高一数学必修4模块训练5答案
高一数学必修4模块训练5答案
高一数学必修4模块训练5一.选择题:1、已知sin()0,cos()0πθπθ+<-<,则角θ所在嘚象限是 ( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限2、cos ,[,]62y x x ππ=∈-嘚值域是 ( ) A 、[0,1] B 、[1,1]- C 、3[0,]2 D 、1[,0]2- 3、若角θ嘚终边过点P (4,3)(0)a a a -≠,则sin cos θθ+等于 ( )A 、15-B 、15C 、15±D 、不能确定,与a 嘚值有关4、函数()sin()6f x x π=+在(0,2)π上嘚图象与x 轴嘚交点嘚横坐标为 ( ) A 、1166ππ-或 B 、566ππ或 C 、51166ππ或 D 、766ππ或 5、下列判断正确嘚是 ( ) A 、若向量AB CD 与是共线向量,则A,B,C,D 四点共线B 、单位向量都相等C 、共线嘚向量,若起点不同,则终点一定不同D 、模为0是一个向量方向不确定嘚充要条件6、如图,在菱形ABCD 中,下列式子成立嘚是 ( )A 、AB CD = B 、AB BC = C 、AD CB = D 、AD BC = 7、设s ,t 是非零实数,,i j 是单位向量,当两向量,s i t j t i s j +-嘚模相等时,,i j 嘚夹角是( )A 、6πB 、4πC 、3πD 、2π 8、点P 在平面上作匀速直线运动,速度向量(4,3)v =- (即点P 嘚运动方向与v 相同,且每秒CD A B移动嘚距离为||v 各单位)。
设开始时点P 嘚坐标为(-10,10),求5秒后点P 嘚坐标为 ( )A 、(2,4)-B 、(30,25)-C 、(10,5)-D 、(5,10)- 二.填空题:13、函数sin 3cos y x x =+在区间[0,]2π上嘚最小值为_______________;14、设向量a b 与嘚夹角为θ,且(3,3),2(1,1)a b a =-=-,则10cos θ= ;三.解答题:11、已知函数()2sin()2sin ,3f x x x π=+- ,0.2x π⎡⎤∈-⎢⎥⎣⎦(Ⅰ)若3cos ,3x =求函数()f x 嘚值; (Ⅱ)求函数()f x 嘚值域。
高一数学训练习题参考答案
数学必修(4)同步练习参考答案§1.1任意角和弧度制一、CDDCBA二、7.{x|x=k•3600+1800, k∈Z}, {x|x=k•1800+450,k∈Z} ; 8.-345°; 9. ;10.第二或第四象限, 第一或第二象限或终边在y轴的正半轴上三、11.{ α|α=k•3600+1200或α=k•3600+3000, k∈Z } -60° 120°12.由7θ=θ+k•360°,得θ=k•60°(k∈Z)∴θ=60°,120°,180°,240°,300°13.∵l=20-2r,∴S= lr= (20-2r)•r=-r2+10r=-(r-5)2+25∴当半径r=5 cm时,扇形的面积最大为25 cm2,此时,α= = =2(rad)14.A点2分钟转过2θ,且π<2θ<π,14分钟后回到原位,∴14θ=2kπ,θ= ,且 <θ< π,∴θ= π或π§1.2.1 任意角的三角函数一、CCDBCD二、7.一、三; 8. 0 ; 9. 或π; 10.二、四三、11.[2kπ, 2kπ,+ ( k∈Z)12.13.∵sinθ= - ,∴角θ终边与单位圆的交点(cosθ,sinθ)=( ,- )又∵P(-2, y)是角θ终边上一点, ∴cosθ<0,∴cosθ= - .14.略.§1.2.2同角三角函数的基本关系式一、BCDBBA二、7. ; 8.0; 9. ; 10.三、11.12.原式= - ==sinx+cosx13.左边=tan2θ-sin2θ= -sin2θ=sin2θ• =sin2θ• =sin2θ•tan2θ=右边14.(1)当m=0时, α=kπ, k∈Z ,cosα=±1, tanα=0(2)当|m|=1时, α=kπ+ , k∈Z ,cosα=0, tanα=0不存在(3)当0<|m|<1时,若α在第一或第四象限,则cosα= tanα= ;若α在第二或第三象限,则cosα=- tanα=- .§1.3 三角函数的诱导公式一、BBCCBC二、7. ; 8.1 ; 9.1 ; 10.三、11. 112. f(θ)= = =cosθ-1∴f( )=cos -1=-13.∵cos(α+β)=1, ∴α+β=2kπ, k∈Z. ∴cos(2α+β)= cos(α+α+β)= cos(π+α)=- cosα= - .14. 由已知条件得:sinα= sinβ①, cos α=- cosβ②,两式推出sinα= ,因为α∈(- , ),所以α= 或- ;回代②,注意到β∈(0,π),均解出β= ,于是存在α= ,β= 或α=- ,β= ,使两等式同时成立。
惠州市2011-2012学年第一学期普通高中新课程 (高一数学必修4)答案
惠州市2011-2012学年第一学期普通高中新课程必修④基础测试及期末考试惠州市2011-2012学年第一学期普通高中新课程基础测试及期末考试高一数学参考解答及评分标准一、选择题:本大题共9小题,每小题5分,共45分,在每小题给出的四个选项中,只有一项是符合题目要求的。
3.[解析]3al R πα==,故选A5.[解析]),4sin(2)(π+=x x f 最大值为2,故选D6.[解析] x x y cos )2sin(=+=π,在[0,]π上是减函数,故选A7.[解析]分子分母同时除以α2cos 得1tan tan 22-αα,代入得结果,故选A8.[解析] x y 4sin =的图象向左平移12π个单位得)34sin()12(4sin ππ+=+=x x y , ϕ等于3π,故选D 9.[解析] )4,21()2(x b a +=+,)3,2()2(x b a -=-,)2(b a +∥)2(b a - 得),2(4)21(3x x -=+解得21=x ,故选C二、填空题:本大题共3小题,每小题5分,共15分,把答案填写在答题卷中指定的横线上。
10.21-, 11. 71- 12. 651610.[解析] 2130sin 690sin -=-=11.[解析] 34tan 1tan 22tan 2-=-=xx x ,712tan 12tan 1)24tan(-=-+=+x x x π惠州市2011-2012学年第一学期普通高中新课程必修④基础测试及期末考试12.[解析] 由54sin =α得53cos =α,由135)cos(=+βα得1312)sin(=+βα,[]6516sin )cos(cos )sin()(sin sin =+-+=-+=αβααβααβαβ三、解答题:本大题共3小题,共40分,解答应写出必要的计算过程、推演步骤或文字说明。
