22220010:,:()H H σσσσμ=>已知;(2)22220010:,:()H H σσσσμ≤>未知试分析其拒绝域.解 由题意知 2~(,)X N μσ(1)假设统计假设为 22220010:=,:>H H σσσσ 其中μ已知当0H 成立时,拒绝域形式为 2020=>s K c σ⎧⎫⎪⎨⎬⎪⎭⎩由 222220=(n)ns ns χσσ,可得220=>ns P nc ασ⎧⎫⎪⎨⎬⎪⎭⎩所以 21-=()nc n αχ,由此可得拒绝域形式为2201-201=>()s K n n αχσ⎧⎫⎪⎨⎬⎪⎭⎩(2)假设统计假设为 22220010:<,:>H H σσσσ 其中μ未知当0H 成立时,选择拒绝域为 2020=>s K c σ⎧⎫⎪⎨⎬⎪⎭⎩,由222(-1)(1)n s n χσ-得 ()()()()222201111n s n s P n c Pn c ασσ⎧⎫⎧⎫--⎪⎪⎪⎪=>-≤>-⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎩⎭所以21(1)(1)n c n αχ--=-,由此可得拒绝域形式为2201-201=>(1)1s K n n αχσ⎧⎫⎪-⎨⎬-⎪⎭⎩14 从甲、乙两煤矿各取若干样品,得其含灰率(%)为,甲:24.3, 20.8, 23.7, 21.3, 17.4, 乙:18.2, 16.9, 20.2, 16.7 .假定含灰率均服从正态分布且2212=σσ,问甲、乙两煤矿的含灰率有无显著差异 (=0.05α)?解 由题意知 2212(,),Y (,)X N N μσμσ设统计假设为 012112:=;:H H μμμμ≠ 其中12=5,=4n n当=0.05α时1/2122.3238,(2) 2.3646w s t n n α-==+-= 临界值1-212=(+2) 3.6861w c t n n s α-⋅= 拒绝域为}{0 3.6861K x y c =->=而 03.5,,.x y c H -=<接受认为没有差别15 设甲、乙两种零件彼此可以代替,但乙零件比甲零件制造简单,造价也低.经过试验获得它们的抗拉强度分别为(单位:kg/cm 2):甲:88,87,92,90,91 乙:89,89,90,84,88假定两种零件的抗拉强度都服从正态分布,且21σ =22σ.问甲种零件的抗拉强度是否比乙种的高(=0.05α)?解 由题意知 2212(,),Y (,)X N N μσμσ设统计假设为 012112:=;:H H μμμμ≠,其中12=5,=5n n当=0.05α时122.2136,(2) 1.86,w s t n n α==+-=- 临界值1-212=(+2) 2.2136w c t n n s α-⋅= 拒绝域为}{0 2.2136K x y c =->=而 1.6x y c -=<,所以接受0H ,认为甲的抗拉强度比乙的要高.16 甲、乙两车床生产同一种零件.现从这两车床产生的产品中分别抽取8个和9个,测得其外径(单位:mm )为:甲:15.0,14.5,15.2,15.5,14.8,15.1,15.2,14.8乙:15.2,15.0,14.8,15.2,15.0,15.0,14.8,15.1,14.8假定其外径都服从正态分布,问乙车床的加工精度是否比甲车床的高(=0.05α)?解 由题意知 2212(,),Y (,)X N N μσμσ设统计假设为 2222012112:;:H H σσσσ≥<,其中12=8,=9n n当=0.05α时 220.0955,0.0261x y s s ==,临界值12(1,1)0.2684c F n n α=--= 拒绝域为202x y s K c s ⎧⎫⎪⎪=<⎨⎬⎪⎪⎭⎩,而22 3.6588x y s F c s ==>,接受0H ,认为乙的精度高. 17 要比较甲、乙两种轮胎的耐磨性,现从甲、乙两种轮胎中各取8个,各取一个组成一对,再随机选取8架飞机,将8对轮胎磨损量(单位:mg )数据列表如下:试问这两种轮胎的耐磨性有无显著差异?(=0.05α). 假定甲、乙两种轮胎的磨损量分别满足2212(,),Y (,)X N N μσμσ且两个样本相互独立.解 由题意知 2212(,),Y (,)X N N μσμσ设统计假设为 012112:=;:H H μμμμ≠,其中12===8n n n当=0.05α时,令()221/211,320,102200,319.69,(1) 2.36461n ZZ i Z X Y z s z z s t n n α-==-==-==-=-∑ 拒绝域为}{0K z c =>,临界值 1-2=(1)2138Z c t n s α-⋅=而320z c =<,所以接受0H ,认为两种轮胎耐磨性无显著差异.18 设总体2212(,),Y (,)X N N μσμσ, 由两总体分别抽取样本X :4.4,4.0,2.0,4.8 Y :6.0,1.0,3.2,0.41)能否认为12μμ= (=0.05α)? 2)能否认为2212σσ= (=0.05α)?解 (1) 由题意知 2212(,),Y (,)XN N μσμσ设统计假设为 012112:=;:H H μμμμ≠,其中12==4=n n n令Z X Y =-,则有22111.15,()9.02331nzi z s z z n ===-=-∑, 当=0.05α时,1-2=(1) 3.1824c t n α-=,1-2=(1)/ 4.78Z c t n s α-⋅= 拒绝域为}{0K z c =>,而 1.15z c =<,所以012,.H μμ=接受认为 (2) 由题意知 2212(,),Y(,)XN N μσμσ设统计假设为 2222220111:=;:H H σσσσ≠,其中12==4=n n n 其中221.5467, 6.4367x y s s ==,拒绝域为2201222>x x y y s s K c c s s ⎧⎫⎪⎪=<⎨⎬⎪⎪⎭⎩或临界值 1/21221212(1,1)0.0648,(1,1)15.4392c F n n c F n n αα-=--==--=而22201220.2403,,.X Ys F H s σσ===接受认为19 从过去几年收集的大量记录发现,某种癌症用外科方法治疗只有2%的治愈率.一个主张化学疗法的医生认为他的非外科方法比外科方法更有效.为了用实验数据证 实他的看法,他用他的方法治疗200个癌症病人,其中有6个治好了.这个医生断 言这种样本中的3%治愈率足够证实他的看法.(1)试用假设检验方法检验这个医生的看法;(2)如果该医生实际得到了 4.5%治愈率,问检验将证实化学疗法比外科方法更有效的概率是多少?解 (1) 记每个病人的治愈情况为X ,则有(1,) XB p设统计假设为 0010:=0.02;:0.02H p p H p p >≤=,其中200,0.05n α==拒绝域为}{00K x p c =-<,临界值10.0163c αμ-== 而 000.01,,0.02.x p c H p -=<>拒绝不能认为 (2) 不犯第二类错误的概率101 4.5%P X u p p β-⎧⎫⎪⎪-=>=⎨⎬⎪⎪⎭⎩由(1,) XB p ,可得 (1),p p EX p DX n-==由中心极限定理得1 4.5%10.72X P p β⎧⎫⎪-=>=⎬⎪⎭=-Φ=20 在某公路上,50min 之间,观察每15s 内通过的汽车数,得下表通过的汽车数量0 1 2 3 4 ≥5 次数f92 68 28 11 1 0问能否认为通过的汽车辆数服从泊松分布(=0.10α)?解 设统计假设为 0010:()(),()(),200.0.10H F x F x H F x F x n α====4001ˆ,0.805.j j H X j n λν====∑若成立 记 ˆ1,2,3,4ˆ(),!j j j p P x j ej λλ-==-=则有ˆ0.8050102143243500.8050.4471,0.805*0.3599,*0.144920.8050.805*0.0389,*0.0078,10.0014,34j j p e e p p p p p p p p p p λ--=============-=∑检验统计量的值为()2522210.9500 2.1596(1)(4)9.848,~(),0.805.j j n j jnp m r np H X P ανχχχλλ-=-==<--===∑不拒绝认为且21 对某厂生产的汽缸螺栓口径进行100次抽样检验,测得100数据分组列表如下:组限 10.93~10.95 10.95~10.97 10.97~10.99 10.99~11.01 频数582034 组限11.01~11.0311.03~11.0511.05~11.0711.07~11.09频数 17 6 6 4试对螺栓的口径X 的分布做假设检验(=0.05α).解 设X 表示螺栓的口径,2(,)XN μσ,分布函数为()F x ,统计假设为0010:()(),:()()H F x F x H F x F x =≠,其中100,0.05,2n r α===在0H 成立的情况下,计算得88221111ˆˆ11.0024,()0.00101888j j j j i i X x v x v μσμ====⋅==-⋅=∑∑ 由ˆ11.0024(0,1)ˆ0.00319X X N μσ--=得0810.9311.002411.0911.00242.2689,, 2.74520.003190.00319x x --==-==所以110887()()0.0386,,()()0.0140p x x p x x =Φ-Φ==Φ-Φ=检验统计量的值为2822210.951()13.825(1)(5)11.07j j nj jv np m r np αχχχ-=-==>--==∑由此应该20,~(,).H X N μσ拒绝不能认为22 检查产品质量时,每次抽取10个产品检验,共抽取100次,得下表:次品数 0 1 2 3 4 5 6 7 8 9 10 频数35 40 18 5 1 1 0 0 0 0 0问次品数是否服从二项分布(=0.05α)? 解 设X 表示抽取的次品数,2(,)XN μσ,分布函数为()F x ,统计假设为0010:()(),:()()H F x F x H F x F x =≠,其中10,0.05n α==在0H 成立的情况下,01ˆNjj X pjvN N===∑计算得00101192280101102103371010010*******(1),0,1,,10;ˆˆˆ(1)0.3487,(1)0.3874,(1)0.1937ˆˆ(1)0.0574,(1)10,jj N j j N p C p p j p C p p p C p p p C p p p C p pp C p p--=-==-==-==-==-==-= 检验统计量的值为0020()21022210.950 5.1295(1)(9)16.92j j n j jnp m r np ανχχχ-=-==<--==∑因此0,~(10,0.1).H X B 不拒绝认为23 请71人比较A 、B 两种型号电视机的画面好坏,认为A 好的有23人,认为B 好的有45人,拿不定主意的有3人,是否可以认为B 的画面比A 的好(=0.10α)?解 设X 表示A 种型号电视机的画面要好些,Y 表示B 中型号电视机画面要好些分布函数分别为()X F x ,()Y F x ,统计假设为01:()(),:()(),10,100.0.05X Y X Y H F x F x H F x F x N n α=≠===由题意知++=23=45,=+n n n n n --, 检验统计量 ,min()s n n +-=而23(68)25s s α=<=,所以0,.H B 拒绝认为的画面好24 为比较两车间(生产同一种产品)的产品某项指标的波动情况,各依次抽取12个产品进行测量,得下表 甲 1.13 1.26 1.16 1.41 0.86 1.39 1.21 1.22 1.20 0.62 1.18 1.34 乙 1.211.310.991.591.411.481.311.121.601.381.601.84问这两车间所生产的产品的该项指标分布是否相同(=0.05α)?解 设,X Y 分别表示甲乙两车间所生产产品的指标分布,分布函数分别()X F x ()Y F x ,统计假设为01:()(),:()(),.0.05,12,X Y X Y H F x F x H F x F x n m α=≠===检验统计量为秩和T ,易知T 的样本值为112T =且(150,300)T N拒绝域为012K u u α-⎧⎫⎪=>⎨⎬⎪⎭⎩而0.9752.194 1.96u u =>=,所以0,.H 拒绝认为指标分布不相同 25 观察两班组的劳动生产率(件/h),得下表:问两班组的劳动生产率是否相同(α=0.05)?解 设,X Y 分别表示两个组的劳动生产率,分布函数分别为(),X F x ()Y F x ,统计假设为01:()(),:()(),.0.05,9,9X Y X Y H F x F x H F x F x n m α=≠===检验统计量为秩和T ,易知T 的样本值为73T = 拒绝域形式为}{01212,<K T t T t t t =<>其中而12(9,9)=66,(9,9)105t t =,因此T K ∈, 所以0,.H 接受认为劳动生产率相同26 观观察得两样本值如下:Ⅰ 2.36 3.14 7.52 3.48 2.76 5.43 6.54 7.41 Ⅱ 4.38 4.25 6.54 3.28 7.21 6.54问这两样本是否来自同一总体(α=0.05)?解 设,X Y 分别表示Ⅰ,Ⅱ两个样本,分布函数分别是(),X F x ()Y F x ,统计假设为01:()(),:()(),.0.05,6,8,X Y X Y H F x F x H F x F x n m α=≠===检验统计量为秩和T ,易知T 的样本值为49T = 拒绝域形式为}{01212,<K T t T t t t =<>其中而12(6,8)=32,(6,8)58t t =,因此0T K ∈, 所以0,.H 接受认为来自同一总体 27 某种动物配偶的后代按体格的属性分为三类,各类的数目是:10,53,46,按照某种遗传模型其比率之比应为:22)1(:)1(2:p p p p --,问数据与模型是否相符(05.0=α)?解 设体格的属性为样本X ,由题意知(2,1)X B p -其密度函数为()f x ,其中22(,)(1)0,1,2xxx f x p C p p x -=-=统计假设为0010:()(),:()()H F x F x H F x F x =≠似然函数为222211(1)(1)i iii nnx x x x n nxnxi i L C pp pp C --===-=-∏∏ 解得最大似然统计量为 ˆ12xp=- 则220ˆˆ 1.330.1121p p ===1ˆˆˆ2(1)0.4454pp p =-= 22ˆˆ(1)0.4424pp =-= 拒绝域为}{2201(1)K m r αχχ-=>--而 ()21022210.950ˆ0.9134(1)(9) 3.8414ˆjj n j j np m r npανχχχ-=-==<--==∑所以0,.H 不拒绝认为与模型相符28 在某地区的人口调查中发现:15729245个男人中有3497个是聋哑人.16799031个女人中有3072个是聋哑人.试检验“聋哑人与性别无关”的假设(05.0=α).解 设X 表示男人中聋哑人的个数,Y 表示女人中聋哑人的个数,其分布函数分别表示为()X F x ,()Y F x . 统计假设为01:(,)()(),:(,)()()X Y X Y H F x y F x F x H F x y F x F x =≠拒绝域为}{2201(1)K m r αχχ-=>--而21022210.950ˆ()62.64(1)(1) 3.84ˆj j nj jv np m r np αχχχ-=-==>--==∑ 所以0,.H 拒绝认为聋哑与性别相关 29 下表为某药治疗感冒效果的联列表:试问该药疗效是否与年龄有关(α=0.05)?解 设X 表示该药的疗效与年龄有关,Y 表示该药的疗效与年龄无关,其分布函数分别表示为(),X F x ()Y F x . 统计假设为01:(,)()(),:(,)()(),3,3,0.05,X Y X Y H F x y F x F x H F x y F x F x r s α=≠===拒绝域为}{2201(1)K m r αχχ-=>--而 ()21022210.950ˆ13.59(1)(4)9.488ˆj j n j j np m r npανχχχ-=-==>--==∑所以0,.H 拒绝认为疗效与年龄相关30 某电子仪器厂与协作的电容器厂商定,当电容器厂提供的产品批的不合格率不超过3%时以高于95%的概率接受,当不合格率超过12%时,将以低于10%的概率接受.试为验收者制订验收抽样方案.解 由题意知,010.03,0.12,0.05,0.1p p αβ====代入式子 01()1()L p L p αβ=-⎧⎨=⎩()L p 选用式子()()()(1)(1)L P X d P U np p np p φ=≤=≤≈--计算求得 66,4n d ==,于是抽查方案是:抽查66件产品,如果抽得的不合格产品4X ≤,则接受这批产品,否则拒绝这批产品.31 假设一批产品的质量指标2(,)XN μσ(2σ已知),要求质量指标值越小越好.试给出检验抽样方案(,n c )的计算公式.若2σ未知,又如何确定检验抽样方案(,n c )?若质量高时指质量指标在一个区间时,又如何确定检验抽样方案(,n c )?解 (1) 解方程组01()1()L L μαμβ=-⎧⎨=⎩ 得 ()201u u n αβσμμ⎛⎫+⎪= ⎪-⎝⎭10u u c u u αβαβμμ+=+ (2) 若2σ未知,用*2M 估计2σ,从而得出公式()2*201u u M n αβμμ⎛⎫+⎪= ⎪-⎝⎭10u u c u u αβαβμμ+=+习题四1 下表数据是退火温度x (C 0)对黄铜延性η效应的试验结果,η是以延伸率计算的,且设为正态变量,求η对x 的样本线性回归方程.x (C 0)300 400 500 600 700 800 y (%)40 50 55 60 67 70 解 利用回归系数的最小二估计:101ˆˆˆxyxx l l y x βββ⎧=⎪⎨⎪=-⎩其中2211,n nxy i i xx i i i l x y nxy l x nx ===-=-∑∑ 代入样本数据得到:10ˆˆ0.0589,24.6286ββ== 样本线性回归方程为:ˆ24.62860.0589yx =+ 2 证明线性回归函数中(1)回归系数1β的置信水平为α-1的置信区间为211ˆˆ(2)n αβ--; (2)回归系数0β的置信水平为α-1的置信区间为2ˆ(2)n αβ-±-.证 (1) 由于211ˆ,xx N l σββ⎛⎫ ⎪⎝⎭()0,1N222(2)ES n χσ-又因为:,()222ˆ2(2)n nσχσ--故所以()2t n -易知 {}11ˆ1pc ββα-<=-,1P α<=-⎪⎭⎩其中()122n α--所以1β的置信水平为α-1的置信区间为211ˆˆ(2)n αβ-- (2) 由0ˆβ~2201(,())xxn x N l βσ+,得 ()0,1N ,()222ˆ2(2)n n σχσ--,0ˆβ与2ˆσ相互独立,所以:()2T t n ==-根据11221(2)(2)P T t n P t n ααα--⎫⎪⎛⎫⎪-=<-=<- ⎪⎪⎝⎭⎪⎪⎭()()0001122ˆˆ22P n n ααβββ--⎛⎫ ⎪ ⎪=--<<+- ⎪ ⎪ ⎪⎝⎭得到0β的置信度为1α-的置信区间()012ˆ2n αβ--.3 某河流溶解氧浓度(以百万分之一计)随着水向下游流动时间加长而下降.现测得8组数据如下表所示.求溶解氧浓度对流动时间的样本线性回归方程,并以α=0.05对回归显著性作检验.流动时间t (天) 0.5 1.0 1.6 1.8 2.6 3.2 3.8 4.7 溶解氧浓度(百万分之一)0.28 0.29 0.29 0.18 0.17 0.18 0.10 0.12解 利用101ˆˆˆtyttl l y t βββ⎧=⎪⎨⎪=-⎩其中2211,n n ty i i tt i i i l t y nty l t nt ===-=-∑∑ 代入样本数据得到: 10ˆˆ0.0472,0.3145ββ=-= 所以,样本线性回归方程为:ˆ0.31450.0472yt =- 拒绝域形式为:{}21ˆc β> ()20.95ˆ1,6,0.0058ttF c c l σ==>而21ˆ0.0022β=,所以回归模型不显著.4 假设X 是一可控制变量,Y 是一随机变量,服从正态分布.现在不同的X 值下分别对Y 进行观测,得如下数据i x0.25 0.37 0.44 0.55 0.60 0.62 0.68 0.70 0.73 i y2.57 2.31 2.12 1.92 1.75 1.71 1.60 1.51 1.50 i x 0.75 0.82 0.84 0.87 0.88 0.90 0.95 1.00 i y1.41 1.33 1.31 1.25 1.20 1.19 1.15 1.00(1)假设X 与Y 有线性相关关系,求Y 对X 样本回归直线方程,并求2σ=DY 的无偏估计;(2)求回归系数210σββ、、的置信度为95%的置信区间; (3)检验Y 和X 之间的线性关系是否显著(=0.05α); (4)求Y 置信度为95%的预测区间;(5)为了把Y 的观测值限制在)68.1,08.1(,需把x 的值限制在什么范围?(=0.05α)解 (1) 利用101ˆˆˆxyxx l l y x βββ⎧=⎪⎨⎪=-⎩其中2211,n nxy i i xx i i i l x y nxy l x nx ===-=-∑∑计算得10ˆˆ2.0698, 3.0332ββ=-= 所以,样本线性回归方程为:ˆ 3.0332 2.0698yx =-,22ˆ0.002015ES σ== (2) 根据第二题,1β的置信区间为()112ˆˆ2n αβ--,代入值计算得到: ()1 2.1825, 1.9571β∈--,0β的置信区间为()02ˆ2n αβσ-±-,代入数值计算得到:()0 2.95069,3.1160β∈.(3) 根据F 检验法,其拒绝域形式为 }{201ˆK c β=> 而 12ˆ(2),xxc tn l ασ-=- 显然10K β∈,所以Y 和X 之间具有显著的线性关系.(4)()221(0,(1))xxx x yN l nσ-++,()2ˆ1()1(0,1)xxx x s x N l n -=++令222ˆ(2)(2),(2)ˆ()n nt n s x σχσσ---则有 1122ˆˆˆ((2),(2))y yt nyt n αα--∈--(5) 根据(4)的结论,令 22ˆˆ1.68 1.08yyαα--+=-=,解得 (0.7802,0.8172)x ∈5 证明对一元线性回归系数0ˆβ,1ˆβ相互独立的充分必要条件是0=x . 证 ""⇒()()()()()010011111ˆˆˆˆˆˆcov ,E y x ββββββββββ=--=---2110111101ˆˆˆˆ()E y x y x βββββββββ=---++2211011101ˆy xE y x ββββββββ=---++ ()2211ˆx E ββ=-- 222221111ˆˆˆ()xxE D E l σββββ=+=+若要()01ˆˆcov ,0ββ=,那么0x =.反之显然也成立,命题的证.6 设n 组观测值),...,2,1)(,(n i y x i i =之间有关系式:i i i i x x y εεββ,+-+=)(10~),...,2,1)(,0(2n i N =σ(其中∑==ni i x n x 11),且n εεε,...,,21相互独立.(1) 求系数10,ββ的最小二乘估计量10ˆ,ˆββ; (2) 证明∑∑∑===-+-=-ni in i i i n i i y y y y y y 121212)ˆ()ˆ()(,其中∑==n i i y n y 11 (3) 求10ˆ,ˆββ的分布. 解 (1) 最小化残差平方和:2201[()]Ei i S y x x ββ=---∑01ββ求,的偏导数[][]220101012()02()()0E Ei i i i i S S y x x y x x x x ββββββ∂∂=----==-----=∂∂∑∑, 01ˆˆ,xy xxl y l ββ==得到:(2) 易知()()()22221111ˆˆˆˆˆˆ()()2()nnnniiiiiii i i i i i i i y y y yy y y y yy y y y y ====-=-+-=-+-+--∑∑∑∑ 其中01ˆˆˆ()()xy i ii xxl y x x y x x l ββ=+-=+-,将其代入上式可得1ˆˆ()()0niiii y yy y =--=∑ 所以,∑∑∑===-+-=-ni i n i i i ni iy y yy y y121212)ˆ()ˆ()( (3)20ˆ~(0,),i N y εσβ=,200ˆ~(,)N nσββ∴同理,易得211ˆ~(,)xxN l σββ∴7 某矿脉中13个相邻样本点处某种金属的含量Y 与样本点对原点的距离X 有如下观测值 ix 2 3 4 5 7 8 10 i y 106.42 108.20 109.58 109.50 110.00 109.93 110.49 ix 11 14 15 16 18 19 i y 110.59 110.60 110.90 110.76 111.00 111.20分别按(1)x b a y +=;(2)x b a y ln +=;(3)xba y +=. 建立Y 对X 的回归方程,并用相关系数221TES S R -=指出其中哪一种相关最大.