13.(本题满分12分) 解:(1)由53cos =α得54sin =α,由552cos =β得55sin =β,………2分55sin cos cos sin )sin(=-=-βαβαβα……………6分(2)由(1)知41tan ,tan 32αβ==…………………8分tan()αβ+=211tan tan 1tan tan =-+βαβα…………………12分14.(本小题满分14分)解:(1)设()y x c ,=,由c ∥a52= 可得⎩⎨⎧=+=∙-∙2002122y x x y …………3分解得⎩⎨⎧==42y x 或⎩⎨⎧-=-=42y x …………………………………5分故()4,2=c 或()4,2--=c …………………………6分(2)()()b a b a -⊥+22()()022=-∙+∴b a b a 即023222=-∙+b b a a………………………8分0452352=⨯-∙+⨯∴b a ,整理得25-=∙b a …………………10分1cos -==∴θ ………………………………………12分又[]πθ,0∈ πθ=∴ ……………………………14分惠州市2011-2012学年第一学期普通高中新课程必修④基础测试及期末考试15.(本小题满分14分) 解:(1)22cos 12sin 23cos cos sin 3)(2xx x x x x f ωωωωω++=+=21)62sin(++=πωx …………………6分1,22,0=∴==∴>ωπωπωT …………………8分 (2)由(1),21)62s in ()(++=πx x f ,65626,30ππππ≤+<∴≤<x x ,1)62sin(21≤+≤∴πx ,)(x f ∴的值域为]23,1[…………………14分第二部分 期末考试(共50分)四、期末考试部分包括一道选择题(满分5分),一道填空题(满分5分)和三道解答题(满分40分),解答须写出文字说明、证明过程和演算步骤。
人教版高中数学必修4课后习题答案详解
第二章 平面向量2.1平面向量的实际背景及基本概念 练习(P77)1、略.2、AB ,BA . 这两个向量的长度相等,但它们不等.3、2AB =, 2.5CD =,3EF =,22GH =4、(1)它们的终点相同; (2)它们的终点不同. 习题 A 组(P77) 1、(2). 3、与DE 相等的向量有:,AF FC ;与EF 相等的向量有:,BD DA ; 与FD 相等的向量有:,CE EB .4、与a 相等的向量有:,,CO QP SR ;与b 相等的向量有:,PM DO ; 与c 相等的向量有:,,DC RQ ST5、33AD =. 6、(1)×; (2)√; (3)√; (4)×. 习题 B 组(P78)1、海拔和高度都不是向量.2、相等的向量共有24对. 模为1的向量有18对. 其中与AM 同向的共有6对,与AM 反向的也有6对;与AD同向的共有3对,与AD 反向的也有6对;模的向量共有4对;模为2的向量有2对2.2平面向量的线性运算 练习(P84)1、图略.2、图略.3、(1)DA ; (2)CB .4、(1)c ; (2)f ; (3)f ; (4)g . 练习(P87)1、图略.2、DB ,CA ,AC ,AD ,BA .3、图略. 练习(P90) 1、图略.2、57AC AB =,27BC AB =-.说明:本题可先画一个示意图,根据图形容易得出正确答案. 值得注意的是BC 与AB 反向.3、(1)2b a =; (2)74b a =-; (3)12b a =-; (4)89b a =.4、(1)共线; (2)共线.5、(1)32a b -; (2)111123a b -+; (3)2ya . 6、图略.习题 A 组(P91)1、(1)向东走20 km ; (2)向东走5 km; (3)向东北走km ;(4)向西南走;(5)向西北走;(6)向东南走 2、飞机飞行的路程为700 km ;两次位移的合成是向北偏西53°方向飞行500 km. 3、解:如右图所示:AB 表示船速,AD 表示河水的流速,以AB 、AD 为邻边作□ABCD ,则AC 表示船实际航行的速度.在Rt △ABC 中,8AB =,2AD =,所以228AC AB AD =+==因为tan4CAD ∠=,由计算器得76CAD ∠≈︒所以,实际航行的速度是km/h ,船航行的方向与河岸的夹角约为76°. 4、(1)0; (2)AB ; (3)BA ; (4)0; (5)0; (6)CB ; (7)0.5、略6、不一定构成三角形. 说明:结合向量加法的三角形法则,让学生理解,若三个非零向量的和为零向量,且这三个向量不共线时,则表示这三个向量的有向线段一定能构成三角形.7、略. 8、(1)略; (2)当a b ⊥时,a b a b +=-9、(1)22a b --; (2)102210a b c -+; (3)132a b +; (4)2()x y b -.10、14a b e +=,124a b e e -=-+,1232310a b e e -=-+. 11、如图所示,OC a =-,OD b =-,DC b a =-,BC a b =--.12、14AE b =,BC b a =-,1()4DE b a =-,34DB a =, 34EC b =,1()8DN b a =-,11()48AN AM a b ==+.13、证明:在ABC ∆中,,E F 分别是,AB BC 的中点,所以EF AC //且12EF AC =,即12EF AC =;同理,12HG AC =,所以EF HG =.习题 B 组(P92)1、丙地在甲地的北偏东45°方向,距甲地1400 km.2、不一定相等,可以验证在,a b 不共线时它们不相等.3、证明:因为MN AN AM =-,而13AN AC =,13AM AB =, 所以1111()3333MN AC AB AC AB BC =-=-=.4、(1)四边形ABCD 为平行四边形,证略 (2)四边形ABCD 为梯形.证明:∵13AD BC =,∴AD BC //且AD BC ≠ ∴四边形ABCD 为梯形. (3)四边形ABCD 为菱形.