解 (1)令v y a bv ==+,根据最小二乘法得到,正规方程:101ˆˆˆvy vv l l y vβββ⎧=⎪⎨⎪=-⎩,最后得到10ˆˆ1.1947,106.3013ββ==所以:样本线性回归方程为:ˆ106.3013y=+10.8861R = (2) 令ln ,v x y a bv ==+101ˆˆˆvyvv l l y vβββ⎧=⎪⎨⎪=-⎩,得到10ˆˆ1.714,106.3147ββ== 所以:样本线性回归方程为:ˆ106.3147 1.714ln yx =+,20.9367R = (3) 令1,v y a bv x==+ 101ˆˆˆvy vv l l y vβββ⎧=⎪⎨⎪=-⎩,得到10ˆˆ111.4875,9.833ββ==- 所以:样本线性回归方程为:ˆ111.48759.833yx =-,30.987R = 综上,123R R R <<,所以第三种模型所表示的X Y 与的相关性最大. 8 设线性模型⎪⎩⎪⎨⎧++=+-=+=3213221211122εββεββεβy y y其中i ε~),0(2σN (1,2,3.i =)且相互独立,试求1β、2β的LS 估计.解 令()()1231212310,,,21,(,),,,12T TT Y y y y X βββεεεε⎡⎤⎢⎥==-==⎢⎥⎢⎥⎣⎦则线性模型可转化为 Y X βε=+ 根据 222TTTTES Y X Y Y Y X X X ββββ=-=-+, 令 20ES β∂=∂ 可得 ()1ˆTT X X X Y β-=即 112322311ˆˆ(23),(2)66Y Y Y Y Y ββ=++=--+ 9 养猪场为估算猪的毛重,随机抽测了14头猪的身长1x (cm),肚围2x (cm)与体重y (kg),得数据如下表所示,试求一个22110x b x b b y ++=型的经验公式.解由多元线性模型得:()2140,Y X I βεεσ=+⎧⎪⎨=⎪⎩()()()0121212,,,,,,TTTn n Y y y y ββββεεεε===()114149145581516215271159621627416971ˆ172741787918084190851929419891110395T T X X X X Y β-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦代入数值得到:12ˆ15.93840.52230.4738yx x =-++ 同样得到:12ˆ15.93840.52230.4738yx x =-++ 10 某种商品的需求量y ,消费者的平均收入1x 和商品价格2x 的统计数据如下表所示.试求y 对1x 、2x 的线性回归方程. 1i x1000 600 1200 500 300 400 1300 1100 1300 300 2i x 5 7 6 6 8 7 5 4 3 9 y解 建立回归模型201122=+++(0,)Y x x N βββεεσ其中根据2()=0E S ββ∂∂,可求得β的LS 估计为 -1ˆ=(X X)T T X Y β代入x ,得0=111.6918,β 1=0.0143,β 2=7.1882,β- 则回归方程为:12ˆ111.69180.01437.1882yx x =+-11 设n 组观测值),...,2,1)(,(n i y x i i =之间有如下关系:i i i i i x x y εεβββ,+++=2210~),...,2,1)(,0(2n i N =σ,且n εεε,...,,21相互独立.(1)求系数210,,βββ的最小二乘估计量21ˆ,ˆ,ˆβββ; (2)设n i x x y i i i ,...,2,1,ˆˆˆˆ2210=++=βββ,∑==n i i y n y 11,证明:∑∑∑===-+-=-ni i ni i i ni i y y y y y y 121212)ˆ()ˆ()(解 (1) ()()()0121212,,,,,,TTTn n Y y y y ββββεεεε===1222211111Tn n X x x x x x x ⎛⎫ ⎪= ⎪ ⎪⎝⎭()1ˆT T X X X Y β-=(2)()()()22221111ˆˆˆˆˆˆ()()2()nnnniiiiiii i i i i i i i y y y yy y y y yy y y y y ====-=-+-=-+-+--∑∑∑∑()()11ˆˆˆˆ()0nT T i i i i x x x x y yy y β-==--=∑其中:y=x ,将其代入,得到 ()22211ˆˆ()()nni i i i i i y y y yy y ==∴-=-+-∑∑ 12(1)求形如210的回归方程;(2)对上述回归方程的显著性作检验; (3)求当x =5.5时Y 的估计值.解 (1) 令212,xx x x ==,求得回归方程为:2ˆ 3.4167 2.72620.3905yx x =+- (2) 拒绝域形式为:{}21ˆc β> ()20.9521ˆ1,6ˆxxF c l σβ=>而,所以回归方程具有显著性 (3)将5.5x =代入回归方程,得到ˆ 6.5982y=13 设y 和变量12,x x 有形为ε++=2211x b x b y ,2(0,)N εσ的回归方程模型,试用最小二乘法求出12b b 和的估计.解 令 ()()()121212,,,,,TT Tn Y y y y βββεεε===1112121222Tn n x x x X x x x ⎛⎫=⎪⎝⎭残差平方和为 222T T T T E S Y X Y Y Y X X X ββββ=-=-+令 20E S β∂=∂,得到 112ˆ(,)()T T T X X X Y βββ-==.友情提示:本资料代表个人观点,如有帮助请下载,谢谢您的浏览!。
应用数理统计课后习题参考答案
应用数理统计课后习题参考答案1. 描述性统计问题1描述性统计是一种对数据进行整理、呈现和分析的方法。
它可以提供数据的基本特征,包括数据的中心趋势、离散程度和分布形状。
常见的描述性统计方法有:•平均数:用于衡量数据的中心趋势,是所有数据值的总和除以数据的个数。
•中位数:将数据按大小顺序排列,中间位置的数值即为中位数。
•众数:数据中出现次数最多的数值。
•范围:数据的最大值减去最小值。
•方差:用于衡量数据的离散程度,是每个数据与平均数之差的平方的平均值。
•标准差:方差的正平方根。
问题2对于给定数据集,以下是计算描述性统计的步骤:1.求出数据的个数。
2.计算数据的总和。
3.求出数据的平均数。
4.将数据按大小顺序排列。
5.求出数据的中位数。
6.找出数据中出现次数最多的数值,即众数。
7.计算数据的范围。
8.计算数据的方差。
9.计算数据的标准差。
2. 概率分布问题1概率分布是用来描述随机变量的分布规律的函数。
常见的概率分布包括:•二项分布:适用于具有两个可能结果的离散型随机变量,如投硬币的结果。
•泊松分布:适用于描述单位时间或单位空间内随机事件发生次数的离散型随机变量。
•正态分布:也称为高斯分布,是一种连续型概率分布,常用于描述自然界中许多现象的分布情况,如身高、体重等。
问题2对于给定的概率分布,以下是计算概率的步骤:1.对于离散型概率分布,计算每个可能结果的概率,并将其加总为1。
2.对于连续型概率分布,计算指定区间内的概率,可以使用积分来进行计算。
3.根据需要计算特定事件的概率,可以使用概率密度函数(PDF)或累积分布函数(CDF)来计算。
3. 统计推断问题1统计推断是一种利用样本数据对总体特征进行估计和推断的方法。
常见的统计推断方法有:•置信区间估计:对总体参数进行估计时,构造一个区间,使得真实值以一定概率包含在该区间内。
•假设检验:用于判断一个总体参数是否等于某个特定值。
•方差分析:用于比较两个或多个总体的均值是否有显著差异。
清华大学杨虎应用数理统计课后习题参考答案2课后习题答案
习题三1 正常情况下,某炼铁炉的铁水含碳量2(4.55,0.108)X N .现在测试了5炉铁水,其含碳量分别为4.28,4.40,4.42,4.35,4.37. 如果方差没有改变,问总体的均值有无显著变化?如果总体均值没有改变,问总体方差是否有显著变化(0.05α=)?解 由题意知 2~(4.55,0.108),5,0.05X N n α==,1/20.975 1.96u u α-==,设立统计原假设 0010:,:H H μμμμ=≠ 拒绝域为{}00K x c μ=->,临界值1/21.960.108/0.0947c u α-==⋅=,由于 0 4.364 4.550.186x c μ-=-=>,所以拒绝0H ,总体的均值有显著性变化.设立统计原假设 22220010:,:H H σσσσ=≠ 由于0μμ=,所以当0.05α=时22220.0250.97511()0.03694,(5)0.83,(5)12.83,ni i S X n μχχ==-===∑ 2210.02520.975(5)/50.166,(5)/5 2.567c c χχ====拒绝域为 {}222200201//K sc s c σσ=>< 或 由于22/ 3.167 2.567S σ=> ,所以拒绝0H ,总体的方差有显著性变化. 2 一种电子元件,要求其寿命不得低于1000h .现抽测25件,得其均值为x =950h .已知该种元件寿命2(100,)X N σ ,问这批元件是否合格(0.05α=)?解 由题意知 2(100,)X N σ ,设立统计原假设0010:,:,100.0.05.H H μμμμσα≥<==拒绝域为 {}00K x c μ=-> 临界值为0.050.0532.9c u u =⋅=⋅=-由于 050x c μ-=-<,所以拒绝0H ,元件不合格.3 某食品厂用自动装罐机装罐头食品,每罐标准重量为500g ,现从某天生产的罐头中随机抽测9罐,其重量分别为510,505,498,503,492,502,497,506,495(g ),假定罐头重量服从正态分布. 问 (1)机器工作是否正常(0.05α=)? 2)能否认为这批罐头重量的方差为5.52(0.05α=)?解 (1)设X 表示罐头的重量(单位:g). 由题意知2(,)X N μσ ,μ已知 设立统计原假设 0010:500,:H H μμμμ==≠,拒绝域 {}00K x c μ=-> 当0.05α=时,2500.89,34.5, 5.8737x s s ===临界值 12(1) 4.5149c t n α-=-⋅=,由于00.8889x c μ-=<,所以接受0H ,机器工作正常.(2)设X 表示罐头的重量(单位:g). 由题意知2(,)X N μσ ,σ已知设立统计原假设 222220010: 5.5,:H H σσσσ==≠ 拒绝域为 {}{}222200102K s c s c σσ=<> 当α=0.05时,可得2220.0250.97512500.89,34.5,(5) 2.7,(5)19.02,0.3, 2.11x s c c χχ======由于22001.0138sK σ=∈ ,所以接受0H ,可以认为方差为25.5.4 某部门对当前市场的鸡蛋价格情况进行调查,抽查某市20个集市上鸡蛋的平均售价为3.399(元/500克),标准差为0.269(元/500克).已知往年的平均售价一直稳定在 3.25(元/500克)左右, 问该市当前的鸡蛋售价是否明显高于往年?(0.05α=)解 设X 表示市场鸡蛋的价格(单位:元/克),由题意知2(,)X N μσ 设立统计原假设 0010: 3.25,:H H μμμμ==>, 拒绝域为 {}00K x c μ=->当α=0.05时,13.399,0.269,20,0.0992x n c ασμ-====⋅=临界值由于0 3.399 3.250.149.x c μ-=-=>所以拒绝0H ,当前的鸡蛋售价明显高于往年.5 已知某厂生产的维尼纶纤度2(,0.048)X N μ ,某日抽测8根纤维,其纤度分别为1.32,1.41,1.55,1.36,1.40,1.50,1.44,1.39,问这天生产的维尼纶纤度的方差2σ是否明显变大了(0.05α=)?解 由题意知 2(,0.048)X N μ ,0.05α=设立统计原假设 2222220010:0.048,:0.048H H σσσσ==>=拒绝域为{}2200K s c σ=>, 当0.05α=时,2220.950.951.4213,0.0055,(7)14.07,(7)7 2.0096x s c χχ=====由于220 2.3988s c σ=>,所以拒绝0H ,认为强度的方差明显变大.6 某种电子元件,要求平均寿命不得低于2000h ,标准差不得超过130h .现从一批该种元件中抽取25只,测得寿命均值1950h ,标准差148h s =.设元件寿命服从正态分布,试在显著水平 α=0.05下, 确定这批元件是否合格.解 设X 表示电子元件的平均寿命(单位:h ),由题意知2(,)X N μσ 设立统计原假设 0010:=2000H <H μμμμ≥,: 拒绝域为 {}00K x c μ=-<当0.05α=时,1950,148,(1)50.64x s c t n α===-=-临界值由于 050x c μ-=->,所以接受0H ,即这批电子元件的寿命是合格的. 7 设n X X X ,...,,21为来自总体(,4)X N μ 的样本,已知对统计假01:1;: 2.5H H μμ== 的拒绝域为0K {}2>=X .1)当9=n 时,求犯两类错的概率α与β;2)证明:当n →∞时,α→0,β→0.解 (1)由题意知 {}010~(,4),:1;: 2.5,2,9.X N H H K X n μμμ===>= 犯第一类错误的概率为()21 1.51(1.5)0.0668.X P X P αμ⎫=>==>==-Φ=⎪⎭犯第二类错误的概率为()2 2.50.75(0.75)1(0.75)0.2266.X P X P βμ⎫=≤==≤=-⎪⎭=Φ-=-Φ=(2)若0:1H μ=成立,则(1,4)X N}{}{00000()=11)n P H H P X c P X c nc αμμσ=≥+=-<+=-Φ否定成立 当n →∞时,0)1ncσΦ→,所以0()n n α→→∞同理 }{0010=<+=+c )/)()=0()n P X c n βμμμσΦ-→Φ-∞→∞ 8 设需要对某一正态总体,4()N μ的均值进行假设检验H 0:μ= 15,H 1:μ< 15 取检验水平α=0.05,试写出检验H 0的统计量和拒绝域.若要求当H 1中的μ=13时犯第二类错误的概率不超过β=0.05,估计所需的样本容量n .解 由题意知 (,4)X N μ ,σ已知, 设立统计原假设 01:15,:15H H μμ=< 则拒绝域为}{015K X c =-<,其中临界值0.05c μ=⋅=-犯第二类错误的概率1513130.05P X P Xβ⎛⎫⎛⎫=->==->≤⎪⎭⎝⎝即1.65)0.95Φ≥, 化简得23.311n≥≈.9 设nXXX,...,,21为来自总体X~2(,)Nμσ的样本,2σ为已知, 对假设:0011:;:H Hμμμμ==其中01μμ≠,试证明:22011212()()nαβσμμμμ--=+⋅-解(1)10>μμ当时,由题意知00110:;:;H Hμμμμμ==>犯第一,二类错误分别为,αβ,则有001(|)P X c c uααμμμ-=>+=⇒=011100(|))XP X c P uαβμμμμμ-=≤+==≤=⇒()()220 11111120010 u u u u n u u ββααβαβσμμμ------=-=+==+-(2)10μμ≤当时由题意知00110:,:H Hμμμμμ==≤,犯第一,二类错误分别为,αβ,则有00(|)P X c c uααμμμ=<+=⇒=()()01100220 1111120010 (|))XP X c P uu u u u n u uαβααβαββμμμμμσμμ-----=≥+==≥+=⇒=++==+-10设171,...,XX为总体2(0,)X Nσ样本,对假设:2201:9,: 2.905H Hσσ==的拒绝域为}{24.93K s=<. 求犯第Ⅰ类错误的概率α和犯第Ⅱ类错的概率β.解由题意知2(0,)X Nσ,222~().nsnχσ统计假设为2201:9,: 2.905H Hσσ==. 拒绝域为}{24.93K s=<则犯第一,二类错误的概率,αβ分别是()()22222221717417174497.3040.0259999171744 3.319120.48810.750.253.319 3.319s s P s P P s P s P ασβσ⎛⎫⎛⎫⨯⨯=<==<=<== ⎪ ⎪⎝⎭⎝⎭⎛⎫⨯=<==-<==-= ⎪⎝⎭11 设总体是密度函数是1,01(;)0,x x f x θθθ-<<=⎧⎨⎩其他 统计假设 01:1,:2H H θθ==.现从总体中抽取样本21,X X ,拒绝域2134ΚX X =≤⎧⎫⎨⎬⎩⎭,求:两类错误的概率,αβ解 由题意知010213:1;:2,, 2.4H H K X n X θθ⎧⎫===≤=⎨⎬⎩⎭当12121,0,11(;1) 1.~(0,1),(,)0,x x f x X U f x x θ<<⎧===⎨⎩时,其他此时 212121231431(,)0.250.75ln 0.75.4x x P X f x x dx dx X αθ≤⎛⎫=≤===+⎪⎝⎭⎰⎰当1212122,014,0,12(;2).(,)0,0,x x x x x x f x f x x θ<<<<⎧⎧===⎨⎨⎩⎩时,其他其他 此时 21212123143992(,)ln 0.75.4168x x P X f x x dx dx X βθ>⎛⎫=>===+⎪⎝⎭⎰⎰12 设总体2(,)X N μσ ,根据假设检验的基本原理,对统计假设:00110:,:()()H H μμμμμσ==>已知;0010:,:H H μμμμσ≥<(未知),试分析其拒绝域.解 由题意知 2(,)X N μσ ,当00110:,:()H H μμμμμ==>成立时()01X P X c P αμμμ=->==>=-Φ{}1100,u c u K X c ααμ--===->所以拒绝域为 }{00K X c μ=->当0010:,:H H μμμμ≥<成立时00()()X P X c P X c P αμμμμ⎛⎛⎫⎫=-<≥≥-<=<=Φ}{00,c K X c ααμμμ===-<所以拒绝域为}{00K X c μ=-<13 设总体2(,)X N μσ 根据假设检验的基本原理,对统计假设: (1)22220010:,:()H H σσσσμ=>已知;(2)22220010:,:()H H σσσσμ≤>未知试分析其拒绝域.解 由题意知 2~(,)X N μσ(1)假设统计假设为 22220010:=,:>H H σσσσ 其中μ已知 当0H 成立时,拒绝域形式为 2020=>s K c σ⎧⎫⎪⎨⎬⎪⎭⎩由 222220=(n)ns ns χσσ ,可得220=>nsP nc ασ⎧⎫⎪⎨⎬⎪⎭⎩所以 21-=()nc n αχ,由此可得拒绝域形式为2201-201=>()sK n n αχσ⎧⎫⎪⎨⎬⎪⎭⎩ (2)假设统计假设为 22220010:<,:>H H σσσσ 其中μ未知当0H 成立时,选择拒绝域为 2020=>s K c σ⎧⎫⎪⎨⎬⎪⎭⎩,由222(-1)(1)n s n χσ- 得 ()()()()222201111n s n s P n c P n c ασσ⎧⎫⎧⎫--⎪⎪⎪⎪=>-≤>-⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎩⎭所以21(1)(1)n c n αχ--=-,由此可得拒绝域形式为2201-201=>(1)1s K n n αχσ⎧⎫⎪-⎨⎬-⎪⎭⎩14 从甲、乙两煤矿各取若干样品,得其含灰率(%)为,甲:24.3, 20.8, 23.7, 21.3,17.4, 乙:18.2, 16.9, 20.2, 16.7 .假定含灰率均服从正态分布且2212=σσ,问甲、乙两煤矿的含灰率有无显著差异 (=0.05α)?解 由题意知 2212(,),Y (,)X N N μσμσ设统计假设为 012112:=;:H H μμμμ≠ 其中12=5,=4n n 当=0.05α时1/2122.3238,(2) 2.3646w s t n n α-==+-=临界值1-12=(+2) 3.6861w c t n n s α-⋅= 拒绝域为}{0 3.6861K x y c =->=而 03.5,,.x y c H -=<接受认为没有差别15 设甲、乙两种零件彼此可以代替,但乙零件比甲零件制造简单,造价也低.经过试验获得它们的抗拉强度分别为(单位:kg/cm 2):甲:88,87,92,90,91 乙:89,89,90,84,88假定两种零件的抗拉强度都服从正态分布,且21σ =22σ.问甲种零件的抗拉强度是否比乙种的高(=0.05α)?解 由题意知 2212(,),Y (,)X N N μσμσ设统计假设为 012112:=;:H H μμμμ≠,其中12=5,=5n n 当=0.05α时122.2136,(2) 1.86,w s t n n α==+-=-临界值1-212=(+2) 2.2136w c t n n s α-⋅= 拒绝域为}{0 2.2136K x y c =->=而 1.6x y c -=<,所以接受0H ,认为甲的抗拉强度比乙的要高.16 甲、乙两车床生产同一种零件.现从这两车床产生的产品中分别抽取8个和9个,测得其外径(单位:mm )为:甲:15.0,14.5,15.2,15.5,14.8,15.1,15.2,14.8 乙:15.2,15.0,14.8,15.2,15.0,15.0,14.8,15.1,14.8假定其外径都服从正态分布,问乙车床的加工精度是否比甲车床的高(=0.05α)?解 由题意知 2212(,),Y (,)X N N μσμσ设统计假设为 2222012112:;:H H σσσσ≥<,其中12=8,=9n n 当=0.05α时 220.0955,0.0261x y s s ==,临界值 12(1,1)0.2684c F n n α=--=拒绝域为202x ys K c s ⎧⎫⎪⎪=<⎨⎬⎪⎪⎭⎩,而22 3.6588x y s F c s ==>,接受0H ,认为乙的精度高.17 要比较甲、乙两种轮胎的耐磨性,现从甲、乙两种轮胎中各取8个,各取一个组成一对,再随机选取8架飞机,将8对轮胎磨损量(单位:mg )数据列表如下:试问这两种轮胎的耐磨性有无显著差异?(=0.05α). 假定甲、乙两种轮胎的磨损量分别满足2212(,),Y (,)X N N μσμσ 且两个样本相互独立. 解 由题意知 2212(,),Y (,)X N N μσμσ设统计假设为 012112:=;:H H μμμμ≠,其中12===8n n n 当=0.05α时,令()221/211,320,102200,319.69,(1) 2.36461n ZZ i Z X Y z s z z s t n n α-==-==-==-=-∑ 拒绝域为}{0K z c =>,临界值1-2=(1)2138Z c t n s α-⋅= 而320z c =<,所以接受0H ,认为两种轮胎耐磨性无显著差异.18 设总体2212(,),Y (,)X N N μσμσ , 由两总体分别抽取样本 X :4.4,4.0,2.0,4.8 Y :6.0,1.0,3.2,0.41)能否认为12μμ= (=0.05α)? 2)能否认为2212σσ= (=0.05α)?解 (1) 由题意知 2212(,),Y (,)X N N μσμσ 设统计假设为 012112:=;:H H μμμμ≠,其中12==4=n n n令Z X Y =-,则有22111.15,()9.02331nzi z s z z n ===-=-∑, 当=0.05α时,1-2=(1) 3.1824c t n α-=,1-=(1)/ 4.78Z c t n s α-⋅= 拒绝域为}{0K z c =>,而 1.15z c =<,所以012,.H μμ=接受认为 (2) 由题意知 2212(,),Y (,)X N N μσμσ设统计假设为 2222220111:=;:H H σσσσ≠,其中12==4=n n n 其中221.5467, 6.4367x y s s ==,拒绝域为2201222>x x yy s s K c c s s ⎧⎫⎪⎪=<⎨⎬⎪⎪⎭⎩或临界值 1/21221212(1,1)0.0648,(1,1)15.4392c F n n c F n n αα-=--==--= 而22201220.2403,,.X Ys F H s σσ===接受认为19 从过去几年收集的大量记录发现,某种癌症用外科方法治疗只有2%的治愈率.一个主张化学疗法的医生认为他的非外科方法比外科方法更有效.为了用实验数据证 实他的看法,他用他的方法治疗200个癌症病人,其中有6个治好了.这个医生断 言这种样本中的3%治愈率足够证实他的看法.(1)试用假设检验方法检验这个医生的看法;(2)如果该医生实际得到了4.5%治愈率,问检验将证实化学疗法比外科方法更有效的概率是多少?解 (1) 记每个病人的治愈情况为X ,则有(1,) X B p设统计假设为 0010:=0.02;:0.02H p p H p p >≤=,其中200,0.05n α==拒绝域为}{00K x p c =-<,临界值10.0163c αμ-==而 000.01,,0.02.x p c H p -=<>拒绝不能认为(2) 不犯第二类错误的概率101 4.5%P X u p p αβ-⎧⎫⎪⎪-=>=⎨⎬⎪⎪⎭⎩由(1,) X B p ,可得 (1),p p EX p DX n-== 由中心极限定理得1 4.5%10.72X P p β⎧⎫⎪-=>=⎬⎪⎭=-Φ= 20 在某公路上,50min 之间,观察每15s 内通过的汽车数,得下表通过的汽车数量0 1 2 3 4 ≥5次数f92 68 28 11 1 0问能否认为通过的汽车辆数服从泊松分布(=0.10α)?