(第11题)(第12题)EHGFC AB丙乙(第1题)(第4题(2))BCD证明:∵AB DC =,∴AB DC //且AB DC =∴四边形ABCD 为平行四边形 又AB AD =∴四边形ABCD 为菱形.5、(1)通过作图可以发现四边形ABCD 为平行四边形. 证明:因为OA OB BA -=,OD OC CD -= 而OA OC OB OD +=+所以OA OB OD OC -=- 所以BA CD =,即∥.因此,四边形ABCD 为平行四边形. 2.3平面向量的基本定理及坐标表示 练习(P100)1、(1)(3,6)a b +=,(7,2)a b -=-; (2)(1,11)a b +=,(7,5)a b -=-; (3)(0,0)a b +=,(4,6)a b -=; (4)(3,4)a b +=,(3,4)a b -=-.2、24(6,8)a b -+=--,43(12,5)a b +=.3、(1)(3,4)AB =,(3,4)BA =--; (2)(9,1)AB =-,(9,1)BA =-; (3)(0,2)AB =,(0,2)BA =-; (4)(5,0)AB =,(5,0)BA =-4、AB ∥CD . 证明:(1,1)AB =-,(1,1)CD =-,所以AB CD =.所以AB ∥CD .5、(1)(3,2); (2)(1,4); (3)(4,5)-.6、10(,1)3或14(,1)3-7、解:设(,)P x y ,由点P 在线段AB 的延长线上,且32AP PB =,得32AP PB =-(,)(2,3)(2,3)AP x y x y =-=--,(4,3)(,)(4,3)PB x y x y =--=---∴3(2,3)(4,3)2x y x y --=---- ∴32(4)233(3)2x x y y ⎧-=--⎪⎪⎨⎪-=---⎪⎩(第4题(3))(第5题)∴815x y =⎧⎨=-⎩,所以点P 的坐标为(8,15)-.习题 A 组(P101)1、(1)(2,1)-; (2)(0,8); (3)(1,2).说明:解题时可设(,)B x y ,利用向量坐标的定义解题. 2、123(8,0)F F F ++=3、解法一:(1,2)OA =--,(53,6(1))(2,7)BC =---=而AD BC =,(1,5)OD OA AD OA BC =+=+=. 所以点D 的坐标为(1,5).解法二:设(,)D x y ,则((1),(2))(1,2)AD x y x y =----=++,(53,6(1))(2,7)BC =---=由AD BC =可得,1227x y +=⎧⎨+=⎩,解得点D 的坐标为(1,5).4、解:(1,1)OA =,(2,4)AB =-. 1(1,2)2AC AB ==-,2(4,8)AD AB ==-,1(1,2)2AE AB =-=-. (0,3)OC OA AC =+=,所以,点C 的坐标为(0,3); (3,9)OD OA AD =+=-,所以,点D 的坐标为(3,9)-; (2,1)OE OA AE =+=-,所以,点E 的坐标为(2,1)-. 5、由向量,a b 共线得(2,3)(,6)x λ=-,所以236x =-,解得4x =-. 6、(4,4)AB =,(8,8)CD =--,2CD AB =-,所以AB 与CD 共线. 7、2(2,4)OA OA '==,所以点A '的坐标为(2,4);3(3,9)OB OB '==-,所以点B '的坐标为(3,9)-; 故(3,9)(2,4)(5,5)A B ''=--=- 习题 B 组(P101)1、(1,2)OA =,(3,3)AB =.当1t =时,(4,5)OP OA AB OB =+==,所以(4,5)P ; 当12t =时,13357(1,2)(,)(,)22222OP OA AB =+=+=,所以57(,)22P ; 当2t =-时,2(1,2)(6,6)(5,4)OP OA AB =-=-=--,所以(5,4)P --; 当2t =时,2(1,2)(6,6)(7,8)OP OA AB =+=+=,所以(7,8)P .2、(1)因为(4,6)AB =--,(1,1.5)AC =,所以4AB AC =-,所以A 、B 、C 三点共线;(2)因为(1.5,2)PQ =-,(6,8)PR =-,所以4PR PQ =,所以P 、Q 、R 三点共线;(3)因为(8,4)EF =--,(1,0.5)EG =--,所以8EF EG =,所以E 、F 、G 三点共线.3、证明:假设10λ≠,则由11220e e λλ+=,得2121e e λλ=-. 所以12,e e 是共线向量,与已知12,e e 是平面内的一组基底矛盾, 因此假设错误,10λ=. 同理20λ=. 综上120λλ==.4、(1)19OP =(2)对于任意向量12OP xe ye =+,,x y 都是唯一确定的,所以向量的坐标表示的规定合理.2.4平面向量的数量积 练习(P106)1、1cos ,86242p q p q p q ⋅=⋅⋅<>=⨯⨯=. 2、当0a b ⋅<时,ABC ∆为钝角三角形;当0a b ⋅=时,ABC ∆为直角三角形.3、投影分别为0,-图略 练习(P107)1、2(3)5a =-=,252b =+=35427a b ⋅=-⨯+⨯=-.2、8a b ⋅=,()()7a b a b +-=-,()0a b c ⋅+=,2()49a b +=.3、1a b ⋅=,13a =,74b =,88θ≈︒. 习题 A 组(P108)1、63a b ⋅=-222()225a b a a b b +=+⋅+=-25a b +=- 2、BC 与CA 的夹角为120°,20BC CA ⋅=-.3、22223a b a a b b +=+⋅+=,22235a b a a b b -=-⋅+=. 4、证法一:设a 与b 的夹角为θ.(1)当0λ=时,等式显然成立;(2)当0λ>时,a λ与b ,a 与b λ的夹角都为θ,所以()cos cos a b a b a b λλθλθ⋅==()cos a b a b λλθ⋅=()cos cos a b a b a b λλθλθ⋅== 所以 ()()()a b a b a b λλλ⋅=⋅=⋅;(3)当0λ<时,a λ与b ,a 与b λ的夹角都为180θ︒-,则 ()cos(180)cos a b a b a b λλθλθ⋅=︒-=-()cos cos a b a b a b λλθλθ⋅==-()cos(180)cos a b a b a b λλθλθ⋅=︒-=- 所以 ()()()a b a b a b λλλ⋅=⋅=⋅; 综上所述,等式成立.