解 设统计假设为 0010:()(),()(),200.0.10H F x F x H F x F x n α====4001ˆ,0.805.j j H X j n λν====∑若成立 记 ˆ1,2,3,4ˆ(),!j j j p P x j e j λλ-==-=则有ˆ0.8050102143243500.8050.4471,0.805*0.3599,*0.144920.8050.805*0.0389,*0.0078,10.0014,34j j p e e p p p p p p p p p p λ--=============-=∑检验统计量的值为()2522210.9500 2.1596(1)(4)9.848,~(),0.805.j j n j jnp m r np H X P ανχχχλλ-=-==<--===∑不拒绝认为且21 对某厂生产的汽缸螺栓口径进行100次抽样检验,测得100数据分组列表如下:组限10.93~10.9510.95~10.9710.97~10.9910.99~11.01频数 582034 组限 11.01~11.0311.03~11.0511.05~11.0711.07~11.09 频数1766 4试对螺栓的口径X 的分布做假设检验(=0.05α).解 设X 表示螺栓的口径,2(,)X N μσ ,分布函数为()F x ,统计假设为0010:()(),:()()H F x F x H F x F x =≠,其中100,0.05,2n r α===在0H 成立的情况下,计算得88221111ˆˆ11.0024,()0.00101888j j j j i i X x v x v μσμ====⋅==-⋅=∑∑ 由ˆ11.0024(0,1)ˆ0.00319X X N μσ--= 得0810.9311.002411.0911.00242.2689,, 2.74520.003190.00319x x --==-==所以110887()()0.0386,,()()0.0140p x x p x x =Φ-Φ==Φ-Φ=检验统计量的值为2822210.951()13.825(1)(5)11.07j j nj jv np m r np αχχχ-=-==>--==∑由此应该20,~(,).H X N μσ拒绝不能认为22 检查产品质量时,每次抽取10个产品检验,共抽取100次,得下表: 次品数0 1 2 3 4 5 6 7 8 9 10 频数 35 40 18 5 1 1 0 0 0 0 0 问次品数是否服从二项分布(=0.05α)?解 设X 表示抽取的次品数,2(,)X N μσ ,分布函数为()F x ,统计假设为0010:()(),:()()H F x F x H F x F x =≠,其中10,0.05n α==在0H 成立的情况下,01ˆNj j X pjv N N ===∑ 计算得001011922801011021033710100103101010(1),0,1,,10;ˆˆˆ(1)0.3487,(1)0.3874,(1)0.1937ˆˆ(1)0.0574,(1)10,jj N j j N p C p p j p C p p p C p p p C p p p C p p p C p p--=-==-==-==-==-==-= 检验统计量的值为0020()21022210.9505.1295(1)(9)16.92j j n j jnp m r np ανχχχ-=-==<--==∑因此0,~(10,0.1).H X B 不拒绝认为23 请71人比较A 、B 两种型号电视机的画面好坏,认为A 好的有23人,认为B 好的有45人,拿不定主意的有3人,是否可以认为B 的画面比A 的好(=0.10α)?解 设X 表示A 种型号电视机的画面要好些,Y 表示B 中型号电视机画面要好些分布函数分别为()X F x ,()Y F x ,统计假设为 01:()(),:()(),10,100.0.05X Y X Y H F x F x H F x F x N n α=≠===由题意知++=23=45,=+n n n n n --, 检验统计量 ,min()s n n +-=而23(68)25s s α=<=,所以0,.H B 拒绝认为的画面好24 为比较两车间(生产同一种产品)的产品某项指标的波动情况,各依次抽取12个产品进行测量,得下表 甲1.13 1.26 1.16 1.41 0.86 1.39 1.21 1.22 1.20 0.62 1.18 1.34 乙1.21 1.31 0.99 1.59 1.41 1.48 1.31 1.12 1.60 1.38 1.60 1.84问这两车间所生产的产品的该项指标分布是否相同(=0.05α)?解 设,X Y 分别表示甲乙两车间所生产产品的指标分布,分布函数分别()X F x ()Y F x ,统计假设为01:()(),:()(),.0.05,12,X Y X Y H F x F x H F x F x n m α=≠===检验统计量为秩和T ,易知T 的样本值为112T =且(150,300)T N 拒绝域为012K u u α-⎧⎫⎪=>⎨⎬⎪⎭⎩而0.9752.194 1.96u u =>=,所以0,.H 拒绝认为指标分布不相同25问两班组的劳动生产率是否相同(α=0.05)?解 设,X Y 分别表示两个组的劳动生产率,分布函数分别为(),X F x ()Y F x ,统计假设为01:()(),:()(),.0.05,9,9X Y X Y H F x F x H F x F x n m α=≠===检验统计量为秩和T ,易知T 的样本值为73T = 拒绝域形式为}{01212,<K T t T t t t =<> 其中而12(9,9)=66,(9,9)105t t =,因此T K ∈, 所以0,.H 接受认为劳动生产率相同26 观观察得两样本值如下:Ⅰ 2.36 3.14 7.52 3.48 2.76 5.43 6.54 7.41 Ⅱ 4.38 4.25 6.54 3.28 7.21 6.54 问这两样本是否来自同一总体(α=0.05)?解 设,X Y 分别表示Ⅰ,Ⅱ两个样本,分布函数分别是(),X F x ()Y F x ,统计假设为01:()(),:()(),.0.05,6,8,X Y X Y H F x F x H F x F x n m α=≠===检验统计量为秩和T ,易知T 的样本值为49T = 拒绝域形式为}{01212,<K T t T t t t =<> 其中而12(6,8)=32,(6,8)58t t =,因此0T K ∈, 所以0,.H 接受认为来自同一总体 27 某种动物配偶的后代按体格的属性分为三类,各类的数目是:10,53,46,按照某种遗传模型其比率之比应为:22)1(:)1(2:p p p p --,问数据与模型是否相符(05.0=α)?解 设体格的属性为样本X ,由题意知(2,1)X B p - 其密度函数为()f x ,其中22(,)(1)0,1,2xxx f x p C p p x -=-=统计假设为0010:()(),:()()H F x F x H F x F x =≠似然函数为222211(1)(1)i iii nnx x x x n nxnxi i L C pp pp C--===-=-∏∏解得最大似然统计量为 ˆ12x p=- 则 220ˆˆ 1.330.1121pp === 1ˆˆˆ2(1)0.4454p p p =-= 22ˆˆ(1)0.4424p p =-= 拒绝域为}{2201(1)K m r αχχ-=>--而 ()21022210.950ˆ0.9134(1)(9) 3.8414ˆj j n j j np m r npανχχχ-=-==<--==∑所以0,.H 不拒绝认为与模型相符28 在某地区的人口调查中发现:15729245个男人中有3497个是聋哑人.16799031个女人中有3072个是聋哑人.试检验“聋哑人与性别无关”的假设(05.0=α).解 设X 表示男人中聋哑人的个数,Y 表示女人中聋哑人的个数,其分布函数分别表示为()X F x ,()Y F x . 统计假设为01:(,)()(),:(,)()()X Y X Y H F x y F x F x H F x y F x F x =≠拒绝域为}{2201(1)K m r αχχ-=>--而21022210.950ˆ()62.64(1)(1) 3.84ˆj j n j j v np m r np αχχχ-=-==>--==∑所以0,.H 拒绝认为聋哑与性别相关 29 下表为某药治疗感冒效果的联列表:试问该药疗效是否与年龄有关(α=0.05)?解 设X 表示该药的疗效与年龄有关,Y 表示该药的疗效与年龄无关,其分布函数分别表示为(),X F x ()Y F x . 统计假设为01:(,)()(),:(,)()(),3,3,0.05,X Y X Y H F x y F x F x H F x y F x F x r s α=≠===拒绝域为}{2201(1)K m r αχχ-=>--而 ()21022210.950ˆ13.59(1)(4)9.488ˆj j n j j npm r npανχχχ-=-==>--==∑所以0,.H 拒绝认为疗效与年龄相关30 某电子仪器厂与协作的电容器厂商定,当电容器厂提供的产品批的不合格率不超过3%时以高于95%的概率接受,当不合格率超过12%时,将以低于10%的概率接受.试为验收者制订验收抽样方案.解 由题意知,010.03,0.12,0.05,0.1p p αβ====代入式子 01()1()L p L p αβ=-⎧⎨=⎩()L p选用式子()(L P X d P U φ=≤=≤≈计算求得 66,4n d ==,于是抽查方案是:抽查66件产品,如果抽得的不合格产品4X ≤,则接受这批产品,否则拒绝这批产品.31 假设一批产品的质量指标2(,)X N μσ (2σ已知),要求质量指标值越小越好.试给出检验抽样方案(,n c )的计算公式.若2σ未知,又如何确定检验抽样方案(,n c )?若质量高时指质量指标在一个区间时,又如何确定检验抽样方案(,n c )?解 (1) 解方程组01()1()L L μαμβ=-⎧⎨=⎩ 得 ()201u u n αβσμμ⎛⎫+⎪= ⎪-⎝⎭10u u c u u αβαβμμ+=+ (2) 若2σ未知,用*2M 估计2σ,从而得出公式()2*201u u M n αβμμ⎛⎫+⎪= ⎪-⎝⎭10u u c u u αβαβμμ+=+习题四1 下表数据是退火温度x (C 0)对黄铜延性η效应的试验结果,η是以延伸率计算的,且设为正态变量,求η对x 的样本线性回归方程.x (C 0)300 400 500 600 700 800 y (%)40 50 55 60 67 70解 利用回归系数的最小二估计:101ˆˆˆxyxx l l y x βββ⎧=⎪⎨⎪=-⎩其中2211,n nxy i i xx i i i l x y nxy l x nx ===-=-∑∑ 代入样本数据得到:10ˆˆ0.0589,24.6286ββ==样本线性回归方程为:ˆ24.62860.0589y x =+ 2 证明线性回归函数中(1)回归系数1β的置信水平为α-1的置信区间为11ˆˆ(2)n β-±-; (2)回归系数0β的置信水平为α-1的置信区间为0ˆ(2)n βσ-±-.证 (1) 由于211ˆ,xx N l σββ⎛⎫ ⎪⎝⎭()0,1N 222(2)E S n χσ- 又因为:,()222ˆ2(2)n n σχσ-- 故 所以()2t n - 易知 {}11ˆ1p c ββα-<=-,1P α<=-⎪⎭⎩其中()122n α--c所以1β的置信水平为α-1的置信区间为11ˆˆ(2)n β-±- (2) 由0ˆβ~2201(,())xxnx N l βσ+,得()0,1N ,()222ˆ2(2)n n σχσ-- ,0ˆβ与2ˆσ相互独立, 所以:()2T t n ==-根据11221(2)(2)P T t n P t n ααα--⎫⎪⎛⎫⎪-=<-=<- ⎪⎪⎝⎭⎪⎪⎭()()0001122ˆˆ22P n n ααβββ--⎛⎫ ⎪ ⎪=-<<- ⎪ ⎪ ⎪⎝⎭得到0β的置信度为1α-的置信区间()012ˆ2n αβ--.3 某河流溶解氧浓度(以百万分之一计)随着水向下游流动时间加长而下降.现测得8组数据如下表所示.求溶解氧浓度对流动时间的样本线性回归方程,并以α=0.05对回归显著性作检验.流动时间t (天)0.5 1.0 1.6 1.8 2.6 3.2 3.8 4.7 溶解氧浓度(百万分之一)0.28 0.29 0.29 0.18 0.17 0.18 0.10 0.12解 利用101ˆˆˆtyttl l y t βββ⎧=⎪⎨⎪=-⎩其中2211,n nty i i tt i i i l t y nty l t nt ===-=-∑∑ 代入样本数据得到: 10ˆˆ0.0472,0.3145ββ=-= 所以,样本线性回归方程为:ˆ0.31450.0472yt =- 拒绝域形式为:{}21ˆc β> ()20.95ˆ1,6,0.0058ttF c c l σ==>而21ˆ0.0022β=,所以回归模型不显著. 4 假设X 是一可控制变量,Y 是一随机变量,服从正态分布.现在不同的X 值下分别对Y 进行观测,得如下数据i x0.25 0.37 0.44 0.55 0.60 0.62 0.68 0.70 0.73 i y 2.57 2.31 2.12 1.92 1.75 1.71 1.60 1.51 1.50 i x0.75 0.82 0.84 0.87 0.88 0.90 0.95 1.00 i y1.41 1.33 1.31 1.25 1.20 1.19 1.15 1.00(1)假设X 与Y 有线性相关关系,求Y 对X 样本回归直线方程,并求2σ=DY 的无偏估计;(2)求回归系数210σββ、、的置信度为95%的置信区间; (3)检验Y 和X 之间的线性关系是否显著(=0.05α); (4)求Y 置信度为95%的预测区间;(5)为了把Y 的观测值限制在)68.1,08.1(,需把x 的值限制在什么范围?(=0.05α)解 (1) 利用101ˆˆˆxyxx l l y x βββ⎧=⎪⎨⎪=-⎩其中2211,n nxy i i xx i i i l x y nxy l x nx ===-=-∑∑计算得10ˆˆ2.0698, 3.0332ββ=-= 所以,样本线性回归方程为:ˆ 3.0332 2.0698y x =-,22ˆ0.002015ES σ==(2) 根据第二题,1β的置信区间为()112ˆˆ2n αβ-±-,代入值计算得到: ()1 2.1825, 1.9571β∈--,0β的置信区间为()02ˆ2n αβσ-±-,代入数值计算得到:()0 2.95069,3.1160β∈.(3) 根据F 检验法,其拒绝域形式为 }{201ˆK c β=>而 12ˆ(2),xxc tn l ασ-=- 显然10K β∈,所以Y 和X 之间具有显著的线性关系.(4)()221(0,(1))xxx x y N l nσ-++ ,()21()1(0,1)xxx x s x N l n -=++ 令222ˆˆ(2)((2)n n t n σχσ---则有1122ˆˆ((2),(2))y yt n yt n αα--∈--(5) 根据(4)的结论,令22ˆˆ1.68 1.08yyαα--+=-=,解得 (0.7802,0.8172)x ∈5 证明对一元线性回归系数0ˆβ,1ˆβ相互独立的充分必要条件是0=x . 证 ""⇒()()()()()010011111ˆˆˆˆˆˆcov ,E y x ββββββββββ=--=---2110111101ˆˆˆˆ()E y x y x βββββββββ=---++2211011101ˆy xE y x ββββββββ=---++ ()2211ˆx E ββ=-- 222221111ˆˆˆ()xxE D E l σββββ=+=+若要()01ˆˆcov ,0ββ=,那么0x =.反之显然也成立,命题的证.6 设n 组观测值),...,2,1)(,(n i y x i i =之间有关系式:i i i i x x y εεββ,+-+=)(10~),...,2,1)(,0(2n i N =σ(其中∑==ni i x n x 11),且n εεε,...,,21相互独立.(1) 求系数10,ββ的最小二乘估计量10ˆ,ˆββ; (2) 证明∑∑∑===-+-=-ni i ni i i ni i y y y y y y 121212)ˆ()ˆ()(,其中∑==ni i y n y 11 (3) 求10ˆ,ˆββ的分布. 解 (1) 最小化残差平方和:2201[()]Ei i S y x x ββ=---∑01ββ求,的偏导数[][]220101012()02()()0E Ei i i i i S S y x x y x x x x ββββββ∂∂=----==-----=∂∂∑∑, 01ˆˆ,xyxxl y l ββ==得到: (2) 易知()()()22221111ˆˆˆˆˆˆ()()2()nnnniiiiiii i i i i i i i y y y yy y y y yy y y y y ====-=-+-=-+-+--∑∑∑∑ 其中01ˆˆˆ()()xyi i i xxl yx x y x x l ββ=+-=+-,将其代入上式可得 1ˆˆ()()0niiii y yy y =--=∑ 所以,∑∑∑===-+-=-ni i n i i i ni iy y yy y y121212)ˆ()ˆ()( (3) 20ˆ~(0,),iN y εσβ= ,200ˆ~(,)N nσββ∴同理,易得211ˆ~(,)xxN l σββ∴7 某矿脉中13个相邻样本点处某种金属的含量Y 与样本点对原点的距离X 有如下观测值 i x 2 3 4 5 7 8 10 i y 106.42 108.20 109.58 109.50 110.00 109.93 110.49 ix 11 14 15 16 18 19 i y 110.59 110.60 110.90 110.76 111.00 111.20分别按(1)x b a y +=;(2)x b a y ln +=;(3)xba y +=. 建立Y对X 的回归方程,并用相关系数221TES S R -=指出其中哪一种相关最大.解 (1)令v y a bv ==+,根据最小二乘法得到,正规方程:101ˆˆˆvy vv l l y vβββ⎧=⎪⎨⎪=-⎩,最后得到10ˆˆ1.1947,106.3013ββ==所以:样本线性回归方程为:ˆ106.3013y=+10.8861R = (2) 令ln ,v x y a bv ==+101ˆˆˆvyvv l l y vβββ⎧=⎪⎨⎪=-⎩,得到10ˆˆ1.714,106.3147ββ==所以:样本线性回归方程为:ˆ106.3147 1.714ln y x =+,20.9367R = (3) 令1,v y a bv x==+ 101ˆˆˆvy vv l l y vβββ⎧=⎪⎨⎪=-⎩,得到10ˆˆ111.4875,9.833ββ==- 所以:样本线性回归方程为:ˆ111.48759.833yx =-,30.987R = 综上,123R R R <<,所以第三种模型所表示的X Y 与的相关性最大. 8 设线性模型⎪⎩⎪⎨⎧++=+-=+=3213221211122εββεββεβy y y其中i ε~),0(2σN (1,2,3.i =)且相互独立,试求1β、2β的LS 估计.解 令()()1231212310,,,21,(,),,,12T TT Y y y y X βββεεεε⎡⎤⎢⎥==-==⎢⎥⎢⎥⎣⎦则线性模型可转化为 Y X βε=+ 根据 222TTTTES Y X Y Y Y X X X ββββ=-=-+, 令 20ES β∂=∂可得 ()1ˆT T X X X Y β-=即 112322311ˆˆ(23),(2)66Y Y Y Y Y ββ=++=--+ 9 养猪场为估算猪的毛重,随机抽测了14头猪的身长1x (cm),肚围2x (cm)与体重y (kg),得数据如下表所示,试求一个22110x b x b b y ++=型的经验公式.解由多元线性模型得:()2140,Y X I βεεσ=+⎧⎪⎨=⎪⎩()()()0121212,,,,,,T T Tn n Y y y y ββββεεεε===()114149145581516215271159621627416971ˆ172741787918084190851929419891110395T T X X X X Y β-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦代入数值得到:12ˆ15.93840.52230.4738yx x =-++ 同样得到:12ˆ15.93840.52230.4738yx x =-++ 10 某种商品的需求量y ,消费者的平均收入1x 和商品价格2x 的统计数据如下表所示.试求y 对1x 、2x 的线性回归方程.1i x 1000600 1200 500 300 400 1300 1100 1300 300 2i x 5 7 6 6 8 7 5 4 3 9 i y100 75 80 70 50 65 90 100 110 60解 建立回归模型201122=+++(0,)Y x x N βββεεσ 其中根据2()=0E S ββ∂∂,可求得β的LS 估计为 -1ˆ=(X X)T T X Y β代入x ,得0=111.6918,β 1=0.0143,β 2=7.1882,β-则回归方程为:12ˆ111.69180.01437.1882yx x =+- 11 设n 组观测值),...,2,1)(,(n i y x i i =之间有如下关系:i i i i i x x y εεβββ,+++=2210~),...,2,1)(,0(2n i N =σ,且n εεε,...,,21相互独立.(1)求系数21,,βββ的最小二乘估计量210ˆ,ˆ,ˆβββ; (2)设n i x x y i i i ,...,2,1,ˆˆˆˆ2210=++=βββ,∑==n i i y n y 11,证明:∑∑∑===-+-=-ni i ni i i ni i y y y y y y 121212)ˆ()ˆ()(解 (1) ()()()0121212,,,,,,T T Tn n Y y y y ββββεεεε===1222211111Tn n X x x x x x x ⎛⎫ ⎪= ⎪⎪⎝⎭()1ˆT T X X X Y β-= (2)()()()22221111ˆˆˆˆˆˆ()()2()nnnniiiiiii i i i i i i i y y y yy y y y yy y y y y ====-=-+-=-+-+--∑∑∑∑()()11ˆˆˆˆ()0nT T i i i i x x x x y yy y β-==--=∑其中:y=x ,将其代入,得到 ()22211ˆˆ()()nni i i i i i y y y yy y ==∴-=-+-∑∑ 12(1)求形如2210x b x b b y ++=的回归方程;(2)对上述回归方程的显著性作检验; (3)求当x =5.5时Y 的估计值.解 (1) 令212,x x x x ==,求得回归方程为:2ˆ 3.4167 2.72620.3905yx x =+- (2) 拒绝域形式为:{}21ˆc β> ()20.9521ˆ1,6ˆxxF c l σβ=>而,所以回归方程具有显著性 (3) 将 5.5x =代入回归方程,得到ˆ 6.5982y= 13 设y 和变量12,x x 有形为ε++=2211x b x b y ,2(0,)N εσ 的回归方程模型,试用最小二乘法求出12b b 和的估计.解 令 ()()()121212,,,,,TTTn Y y y y βββεεε===1112121222Tn n x x x X x x x ⎛⎫= ⎪⎝⎭残差平方和为 222T T T T E S Y X Y Y Y X X X ββββ=-=-+令 20E S β∂=∂,得到 112ˆ(,)()T T T X X X Y βββ-==.。
(完整版)清华大学_杨虎_应用数理统计课后习题参考答案