证法二:设11(,)a x y =,22(,)b x y =,那么 11221212()(,)(,)a b x y x y x x y y λλλλλ⋅=⋅=+112212121212()(,)(,)()a b x y x y x x y y x x y y λλλλλ⋅=⋅=+=+11221212()(,)(,)a b x y x y x x y y λλλλλ⋅=⋅=+所以 ()()()a b a b a b λλλ⋅=⋅=⋅;5、(1)直角三角形,B ∠为直角.证明:∵(1,4)(5,2)(6,6)BA =---=--,(3,4)(5,2)(2,2)BC =-=-∴6(2)(6)20BA BC ⋅=-⨯-+-⨯=∴BA BC ⊥,B ∠为直角,ABC ∆为直角三角形(2)直角三角形,A ∠为直角证明:∵(19,4)(2,3)(21,7)AB =---=,(1,6)(2,3)(1,3)AC =-----=-∴2117(3)0AB AC ⋅=⨯+⨯-=∴AB AC ⊥,A ∠为直角,ABC ∆为直角三角形(3)直角三角形,B ∠为直角证明:∵(2,5)(5,2)(3,3)BA =-=-,(10,7)(5,2)(5,5)BC =-=∴35350BA BC ⋅=-⨯+⨯=∴BA BC ⊥,B ∠为直角,ABC ∆为直角三角形6、135θ=︒.7、120θ=︒.22(23)(2)44361a b a b a a b b -+=-⋅-=,于是可得6a b ⋅=-,1cos 2a ba bθ⋅==-,所以120θ=︒.8、23cos 40θ=,55θ=︒. 9、证明:∵(5,2)(1,0)(4,2)AB =--=-,(8,4)(5,2)(3,6)BC =--=,(8,4)(4,6)(4,2)DC =-=-∴AB DC =,43(2)60AB BC ⋅=⨯+-⨯= ∴,,,A B C D 为顶点的四边形是矩形.10、解:设(,)a x y =,则2292x y yx⎧+=⎪⎨=⎪⎩,解得5x y⎧=⎪⎪⎨⎪=⎪⎩5x y ⎧=⎪⎪⎨⎪=-⎪⎩.于是35(,55a =或35(55a =--. 11、解:设与a 垂直的单位向量(,)e x y =,则221420x y xy ⎧+=⎨+=⎩,解得5x y ⎧=⎪⎪⎨⎪=⎪⎩或5x y ⎧=-⎪⎪⎨⎪=⎪⎩.于是5(,55e =-或5(,55e =-. 习题 B 组(P108)1、证法一:0()0()a b a c a b a c a b c a b c ⋅=⋅⇔⋅-⋅=⇔⋅-=⇔⊥- 证法二:设11(,)a x y =,22(,)b x y =,33(,)c x y =.先证()a b a c a b c ⋅=⋅⇒⊥-1212a b x x y y ⋅=+,1313a c x x y y ⋅=+由a b a c ⋅=⋅得12121313x x y y x x y y +=+,即123123()()0x x x y y y -+-=而2323(,)b c x x y y -=--,所以()0a b c ⋅-= 再证()a b c a b a c ⊥-⇒⋅=⋅由()0a b c ⋅-=得 123123()()0x x x y y y -+-=, 即12121313x x y y x x y y +=+,因此a b a c ⋅=⋅2、cos cos cos sin sin OA OB AOB OA OBαβαβ⋅∠==+.3、证明:构造向量(,)u a b =,(,)v c d =.cos ,u v u v u v ⋅=<>,所以,ac bd u v +=<>∴2222222222()()()cos ,()()ac bd a b c d u v a b c d +=++<>≤++4、AB AC ⋅的值只与弦AB 的长有关,与圆的半径无关.证明:取AB 的中点M ,连接CM ,则CM AB ⊥,12AM AB =又cos AB AC AB AC BAC ⋅=∠,而AM BAC AC∠=所以212AB AC AB AM AB ⋅==5、(1)勾股定理:Rt ABC ∆中,90C ∠=︒,则222CA CB AB +=证明:∵AB CB CA =-∴2222()2AB CB CA CB CA CB CA =-=-⋅+. 由90C ∠=︒,有CA CB ⊥,于是0CA CB ⋅= ∴222CA CB AB +=(2)菱形ABCD 中,求证:AC BD ⊥证明:∵AC AB AD =+,,DB AB AD =-∴22()()AC DB AB AD AB AD AB AD ⋅=+⋅-=-.∵四边形ABCD 为菱形,∴AB AD =,所以220AB AD -= ∴0AC DB ⋅=,所以AC BD ⊥(3)长方形ABCD 中,求证:AC BD =证明:∵ 四边形ABCD 为长方形,所以AB AD ⊥,所以0AB AD ⋅=∴222222AB AB AD AD AB AB AD AD +⋅+=-⋅+.∴22()()AB AD AB AD +=-,所以22AC BD =,所以AC BD =(4)正方形的对角线垂直平分. 综合以上(2)(3)的证明即可. 2.5平面向量应用举例 习题 A 组(P113)1、解:设(,)P x y ,11(,)R x y则1111(1,0)(,)(1,)RA x y x y =-=--,(,)(1,0)(1,0)AP x y x =-=-由2RA AP =得11(1,)2(1,)x y x y --=-,即11232x x y y=-+⎧⎨=-⎩代入直线l 的方程得2y x =. 所以,点P 的轨迹方程为2y x =. 2、解:(1)易知,OFD ∆∽OBC ∆,12DF BC =, 所以23BO BF =.2211()()3323AO BO BA BF a b a a a b =-=+=-+=+(2)因为1()2AE a b =+所以23AO AE =,因此,,A O E 三点共线,而且2AOOE =同理可知:2,2BO CO OF OD ==,所以2AO BO COOE OF OD===3、解:(1)(2,7)B A v v v =-=-; (2)v 在A v 方向上的投影为135A Av v v ⋅=. 4、解:设1F ,2F 的合力为F ,F 与1F 的夹角为θ,则31F =+,30θ=︒; 331F =+,3F 与1F 的夹角为150°.习题 B 组(P113)1、解:设0v 在水平方向的速度大小为x v ,竖直方向的速度的大小为y v ,则0cos x v v θ=,0sin y v v θ=.设在时刻t 时的上升高度为h ,抛掷距离为s ,则001sin ,()2cos h v t gt g s v t θθ⎧=-⎪⎨⎪=⎩为重力加速度 所以,最大高度为220sin 2v gθ,最大投掷距离为20sin 2v gθ.2、解:设1v 与2v 的夹角为θ,合速度为v ,2v 与v 的夹角为α,行驶距离为d .则1sin 10sin sin v vvθθα==,0.5sin 20sin v d αθ==. ∴120sin d v θ=. 所以当90θ=︒,即船垂直于对岸行驶时所用时间最短. 3、(1)(0,1)-ODFEABC(第2题)(第4题)解:设(,)P x y ,则(1,2)AP x y =--. (2,22)AB =-.将AB 绕点A 沿顺时针方向旋转4π到AP ,相当于沿逆时针方向旋转74π到AP ,于是7777(2cos 22sin ,2sin 22cos )(1,3)4444AP ππππ=+-=--所以1123x y -=-⎧⎨-=-⎩,解得0,1x y ==-(2)32y x=-解:设曲线C 上任一点P 的坐标为(,)x y ,OP 绕O 逆时针旋转4π后,点P 的坐标为(,)x y ''则cos sin 44sin cos44x x y y x y ππππ⎧'=-⎪⎪⎨⎪'=+⎪⎩,即2()2()2x x y y x y ⎧'=-⎪⎪⎨⎪'=+⎪⎩又因为223x y ''-=,所以2211()()322x y x y --+=,化简得32y x=-第二章 复习参考题A 组(P118)1、(1)√; (2)√; (3)×; (4)×.2、(1)D ; (2)B ; (3)D ; (4)C ; (5)D ; (6)B .3、1()2AB a b =-,1()2AD a b =+4、略解:2133DE BA MA MB a b ==-=-+2233AD a b =+,1133BC a b =+1133EF a b =--,1233FA DC a b ==-1233CD a b =-+,2133AB a b =-CE a b =-+5、(1)(8,8)AB =-,82AB =;(2)(2,16)OC =-,(8,8)OD =-; (3)33OA OB ⋅=.(第4题)6、AB 与CD 共线.证明:因为(1,1)AB =-,(1,1)CD =-,所以AB CD =. 所以AB 与CD 共线. 7、(2,0)D -. 8、2n =. 9、1,0λμ=-=.10、34cos ,cos 0,cos 55A B C ===11、证明:2(2)22cos6010n m m n m m -⋅=⋅-=︒-=,所以(2)n m m -⊥.12、1λ=-. 13、13a b +=,1a b -=. 14、519cos ,cos 820θβ==第二章 复习参考题B 组(P119)1、(1)A ; (2)D ; (3)B ; (4)C ; (5)C ; (6)C ; (7)D .2、证明:先证a b a b a b ⊥⇒+=-.222()2a b a b a b a b+=+=++⋅,222()2a b a b a b a b -=-=+-⋅.因为a b ⊥,所以0a b ⋅=,于是22a b a b a b +=+=-. 再证a b a b a b +=-⇒⊥.由于222a b a a b b +=+⋅+,222a b a a b b -=-⋅+ 由a b a b +=-可得0a b ⋅=,于是a b ⊥所以a b a b a b +=-⇔⊥. 【几何意义是矩形的两条对角线相等】 3、证明:先证a b c d =⇒⊥22()()c d a b a b a b ⋅=+⋅-=- 又a b =,所以0c d ⋅=,所以c d ⊥ 再证c d a b ⊥⇒=.由c d ⊥得0c d ⋅=,即22()()0a b a b a b +⋅-=-=所以a b = 【几何意义为菱形的对角线互相垂直,如图所(第3题)(第6题)示】4、12AD AB BC CD a b =++=+,1142AE a b =+而34EF a =,14EM a =,所以1111(4242AM AE EM a b a =+=++=5、证明:如图所示,12OD OP OP =+,由于1230OP OP OP ++=,所以3OP OD =-,1OD = 所以11OD OP PD == 所以1230OPP ∠=︒,同理可得1330OPP ∠=︒所以31260P PP ∠=︒,同理可得12360PP P ∠=︒,23160P P P ∠=︒,所以123PP P ∆为正三角形.6、连接AB .由对称性可知,AB 是SMN ∆的中位线,222MN AB b a ==-. 7、(18=(千米/时), 沿与水流方向成60°的方向前进; (2)实际前进速度大小为 沿与水流方向成90︒+的方向前进. 8、解:因为OA OB OB OC ⋅=⋅,所以()0OB OA OC ⋅-=,所以0OB CA ⋅= 同理,0OA BC ⋅=,0OC AB ⋅=,所以点O 是ABC ∆的垂心. 9、(1)2110200a x a y a y a x -+-=; (2)垂直;(3)当12210A B A B -=时,1l ∥2l ;当12120A A B B +=时,12l l ⊥,夹角θ的余弦cos θ=;(4)d =P 2(第5题)第三章 三角恒等变换3.1两角和与差的正弦、余弦和正切公式 练习(P127)1、cos()cos cos sin sin 0cos 1sin sin 222πππαααααα-=+=⨯+⨯=.cos(2)cos2cos sin2sin 1cos 0sin cos παπαπαααα-=+=⨯+⨯=.2、解:由3cos ,(,)52πααπ=-∈,得4sin 5α==;所以34cos()cos cos sin sin ()44455πππααα-=+=-+=3、解:由15sin 17θ=,θ是第二象限角,得8cos 17θ===-;所以8115cos()cos cos sin sin 33317217πππθθθ-=+=-⨯+=. 4、解:由23sin ,(,)32πααπ=-∈,得cos α==又由33cos ,(,2)42πββπ=∈,得sin β==所以32cos()cos cos sin sin ((()43βαβαβα-=+=⨯+⨯-=. 练习(P131)1、(1; (2) (3(4)2 2、解:由3cos ,(,)52πθθπ=-∈,得4sin 5θ==;所以413sin()sin cos cos sin ()333525πππθθθ+=+=⨯+-=. 