习题一1 设总体X 的样本容量5=n ,写出在下列4种情况下样本的联合概率分布. 1)),1(~p B X ; 2))(~λP X ; 3)],[~b a U X ; 4))1,(~μN X .解 设总体的样本为12345,,,,X X X X X , 1)对总体~(1,)X B p ,1122334455511155(1)(,,,,)()(1)(1)i inx x i i i i x x P X x X x X x X x X x P X x p p p p -==-========-=-∏∏其中:5115ii x x ==∑2)对总体~()X P λ11223344555115551(,,,,)()!!ixni i i i i xi i P X x X x X x X x X x P X x e x e x λλλλ-==-==========∏∏∏其中:5115ii x x ==∑3)对总体~(,)X U a b5511511,,1,...,5 (,,)()0i i i i a x b i f x x f x b a==⎧≤≤=⎪==-⎨⎪⎩∏∏,其他4)对总体~(,1) X N μ()()()25555/222151111 (,,)()=2exp 2i x i i i i i f x x f x x μπμ---===⎛⎫==-- ⎪⎝⎭∑∏2 为了研究玻璃产品在集装箱托运过程中的损坏情况,现随机抽取20个集装箱检查其产品损坏的件数,记录结果为:1,1,1,1,2,0,0,1,3,1,0,0,2,4,0,3,1,4,0,2,写出样本频率分布、经验分布函数并画出图形.解 设(=0,1,2,3,4)i i 代表各箱检查中抽到的产品损坏件数,由题意可统计出如下的样本频率分布表1.1:表 1.1 频率分布表i 0 1 2 3 4 个数6 7 3 2 2 iX f0.3 0.35 0.15 0.1 0.1经验分布函数的定义式为:()()()(1)10,(),,=1,2,,1,1,n k k k x x kF x x x x k n n x x +<⎧⎪⎪≤<-⎨⎪≥⎪⎩,据此得出样本分布函数:200,00.3,010.65,12()0.8,230.9,341,4x x x F x x x x <⎧⎪≤<⎪⎪≤<⎨≤<⎪⎪≤<⎪≥⎩图1.1 经验分布函数3 某地区测量了95位男性成年人身高,得数据(单位:cm)如下:组下限165 167 169 171 173 175 177 组上限167 169 171 173 175 177 179x()n F x人 数3 10 21 23 22 11 5试画出身高直方图,它是否近似服从某个正态分布密度函数的图形.解图1.2 数据直方图它近似服从均值为172,方差为5.64的正态分布,即(172,5.64)N .4 设总体X 的方差为4,均值为μ,现抽取容量为100的样本,试确定常数k ,使得满足9.0)(=<-k X P μ.解 ()- 54100X P X k P k μμ⎫-⎪<=<⎪⎭()()555 P k X k μ=-<-<因k 较大,由中心极限定理(0,1)4100X N : ()()()-55P X k k k μ<≈Φ-Φ-(5)(1(5))k k =Φ--Φ()2510.9k =Φ-=所以:()50.95k Φ=查表得:5 1.65k =,0.33k ∴=.5 从总体2~(52,6.3)X N 中抽取容量为36的样本,求样本均值落在50.8到53.8之间的概率.解 ()50.853.8 1.1429 1.7143X P X P ⎛⎫<<=-<< ⎪⎝⎭(0,1) 6.3X U N =()()50.853.8 1.1429 1.7143(1.7143)( 1.14290.9564(10.8729)0.8293P X P U ∴<<=-<<=Φ-Φ-=--=)6 从总体~(20,3)X N 中分别抽取容量为10与15的两个独立的样本,求它们的均值之差的绝对值大于0.3的概率.解 设两个独立的样本分别为:110,,X X 与115,,Y Y ,其对应的样本均值为:X 和Y .由题意知:X 和Y 相互独立,且: 3~(20,)10X N ,3~(20,)15Y N(0.3)1(0.3)P X Y P X Y ->=--≤1P =-~(0,0.5)~(0,1)(0.3)22(0.4243)0.6744X Y N X YN P X Y -->=-Φ=7 设110,,X X 是总体~(0,4)X N 的样本,试确定C ,使得1021()0.05ii P XC =>=∑.解 因~(0,4)i X N ,则~(0,1)2iX N ,且各样本相互独立,则有:10122~(10)2i i X χ=⎛⎫⎪⎝⎭∑所以:10102211()()144iii i CP X C P X ==>=>∑∑1021110.0544i i c P X =⎛⎫=-≤= ⎪⎝⎭∑102110.9544i i c P X =⎛⎫≤= ⎪⎝⎭∑查卡方分位数表:c/4=18.31,则c=73.24.8 设总体X 具有连续的分布函数()X F x ,1,,n X X 是来自总体X 的样本,且i EX μ=,定义随机变量:1,,1,2,,0,i i i X Y i n X μμ>==≤⎧⎨⎩试确定统计量∑=ni i Y 1的分布.解 由已知条件得:~(1,)i Y B p ,其中1()X p F μ=-.因为i X 互相独立,所以i Y 也互相独立,再根据二项分布的可加性,有1~(,)nii YB n p =∑,1()X p F μ=-.9 设1,,n X X 是来自总体X 的样本,试求2,,EX DX ES 。
应用数理统计习题答案
2214243.(1)[||]0.140(2)[||]0.144(,4),(,),(0,)[||]20.1800255(3){||0.1}2(10.9521.9615372tnE a D nnE aN a N a t a NnnE t t dtnP t Pnξξξξξξπ-+∞-==≤⇒=-≤=-==≤==≤=≤=Φ-≥=⇒≥⎰《应用数理统计》参考答案习题一0.51.(,0.5)(,){||0.1}0.9972.97442N a N anP a Pnξξξξ⇒-<=<==⇒=2242.(,4)(,)100||(1)(||)()0.90,0.330.20.2(2):P(||)N a N aa UP a U P Uaξξξξσξεε⇒--<=<==-≥≤挈比学夫不等式(5)(5)125515(3){15}1{15}1{15,15,,15}1215121[{}]221[1(1.5)]0.292P P P P ξξξξξξ>=-≤=-≤≤≤--=->=--Φ=1121212111()(1){}{,,,}{1,1,,1}()()(1)(1)k n n nn m nm n m n m ni i P k pq P M m P m m m P m m m pqpq q q ξξξξξξξ----======≤≤≤-≤-≤-≤-=-=---∑∑4.5. 6. 13.0)25(1}8.012138.012{}13{)54,12(~)1()4,12(~=Φ-=->-=>ξξξξP P N N (1)(1)1255511515(2){10}1{10}1{10,10,,10}1[{10}]1[1{10}]1210121[1{}]221[11(1)]0.579P P P P P P ξξξξξξξξ<=-≥=->>>=->=--≤--=--≤=--+Φ=6(1)0.001567.2800~(0.0015)(1){800}[{800}][0.0015]x E P P e dx e ξξξ∞-->=>==⎰6(6)30000.00156 4.56(2){3000}[{3000}][0.0015](1)x P P e dx e ξξ--<=<==-⎰1212(2){}{,,,}{1,1,,1}n n nn P K k P k k k P k k k ξξξξξξ==≥≥≥-≥+≥+≥+7.8.均值的和(差)等于和的均值,方差的和差都等于方差的和9.由中心极限定理:10.11.22222(1)(1)(1)()222~()()()[()](,)it itit n e n n e n e it i t t tn it it n n nn p t e t t ee n e e e N n λξλλξξλλλλλξλϕϕϕλξλ---+--∴=∴======∴12121233~(20,3),~(20,),~(20,)10151~(0,)2{||0.3}1220.67N N N N P P ξξξξξξξξξ-∴->=->=-Φ=2(),(),E a D ξξσ==121(0,1)(0,1)~(,)n n i i i ni i na a n N N N a n nξξσξσξ==--∴∴=∑∑∑22222222,(),()()(),(),(),(,)k k k k k k k k k k k k k kk k E a E a D E E a a a a E A a D A n a a A N a nξξξξξ===-=--∴==-∴22121212222(),()(),()0,()()()2,()()()2,i i E E a D D E D D D E E D ξξξξσξξξξξξσξξξξξξσ====∴-=-=+=∴-=-+-=13.14.15.16.2212221221,(),(),()()0,()()()(1),11[()](1)1niii ii i iniiniiE a E a D DnE D D DnDn D nDES n Dn nE ES Dn n nσξξξσξξξξξξξσξξξξξξξ=======∴-=-=+--===--==--∑∑∑222222222424222(1),11()(1)()2(1)21 ()2(1)() nsnns nE n Es On nns nD n Ds On n n χσσσσσσσ--=-⇒==+-=-⇒==+112323''' '2(121)(1)()()()()5231()(121)23023021AD E E E EA E E A AVar Aξξξξξξηξηηηηηξξξξξ⎛⎫⎪-+=-==⎪⎪⎝⎭=--=--⎛⎫⎛⎫⎪⎪==--=⎪⎪⎪⎪⎝⎭⎝⎭11223''''110(2)(,)111()()()()5231()(121)23023021BE E E EB E E B BVar Bξηηηξξξηηηηξξξξξ⎛⎫⎛⎫ ⎪===⎪ ⎪⎝⎭ ⎪⎝⎭∑=--=--⎛⎫⎛⎫⎪⎪==--=⎪⎪⎪⎪⎝⎭⎝⎭11222211()2822121(2)||2241128116xx xxe dx dxπ⎛⎫⎛⎫- ⎪⎪∞∞⎝⎭⎝⎭-∞-∞-=∑-⎛⎫⎛⎫∑==⎪ ⎪-⎝⎭⎝⎭⎰⎰17.18.21.22.()11223'122'111110(,),211151,1101221111111100130111100310110N A A AAA Aξηξηξηηθθ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭∑⎛⎫⎛⎫⎛⎫⎪==⎪ ⎪⎪⎝⎭⎝⎭⎪⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪∑=-=⎪ ⎪⎪⎪⎝⎭⎝⎭⎪⎪⎝⎭⎝⎭‘=,由引理1.2.3,则-的联合分布为--11223''12111111~(,),1011111432111111121301111210.2N A A AA Aξηξξηξηθρρρρρρρρρηη⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪-⎝⎭⎝⎭ ⎪⎝⎭∴∑⎛⎫⎛⎫+--⎛⎫⎛⎫⎪⎪∑=-=⎪ ⎪⎪⎪---⎝⎭⎝⎭⎪⎪-⎝⎭⎝⎭∴--=⇒=-==A,--时与独立2''44''22'''''' 44224(0,)(,)()()2()()()()()cov(,)(,)()() ()()2()()()2()nN IE A B tr A tr B tr ABE A E B tr A tr BA B E A B E A E Btr A tr B tr AB tr A tr B tr AB ζσζζζζσσζζζζσσζζζζζζζζζζζζσσσσσ=+=∴=-=+-=()11112222121122,1,1,0822177,122477yay y Qyba babθθθθθθθ--⎛⎫⎛⎫--=⎪⎪-⎝⎭⎝⎭⇒===-=⎛⎫⎪⎛⎫⎛⎫∴=∑== ⎪⎪ ⎪⎪⎝⎭⎝⎭⎪⎝⎭23.24.又 则令 则与 独立,则 与独立,且26.则2212221~(,),~(0,),~(1),(0,1)/(1)n n N a N n n ns n N T t n σξξξσξξχσξξ++----=-'11111(,,),(,,)111(,,),()11n n n ij n n n n i i i ia a B D nn n ξξθξσσσσδσσ⨯======-∑∑'2,0,D D D BD ===221(,)(,)1()n ni i nnB N a N I ηξθσσ===∑,i i i aξγσ-=2'11,()()()ni i i a D n ηγζγγξθξθσ=-==-=--∑∑B nηξ=ξηζ)1(~2-n χζ11(,)22U ξθθ-+(1)()121111221111()2201()121()()[1()]1[]21()()[()][]2(,)(1)()()[()()](1)[]n x n n n n n n n x f x other F x dx x f x nf x F x n x f x nf x F x n x f x y n n f x f y F y F x n n y x ξξθξξθθθθθ-------⎧-<<+⎪=⎨⎪⎩==-+∴=-=⋅⋅-+==⋅+-=--=⋅-⋅-⎰27.33.2222122222212222(0,),1()||2 ()()()()22(1)iyniniiY a NE d Y dynaD dE d E d Ennn nσξσσξσσσπσσσππ-∞-∞===-==-=-=-=⋅-=-∑⎰∑2222122122210.3(0,0.3),(0,)1010()(9)0.310()100.18{}0.30.3{(2}0.01iniiniiniN NPPξξξξχξξξ===--⨯<=<=∑∑∑222(2)(0,1),(1)0.3(9){0.9}0.9932nsN ntP Psnξχσξξξ--<=<=12121222221221212(3)(0,0.18),(0,0.18)(0,1),(0,1)0.18(1),()(1)0.18{()40}0.9N NN NPξξξξχχξξξξ+-+-+<=-224132244(4)~(1),~(0,0.12),10.73 {10.73}{}0.95NP Pξχξξξξ-<=<=34.《应用数理统计》参考答案2211222212222211(1)(0,),(0,)(1),()(1)11,()()(2)nn miii i n nniii nn mi i i i n N n N m n m m a b n m a b n m ξσξσξξχχσσσξξχ+==+=+==+--==++-∑∑∑∑∑∑222211112(2)(),(0,)(0,1),/(),n mni ii n i nniii i i m N n N t m c m n ξχξσσξξσσ+=+===∴=∑∑∑∑∑2222221121221(3)(),()()/(1,1),/nn mi i i i n ni i n mi i n n m n mF n m d nm ξξχχσσξσξσ+==+=+=+--∴=∑∑∑∑1. 由矩估计法2. (1) 由矩估计法(2)(3)(4)(5)818226212266174.00281610(74.002)88610 6.85710181ii i i a X x S x n S S n σ=-=--⎧===⎪⎪⎨⎪==⨯=-⎪⎩∴==⨯⨯=⨯--∑∑11'1202()33A x EX x dx θαξθθαξθθξ==-====∴=⎰111'101(1)2211A EX x x dx θαξθαθξθξθξ==+==+==+-∴=-⎰1211211122222221212222222121112()2x x n i i e xdx e x dx A X n A S S S θθθθθθαθθξθαθθξθξθξθθξθξθ--+∞--+∞==⋅=+==⋅===+∴=+==-+⎧=-⎪∴⎨=⎪⎩⎰∑⎰111(1)122Ni N NA x N NN ξξ=+===⋅⇒=∑11102()1A dx ξξθξ===⇒=-⎰2∞3.4.2()2{0},(){0}{}()0.7,110.7,0.525x aA X AP A P dxa aP a pp aξξξ--=<=<=--=<=Φ-=≈∴≈=-⎰设表示出现的次数,(1)11111(1)()ln()[ln ln(1)ln]ln()1[ln ln]ln ln0 ln lnniiniin ni ii iniiL c xL c xLc x n c xnnx n cθθθθθθθθθθθθθ-+=======+-+∂=+-=+-=∂=-∏∑∑∑∑1111221(2)()ln()[ln1)ln]ln()]0(ln)niniiniiniiLL xLxnxθθθθθ======+∂=+=∂=∑∑∑11()()()()11(3)()ln()lnln()11,,,,()0,0,11,()()nnin nn nnn nnnLL nL nLother otherL Lθθθθθθθθξξθξθθθθθξθξθξ====-∂=-=∂⎧⎧≤≤⎪⎪==⎨⎨⎪⎪⎩⎩≤≤=∏11()()()()11(3)()ln()lnln()11,,,,()0,0,11,()()nnin nn nnn nnnLL nL nLother otherL Lθθθθθθθθξξθξθθθθθξθξθξ====-∂=-=∂⎧⎧≤≤⎪⎪==⎨⎨⎪⎪⎩⎩≤≤=∏5.221()212212241(5)()()ln()[ln]22()2()ln()[022in xiniini iiLxLx xLθθθθθθθθθθθθθξθ--====-=-----∂==∂=∑∑(1)11(1)11(1)(1)(6)()ln()[ln ln(1)ln]ln()(),,,()()nc ciiniinc ci niL c xL c c c xL ncL c xL Lθθθθθθθθθθθξξθξθξ-+==-+===--+∂=-=∂=≤≤⇒=∏∑∏不能解出,所以由22111(7)()1)(1)ln()[2ln(2)ln(1)ln(1)]2ln()22]01inxiini iiniiL xL x xx nL nθθθθθθθθθθθξ-====--=+--+--∂=-=⇒=∂-∏∑∑(11max(1)~(,0)11(1)(),,,0(),()()nnniULL Lξθθθξξθθθξθθ==-=<<-=≤∏6.7.所以不唯一。
(完整版)数理统计课后习题答案—杨虎
习题一、基本概念1.解: 设12345,,,,X X X X X 为总体的样本1)51151~(1,) (,,)(1)i ix x i X B p f x x p p -==-∏555(1)11(1),5x x i i p p x x -==-=∑2)λλλλλ55155151!!),,( )(~-==-∏∏==e x ex x x f P X i ixi i xi3)5155111~(,) (,,),,1,...,5()i X U a b f x x a xi b i b a b a ===≤≤=--∏所以5151,,1,...,5()(,,)0,a xi b i b a f x x ⎧≤≤=⎪-=⎨⎪⎩其他 4)()⎪⎭⎫ ⎝⎛-==∑∏=-=-5122/55125121exp 221),,( )1,(~2i i i x x e x x f N X i ππμ 2.解: 由题意得:因为0110,(),1,n k k k x x k F x x x x n x x ++<⎧⎪⎪≤<⎨⎪≥⎪⎩,所以40,00.3,010.65,12()0.8,230.9,341,4x x x F x x x x <⎧⎪≤<⎪⎪≤<⎨≤<⎪⎪≤<⎪≥⎩3.解:它近似服从均值为172,方差为5.64的正态分布,即(172,5.64)N 4.解:()55-5 510/2- -⎪⎪⎭⎫ ⎝⎛<<-=⎪⎪⎭⎫ ⎝⎛<=<k X k P k X P k X P μμμ 因k 较大()()()()()()()-555(15)2510.950.95P X k k k k k k k μ<≈Φ-Φ-=Φ--Φ=Φ-=Φ=,5 1.65,0.33k k ==查表1 0.9 0.8 0.7 0.6 0.5 0.4 0.30.2 0.11 2 3 4 xy5.解:()-5250.853.8 1.1429 1.7143(1.7143)( 1.14296.3/6X P X P ⎛⎫<<=-<<=Φ-Φ- ⎪⎝⎭)0.9564(10.8729)0.8293=--=6.解:()()()~(20,0.3),~(20,0.2),~(0,0.5),0.3 0.30.3Y N Z N Y Z Y Z N P Y Z P Y Z P Y Z -->=->+-<-设与相互独立,0.42430.42431(0.4243)(1(0.4243))22(0.4243)P P ⎫⎫=>=+<-⎪⎪⎭⎭=-Φ+-Φ=-Φ220.66280.6744=-⨯= 7.解:101010222111~(0,4),~(0,1),2111 10.05,0.95444444ii i i i i i i X X N N c c c P X P X P X ===⎛⎫⎛⎫⎛⎫>=-≤=≤= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑则查卡方分位数表 c/4=18.31,c=73.24 8.解:由已知条件得:(1,),1()iX Y B p p F μ=-由i X 互相独立,知i Y 也互相独立,所以1(,),1().niX i Y B n p p F μ==-∑9.解: 1))1(,)1(,2p Np DX ES np Np n DX X D Np EX X E -==-==== 2)λλλ======DX ES nn DX X D EX X E 2,, 3)()()12,12,2222a b DX ES n a b n DX X D b a EX X E -==-==+==4)1,1,2======DX ES nn DX X D EX X E μ 10.解:1)()22212)1()1()1()1(σ-=-=-=-=-∑=n DX n ES n S n E X X E ni i2)()222242221(1)(1)(1), ~(1)nii n S n S DXX D n S D n σχσσ=⎛⎫---=-=- ⎪⎝⎭∑ ()2412(1)nii DXX n σ=∴-=-∑ 11.解:ππππππn X E dt e dy ey dy ey X nE Y E nn DY X E EY N X n Y n N X t y y 2)(,2)1(222222||21)(),11,0(),1,0(~),/1,0(~)102222==Γ==========-∞+-∞+-∞+∞-⎰⎰⎰ 令ππππππ211,2)1(222222||21),1,0(~)21102222===Γ====∑∑⎰⎰⎰==-∞+-∞+-∞+∞-n i i n i i t x x X E n X n E dt e dx ex dx ex X E N X12.解:1)()2224X E X E X E n μμ-=-=()244100.1X X D E n n⎡⎤=+=+≤⎢⎥⎣⎦ 40n ∴≥2)2222,2u u X u E u e du u du +∞+∞---∞===⎰⎰222220022002(1)0.1,80010,254.6,255u uutue du ue duue d e dtE X En nμπ+∞+∞--+∞+∞--===Γ=-==≤≥≥=∴≥⎰⎰⎰⎰3) ()()111P X P X Pμμ⎛-≤=-≤-≤=≤≤⎝⎭0.975210.95,2221.96,15.36,162u n n⎛⎛⎫⎛=Φ-Φ-=Φ-≥⎪⎪⎝⎭⎝⎭⎝⎭≥=≥≥13.解:()()()112221111111,n ni ii iY XY X a X na X an b b n bEY EX a S Sb b==⎛⎫=-=-=-⎪⎝⎭=-=∑∑14.解:1)12345~(0,2),~(0,3)X X N X X X N+++~~(0,1)N N1111,, 2.23c d n∴===2)()2345222212~(2),~(1)3X X XX Xχχ+++()()22122234523~(2,1),,2,123XX F c m n X X X +===++15.解: 设1(1,)p F n α-=,即()1(1P F p P p α≤=-⇔≤≤=-((12(2(12P T P T pP T p p P T ⇔≤-≤=-⇔≤=-⇔≤=-122112()()(1,)p p p t n tn F n α---=∴==16.解:()()()()()()()()()121222222221212222212121212212221212~(0,2),~(0,~~(0,1)~~(2)2210.1,2X X N X X N N N X X X X t P t P X X X X X X X X X X t P X X X X c χχ+-+⎛⎫⎛⎫++>=> ⎪ ⎪ ⎪ ⎪++-++-⎝⎭⎝⎭⎧⎫+⎪⎪=-≤=⎨⎬++-⎪⎪⎩⎭=0.9(1,2)8.532tF ==17.证明: 1)2211122211()0,(),(0,)1(1)(1)n n n n n E X X D X X X X N nnn S n t n σσχσ+++++-=-=∴---=-又2)2211111()0,(),(0,)n n n n n E XX D X X X X N nnσσ+++++-=-=∴- 3)2211111()0,(),(0,)n n E X X D X X X X N nnσσ---=-=∴- 18. 解:()()()62,47.61,96.125.0,975.025.0,95.0125.0225.0/25.025.0975.0≥≥=≥≥Φ≥-Φ=⎪⎪⎭⎫ ⎝⎛≤-≤-=≤-n n u n n n n n X n P X P σμσμ 19.解[,]0,1,[,](),(),0,[,]1,X U a b x a x a b x af x F x a x b b a b a x a b x b ≤⎧⎧⎪∈-⎪⎪∴==<≤-⎨⎨-⎪⎪∉⎩>⎪⎩1(1)()(1())()n f x n F x f x -∴=-111()1(),[,]0,[,]1(),[,]()(())()0,[,]n n n n b a n x a b b a b a x a b x a n x a b f x n F x f x b a b ax a b ----⎧∈⎪=--⎨⎪∉⎩-⎧∈⎪==--⎨⎪∉⎩20.解:()()()()()()()55(1)(1)11515555555(5)111011011011101211121(1(1))1(11(1))1(1)0.5785121515 1.5(1.5)0.93320.70772i i i i i i i i i i P X P X P X P X X P X P XP X P =====<=-≥=-≥=--≤⎛-⎫⎛⎫=--≤- ⎪⎪⎝⎭⎝⎭=--Φ-=--+Φ=-Φ=-⎛⎫<==<=<=Φ== ⎪⎝⎭∏∏∏∏∏21. 解:1)因为21~(0,)mii XN m σ=∑,从而~(0,1)miXN ∑2221~()m ni i m Xn χσ+=+∑,所以~()miX t n ξ=2)因为22211~()mii Xm χσ=∑,22211~()m n i i m X n χσ+=+∑所以2121~(,)mi i m ni i m n X F m n m X =+=+∑∑3)因为21~(0,)m i i X N m σ=∑,21~(0,)m n i i m X N n σ+=+∑所以2212()~(1)mi i X m χσ=∑,2212()~(1)m ni i m X n χσ+=+∑故222221111~(2)m m n i i i i m X X m n χσσ+==+⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭∑∑ 22.解:由Th1.4.1 (2)()(),95.047.321),1(~122222=⎪⎪⎭⎫⎝⎛≤---σχσS n P n S n查表:n 121,n 22-==23.解: 由推论1.4.3(2)05.095.0139.2139.2),14,19(~222122212221=-=⎪⎪⎭⎫ ⎝⎛≤-=⎪⎪⎭⎫ ⎝⎛>S S P S S P F S S 24.