3、解:由12sin 13θ=-,θ是第三象限角,得5cos 13θ===-; 所以5112cos()cos cos sin sin ()()66613213πππθθθ+=-=--⨯-=. 4、解:tan tan 314tan()241311tan tan 4παπαπα+++===--⨯-⋅.5、(1)1; (2)12; (3)1; (4);(5)原式=1(cos34cos26sin34sin 26)cos(3426)cos602-︒︒-︒︒=-︒+︒=-︒=-;(6)原式=sin 20cos70cos20sin70(sin 20cos70cos20sin70)sin901-︒︒-︒︒=-︒︒+︒︒=-︒=-.6、(1)原式=cos cos sin sin cos()333x x x πππ-=+;(2)原式=1cos )2(sin cos cos sin )2sin()2666x x x x x πππ+=+=+;(3)原式=)2(sin cos cos sin )2sin()444x x x x x πππ=-=-;(4)原式=12(cos )cos sin sin )cos()2333x x x x x πππ=-=+.7、解:由已知得3sin()cos cos()sin 5αβααβα---=,即3sin[()]5αβα--=,3sin()5β-=所以3sin 5β=-. 又β是第三象限角,于是4cos 5β===-.因此55534sin()sin cos cos sin ()(()(44455πππβββ+=+=-+-=. 练习(P135)1、解:因为812παπ<<,所以382αππ<<又由4cos 85α=-,得3sin 85α=-,3sin385tan 484cos 85ααα-===- 所以3424sinsin(2)2sin cos 2()()48885525αααα=⨯==⨯-⨯-=2222437cos cos(2)cos sin ()()48885525αααα=⨯=-=---=2232tan23162484tan tan(2)3482771tan 1()84αααα⨯=⨯===⨯=-- 2、解:由3sin()5απ-=,得3sin 5α=-,所以222316cos 1sin 1()525αα=-=--=所以2221637cos2cos sin ()25525ααα=-=--=3、解:由sin2sin αα=-且sin 0α≠可得1cos 2α=-,又由(,)2παπ∈,得sin α=,所以sintan (2)cos ααα==-= 4、解:由1tan 23α=,得22tan 11tan 3αα=-. 所以2tan 6tan 10αα+-=,所以tan 3α=-5、(1)11sin15cos15sin3024︒︒=︒=; (2)22cos sin cos 88πππ-==;(3)原式=212tan 22.511tan 4521tan 22.522︒⋅=︒=-︒; (4)原式=cos45︒=. 习题 A 组(P137)1、(1)333cos()cos cos sin sin 0cos (1)sin sin 222πππαααααα-=+=⨯+-⨯=-;(2)333sin()sin cos cos sin 1cos 0sin cos 222πππαααααα-=-=-⨯-⨯=-;(3)cos()cos cos sin sin 1cos 0sin cos παπαπαααα-=+=-⨯+⨯=-; (4)sin()sin cos cos sin 0cos (1)sin sin παπαπαααα-=-=⨯--⨯=.2、解:由3cos ,05ααπ=<<,得4sin 5α==,所以431cos()cos cos sin sin 666552πππααα-=+=⨯=.3、解:由2sin ,(,)32πααπ=∈,得cos α===又由33cos ,(,)42πββπ=-∈,得sin β===,所以32cos()cos cos sin sin ()(43αβαβαβ-=+=-+⨯=.4、解:由1cos 7α=,α是锐角,得sin α=== 因为,αβ是锐角,所以(0,)αβπ+∈,又因为11cos()14αβ+=-,所以sin()αβ+===所以cos cos[()]cos()cos sin()sin βαβααβααβα=+-=+++1111()1472=-⨯= 5、解:由60150α︒<<︒,得9030180α︒<︒+<︒又由3sin(30)5α︒+=,得4cos(30)5α︒+=-所以cos cos[(30)30]cos(30)cos30sin(30)sin30αααα=︒+-︒=︒+︒+︒+︒431552=-+⨯=6、(1); (2) (3)2-7、解:由2sin ,(,)32πααπ=∈,得cos α===又由3cos 4β=-,β是第三象限角,得sin β==.所以cos()cos cos sin sin αβαβαβ+=-32()(43=--⨯=sin()sin cos cos sin αβαβαβ-=-23()((34=⨯--⨯=8、解:∵53sin ,cos 135A B ==且,A B 为ABC ∆的内角∴0,02A B ππ<<<<,124cos ,sin 135A B =±=当12cos 13A =-时,sin()sin cos cos sin AB A B A B +=+5312433()013513565=⨯+-⨯=-< A B π+>,不合题意,舍去∴124cos ,sin 135A B ==∴cos cos()(cos cos sin sin )C A B A B A B =-+=--1235416()13513565-⨯-⨯=- 9、解:由3sin ,(,)52πθθπ=∈,得4cos 5θ==-.∴sin 353tan ()cos 544θθθ==⨯-=-. ∴31tan tan 242tan()311tan tan 111()42θϕθϕθϕ-+++===--⋅--⨯. 31tan tan 42tan()2311tan tan 1()42θϕθϕθϕ----===-+⋅+-⨯. 10、解:∵tan ,tan αβ是22370x x +-=的两个实数根.∴3tan tan 2αβ+=-,7tan tan 2αβ⋅=-.