解: 1)()()94.005.099.057.3785.10)20(~),1,0(~),,0(~2201222220122=-=≤≤=⎪⎭⎫ ⎝⎛-=---∑∑==χχχσμσμσμσμP X XN X N X i i i ii i2)()895.01.0995.058.381965.11),19(~192222222012=-=⎪⎪⎭⎫ ⎝⎛≤≤=-∑=σχσσS P S X Xi i25. 解: 1)()4532.07734.0221)75.0(21431435/2080380=⨯-=+Φ-=⎪⎭⎫ ⎝⎛≤-=⎪⎪⎭⎫ ⎝⎛>-=>-U P X P X P2)()()05.01975.021064.21064.25/2674.780380=+⨯-=≤-=⎪⎪⎭⎫ ⎝⎛>-=>-T P X P X P 26.解: 1)8413.0120472.4472.4=⎪⎪⎭⎫ ⎝⎛<-=⎪⎪⎭⎫ ⎝⎛<-=⎪⎭⎫ ⎝⎛+<σσσa X P a X P a XP 2)2222222222223132222222S P S P S P S P σσσσσσσσ⎛⎫⎛⎫⎛⎫⎛⎫-<=-<-<=<<=<< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭22199.528.50.950.050.9S P σ⎛⎫=<<=-= ⎪⎝⎭3)3676.3,328.120,1.020,9.02012020/1===⎪⎪⎭⎫ ⎝⎛≤=⎪⎪⎭⎫⎝⎛≤-=⎪⎪⎭⎫⎝⎛>-=⎪⎪⎭⎫⎝⎛>-=⎪⎪⎭⎫ ⎝⎛>-c c c T P c T P c S X P c S X P c X S P μμμ27.解:22cov(,)(,))(1()()1cov(,)()1(,)1j i j j i j i j i j i j i j X X X X r X X X X D X n D X X D X X nX X X X E X X X X X X X X nr X X X X n σσ----=---=-=--=---=-∴--=--28.解:()2221212)1(2)1(,)1(,21),2,2(~σσμ-=-=-=-===+=∑∑==+n ES n ET S n Y Y T X Y n Y N X X Y Y Y ni i ni i in i i 令习题二、参数估计1.解:矩估计()1 3.40.10.20.90.80.70.766X =+++++=()()11111ln ln(1)ln nnni i i i nii L x x L n x αααααα===⎡⎤=+=+⎣⎦=++∏∏∑121ln ln 01ˆ10.2112ln n i i n ii d n L x d n x αααα====+=+=--=∑∑3077.0121ˆ,212)1()1(110121=--==++=++=+=⎰++X XX x dx x EX αααααααα所以12112ˆˆ,11ln n ii X nX X αα=⎛⎫⎪- ⎪==-+-⎪ ⎪⎝⎭∑,12ˆˆ0.3079,0.2112αα≈≈ 2.解: 1)3077.02ˆ,21====X X EX θθ111ln 0nni L nL θθθ====-=∏无解,依定义:21ˆmax ii nX θ≤≤= 2)矩法:211ˆˆ1.2,0.472212EX DX θθ====极大似然估计:22ˆˆ1.1,0.1833212EX DX θθ====3. 1)解:矩法估计:111ˆ,EX X Xλλ===最大似然估计:111,ln ln niii nnx x ni i i L eeL n L x λλλλλ=--==∑===-∑∏2111ˆln 0,ni ni ii d n nL x d Xxλλλ===-===∑∑2)解:~()X P λ矩估计:X X EX ===1ˆ,λλ最大似然估计:1,ln ln ixnxnn i i iiL eeL n nx x x xλλλλλλ--====-+-∑∏∏2ˆln 0,d nx L n X d λλλ=-+==3)解:矩估计:()2,212b a a bEX DX -+==联立方程:()2*221ˆ2ˆa X b X a bX b a M ⎧=-⎪→+⎧=⎪⎪⎨-⎪=⎪⎩⎨=+⎪⎩极大似然估计:依照定义,11ˆˆmin ,max i ii ni na Xb X ≤≤≤≤== 4) 解: 矩估计:00ln EX dx xxθθ+∞+∞==⎰,不存在22111,ln ln 2ln nnni i i i iL L n x x x θθθ=====-∑∏∏ln 0n L αθ∂==∂,无解;故,依照定义,(1)ˆX θ= 5)解: 矩法:()/0()(1)(2)x txEX edx t e dt αβααβαββ+∞+∞---==+=Γ+Γ⎰⎰ Xαβ=+=2222()(1)2(2)(3)t EX t e dt αβααββ+∞-=+=Γ+Γ+Γ⎰ 222222122()i M X nααββαββ=++=++==∑22222*2111ˆˆi M X X X M nX βαβ=-=-==-=∑即11ˆˆX X αβ====极大似然估计:()()/1111exp ,ln ln i nx ni n L enx n L n nx αβαβαβββββ---=⎡⎤==--=--+⎢⎥⎣⎦∏2ln 0,ln ()0n n nL L x ααββββ∂∂===-+-=∂∂ α无解,依定义有:(1)(1)ˆˆ,L L X X X X αβα==-=- 7)解: 矩法:22223222(2)x x tx EX dx dte dt Xθθθ+∞+∞+∞---=====⎰⎰⎰ˆMθ=极大似然估计:22222211iixnxn ni ii iL x eθθ--==∑⎛⎫⎛== ⎪⎝⎝⎭∏222ln ln43ln ln iixL n n n xθθ=---∑∑233ˆln20,iLxnLθθθθ∂=-+==∂∑8)解:矩法:2222222222022222223(1)(1)[(1)](1)(1)(1)1221x x x x x xxxd dEX x xd dd dq Xdq dq qθθθθθθθθθθθθθ∞∞∞-===∞==--=-=---=====-∑∑∑∑2ˆM Xθ=极大似然估计:22221(1)(1)(1)(1)ln2ln(2)ln(1)ln(1)inx n nx ni iiiL x xL n nx n xθθθθθθ--==--=--=+--+-∏∏∑222ˆln0,1Ln nx nLXθθθθ∂-=-==∂-4解:11112112(,,)(1)(1)ln(,,)ln(1)ln(1)n ni ii i i iy yny y nninL p y y y p p p pL p y y y ny p n y p==--=∑∑=-=-=+--∏12(,,)0(1)ny pd L p y y y ndp p p-==-ˆp Y=记001,;0,i i i iy x a y x a=≥=<则(1,)iY B p;5.解:1,ln lninx n nxiL e e L n nxλλλλλλ--====-∏711120000ˆln 0,,2010001000i i i d n L nx X x v d X λλλ==-=====∑ 1ˆ0.05Xλ== 6解:因为其寿命服从正态分布,所以极大似然估计为:2211ˆˆ,()ni i x x n μσμ===-∑ 根据样本数据得到:2ˆˆ997.1,17235.811μσ==。
概率论与数理统计第三章课后习题答案
概率论与数理统计第三章课后习题答案习题三1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X 和Y 的联合分布律.2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律.3.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=≤≤≤≤.,020,20,sin sin 其他ππy x y x求二维随机变量(X ,Y )在长方形域?≤<≤<36,40πππy x 内的概率. 【解】如图πππ{0,}(3.2)463P X Y <≤<≤公式ππππππ(,)(,)(0,)(0,)434636F F F F --+ππππππsin sin sin sin sin0sin sin0sin 4346362(31).4=--+=-g g g g题3图说明:也可先求出密度函数,再求概率。
4.设随机变量(X,Y)的分布密度f(x,y)=>>+-.,0,0,0,)43(其他yxA yxe求:(1)常数A;(2)随机变量(X,Y)的分布函数;(3)P{0≤X<1,0≤Y<2}.【解】(1)由-(34)00(,)d d e d d112x yAf x y x y A x y+∞+∞+∞+∞+-∞-∞===得A=12(2)由定义,有(,)(,)d dy xF x y f u v u v-∞-∞=??0012e d d(1e)(1e)0,0, 0,0,y y u vx yu v y x-+---->>==其他(3) {01,02}P X Y≤<≤<12(34)3800{01,02}12e d d(1e)(1e)0.9499. x yP X Yx y-+--=<≤<≤5.设随机变量(X,Y)的概率密度为f(x,y)=<<<<--.,0,42,2),6(其他yxyxk(1)确定常数k;(2)求P{X<1,Y<3};(3)求P{X<1.5};(4)求P{X+Y≤4}.【解】(1)由性质有242(,)d d (6)d d 81,f x y x y k x y y x k +∞+∞-∞-∞=--==??故 18R =(2) 13{1,3}(,)d d P X Y f x y y x -∞-∞<<=??130213(6)d d 88k x y y x =--=?? (3) 11.5{ 1.5}(,)d d a (,)d d x D P X f x y x y f x y x y <<=?? 如图1.542127d (6)d .832x x y y =--=?(4) 24{4}(,)d d (,)d d X Y D P X Y f x y x y f x y x y +≤+≤=??如图b240212d (6)d .83xx x y y -=--=?题5图6.设X 和Y 是两个相互独立的随机变量,X 在(0,0.2)上服从均匀分布,Y 的密度函数为f Y (y )=?>-.,0,0,55其他y y e求:(1) X 与Y 的联合分布密度;(2)P {Y ≤X }.题6图【解】(1)因X 在(0,0.2)上服从均匀分布,所以X 的密度函数为1,00.2,()0.20,.X x f x ?<55e ,0,()0,.y Y y f y -?>=?其他所以(,),()()X Y f x y X Y f x f y g 独立5515e25e ,00.20,0.20,0,yy x y --<<>?==??且其他. (2) 5()(,)d d 25e d d y y xDP Y X f x y x y x y -≤≤=如图0.20.2-5500-1d 25e d (5e 5)d =e 0.3679.xyx x y x -==-+≈7.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=>>----.,0,0,0),1)(1(24其他y x y x e e求(X ,Y )的联合分布密度.【解】(42)28e ,0,0,(,)(,)0,x y x y F x y f x y x y -+?>>?==?其他. 8.设二维随机变量(X ,Y )的概率密度为f (x ,y )= 4.8(2),01,0,0,.y x x y x -≤≤≤≤??其他求边缘概率密度. 【解】()(,)d X f x f x y y +∞-∞=x204.8(2)d 2.4(2),01,=0,.0,y x y x x x ??--≤≤?=??其他()(,)d Y f y f x y x +∞-∞=12y 4.8(2)d 2.4(34),01,=0,.0,y x x y y y y ?-?-+≤≤?=其他题8图题9图9.设二维随机变量(X ,Y )的概率密度为f (x ,y )=<<-.,0,0,其他e y x y求边缘概率密度. 【解】()(,)d X f x f x y y +∞-∞=e d e ,0,=0,.0,y x x y x +∞--??>?=??其他()(,)d Y f y f x y x +∞-∞=?0e d e ,0,=0,.0,yy x x y y --??>?=??其他题10图10.设二维随机变量(X ,Y )的概率密度为f (x ,y )=≤≤.,0,1,22其他y x y cx(1)试确定常数c ;(2)求边缘概率密度. 【解】(1)(,)d d (,)d d Df x y x y f x y x y +∞+∞-∞-∞如图2112-14=d d 1.21xx cx y y c ==?得214c =. (2) ()(,)d X f x f x y y +∞-∞=212422121(1),11,d 840,0,.x x x x x y y ??--≤≤??==其他()(,)d Y f y f x y x +∞-∞=?522217d ,01,420,0,.y y x y x y y -??≤≤??==其他 11.设随机变量(X ,Y )的概率密度为f (x ,y )=??<<<.,0,10,,1其他x x y求条件概率密度f Y |X (y |x ),f X |Y (x |y ).题11图【解】()(,)d X f x f x y y +∞-∞=1d 2,01,0,.xx y x x -?=<111d 1,10,()(,)d 1d 1,01,0,.y Y y x y y f y f x y x x y y -+∞-∞=+-<<??其他所以|1,||1,(,)(|)2()0,.Y X X y x f x y f y x xf x ?<其他|1, 1,1(,)1(|),1,()10,.X Y Y y x y f x y f x y y x f y y<<?-?==-<<?+其他 12.袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小的号码为X ,最大的号码为Y .(1)求X 与Y 的联合概率分布;(2) X 与Y 是否相互独立?【解】(1) X 与Y 的联合分布律如下表3 4 5{}i P X x =13511C 10= 3522C 10= 3533C 10= 610 23511C 10= 3522C 10= 310 3 02511C 10= 110{}i P Y y =110 310 610(2) 因6161{1}{3}{1,3},101010010P X P Y P X Y ====≠===g 故X 与Y 不独立2 5 80.4 0.80.15 0.30 0.35 0.05 0.12 0.03(2) X 与Y 是否相互独立? 2 5 8 P {Y=y i }0.4 0.15 0.30 0.35 0.8 0.80.05 0.12 0.03 0.2{}i P X x =0.20.420.38YXXYXY(2) 因{2}{0.4}0.20.8P X P Y ===?g 0.160.15(2,0.4),P X Y =≠===故X 与Y 不独立.14.设X 和Y 是两个相互独立的随机变量,X 在(0,1)上服从均匀分布,Y 的概率密度为f Y (y )=>,0,0,212/其他y y e(1)求X 和Y 的联合概率密度;(2)设含有a 的二次方程为a 2+2Xa +Y =0,试求a 有实根的概率.【解】(1)因1,01,()0,X x f x <1e ,1,()20,yY y f y -?>?==其他.故/21e01,0,(,),()()20,.y X Y x y f x y X Y f x f y -?<<>?=g 独立其他题14图(2) 方程220a Xa Y ++=有实根的条件是2(2)40X Y ?=-≥故X 2≥Y ,从而方程有实根的概率为:22{}(,)d d x yP X Y f x y x y ≥≥=21/2001d e d 212[(1)(0)]0.1445.x y x yπ-==-Φ-Φ=??15.设X 和Y 分别表示两个不同电子器件的寿命(以小时计),并设X 和Y 相互独立,且服从同一分布,其概率密度为f (x )=>.,0,1000,10002其他x x求Z =X /Y 的概率密度.【解】如图,Z 的分布函数(){}{}Z XF z P Z z Pz Y=≤=≤ (1) 当z ≤0时,()0Z F z =(2)当0<="" p="">1000z)(如图a) 3366102222101010()d d d d yz Z zx y zF z x y y x x y x y +∞≥==??33610231010=d 2z zy yzy +∞-=题15图(3) 当z ≥1时,(这时当y =103时,x =103z )(如图b )3366222210101010()d d d d zy Z xy zF z x y y x x yx y +∞≥==??336231010101=d 12y y zy z +∞-=-即 11,1,2(),01,20,.Z z z zf z z ?-≥=<<??其他故 21,1,21(),01,20,.Z z z f z z ?≥=<<??其他16.设某种型号的电子管的寿命(以小时计)近似地服从N (160,202)分布.随机地选取4 只,求其中没有一只寿命小于180的概率.【解】设这四只寿命为X i (i =1,2,3,4),则X i ~N (160,202),从而123412{min(,,,)180}{180}{180}i P X X X X X P X P X ≥≥≥g 之间独立34{180}{180}P X P X ≥≥g1234[1{180}][1{180}][1{180}][1{180}]P X P X P X P X =-<-<-<-<g< p="">g g 44144180160[1{180}]120[1(1)](0.158)0.00063.P X ?-?=-<=-Φ=-Φ== 17.设X ,Y 是相互独立的随机变量,其分布律分别为P {X =k }=p (k ),k =0,1,2,…, P {Y =r }=q (r ),r =0,1,2,….证明随机变量Z =X +Y 的分布律为P {Z =i }=∑=-ik k i q k p 0)()(,i =0,1,2,….【证明】因X 和Y 所有可能值都是非负整数,所以 {}{}Z i X Y i ==+={0,}{1,1}{,0}X Y i X Y i X i Y =====-==U UL U 于是0{}{,},i k P Z i P X k Y i k X Y =====-∑相互独立0{}{}ik P X k P Y i k ===-∑g()()ik p k q i k ==-∑18.设X ,Y 是相互独立的随机变量,它们都服从参数为n ,p 的二项分布.证明Z =X +Y 服从参数为2n ,p 的二项分布.【证明】方法一:X +Y 可能取值为0,1,2,…,2n .{}{,}ki P X Y k P X i Y k i =+====-∑00202(){}2ki ki n i k i n k ii kk n ki k n k P X i P Y k i n n p q p q i k i n n p q i k i n p q k =---+=-=-===-= ? ?-= -=∑∑∑g方法二:设μ1,μ2,…,μn ;μ1′,μ2′,…,μn ′均服从两点分布(参数为p ),则X =μ1+μ2+…+μn ,Y =μ1′+μ2′+…+μn ′, X +Y =μ1+μ2+…+μn +μ1′+μ2′+…+μn ′,所以,X +Y 服从参数为(2n ,p )的二项分布.(2)求V =max (X ,Y )的分布律;(3)求U =min (X ,Y )的分布律;(4)求W =X +Y 的分布律. 【解】(1){2,2} {2|2}{2}P X Y P X Y P Y ======5{2,2}0.051,0.252{,2}i P X Y P X i Y ========∑ {3,0}{3|0}{0}P Y X P Y X P X ======3{0,3}0.011;0.033{0,}j P X Y P X Y j ========∑ (2){}{max(,)}{,}{,}P V i P X Y i P X i Y i P X i Y i =====<+≤=10{,}{,},i ik k P X i Y k P X k Y i -=====+==∑∑ 0,1,2,3,4,5i =V =max(X ,Y ) 0 1 2 3 4 5 P0.040.160.280.240.28(3) {}{min(,)}P U i P X Y i ===351{,}{,}{,}{,}k ik i P X i Y i P X i Y i P X i Y k P X k Y i ==+==≥+>====+ ==∑∑ 0,1,2,3,i =U =min(X ,Y ) 0 1 2 3 P 0.28 0.30 0.250.17(4)类似上述过程,有W =X +Y 0 1 2 3 4 5 6 7 8 P0.020.060.130.190.240.190.120.05R X Y (1)求P {Y >0|Y >X };(2)设M =max{X ,Y },求P {M >0}. 题20图【解】因(X ,Y )的联合概率密度为22221,,(,)π0,.x y R f x y R+≤?=其他(1){0,}{0|}{}P Y Y X P Y Y X P Y X >>>>=>0(,)d (,)d y y xy xf x y f x y σσ>>>=</g<>。
数理统计课后习题答案—杨虎
习题一、基本概念1.解: 设12345,,,,X X X X X 为总体的样本1)51151~(1,) (,,)(1)i ix x i X B p f x x p p -==-∏555(1)11(1),5x x i i p p x x -==-=∑2)λλλλλ55155151!!),,( )(~-==-∏∏==e x ex x x f P X i ixi i xi3)5155111~(,) (,,),,1,...,5()i X U a b f x x a xi b i b a b a ===≤≤=--∏所以5151,,1,...,5()(,,)0,a xi b i b a f x x ⎧≤≤=⎪-=⎨⎪⎩其他4)()⎪⎭⎫ ⎝⎛-==∑∏=-=-5122/55125121exp 221),,( )1,(~2i i i x x e x x f N X i ππμ2.解: 由题意得:因为0110,(),1,n k k k x x k F x x x x n x x ++<⎧⎪⎪≤<⎨⎪≥⎪⎩,所以40,00.3,010.65,12()0.8,230.9,341,4x x x F x x x x <⎧⎪≤<⎪⎪≤<⎨≤<⎪⎪≤<⎪≥⎩3.解:它近似服从均值为172,方差为5.64的正态分布,即(172,5.64)N 4.解:()55-5 510/2- -⎪⎪⎭⎫ ⎝⎛<<-=⎪⎪⎭⎫ ⎝⎛<=<k X k P k X P k X P μμμ 因k 较大()()()()()()()-555(15)2510.950.95P X k k k k k k k μ<≈Φ-Φ-=Φ--Φ=Φ-=Φ=,5 1.65,0.33k k ==查表5.解:()-5250.853.8 1.1429 1.7143(1.7143)( 1.14296.3/6X P X P ⎛⎫<<=-<<=Φ-Φ- ⎪⎝⎭)0.9564(10.8729)0.8293=--=6.解:()()()~(20,0.3),~(20,0.2),~(0,0.5),0.3 0.30.3Y N Z N Y Z Y Z N P Y Z P Y Z P Y Z -->=->+-<-设与相互独立,0.42430.42431(0.4243)(1(0.4243))22(0.4243)P P ⎫⎫=>=+<-⎪⎪⎭⎭=-Φ+-Φ=-Φ220.66280.6744=-⨯= 7.解:101010222111~(0,4),~(0,1),2111 10.05,0.95444444ii i i i i i i X X N N c c c P X P X P X ===⎛⎫⎛⎫⎛⎫>=-≤=≤= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑则查卡方分位数表 c/4=18.31,c=73.24 8.解:由已知条件得:(1,),1()iX Y B p p F μ=-由i X 互相独立,知i Y 也互相独立,所以1(,),1().ni X i Y B n p p F μ==-∑9.解: 1))1(,)1(,2p Np DX ES np Np n DX X D Np EX X E -==-==== 2)λλλ======DX ES nn DX X D EX X E 2,, 3)()()12,12,2222a b DX ES n a b n DX X D b a EX X E -==-==+==4)1,1,2======DX ES nn DX X D EX X E μ 10.解:1)()22212)1()1()1()1(σ-=-=-=-=-∑=n DX n ES n S n E X X E ni i2)()222242221(1)(1)(1), ~(1)nii n S n S DXX D n S D n σχσσ=⎛⎫---=-=- ⎪⎝⎭∑ ()2412(1)nii DXX n σ=∴-=-∑ 11.解:ππππππn X E dt e dy ey dy ey X nE Y E nn DY X E EY N X n Y n N X t y y 2)(,2)1(222222||21)(),11,0(),1,0(~),/1,0(~)102222==Γ==========-∞+-∞+-∞+∞-⎰⎰⎰ 令ππππππ211,2)1(222222||21),1,0(~)21102222===Γ====∑∑⎰⎰⎰==-∞+-∞+-∞+∞-n i i n i i t x x X E n X n E dt e dx ex dx ex X E N X12.