∴3tan tan 12tan()71tan tan 31()2αβαβαβ-++===--⋅--.11、解:∵tan()3,tan()5αβαβ+=-=∴tan()tan()tan 2tan[()()]1tan()tan()αβαβααβαβαβαβ++-=++-=-+⋅-3541357+==--⨯tan()tan()tan 2tan[()()]1tan()tan()αβαββαβαβαβαβ+--=+--=++⋅-3511358-==-+⨯12、解:∵::2:3:6BD DC AD =∴11tan ,tan 32BD DC AD AD αβ====∴tan tan tan tan()1tan tan BAC αβαβαβ+∠=+=-⋅1132111132+==-⨯ 又∵0180BAC ︒<∠<︒,∴45BAC ∠=︒(第12题)13、(1))6x π+; (23sin()3x π-; (3)2sin()26x π+;(47sin()12x π-; (5)2; (6)12; (7)sin()αγ+; (8)cos()αγ--; (9) (10)tan()βα-.14、解:由sin 0.8,(0,)2παα=∈,得cos 0.6α===∴sin22sin cos 20.80.60.96ααα==⨯⨯= 2222cos2cos sin 0.60.80.28ααα=-=-=- 15、解:由cos 270ϕϕ=︒<<︒,得sin ϕ===∴sin 22sin cos 2((ϕϕϕ==⨯⨯=22221cos2cossin ((3ϕϕϕ=-=-=- sin 2tan 2(3)cos 23ϕϕϕ==-=-16、解:设5sin sin 13B C ==,且090B ︒<<︒,所以12cos 13B =. ∴512120sin sin(1802)sin 22sin cos 21313169A B B B B =︒-===⨯⨯=2222125119cos cos(1802)cos2(cos sin )(()())1313169A B B B B =︒-=-=--=--=-sin 120169120tan ()cos 169119119A A A ==⨯-=-17、解:22122tan 33tan 211tan 41()3βββ⨯===--,13tan tan 274tan(2)1131tan tan 2174αβαβαβ+++===-⋅-⨯. 18、解:1cos()cos sin()sin 3αββαββ+++=⇒1cos[()]3αββ+-=,即1cos 3α= 又3(,2)2παπ∈,所以sinα== ∴1sin 22sin cos 2(ααα==⨯⨯=222217cos2cos sin ()(39ααα=-=-=-∴7cos(2)cos2cos sin 2sin (4449πππααα+=-=-=19、(1)1sin2α+; (2)cos2θ; (3)1sin 44x ; (4)tan2θ.习题 B 组(P138) 1、略. 2、解:∵tan ,tan A B 是x 的方程2(1)10x p x +++=,即210x px p +++=的两个实根∴tan tan A B p +=-,tan tan 1A B p ⋅=+ ∴tan tan[()]tan()C A B A B π=-+=-+tan tan 11tan tan 1(1)A B pA B p +-=-=-=--⋅-+由于0C π<<,所以34C π=. 3、反应一般的规律的等式是(表述形式不唯一)223sin cos (30)sin cos(30)4αααα++︒++︒=(证明略) 本题是开放型问题,反映一般规律的等式的表述形式还可以是:223sin (30)cos sin(30)cos 4αααα-︒++-︒=223sin (15)cos (15)sin(15)cos(15)4αααα-︒++︒+-︒+︒=223sin cos sin cos 4αβαβ++=,其中30βα-=︒,等等思考过程要求从角,三角函数种类,式子结构形式三个方面寻找共同特点,从而作出归纳. 对认识三角函数式特点有帮助,证明过程也会促进推理能力、运算能力的提高.4、因为12PA PP =,则2222(cos()1)sin ()(cos cos )(sin sin )αβαβαβαβ+-++=-++ 即22cos()22cos cos 2sin sin αβαβαβ-+=-+ 所以cos()cos cos sin sin αβαβαβ+=-3.2简单的三角恒等变换 练习(P142)1、略.2、略.3、略.4、(1)1sin 42y x =. 最小正周期为2π,递增区间为[,],8282k k k Z ππππ-++∈,最大值为12;(2)cos 2y x =+. 最小正周期为2π,递增区间为[2,22],k k k Z ππππ++∈,最大值为3;(3)2sin(4)3y x π=+. 最小正周期为2π,递增区间为5[,],242242k k k Z ππππ-++∈,最大值为2.习题 A 组( P143) 1、(1)略; (2)提示:左式通分后分子分母同乘以2; (3)略; (4)提示:用22sin cos ϕϕ+代替1,用2sin cos ϕϕ代替sin 2ϕ;(5)略; (6)提示:用22cos θ代替1cos2θ+;(7)提示:用22sin θ代替1cos2θ-,用22cos θ代替1cos2θ+; (8)略.2、由已知可有1sin cos cos sin 2αβαβ+=……①,1sin cos cos sin 3αβαβ-=……②(1)②×3-①×2可得sin cos 5cos sin αβαβ=(2)把(1)所得的两边同除以cos cos αβ得tan 5tan αβ= 注意:这里cos cos 0αβ≠隐含与①、②之中3、由已知可解得1tan 2θ=-. 于是2212()2tan 42tan 211tan 31()2θθθ⨯-===---- 1tan tan1142tan()1431tan tan 1()142πθπθπθ+-++===-⋅--⨯ ∴tan 24tan()4πθθ=-+4、由已知可解得sin x θ=,cos y θ=,于是2222sin cos 1x y θθ+=+=.5、()2sin(4)3f x x π=+,最小正周期是2π,递减区间为7[,],242242k k k Z ππππ++∈.习题 B 组(P143) 1、略.2、由于762790+⨯=,所以sin76sin(9014)cos14m ︒=︒-︒=︒= 即22cos 71m ︒-=,得cos7︒=3、设存在锐角,αβ使223παβ+=,所以23απβ+=,tan()2αβ+又tantan 22αβ=,又因为tantan 2tan()21tantan 2αβαβαβ++=-,所以tantan tan()(1tan tan )3222αααβββ+=+-=由此可解得tan 1β=, 4πβ=,所以6πα=.