解:1)()2224X E X E X E n μμ-=-=()244100.1X X D E n n⎡⎤=+=+≤⎢⎥⎣⎦ 40n ∴≥2)2222,2u u X u E u du u du +∞+∞---∞===⎰⎰222220022002(1)0.1,80010,254.6,255u uutue du ue duue d e dtE X En nμπ+∞+∞--+∞+∞--===Γ=-==≤≥≥=∴≥⎰⎰⎰⎰3) ()()111P X P X Pμμ⎛-≤=-≤-≤=≤≤⎝⎭0.975210.95,2221.96,15.36,16u n n⎛⎛⎫⎛⎫=Φ-Φ-=Φ-≥⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭≥=≥≥13.解:()()()112221111111,n ni ii iY XY X a X na X an b b n bEY EX a S Sb b==⎛⎫=-=-=-⎪⎝⎭=-=∑∑14.解:1)12345~(0,2),~(0,3)X X N X X X N+++~~(0,1)N N1111,, 2.23c d n∴===2)()2345222212~(2),~(1)3X X XX Xχχ+++()()22122234523~(2,1),,2,123XX F c m n X X X +===++15.解: 设1(1,)p F n α-=,即()1(1P F p P p α≤=-⇔≤≤=-()()12()2()12P T P T pP T p pP T ⇔≤-≤=-⇔≤=-⇔≤=-122112()()(1,)p p p t n tn F n α---=∴==16.解:()()()()()()()()()121222222221212222212121212212221212~(0,2),~(0,~~(0,1)~~(2)2210.1,2X X N X X N N N X X X X t P t P X X X X X X X X X X t P X X X X c χχ+-+⎛⎫⎛⎫++>=> ⎪ ⎪ ⎪ ⎪++-++-⎝⎭⎝⎭⎧⎫+⎪⎪=-≤=⎨⎬++-⎪⎪⎩⎭=0.9(1,2)8.532tF ==17.证明: 1)2211122211()0,(),(0,)1(1)(1)n n n n n E X X D X X X X N nnn S n t n σσχσ+++++-=-=∴---=- 又2)2211111()0,(),(0,)n n n n n E XX D X X X X N nnσσ+++++-=-=∴- 3)2211111()0,(),(0,)n n E X X D X X X X N n nσσ---=-=∴- 18. 解:()()()62,47.61,96.125.0,975.025.0,95.0125.0225.0/25.025.0975.0≥≥=≥≥Φ≥-Φ=⎪⎪⎭⎫ ⎝⎛≤-≤-=≤-n n u n n n n n X n P X P σμσμ 19.解[,]0,1,[,](),(),0,[,]1,X U a b x a x a b x af x F x a x b b a b a x a b x b ≤⎧⎧⎪∈-⎪⎪∴==<≤-⎨⎨-⎪⎪∉⎩>⎪⎩1(1)()(1())()n f x n F x f x -∴=-111()1(),[,]0,[,]1(),[,]()(())()0,[,]n n n n b a n x a b b a b a x a b x a n x a b f x n F x f x b a b ax a b ----⎧∈⎪=--⎨⎪∉⎩-⎧∈⎪==--⎨⎪∉⎩20.解:()()()()()()()55(1)(1)11515555555(5)111011011011101211121(1(1))1(11(1))1(1)0.5785121515 1.5(1.5)0.93320.70772i i i i i i i i i i P X P X P X P X X P X P X P X P =====<=-≥=-≥=--≤⎛-⎫⎛⎫=--≤- ⎪⎪⎝⎭⎝⎭=--Φ-=--+Φ=-Φ=-⎛⎫<==<=<=Φ== ⎪⎝⎭∏∏∏∏∏21. 解:1)因为21~(0,)mii XN m σ=∑,从而~(0,1)miXN ∑2221~()m ni i m Xn χσ+=+∑,所以~()miX t n ξ=2)因为22211~()mii Xm χσ=∑,22211~()m nii m Xn χσ+=+∑所以2121~(,)mi i m ni i m n X F m n m X =+=+∑∑3)因为21~(0,)m i i X N m σ=∑,21~(0,)m ni i m X N n σ+=+∑所以2212()~(1)mi i X m χσ=∑,2212()~(1)m ni i m X n χσ+=+∑故222221111~(2)m m n i i i i m X X m n χσσ+==+⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭∑∑ 22.解:由Th1.4.1 (2)()(),95.047.321),1(~122222=⎪⎪⎭⎫⎝⎛≤---σχσS n P n S n查表:n 121,n 22-==23.解: 由推论1.4.3(2)05.095.0139.2139.2),14,19(~222122212221=-=⎪⎪⎭⎫ ⎝⎛≤-=⎪⎪⎭⎫ ⎝⎛>S S P S S P F S S 24.解: 1)()()94.005.099.057.3785.10)20(~),1,0(~),,0(~2201222220122=-=≤≤=⎪⎭⎫ ⎝⎛-=---∑∑==χχχσμσμσμσμP X XN X N X i i i ii i2)()895.01.0995.058.381965.11),19(~192222222012=-=⎪⎪⎭⎫ ⎝⎛≤≤=-∑=σχσσS P S X Xi i25. 解: 1)()4532.07734.0221)75.0(21431435/2080380=⨯-=+Φ-=⎪⎭⎫ ⎝⎛≤-=⎪⎪⎭⎫ ⎝⎛>-=>-U P X P X P2)()()05.01975.021064.21064.25/2674.780380=+⨯-=≤-=⎪⎪⎭⎫ ⎝⎛>-=>-T P X P X P 26.解: 1)8413.0120472.4472.4=⎪⎪⎭⎫ ⎝⎛<-=⎪⎪⎭⎫ ⎝⎛<-=⎪⎭⎫ ⎝⎛+<σσσa X P a X P a XP 2)2222222222223132222222S P S P S P S P σσσσσσσσ⎛⎫⎛⎫⎛⎫⎛⎫-<=-<-<=<<=<< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭22199.528.50.950.050.9S P σ⎛⎫=<<=-= ⎪⎝⎭3)3676.3,328.120,1.020,9.02012020/1===⎪⎪⎭⎫ ⎝⎛≤=⎪⎪⎭⎫⎝⎛≤-=⎪⎪⎭⎫ ⎝⎛>-=⎪⎪⎭⎫⎝⎛>-=⎪⎪⎭⎫ ⎝⎛>-c c c T P cT P cS X P c S X P c X S P μμμ27.解:22cov(,)(,)1()()1cov(,)()1(,)1i j i j i j i j i j i j X X X X r X X X X n D X X D X X nX X X X E X X X X X X X X nr X X X X n σσ----=--=-=--=---=-∴--=--28.解:()2221212)1(2)1(,)1(,21),2,2(~σσμ-=-=-=-===+=∑∑==+n ES n ET S n Y Y T X Y n Y N X X Y Y Y ni i ni i in i i 令习题二、参数估计1.解:矩估计()1 3.40.10.20.90.80.70.766X =+++++=()()11111ln ln(1)ln nnni i i i nii L x x L n x αααααα===⎡⎤=+=+⎣⎦=++∏∏∑121ln ln 01ˆ10.2112ln n i i n ii d n L x d n x αααα====+=+=--=∑∑3077.0121ˆ,212)1()1(110121=--==++=++=+=⎰++X XX x dx x EX αααααααα所以12112ˆˆ,11ln n ii X nX X αα=⎛⎫⎪- ⎪==-+-⎪ ⎪⎝⎭∑,12ˆˆ0.3079,0.2112αα≈≈ 2.解: 1)3077.02ˆ,21====X X EX θθ111ln 0nni L nL θθθ====-=∏无解,依定义:21ˆmax ii nX θ≤≤= 2)矩法:211ˆˆ1.2,0.472212EX DX θθ====极大似然估计:22ˆˆ1.1,0.1833212EX DX θθ====3. 1)解:矩法估计:111ˆ,EX X Xλλ===最大似然估计:111,ln ln niii nnx x nii i L eeL n L x λλλλλ=--==∑===-∑∏2111ˆln 0,ni ni ii d n nL x d Xxλλλ===-===∑∑2)解:~()X P λ矩估计:X X EX ===1ˆ,λλ最大似然估计:1,ln ln ixnxnn i i iiL eeL n nx x x xλλλλλλ--====-+-∑∏∏2ˆln 0,d nx L n X d λλλ=-+==3)解:矩估计:()2,212b a a bEX DX -+==联立方程:()2*221ˆ2ˆa X b X a bX b a M ⎧=-⎪→+⎧=⎪⎪⎨-⎪=⎪⎩⎨=+⎪⎩极大似然估计:依照定义,11ˆˆmin ,max i ii ni na Xb X ≤≤≤≤== 4) 解: 矩估计:ln EX dx xxθθ+∞+∞==⎰,不存在22111,ln ln 2ln nnni i i i iL L n x x x θθθ=====-∑∏∏ ln 0n L αθ∂==∂,无解;故,依照定义,(1)ˆX θ= 5)解: 矩法:()/0()(1)(2)x t xEX edx t e dt αβααβαββ+∞+∞---==+=Γ+Γ⎰⎰Xαβ=+=2222()(1)2(2)(3)t EX t e dt αβααββ+∞-=+=Γ+Γ+Γ⎰ 222222122()iM X nααββαββ=++=++==∑22222*2111ˆˆi M X X X M nX βαβ=-=-==-=∑即11ˆˆX X αβ=-===极大似然估计:()()/1111exp ,ln ln i nx n i n L e nx n L n nx αβαβαβββββ---=⎡⎤==--=--+⎢⎥⎣⎦∏2ln 0,ln ()0n n nL L x ααββββ∂∂===-+-=∂∂ α无解,依定义有:(1)(1)ˆˆ,L L X X X X αβα==-=- 7)解: 矩法:22223222(2)x x tx EX dx dte dt Xθθθ+∞+∞+∞---=====⎰⎰⎰ˆMθ=极大似然估计:22222211iixnxn ni ii iL x eθθ--==∑⎛⎫== ⎪⎝⎭∏222ln ln43ln ln ln iixL n n n xθθ=---∑∑233ˆln20,iLxnLθθθθ∂=-+==∂∑8)解:矩法:2222222222022222223(1)(1)[(1)](1)(1)(1)1221x x x x x xxxd dEX x xd dd dq Xdq dq qθθθθθθθθθθθθθ∞∞∞-===∞==--=-=---=====-∑∑∑∑2ˆM Xθ=极大似然估计:22221(1)(1)(1)(1)ln2ln(2)ln(1)ln(1)inx n nx ni iiiL x xL n nx n xθθθθθθ--==--=--=+--+-∏∏∑222ˆln0,1Ln nx nLXθθθθ∂-=-==∂-4解:11112112(,,)(1)(1)ln(,,)ln(1)ln(1)n ni ii i i iy yny y nninL p y y y p p p pL p y y y ny p n y p==--=∑∑=-=-=+--∏12(,,)0(1)ny pd L p y y y ndp p p-==-ˆp Y=记001,;0,i i i iy x a y x a=≥=<则(1,)iY B p;5.解:1,ln lninx n nxiL e e L n nxλλλλλλ--====-∏711120000ˆln 0,,2010001000i i i d n L nx X x v d X λλλ==-=====∑ 1ˆ0.05Xλ== 6解:因为其寿命服从正态分布,所以极大似然估计为:2211ˆˆ,()ni i x x n μσμ===-∑ 根据样本数据得到:2ˆˆ997.1,17235.811μσ==。
概率论与数理统计第三章课后习题答案
习题三1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X 和Y 的联合分布律. 【解】X 和Y 的联合分布律如表:2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律. 【解】X 和Y 的联合分布律如表:3.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎪⎩⎪⎨⎧≤≤≤≤.,020,20,sin sin 其他ππy x y x求二维随机变量(X ,Y )在长方形域⎭⎬⎫⎩⎨⎧≤<≤<36,40πππy x 内的概率. 【解】如图πππ{0,}(3.2)463P X Y <≤<≤公式 ππππππ(,)(,)(0,)(0,)434636F F F F --+ππππππsin sin sin sin sin0sin sin0sin4346362(31).4=--+=-g g g g题3图说明:也可先求出密度函数,再求概率。
4.设随机变量(X,Y)的分布密度f(x,y)=⎩⎨⎧>>+-.,0,0,0,)43(其他yxA yxe求:(1)常数A;(2)随机变量(X,Y)的分布函数;(3)P{0≤X<1,0≤Y<2}.【解】(1)由-(34)00(,)d d e d d112x yAf x y x y A x y+∞+∞+∞+∞+-∞-∞===⎰⎰⎰⎰得A=12(2)由定义,有(,)(,)d dy xF x y f u v u v-∞-∞=⎰⎰(34)340012e d d(1e)(1e)0,0,0,0,y y u vx yu v y x-+--⎧⎧-->>⎪==⎨⎨⎩⎪⎩⎰⎰其他(3) {01,02}P X Y≤<≤<12(34)3800{01,02}12e d d(1e)(1e)0.9499.x yP X Yx y-+--=<≤<≤==--≈⎰⎰5.设随机变量(X,Y)的概率密度为f(x,y)=⎩⎨⎧<<<<--.,0,42,2),6(其他yxyxk(1) 确定常数k ; (2) 求P {X <1,Y <3}; (3) 求P {X <}; (4) 求P {X +Y ≤4}. 【解】(1) 由性质有242(,)d d (6)d d 81,f x y x y k x y y x k +∞+∞-∞-∞=--==⎰⎰⎰⎰故 18R =(2) 13{1,3}(,)d d P X Y f x y y x -∞-∞<<=⎰⎰130213(6)d d 88k x y y x =--=⎰⎰ (3) 11.5{ 1.5}(,)d d a (,)d d x D P X f x y x y f x y x y <<=⎰⎰⎰⎰如图1.542127d (6)d .832x x y y =--=⎰⎰(4) 24{4}(,)d d (,)d d X Y D P X Y f x y x y f x y x y +≤+≤=⎰⎰⎰⎰如图b240212d (6)d .83x x x y y -=--=⎰⎰题5图6.设X 和Y 是两个相互独立的随机变量,X 在(0,)上服从均匀分布,Y 的密度函数为f Y (y )=⎩⎨⎧>-.,0,0,55其他y y e求:(1) X 与Y 的联合分布密度;(2) P {Y ≤X }.题6图【解】(1) 因X 在(0,)上服从均匀分布,所以X 的密度函数为1,00.2,()0.20,.X x f x ⎧<<⎪=⎨⎪⎩其他 而55e ,0,()0,.y Y y f y -⎧>=⎨⎩其他 所以(,),()()X Y f x y X Y f x f y g 独立5515e25e ,00.20,0.20,0,yy x y --⎧⎧⨯<<>⎪==⎨⎨⎩⎪⎩且其他. (2) 5()(,)d d 25ed d yy xDP Y X f x y x y x y -≤≤=⎰⎰⎰⎰如图0.20.2-550-1d 25e d (5e 5)d =e 0.3679.xy x x y x -==-+≈⎰⎰⎰7.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎩⎨⎧>>----.,0,0,0),1)(1(24其他y x y x e e求(X ,Y )的联合分布密度.【解】(42)28e ,0,0,(,)(,)0,x y x y F x y f x y x y -+⎧>>∂==⎨∂∂⎩其他.8.设二维随机变量(X ,Y )的概率密度为f (x ,y )= 4.8(2),01,0,0,.y x x y x -≤≤≤≤⎧⎨⎩其他求边缘概率密度. 【解】()(,)d X f x f x y y +∞-∞=⎰x204.8(2)d 2.4(2),01,=0,.0,y x y x x x ⎧⎧--≤≤⎪=⎨⎨⎩⎪⎩⎰其他 ()(,)d Y f y f x y x +∞-∞=⎰12y 4.8(2)d 2.4(34),01,=0,.0,y x x y y y y ⎧-⎧-+≤≤⎪=⎨⎨⎩⎪⎩⎰其他题8图 题9图9.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<-.,0,0,其他e y x y求边缘概率密度. 【解】()(,)d X f x f x y y +∞-∞=⎰e d e ,0,=0,.0,y x x y x +∞--⎧⎧>⎪=⎨⎨⎩⎪⎩⎰其他 ()(,)d Y f y f x y x +∞-∞=⎰0e d e ,0,=0,.0,yy x x y y --⎧⎧>⎪=⎨⎨⎩⎪⎩⎰其他题10图10.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧≤≤.,0,1,22其他y x y cx(1) 试确定常数c ; (2) 求边缘概率密度. 【解】(1)(,)d d (,)d d Df x y x y f x y x y +∞+∞-∞-∞⎰⎰⎰⎰如图2112-14=d d 1.21xx cx y y c ==⎰⎰ 得214c =. (2) ()(,)d X f x f x y y +∞-∞=⎰212422121(1),11,d 840,0,.x x x x x y y ⎧⎧--≤≤⎪⎪==⎨⎨⎪⎪⎩⎩⎰其他 ()(,)d Y f y f x y x +∞-∞=⎰522217d ,01,420,0,.y y x y x y y -⎧⎧≤≤⎪⎪==⎨⎨⎪⎪⎩⎩其他 11.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<.,0,10,,1其他x x y求条件概率密度f Y |X (y |x ),f X |Y (x |y ).题11图【解】()(,)d X f x f x y y +∞-∞=⎰1d 2,01,0,.x x y x x -⎧=<<⎪=⎨⎪⎩⎰其他111d 1,10,()(,)d 1d 1,01,0,.y Y y x y y f y f x y x x y y -+∞-∞⎧=+-<<⎪⎪⎪===-≤<⎨⎪⎪⎪⎩⎰⎰⎰其他所以|1,||1,(,)(|)2()0,.Y X X y x f x y f y x xf x ⎧<<⎪==⎨⎪⎩其他 |1, 1,1(,)1(|),1,()10,.X Y Y y x y f x y f x y y x f y y⎧<<⎪-⎪⎪==-<<⎨+⎪⎪⎪⎩其他 12.袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小的号码为X ,最大的号码为Y .(1) 求X 与Y 的联合概率分布; (2) X 与Y 是否相互独立【解】(1) X 与Y 的联合分布律如下表3 4 5{}i P X x =YX13511C 10= 3522C 10= 3533C 10= 610 23511C 10= 3522C 10= 310 3 02511C 10= 110{}i P Y y =110 310 610(2) 因6161{1}{3}{1,3},101010010P X P Y P X Y ===⨯=≠===g 故X 与Y 不独立13.设二维随机变量(X ,Y )的联合分布律为 2 5 8(1)求关于X 和关于Y 的边缘分布; (2) X 与Y 是否相互独立 【解】(1)X 和Y 的边缘分布如下表2 5 8 P {Y=y i }{}i P X x =(2) 因{2}{0.4}0.20.8P X P Y ===⨯g 0.160.15(2,0.4),P X Y =≠=== 故X 与Y 不独立.14.设X 和Y 是两个相互独立的随机变量,X 在(0,1)上服从均匀分布,Y 的概率密度为f Y (y )=⎪⎩⎪⎨⎧>-.,0,0,212/其他y y eXYXY(1)求X和Y的联合概率密度;(2)设含有a的二次方程为a2+2Xa+Y=0,试求a有实根的概率.【解】(1)因1,01,()0,Xxf x<<⎧==⎨⎩其他;21e,1,()20,yYyf y-⎧>⎪==⎨⎪⎩其他.故/21e01,0,(,),()()20,.yX Yx yf x y X Y f x f y-⎧<<>⎪=⎨⎪⎩g独立其他题14图(2) 方程220a Xa Y++=有实根的条件是2(2)40X Y∆=-≥故X2≥Y,从而方程有实根的概率为:22{}(,)d dx yP X Y f x y x y≥≥=⎰⎰21/2001d e d212[(1)(0)]0.1445.xyx yπ-==-Φ-Φ=⎰⎰15.设X和Y分别表示两个不同电子器件的寿命(以小时计),并设X和Y相互独立,且服从同一分布,其概率密度为f(x)=⎪⎩⎪⎨⎧>.,0,1000,10002其他xx求Z=X/Y的概率密度.【解】如图,Z 的分布函数(){}{}Z XF z P Z zP z Y=≤=≤ (1) 当z ≤0时,()0Z F z =(2) 当0<z <1时,(这时当x =1000时,y =1000z)(如图a) 3366102222101010()d d d d yz Z zx y zF z x y y x x y x y +∞≥==⎰⎰⎰⎰33610231010=d 2z zy yzy +∞⎛⎫-= ⎪⎝⎭⎰题15图(3) 当z ≥1时,(这时当y =103时,x =103z )(如图b )3366222210101010()d d d d zy Z xy zF z x y y x x yx y +∞≥==⎰⎰⎰⎰ 336231010101=d 12y y zy z +∞⎛⎫-=- ⎪⎝⎭⎰即 11,1,2(),01,20,.Z z z zf z z ⎧-≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他故 21,1,21(),01,20,.Z z z f z z ⎧≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他16.设某种型号的电子管的寿命(以小时计)近似地服从N (160,202)分布.随机地选取4 只,求其中没有一只寿命小于180的概率.【解】设这四只寿命为X i (i =1,2,3,4),则X i ~N (160,202),从而123412{min(,,,)180}{180}{180}i P X X X X X P X P X ≥≥≥g 之间独立34{180}{180}P X P X ≥≥g1234[1{180}][1{180}][1{180}][1{180}]P X P X P X P X =-<-<-<-<gg g 44144180160[1{180}]120[1(1)](0.158)0.00063.P X ⎡-⎤⎛⎫=-<=-Φ ⎪⎢⎥⎝⎭⎣⎦=-Φ== 17.设X ,Y 是相互独立的随机变量,其分布律分别为P {X =k }=p (k ),k =0,1,2,…, P {Y =r }=q (r ),r =0,1,2,….证明随机变量Z =X +Y 的分布律为P {Z =i }=∑=-ik k i q k p 0)()(,i =0,1,2,….【证明】因X 和Y 所有可能值都是非负整数,所以{}{}Z i X Y i ==+={0,}{1,1}{,0}X Y i X Y i X i Y =====-==U UL U于是0{}{,},i k P Z i P X k Y i k X Y =====-∑相互独立0{}{}ik P X k P Y i k ===-∑g()()ik p k q i k ==-∑18.设X ,Y 是相互独立的随机变量,它们都服从参数为n ,p 的二项分布.证明Z =X +Y 服从参数为2n ,p 的二项分布.【证明】方法一:X +Y 可能取值为0,1,2,…,2n .{}{,}ki P X Y k P X i Y k i =+====-∑00202(){}2ki ki n i k i n k ii k k n k i k n k P X i P Y k i n n p q p qi k i n n p qi k i n p q k =---+=-=-===-⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭⎛⎫⎛⎫= ⎪⎪-⎝⎭⎝⎭⎛⎫= ⎪⎝⎭∑∑∑g方法二:设μ1,μ2,…,μn ;μ1′,μ2′,…,μn ′均服从两点分布(参数为p ),则X =μ1+μ2+…+μn ,Y =μ1′+μ2′+…+μn ′, X +Y =μ1+μ2+…+μn +μ1′+μ2′+…+μn ′,所以,X +Y 服从参数为(2n ,p )的二项分布. 19.设随机变量(X ,Y )的分布律为(1) 求P {X =2|Y =2},P {Y =3|X =0}; (2) 求V =max (X ,Y )的分布律; (3) 求U =min (X ,Y )的分布律; (4) 求W =X +Y 的分布律.【解】(1){2,2}{2|2}{2}P X Y P X Y P Y ======5{2,2}0.051,0.252{,2}i P X Y P X i Y ========∑ {3,0}{3|0}{0}P Y X P Y X P X ======3{0,3}0.011;0.033{0,}j P X Y P X Y j ========∑ (2){}{max(,)}{,}{,}P V i P X Y i P X i Y i P X i Y i =====<+≤=10{,}{,},i ik k P X i Y k P X k Y i -=====+==∑∑ 0,1,2,3,4,5i =所以V 的分布律为(3) {}{min(,)}P U i P X Y i ===351{,}{,}{,}{,}k ik i P X i Y i P X i Y i P X i Y k P X k Y i ==+==≥+>====+==∑∑0,1,2,3,i =于是(4)类似上述过程,有20.雷达的圆形屏幕半径为R ,设目标出现点(X ,Y )在屏幕上服从均匀分布. (1) 求P {Y >0|Y >X }; (2) 设M =max{X ,Y },求P {M >0}.题20图【解】因(X ,Y )的联合概率密度为22221,,(,)π0,.xy R f x y R⎧+≤⎪=⎨⎪⎩其他 (1){0,}{0|}{}P Y Y X P Y Y X P Y X >>>>=>0(,)d (,)d y y xy xf x y f x y σσ>>>=⎰⎰⎰⎰π2π/405π42π/401d d π1d d πRR r rR r r R θθ=⎰⎰⎰⎰3/83;1/24==(2) {0}{max(,)0}1{max(,)0}P M P X Y P X Y >=>=-≤00131{0,0}1(,)d 1.44x y P X Y f x y σ≤≤=-≤≤=-=-=⎰⎰21.设平面区域D 由曲线y =1/x 及直线y =0,x =1,x=e 2所围成,二维随机变量(X ,Y )在区域D 上服从均匀分布,求(X ,Y )关于X 的边缘概率密度在x =2处的值为多少题21图【解】区域D 的面积为 22e e 0111d ln 2.S x x x===⎰(X ,Y )的联合密度函数为211,1e ,0,(,)20,.x y f x y x ⎧≤≤<≤⎪=⎨⎪⎩其他(X ,Y )关于X 的边缘密度函数为1/2011d ,1e ,()220,.x X y x f x x⎧=≤≤⎪=⎨⎪⎩⎰其他 所以1(2).4X f =22.设随机变量X 和Y 相互独立,下表列出了二维随机变量(X ,Y )联合分布律及关于X 和Y 的边缘分布律中的部分数值.试将其余数值填入表中的空白处.【解】因21{}{,}j j iji P Y y P P X x Y y ======∑,故11121{}{,}{,},P Y y P X x Y y P X x Y y ====+== 从而11111{,}.6824P X x Y y ===-= 而X 与Y 独立,故{}{}{,}i j i i P X x P Y y P X x Y y =====g ,从而11111{}{,}.624P X x P X x Y y =⨯==== 即:1111{}/.2464P X x === 又1111213{}{,}{,}{,},P X x P X x Y y P X x Y y P X x Y y ====+==+== 即1,3111{},4248P X x Y y =++==从而131{,}.12P X x Y y === 同理21{},2P Y y ==223{,}8P X x Y y === 又31{}1j j P Y y ===∑,故3111{}1623P Y y ==--=. 同理23{}.4P X x == 从而23313111{,}{}{,}.3124P X x Y y P Y y P X x Y y ====-===-=故23.设某班车起点站上客人数X 服从参数为λ(λ>0)的泊松分布,每位乘客在中途下车的概率为p (0<p <1),且中途下车与否相互独立,以Y 表示在中途下车的人数,求:(1)在发车时有n 个乘客的条件下,中途有m 人下车的概率;(2)二维随机变量(X ,Y )的概率分布.【解】(1) {|}C (1),0,0,1,2,m m n mn P Y m X n p p m n n -===-≤≤=L .(2) {,}{}{|}P X n Y m P X n P Y m X n ======ge C (1),,0,1,2,.!m m n mnnp p n m n n n λλ--=-≤≤=g L 24.设随机变量X 和Y 独立,其中X 的概率分布为X ~⎪⎪⎭⎫⎝⎛7.03.021,而Y 的概率密度为f (y ),求随机变量U =X +Y 的概率密度g (u ).【解】设F (y )是Y 的分布函数,则由全概率公式,知U =X +Y 的分布函数为(){}0.3{|1}0.7{|2}G u P X Y u P X Y u X P X Y u X =+≤=+≤=++≤=0.3{1|1}0.7{2|2}P Y u X P Y u X =≤-=+≤-=由于X 和Y 独立,可见()0.3{1}0.7{2}G u P Y u P Y u =≤-+≤-0.3(1)0.7(2).F u F u =-+-由此,得U 的概率密度为()()0.3(1)0.7(2)g u G u F u F u '''==-+-0.3(1)0.7(2).f u f u =-+-25. 25. 设随机变量X 与Y 相互独立,且均服从区间[0,3]上的均匀分布,求P {max{X ,Y }≤1}.解:因为随即变量服从[0,3]上的均匀分布,于是有1, 03,()30, 0,3;x f x x x ⎧≤≤⎪=⎨⎪<>⎩ 1, 03,()30, 0, 3.y f y y y ⎧≤≤⎪=⎨⎪<>⎩ 因为X ,Y 相互独立,所以1, 03,03,(,)90, 0,0,3, 3.x y f x y x y x y ⎧≤≤≤≤⎪=⎨⎪<<>>⎩ 推得 1{max{,}1}9P X Y ≤=. 26. 设二维随机变量(X ,Y )的概率分布为1 0 11 0 1a 0b0 0.1 c其中a ,b ,c 为常数,且X 的数学期望E (X )=,P {Y ≤0|X ≤0}=,记Z =X +Y .求:XY(1) a ,b ,c 的值; (2) Z 的概率分布; (3) P {X =Z }.解 (1) 由概率分布的性质知,a+b+c +=1 即 a+b+c = .由()0.2E X =-,可得0.1a c -+=-.再由 {0,0}0.1{00}0.5{0}0.5P X Y a b P Y X P X a b ≤≤++≤≤===≤++,得 0.3a b +=.解以上关于a ,b ,c 的三个方程得0.2,0.1,0.1a b c ===.(2) Z 的可能取值为2,1,0,1,2,{2}{1,1}0.2P Z P X Y =-==-=-=,{1}{1,0}{0,1}0.1P Z P X Y P X Y =-==-=+==-=,{0}{1,1}{0,0}{1,1}0.3P Z P X Y P X Y P X Y ===-=+==+==-=,{1}{1,0}{0,1}0.3P Z P X Y P X Y ====+===,{2}{1,1}0.1P Z P X Y =====,即Z 的概率分布为Z 2 1 0 1 2P(3) {}{0}0.10.20.10.10.20.4P X Z P Y b ====++=++=.习题四1.设随机变量X 的分布律为1 0 12求E (X ),E (X 2),E (2X +3). 【解】(1) 11111()(1)012;82842E X =-⨯+⨯+⨯+⨯= (2) 2222211115()(1)012;82844E X =-⨯+⨯+⨯+⨯=(3) 1(23)2()32342E X E X +=+=⨯+=2.已知100个产品中有10个次品,求任意取出的5个产品中的次品数的数学期望、方差. 【解】设任取出的5个产品中的次品数为X ,则X 的分布律为故 ()0.58300.34010.07020.00730405E X =⨯+⨯+⨯+⨯+⨯+⨯ 0.501,= 52()[()]iii D X x E X P ==-∑222(00.501)0.583(10.501)0.340(50.501)00.432.=-⨯+-⨯++-⨯=L3.设随机变量X 的分布律为1 0 1且已知E (X )=,E (X 2)=,求P 1,P 2,P 3. 【解】因1231P P P ++=……①,又12331()(1)010.1E X P P P P P =-++=-=g g ……②,222212313()(1)010.9E X P P P P P =-++=+=g g g ……③由①②③联立解得1230.4,0.1,0.5.P P P ===4.袋中有N 只球,其中的白球数X 为一随机变量,已知E (X )=n ,问从袋中任取1球为白球的概率是多少【解】记A ={从袋中任取1球为白球},则(){|}{}Nk P A P A X k P X k ===∑g 全概率公式001{}{}1().NNk k k P X k kP X k N N n E X N N========∑∑g5.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤≤-<≤.,0,21,2,10,其他x x x x求E (X ),D (X ). 【解】12201()()d d (2)d E X xf x x x x x x x +∞-∞==+-⎰⎰⎰21332011 1.33x x x ⎡⎤⎡⎤=+-=⎢⎥⎢⎥⎣⎦⎣⎦122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=⎰⎰⎰ 故 221()()[()].6D XE X E X =-=6.设随机变量X ,Y ,Z 相互独立,且E (X )=5,E (Y )=11,E (Z )=8,求下列随机变量的数学期望. (1) U =2X +3Y +1; (2) V =YZ4X .【解】(1) [](231)2()3()1E U E X Y E X E Y =++=++ 25311144.=⨯+⨯+=(2) [][4][]4()E V E YZ X E YZ E X =-=- ,()()4()Y Z E Y E Z E X -g 因独立 1184568.=⨯-⨯=7.设随机变量X ,Y 相互独立,且E (X )=E (Y )=3,D (X )=12,D (Y )=16,求E (3X2Y ),D (2X 3Y ).【解】(1) (32)3()2()3323 3.E X Y E X E Y -=-=⨯-⨯=(2) 22(23)2()(3)412916192.D X Y D X DY -=+-=⨯+⨯= 8.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<<.,0,0,10,其他x y x k试确定常数k ,并求E (XY ). 【解】因1001(,)d d d d 1,2xf x y x y x k y k +∞+∞-∞-∞===⎰⎰⎰⎰故k =210()(,)d d d 2d 0.25xE XY xyf x y x y x x y y +∞+∞-∞-∞===⎰⎰⎰⎰.9.设X ,Y 是相互独立的随机变量,其概率密度分别为f X (x )=⎩⎨⎧≤≤;,0,10,2其他x x f Y (y )=(5)e ,5,0,.y y --⎧>⎨⎩其他 求E (XY ).【解】方法一:先求X 与Y 的均值 12()2d ,3E X x x x ==⎰g 5(5)5()e d 5e d e d 51 6.z y y z z E Y y yz z z +∞+∞+∞=-----=+=+=⎰⎰⎰令由X 与Y 的独立性,得2()()()6 4.3E XY E X E Y ==⨯=g方法二:利用随机变量函数的均值公式.因X 与Y 独立,故联合密度为(5)2e ,01,5,(,)()()0,,y X Y x x y f x y f x f y --⎧≤≤>==⎨⎩g 其他于是11(5)2(5)552()2ed d 2de d 6 4.3y y E XY xy x x y x x y y +∞+∞----===⨯=⎰⎰⎰⎰g g10.设随机变量X ,Y 的概率密度分别为f X (x )=⎩⎨⎧≤>-;0,0,0,22x x x e f Y (y )=⎩⎨⎧≤>-.0,0,0,44y y y e 求(1) E (X +Y );(2) E (2X 3Y 2).【解】22-200()()d 2ed [e ]e d xx x X X xf x x x x x x +∞+∞+∞--+∞-∞==-⎰⎰⎰g201e d .2x x +∞-==⎰401()()d 4e dy .4y Y E Y yf y y y +∞+∞--∞==⎰⎰g22242021()()d 4e d .48y Y E Y y f y y y y +∞+∞--∞====⎰⎰g 从而(1)113()()().244E X Y E X E Y +=+=+=(2)22115(23)2()3()23288E X Y E X E Y -=-=⨯-⨯=11.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧<≥-.0,0,0,22x x cx xke求(1) 系数c ;(2) E (X );(3) D (X ). 【解】(1) 由222()d e d 12k x cf x x cx x k+∞+∞--∞===⎰⎰得22c k =. (2) 222()()d()2e d k x E X xf x x x k x x +∞+∞--∞==⎰⎰g22220π2ed .k x kx x +∞-==⎰(3) 22222221()()d()2e.k x E X x f x x x k x k +∞+∞--∞==⎰⎰g 故 222221π4π()()[()].24D X E X E X k k k⎛-=-=-= ⎝⎭ 12.袋中有12个零件,其中9个合格品,3个废品.安装机器时,从袋中一个一个地取出(取出后不放回),设在取出合格品之前已取出的废品数为随机变量X ,求E (X )和D (X ). 【解】设随机变量X 表示在取得合格品以前已取出的废品数,则X 的可能取值为0,1,2,3.为求其分布律,下面求取这些可能值的概率,易知9{0}0.750,12P X === 39{1}0.204,1211P X ==⨯= 329{2}0.041,121110P X ==⨯⨯= 3219{3}0.005.1211109P X ==⨯⨯⨯=于是,得到X 的概率分布表如下:X 0 1 2 3 P由此可得()00.75010.20420.04130.0050.301.E X =⨯+⨯+⨯+⨯=22222222()075010.20420.04130.0050.413()()[()]0.413(0.301)0.322.E X D X E X E X =⨯+⨯+⨯+⨯==-=-=13.一工厂生产某种设备的寿命X (以年计)服从指数分布,概率密度为f (x )=⎪⎩⎪⎨⎧≤>-.0,0,0,414x x xe为确保消费者的利益,工厂规定出售的设备若在一年内损坏可以调换.若售出一台设备,工厂获利100元,而调换一台则损失200元,试求工厂出售一台设备赢利的数学期望. 【解】厂方出售一台设备净盈利Y 只有两个值:100元和200元/41/411{100}{1}e d e 4x P Y P X x +∞--==≥==⎰1/4{200}{1}1e.P Y P X -=-=<=-故1/41/41/4()100e(200)(1e )300e 20033.64E Y ---=⨯+-⨯-=-= (元).14.设X 1,X 2,…,X n 是相互独立的随机变量,且有E (X i )=μ,D (X i )=σ2,i =1,2,…,n ,记∑==n i i S X n X 12,1,S 2=∑=--n i i X X n 12)(11. (1) 验证)(X E =μ,)(X D =n2σ;(2) 验证S 2=)(11122∑=--ni i X n X n ;(3) 验证E (S 2)=σ2.【证】(1) 1111111()()().n nn i i i i i i E X E X E X E X nu u n n n n ===⎛⎫===== ⎪⎝⎭∑∑∑g22111111()()n nn i i i i i i i D X D X D X X DX n n n ===⎛⎫== ⎪⎝⎭∑∑∑g 之间相互独立 2221.n n nσσ==g (2) 因222221111()(2)2nnnniii ii i i i i XX X X X X X nX X X ====-=+-=+-∑∑∑∑2222112nnii i i X nX X nX X nX ===+-=-∑∑g故22211()1ni i S X nX n ==--∑. (3) 因2(),()i i E X u D X σ==,故2222()()().i i i E X D X EX u σ=+=+同理因2(),()E X u D X nσ==,故222()E X u nσ=+.从而222221111()()[()()]11n ni i i i E s E X nX E X nE X n n ==⎡⎤=-=-⎢⎥--⎣⎦∑∑221222221[()()]11().1ni i E X nE X n n u n u n n σσσ==--⎡⎤⎛⎫=+-+=⎢⎥ ⎪-⎝⎭⎣⎦∑g g15.对随机变量X 和Y ,已知D (X )=2,D (Y )=3,Cov(X ,Y )=1,计算:Cov (3X2Y +1,X +4Y3).【解】Cov(321,43)3()10Cov(,)8()X Y X Y D X X Y D Y -++-=+- 3210(1)8328=⨯+⨯--⨯=-(因常数与任一随机变量独立,故Cov(X ,3)=Cov(Y ,3)=0,其余类似). 16.设二维随机变量(X ,Y )的概率密度为f (x ,y )=221,1,π0,.x y ⎧+≤⎪⎨⎪⎩其他试验证X 和Y 是不相关的,但X 和Y 不是相互独立的. 【解】设22{(,)|1}D x y x y =+≤.2211()(,)d d d d πx y E X xf x y x y x x y +∞+∞-∞-∞+≤==⎰⎰⎰⎰ 2π1001=cos d d 0.πr r r θθ=⎰⎰g同理E (Y )=0. 而 Cov(,)[()][()](,)d d X Y x E x y E Y f x y x y +∞+∞-∞-∞=--⎰⎰g222π1200111d d sin cos d d 0ππx y xy x y r r r θθθ+≤===⎰⎰⎰⎰, 由此得0XY ρ=,故X 与Y 不相关. 下面讨论独立性,当|x |≤1时,1()X f x y 当|y |≤1时,1()Y f y x . 显然()()(,).X Y f x f y f x y ≠g 故X 和Y 不是相互独立的.17.设随机变量(X ,Y )的分布律为1 0 110 1验证X和Y是不相关的,但X和Y不是相互独立的.【解】联合分布表中含有零元素,X与Y显然不独立,由联合分布律易求得X,Y及XY的分布律,其分布律如下表X11P 382838Y101P 382838XY101P 284828由期望定义易得E(X)=E(Y)=E(XY)=0.从而E(XY)=E(X)·E(Y),再由相关系数性质知ρXY=0,即X与Y的相关系数为0,从而X和Y是不相关的.又331{1}{1}{1,1}888P X P Y P X Y =-=-=⨯≠==-=-g从而X与Y不是相互独立的.18.设二维随机变量(X,Y)在以(0,0),(0,1),(1,0)为顶点的三角形区域上服从均匀分布,求Cov(X,Y),ρXY.【解】如图,S D=12,故(X,Y)的概率密度为题18图2,(,),(,)0,x y Df x y∈⎧=⎨⎩其他.()(,)d d DE X xf x y x y =⎰⎰1101d 2d 3xx x y -==⎰⎰g22()(,)d d DE X x f x y x y =⎰⎰11201d 2d 6xx x y -==⎰⎰从而222111()()[()].6318D XE X E X ⎛⎫=-=-= ⎪⎝⎭同理11(),().318E Y D Y == 而 1101()(,)d d 2d d d 2d .12xDDE XY xyf x y x y xy x y x xy y -====⎰⎰⎰⎰⎰⎰所以1111Cov(,)()()()123336X Y E XY E X E Y =-=-⨯=-g . 从而112XY ρ-===-19.设(X ,Y )的概率密度为f (x ,y )=1ππsin(),0,0,2220.x y x y ,⎧+≤≤≤≤⎪⎨⎪⎩其他求协方差Cov (X ,Y )和相关系数ρXY . 【解】π/2π/21π()(,)d d d sin()d .24E X xf x y x y x x x y y +∞+∞-∞-∞==+=⎰⎰⎰⎰g ππ2222201ππ()d sin()d 2.282E X x x x y y =+=+-⎰⎰g 从而222ππ()()[()] 2.162D XE X E X =-=+-同理 2πππ(),() 2.4162E Y D Y ==+- 又 π/2π/2π()d sin()d d 1,2E XY x xy x y x y =+=-⎰⎰故 2ππππ4Cov(,)()()()1.2444X Y E XY E X E Y -⎛⎫⎛⎫=-=--⨯=- ⎪ ⎪⎝⎭⎝⎭g222222π4Cov(,)(π4)π8π164.πππ8π32π8π32()()2162XYX Y D X D Y ρ-⎛⎫- ⎪--+⎝⎭===-=-+-+-+-g 20.已知二维随机变量(X ,Y )的协方差矩阵为⎥⎦⎤⎢⎣⎡4111,试求Z 1=X 2Y 和Z 2=2X Y 的相关系数.【解】由已知知:D (X )=1,D (Y )=4,Cov(X ,Y )=1.从而12()(2)()4()4Cov(,)1444113,()(2)4()()4Cov(,)414414,D Z D X Y D X D Y X Y D Z D X Y D X D Y X Y =-=+-=+⨯-⨯==-=+-=⨯+-⨯=12Cov(,)Cov(2,2)Z Z X Y X Y =--2Cov(,)4Cov(,)Cov(,)2Cov(,)2()5Cov(,)2()215124 5.X X Y X X Y Y Y D X X Y D Y =--+=-+=⨯-⨯+⨯=故 121212513.26()()134Z Z D Z D Z ρ===⨯g21.对于两个随机变量V ,W ,若E (V 2),E (W 2)存在,证明:[E (VW )]2≤E (V 2)E (W 2).这一不等式称为柯西许瓦兹(Couchy Schwarz )不等式.【证】令2(){[]},.g t E V tW t R =+∈显然22220()[()][2]g t E V tW E V tVW t W ≤=+=++222[]2[][],.E V t E VW t E W t R =++∀∈g g可见此关于t 的二次式非负,故其判别式Δ≤0, 即2220[2()]4()()E VW E W E V ≥∆=-g2224{[()]()()}.E VW E V E W =-g故222[()]()()}.E VW E V E W ≤g22.假设一设备开机后无故障工作的时间X 服从参数λ=1/5的指数分布.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机.试求该设备每次开机无故障工作的时间Y 的分布函数F (y ).【解】设Y 表示每次开机后无故障的工作时间,由题设知设备首次发生故障的等待时间X ~E (λ),E (X )=1λ=5. 依题意Y =min(X ,2). 对于y <0,f (y )=P {Y ≤y }=0. 对于y ≥2,F (y )=P (X ≤y )=1.对于0≤y <2,当x ≥0时,在(0,x )内无故障的概率分布为P {X ≤x }=1eλx,所以F (y )=P {Y ≤y }=P {min(X ,2)≤y }=P {X ≤y }=1ey/5.。
清华大学 杨虎 应用数理统计课后习题参考答案3
习题五1试检验不同日期生产的钢锭的平均重量有无显著差异?(α=0.05) 解 根据问题,因素A 表示日期,试验指标为钢锭重量,水平为5.假设样本观测值(1,2,3,4)ij y j =来源于正态总体2~(,),1,2,...,5i i Y N i μσ= .检验的问题:01251:,:i H H μμμμ===不全相等 .计算结果:表5.1 单因素方差分析表注释: 当=0.001表示非常显著,标记为 ‘***’,类似地,= 0.01,0.05,分别标记为 ‘**’ ,‘*’ .查表0.95(4,15) 3.06F =,因为0.953.9496(4,15)F F =>,或p = 0.02199<0.05, 所以拒绝0H ,认为不同日期生产的钢锭的平均重量有显著差异.2 考察四种不同催化剂对某一化工产品的得率的影响,在四种不同催化剂下分别做试验 试检验在四种不同催化剂下平均得率有无显著差异?(α=0.05)解根据问题,设因素A 表示催化剂,试验指标为化工产品的得率,水平为4 .假设样本观测值(1,2,...,)ij i y j n =来源于正态总体2~(,),1,2,...,5i i Y N i μσ= .其中样本容量不等,i n 分别取值为6,5,3,4 .检验的问题:012341:,:i H H μμμμμ===不全相等 .计算结果:表5.2 单因素方差分析表查表0.95(3,14) 3.34F =,因为0.952.4264(3,14)F F =<,或p = 0.1089 > 0.05,所以接受0H ,认为在四种不同催化剂下平均得率无显著差异 .3 试验某种钢的冲击值(kg ×m/cm2),影响该指标的因素有两个,一是含铜量A ,另试检验含铜量和试验温度是否会对钢的冲击值产生显著差异?(α=0.05) 解 根据问题,这是一个双因素无重复试验的问题,不考虑交互作用.设因素,A B 分别表示为含铜量和温度,试验指标为钢的冲击力,水平为12.假设样本观测值(1,2,3,1,2,3,4)ij y ij ==来源于正态总体2~(,),1,2,3,ij ij Y N i μσ=1,2,3,4j = .记i α⋅为对应于i A 的主效应;记j β⋅为对应于j B 的主效应;检验的问题:(1)10:i H α⋅全部等于零,11:i H α⋅不全等于零;(2)20:j H β⋅全部等于零,21:j H β⋅不全等于零; 计算结果:表5.3 双因素无重复试验的方差分析表查表0.95(2,6) 5.143F =,0.95(3,6) 4.757F =,显然计算值,A B F F 分别大于查表值,或p = 0.0005,0.0009 均显著小于0.05,所以拒绝1020,H H ,认为含铜量和试验温度都会对钢的冲击值产生显著影响作用.设每个工人在每台机器上的日产量都服从正态分布且方差相同 .试检验:(α=0.05)1)操作工之间的差异是否显著? 2)机器之间的差异是否显著?3)它们的交互作用是否显著?解 根据问题,这是一个双因素等重复(3次)试验的问题,要考虑交互作用.设因素,A B 分别表示为机器和操作,试验指标为日产量,水平为12. 假设样本观测值(1,2,3,1,2,3,4)ijk y i j ==来源于正态总体2~(,),1,2,3,ij ij Y N i μσ= 1,2,3,4j =,1,2,3k = .记i α⋅为对应于i A 的主效应;记j β⋅为对应于j B 的主效应;记ij γ为对应于交互作用A B ⨯的主效应; 检验的问题:(1)10:i H α⋅全部等于零,11:i H α⋅不全等于零; (2)20:j H β⋅全部等于零,21:j H β⋅不全等于零; (3)30:ij H γ全部等于零,31:ij H γ不全等于零;计算结果:表5.4 双因素无重复试验的方差分析表查表0.95(3,24) 3.01F =,0.95(2,24) 3.4F =,0.95(6,24) 2.51F =,计算值 3.01,A F <3.4, 2.51B A B F F ⨯>>,或0.05A p >>,而,B A B p p ⨯均显著小于0.05,所以拒绝2030,H H ,接受10H ,认为操作工之间的差异显著,机器之间的差异不显著,它们之间的交互作用显著 . 5 某轴承厂为了提高轴承圈退火的质量,制定因素水平分级如下表所示因素 上升温度℃ 保温时间(h)出炉温度℃水平1 800 6 400 水平28208500试填好正交试验结果分析表并对试验结果进行直观分析和方差分析 .解 根据题意,这是一个3因素2水平的试验问题 .试验指标为硬度的合格率 .应选择正交表44(2)L 来安排试验,随机生成正交试验表如下:方差来源 自由度 平方和 均方 F 值 P 值 因素A 因素B 相互效应A ×B误差 总和3 2 6 24 352.750 27.167 73.5 41.333 144.750.917 13.583 12.250 1.7220.5323 7.8871 7.11290.6645 0.00233** 0.00192**由此可见第三号试验条件为:上升温度800℃、保温时间6h 、出炉温度500℃ . 直观分析需要计算K 值,计算结果如下:表5.6 计算表直观分析 由计算的K 值知,因素A 、B 、C 的极差分别为70,40,40,因此主次关系为A B C >=,B ,C 相当 .由于试验指标为硬度的合格率,应该是越大越好,所以各确定因素的水平分别是121,,A B C ,即最佳的水平组合是121A B C ,即最佳搭配为:上升温度800℃、保温时间8h 、出炉温度400℃.采用方差分析法,计算得下表:表5.7 方差分析表方差来源平方和 自由度均方差 F 值 A 1225 1 1225 1 B 400 1 400 0.33 C 400 1 400 0.33 误差 1225 1 1225 总和32504如果显著性检验水平取0.1α=,则查表得0.9(1,1)39.9F =,显然计算的F 值1,0.33A B C F F F ===均小于查表值,所以认为三个因素对结果影响都显著 .6问应选用哪张正交表安排试验,并写出第8号试验的条件;如果9组试验结果为(单位:kg/100m 2):62.925,57.075,51.6,55.05,58.05,56.55,63.225,50.7,54.45,试对该正交试验结果进行直观分析和方差分析.解 该问题属于3因素3水平的试验问题,试验指标为水稻产量 .根据题意应选择正交表49(3)L 来安排试验,随机生成正交表如下:由表可知,第8号试验的条件:品种(A 3)珍珠矮11号,插值密度(B 2)3.75棵/100m 2 ,施肥量(C 1)0.75kg/100m 2纯氨; 直观分析需要计算K 值,计算结果如下:表5.9 计算表同上题进行直观分析,得出K 值的大小关系为:111312212223333132,,K K K K K K K K K >>>>>>由直观分析看出:本例较好的水平搭配是:113A B C 采用方差分析法,计算得下表:表5.10 方差分析表方差来源平方和自由度 均方差F 值A 1.759 2 0.879 0.0223B 65.861 2 32.931 0.8361C 6.660 2 3.330 0.0845 误差78.776 239.388 39.3880.9(2,2)9F =,所以认为三个因素对结果影响都不显著.7 在阿魏酸的合成工艺考察中,为了提高产量,选取了原料配比A ,吡啶量B 和反应时间C 三个因素,它们各取了7个水平如下:原料配比A :1.0,1.4,1.8,2.2,2.6,3.0,3.4 吡啶量B :10,13,16,19,22,25,28 反应时间C :0.5,1.0,1.5,2.0,2.5,3.0,3.5试选用合适的均匀设计表安排试验,并写出第7号试验的条件;如果7组试验的结果(收率)为:0.33,0.336,0.294,0.476,0.209,0.451,0.482,试对该均匀试验结果进行直观分析并通过回归分析发现可能更好的工艺条件.解 根据题意选择均匀设计表47(7)U 来安排试验,有3个因素,根据使用表,实验安排如:表5.11 试验安排表6 6 5 4 0.4517 7 7 7 0.482 所以第7号实验的条件为:原配料比3.4,吡啶量28ml,反应时间3.5h.通过直观分析,最好的实验条件是:原配料比3.4,吡啶量28ml,反应时间3.5h. 通过回归分析,最合适的实验条件是:原配料比2.6,吡啶量16ml,反应时间0.5h.习题六1 从某中学高二女生中随机选取8名,测得其升高、体重如下:1 2 3 4 5 6 78身高(cm)160 159 160 157 169 162 165 154体重(kg)49 46 53 41 49 50 48 43在绝对距离下,试用最短距离法和离差平方和法对其进行聚类分析.解由R软件,用最短距离(左)和差离平方和法(右)对题目进行聚类分析如下图6.1,表6.1和表6.2:最短距离法离差平方和法图6.1 聚类树形图表6.1 聚类附表(最短距离法)步骤聚类合并系数首次出现的阶段类别下一步组1 组2 组1 组21 1 6 5.000 0 0 22 1 2 10.000 1 0 43 4 8 13.000 0 0 74 1 7 13.000 2 0 55 1 3 13.000 4 0 66 1 5 17.000 5 0 7表6.2 聚类附表(离差平方和法)2 已知五个变量的距离矩阵为03674012340444401592343331).;2);3)036034022020401000⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭试用最短距离法和最长距离法对这些变量进行聚类,并画出聚类图和二分树.解 针对距离矩阵1),采用两种方法计算如下. ①最短距离法的聚类步骤如下:12345036740159036020w w w w w ⎛⎫ ⎪⎪ ⎪ ⎪⎪⎪⎝⎭a )将()236,1w w f h =合并为一类,,{}11456,,,,H w w w h =距离矩阵如下0743023060⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭{}()457457),,,2b w w h w w f h ==合并为一类,{}2167,,,H w h h =距离矩阵如下:034030⎛⎫ ⎪⎪ ⎪⎝⎭{}()()1681689),,3,3c w h h w h f h f h ===合并为一类,最后,,聚类图和树状图如图6.2:图6.2 聚类图(左)与树状图(右)②最长距离法与最短距离法类似,步骤如下: a )()236,1w w f h =合并为一类,{}11456,,,,H w w w h =距离矩阵如下0746025090⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭ {}(){}4574572167),,,2,,,b w w h w w f h H w h h ===合并为一类,距离矩阵如下:067090⎛⎫⎪⎪ ⎪⎝⎭{}()()1681689),,69c w h h w h f h f h ===合并为一类,最后,,,聚类图和树状图如图6.3:图6.3 聚类图(左)与树状图(右)(2)针对距离矩阵2)012340234034040⎛⎫ ⎪⎪ ⎪ ⎪⎪⎪⎝⎭①最短距离法的聚类步骤如下 a )()216,1w w f h =合并为一类,{}13456,,,,0342043040H w w w h =⎛⎫⎪⎪ ⎪ ⎪⎝⎭距离矩阵如下{}()367367),,,2b w h h w h f h ==合并为一类,{}24567,,,,H w w h h =聚类矩阵如下:043040⎛⎫⎪⎪ ⎪⎝⎭{}(){}()4784789879),,3,,4c w h h w h f h h w h f h ====合并为一类,最后,,聚类图和树状图如图6.4:图6.4 聚类图(左)与树状图(右)②由于本题数据的特殊性,最长距离法与最短距离法结果相同(略). (3)044440333022010⎛⎫ ⎪⎪ ⎪ ⎪⎪⎪⎝⎭最短距离法的聚类步骤如下a ) ()456,1w w f h =合并为一类,{}11236,,,,H w w w h =距离矩阵如下0444033020⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭{}(){}36736724567),,,2,,,,b w h h w h f h H w w h h ===合并为一类,距离矩阵如下:044030⎛⎫⎪⎪ ⎪⎝⎭{}(){}()4784789879),,3,,4c w h h w h f h h w h f h ====合并为一类,最后,,,聚类图和树状图如图6.5:图6.5 聚类图(左)与树状图(右)由于本题数据的特殊性,最长距离法与最短距离法结果相同(略).3 在一项关于作物对土壤营养的反应的研究中,要测定土壤的总磷量和总氮量(占干物质重的百分比),今对10份土样测得数据如下:总氮量(%)0.63 1.19 2.30 1.29 0.73 0.52 0.33 0.61 0.47 0.66在绝对距离下,试用重心法对其进行聚类分析.解由R软件得到重心法聚类分析的结果如图6.6与表6.3:图6.6 聚类树形图表6.3 聚类过程记录表步骤聚类合并系数首次出现的阶段类别下一步组 1 组 2 组 1 组 21 1 8 .001 0 0 22 1 10 .002 1 0 43 6 9 .005 0 0 64 15 .010 2 0 75 2 4 .010 0 0 86 67 .027 3 0 77 1 6 .048 4 6 88 1 2 .459 7 5 99 1 3 2.572 8 0 0 4 1975年Dagnelie收集了11年的气象数据资料如下表变量年序x1x2x3x4其中:x 1—前一年11月12日的降水量;x 2—7月均温;x 3—7月降雨量;x 4—月日辐射,试对这四个气象因子进行主成分分析. 解 由R 软件分析得到如下表6.4,6.5:表6.4 各主成分的重要性:主成分1 主成分2 主成分3 主成分4 标准差 1.6103349 0.9890848 0.53407741 0.37854199 方差贡献率 0.6482947 0.2445722 0.07130967 0.03582351 累积贡献率0.64829470.89286680.964176491.00000000表6.5 因子荷载:主成分1 主成分2 主成分3 主成分4 X1 0.291 0.871 0.332 -0.214 X2 -0.506 0.425 -0.742 -0.111 X3 0.577 0.136 -0.418 0.688 X4-0.5710.2050.4040.685由于前两个主成分对应的累积贡献率已经达到89.287,因此选取主成分的数目为2.5 对某初中12岁的女生进行体检,测量其身高x 1、体重x 2、胸围x 3和坐高x 4,共测得58个样本,并算得1234(,,,)x x x x x ='的样本协方差为19.9410.5023.566.5919.7120.958.637.97 3.937.55S ⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭ 试进行样本主成分分析.解 首先计算样本的相关系数矩阵:10.484410.32240.887210.70330.59760.31251⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭设相关系数矩阵的特征值和特征向量分别为d 和v 阵,计算得到0.0546000 0 0.312600= 000.96470 000 2.6681d ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭即四个特征值依次为:2.6681,0.9647,0.3126,0.0546,前两个主成分的累计贡献率为:90.8471%,因此提取主成分为2.四个特征根相应的特征向量为0.06000.70600.5333 0.4620 0.7317 0.17430.34040.5642=0.60570.19320.60400.48060.30690.65870.48460.4870v -⎛⎫ ⎪-⎪ ⎪--- ⎪-⎝⎭ 因此,两个主成分的表达式为:112340.060.73170.60570.3069z x x x x =+-- 212340.7060.17430.19320.6587z x x x x =-+-+6 比较因子分析和主成分分析模型的异同,阐明两者的关系. 解(1)提取公因子的方法主要有主成分法和公因子法.若采取主成分法,则主成分分析和因子分析基本等价,该法从解释变量的变异的角度出发,尽量使变量的方差能被主成分解释;而公因子法主要从解释变量的相关性角度,尽量使变量的相关程度能被公因子解释,当因子分析目的重在确定结构时则用到该法.(2)主成分分析和因子分析都是在多个原始变量中通过他们之间的内部相关性来获得新的变量,达到既减少分析指标个数,又能概括原始指标主要信息的目的.但他们各有其特点:主成分分析是将n 个原始变量提取m 个支配原始变量的公因子,和1个特殊因子,各因子之间可以相关或不相关.(3)统用降维的方法,但差异也很明显:主成分分析把方差划分为不同的正交成分,而因子分析则把方差化分为不同的起因因子;因子分析中的特征值的计算只能从相关系数矩阵出发,且必须把主成分划分为因子.(4)因子分析提取的公因子比主成分分析提取的主成分更具有可解释性.(5)两者分析的实质及重点不同.主成分的数学模型为Y AX =,因子分析的数学模型为X AF ε=+.因而可知主成分分析是实际上是线性变换,无假设检验,而因子分析是统计模型,某些因子模型是可以得到假设检验的;主成分分析主要综合原始数据的信息,而因子分析重在解释原始变量之间的关系.(6)SPSS 数据的实现:两者都通过“analyze data reduction Factor···”过程实现,但主成分分析主要使用“descriptires ”,“extraction ”,“stores ”对话框,而因子分析处使用这些外,还可使用“rotaction ”对话框进行因子旋转.7 试对第4题的变量作因子分析,并将结果和上面的结果进行比较. 解 用SPSS 分析,计算结果如下表6.6-6.8:表6.6 反应压缩比情况表 提取方法: 主成分法计算的相关系数矩阵的特征值和方差贡献率:表6.7 方差解释度提取方法: 主成分法表6.8 主成分矩阵8 为研究某一树种的叶片形态,选取50片叶测量其长度x 1(mm )和宽度x 2(mm ),按样本数据求得其平均值和协方差矩阵为:129048134,92,4845x x S ⎛⎫=== ⎪⎝⎭求出相关系数阵R ,并由R 出发作因子分析;解1)求相关系数矩阵:904810.7303,48900.73031S R ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭ 2)用R 软件求R 的特征根及其相应的特征向量,软件输出结果如下:$values[1] 2.99393809 0.07273809 $vectors[,1] [,2] [1,] 0.7071068 -0.7071068 [2,] 0.7071068 0.7071068122.9939,0.0727,λλ∴==12(),()0.7071,0.7071-0.7071,0.7071T Tηη==3) 求载荷矩阵A :1.22350.19071.22350.1907A -⎛⎫= ⎪⎝⎭4)22121.5333, 1.5333,h h == 0.98810.154*0.98810.154A -⎛⎫= ⎪⎝⎭12121,1,0.3043,0.3043u u v v ===-=,222222000011112,0,()0.9074,20i i iii i i i i i A u B v C u v D u v =========-===∑∑∑∑9 1981年,生物学家Grogan 和Wirth 对两种蠓虫Af 和Apf 根据其触角长度x 1和翼长x 2进行了分类,分类的数据资料如下:Af 1 2 3 4 5 6 7 8 x 1 1.24 1.36 1.38 1.38 1.38 1.40 1.48 1.54 x 2 1.27 1.74 1.64 1.82 1.90 1.70 1.82 1.82 Apf 1 2 3 4 5 6 x 1 1.14 1.18 1.20 1.26 1.28 1.30 x 2 1.78 1.96 1.86 2.00 2.00 1.96 (1)试建立Af 和Apf 的Fisher 判别模型;(2)对样本(1.24,1.80),(1.28,1.84),(1.40,2.04)进行判别分类. 解 (1)建立Fisher 判别模型991122121111(,)(1.42,1.75),(,)(1.23,1.93)99T TT T i i i i i i x x y y μμ======∑∑120.08480.1490.01980.0218,0.1490.39120.02180.039A A ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭12120.0080.0130.0130.0332A A n n ⎛⎫+== ⎪+-⎝⎭∑()120.19,0.18Tμμ-=-,()()121 1.325,1.842T μμ+= 1345.05135.42135.4283.33--⎛⎫= ⎪-⎝⎭∑, 带入Fisher 判别函数 ()12345.05135.42[(,)(1.325,1.84)]0.19,0.18135.4283.33Tx x -⎛⎫-- ⎪-⎝⎭1291.301741.336944.534x x =--(2)把三个样本(1.24,1.80),(1.28,1.84),(1.4,2.04)带入模型,得到结果:三个样本均属于Apf 类.10 在两个玉米品种之间进行判别:137玉米G 1和甜玉米G 2,选取的两个变量是:x 1—玉米果穗长;x 2—玉米果穗直径,两个类的样本容量为n 1=n 2=40,实际算得两个类的样本均值和样本协方差为:121218.5625.348.120 4.4589.661 3.720,,,5.98 4.12 4.458 4.350 3.720 3.410x x S S ⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭试建立G 1,G 2的Bayes 类线性判别函数.解 因为已知两类的样本均值和样本协方差为:12(18.56,5.98),(25.34,4.12)T T x x ==,128.120 4.4589.661 3.720,4.458 4.350 3.720 3.410S S ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭可计算得到修正的公共协方差矩阵和逆矩阵12120.2280.1450.1450.0992A A n n ⎛⎫+== ⎪+-⎝⎭∑,15.6393.738.25147.38--⎛⎫= ⎪-⎝⎭∑()()()121216.78,1.86,21.95,5.052TTμμμμ-=-+= 带入Fisher 判别函数()112121(())()2T W x x μμμμ-=-+-∑ ()()12 5.6393.73[(,)21.95,5.05] 6.78,1.868.25147.38Tx x -⎛⎫=-- ⎪-⎝⎭1274.396.951141.29x x =-+-。
应用经济统计学,第三章部分答案
每组上限及其对应的累计次数,用直线连接可得累计次数分配表。
2.洛伦茨曲线
积累户数百分比
积累收入百分比
绝对平均百分比
0.025
0.016
0.025
0.108
0.059
0.108
0.25
0.171
0.25
0.467
0.37
0.467
0.667
0.568
0.667
0.767
0.702
0.767
0.858
0.811
0.858
0.95
0.929
0.95
1
1
1
相关数据
应用统计学课后答案统计学答案统计学课后答案电大统计学原理答案统计学原理考试答案统计学课后习题答案统计学原理答案统计学原理课后答案统计学试题及答案统计学练习册答案
1.(1)次数分配表
分组
相对次数
相对பைடு நூலகம்累次数
5
4
4
10
7
11
15
9
20
20
13
33
25
14
47
30
1
48
35
1
49
(2)直方图,折线图and累计次数分配图
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 三 章 作 业 参 考 答 案
2、解:计算矩估计:2
1)1(1
++=
+⋅=
⎰
αααα
dx x x EX ,
令 X EX =++=
2
1αα ,解得 1
2-1ˆ1-=X X α
;
计算极大似然估计:α
α
αα
α)()1()1()()(1
1
1
∏∏∏
===+=+=
=
n
i i n
n
i i n
i i x x x f L
)ln()1ln()(ln 1
∏=++=⇒n
i i x n L ααα0
)ln(1
)(ln 1
=++=
∂∂⇒
∏=n
i i x n
L αα
α
解得 )
)
ln(1(ˆ1
2∏=+-=n
i i x n
α
;
将样本观测值代入,得到估计值分别为0.3077ˆ1=α
,0.2112ˆ2=α。
6、 解:(1)由例3.2.3可知,μ的极大似然估计分别为 X =μ
ˆ, 05.0)(1)(=-Φ-=>μA A X P )645.1(95.0)(Φ==-Φ⇒μA 645
.1+=⇒μA ,由46页上极大似然估计的不变性可知645.1ˆˆ+=μA
; (2)由例3.2.3可知,2
σμ,的极大似然估计分别为
∑=-=
=n
i i
X X n
X 1
2
2
)
(1
ˆˆσ
μ,,
05.0)(
1)(=-Φ-=>σ
μ
A A X P )645.1(95.0)(
Φ==-Φ⇒σ
μ
A
σ
μ645.1+=⇒A ,由46页上极大似然估计的不变性可知σμˆ645.1ˆˆ+=A。
8、解:计算2
2
2
2222)()()(σσ
μC n
S CE X E CS X E -+
=-=-,由题意则有
2
2
2
2
μσ
σ
μ=-+
C n
,解得n
C 1=。
12、解:(1) 由条件,得μ的置信区间为 )n
0.01,n
0.01-(2
12
1α
α
-
-
+
u
X u
X ,
代入数据得到)129.2,121.2()645.1160.01125.2,645.116
0.01-
125.2(=⨯+
⨯;
(2) 由条件,得μ的置信区间为 ))
1(n
S ),1(n
S -(2
12
1-+
--
-
n t
X n t
X α
α
,
代入数据得到)331.2,171.2()1.75316
0.017125.21.75316
0.017-125.2(=⨯+
⨯,。
13、解:利用枢轴量法寻找σ的区间估计: (1) 构造枢轴量为 )1(~)1(2
2
2
--=
n S
n T χσ
;
(2) 给定显著性水平α,得到αχχαα
-=-≤≤--
1))1()1((2
2
122
n T n P ; (3) 解不等式得σ的区间估计为))
1()1(,
)
1()1((
22
2
22
12
-----
n S
n n S
n αα
χχ
;
代入数据得到 )072.21,431.7()18
.211)19(,
53
.1711)19((2
2
=--。