经检验6πα=,4πβ=是符合题意的两锐角.4、线段AB 的中点M 的坐标为11((cos cos ),(sin sin ))22αβαβ++. 过M 作1MM 垂直于x 轴,交x 轴于1M ,111()()22MOM βαααβ∠=-+=+.在Rt OMA ∆中,cos cos 22OM OA βααβ--==. 在1Rt OM M ∆中,11cos cos cos22OM OM MOM αβαβ+-=∠=11sin sin cos22M M OM MOM αβαβ+-=∠=.于是有 1(cos cos )cos cos222αβαβαβ+-+=, 1(sin sin )sin cos222αβαβαβ+-+= 5、当2x =时,22()sin cos 1f ααα=+=;当4x =时,4422222()sin cos (sin cos )2sin cos f ααααααα=+=+-211sin 22α=-,此时有1()12f α≤≤;当6x =时,662232222()sin cos (sin cos )3sin cos (sin cos )f ααααααααα=+=+-+231sin 24α=-,此时有1()14f α≤≤;由此猜想,当2,x k k N +=∈时,11()12k f α-≤≤6、(1)345(sin cos )5sin()55y x x x ϕ=+=+,其中34cos ,sin 55ϕϕ==所以,y 的最大值为5,最小值为﹣5; (2))y x ϕ+,其中cos ϕϕ==所以,y ;第三章 复习参考题A 组(P146)(第4题)1、1665. 提示:()βαβα=+- 2、5665. 提示:5sin()sin[()]sin[()()]44ππαβπαββα+=-++=-+--3、1.4、(1)提示:把公式tan tan tan()1tan tan αβαβαβ++=-变形;(2; (3)2; (4)提示:利用(1)的恒等式.5、(1)原式4sin(3010)4sin 20︒-︒==︒;(2)原式=sin10sin 40(sin 40cos10︒︒=︒ =2sin 40cos40sin801cos10cos10-︒︒-︒==-︒︒;(3)原式=tan 70cos101)tan 70cos10︒︒=︒ =sin702sin10sin 20cos101cos70cos20cos70︒-︒-︒⋅︒⋅==-︒︒︒;(4)原式=sin50(1sin50︒⋅= 2cos50sin100sin501cos10cos10︒︒=︒⋅==︒︒6、(1)95; (2)2425;(3). 提示:4422222sin cos (sin cos )2sin cos θθθθθθ+=+-; (4)1725.7、由已知可求得2cos cos 5αβ=,1sin sin 5αβ=,于是sin sin 1tan tan cos cos 2αβαβαβ==. 8、(1)左边=222cos 214cos232(cos 22cos21)αααα-++=++22242(cos21)2(2cos )8cos ααα=+===右边(2)左边=2222sin cos 2sin cos (sin cos )2cos 2sin cos 2cos (cos sin )αααααααααααα+++=++sin cos 11tan 2cos 22αααα+==+=右边(3)左边=sin(2)2cos()sin sin[()]2cos()sin sin 2cos (cos sin )αβαβααβααβααααα+-+++-+=+sin()cos cos()sin sin sin sin αβααβαβαα+-+===右边(第12(2)题)(4)左边=222234cos22cos 212(cos 22cos21)34cos22cos 212(cos 22cos21)A A A A A A A A -+--+=++-++ 2224222(1cos2)(2sin )tan (1cos2)(2cos )A A A A A -===+=右边 9、(1)1sin 21cos2sin 2cos222)24y x x x x x π=+++=++++递减区间为5[,],88k k k Z ππππ++∈(222,最小值为22.10、2222()(cos sin )(cos sin )2sin cos cos2sin 22)4f x x x x x x x x x x π=+--=-=+(1)最小正周期是π;(2)由[0,]2x π∈得52[,]444x πππ+∈,所以当24x ππ+=,即38x π=时,()f x 的最小值为2-()f x 取最小值时x 的集合为3{}8π.11、2()2sin 2sin cos 1cos2sin 22)14f x x x x x x x π=+=-+=-+(1)最小正周期是π21;(2)()f x 在[,]22ππ-上的图象如右图:12、()3sin cos 2sin()6f x x x a x a π=++=++.(1)由21a +=得1a =-;(2)2{22,}3x k x k k Z πππ+∈≤≤.13、如图,设ABD α∠=,则CAE α∠=,2sin h AB α=,1cos hAC α=所以1212sin 2ABC h h S AB AC α∆=⋅⋅=,(0)2πα<<当22πα=,即4πα=时,ABC S ∆的最小值为12h h .第三章 复习参考题B 组(P147)1、解法一:由221sin cos 5sin cos 1αααα⎧-=⎪⎨⎪+=⎩,及0απ≤≤,可解得4sin 5α=, αh 1h 2l 2l 1BDE AC(第13题)13cos sin 55αα=-=,所以24sin 225α=,7cos225α=-,sin(2)sin 2cos cos2sin 44450πππααα-=-=. 解法二:由1sin cos 5αα-= 得21(sin cos )25αα-=,24sin 225α=,所以249cos 2625α=. 又由1sin cos 5αα-=,得sin()4πα-=.因为[0,]απ∈,所以3[,]444πππα-∈-.而当[,0]44ππα-∈-时,sin()04πα-≤;当3[,]444πππα-∈时,sin()4πα->所以(0,)44ππα-∈,即(,)42ππα∈所以2(,)2παπ∈,7cos225α=-.sin(2)4πα-=2、把1cos cos 2αβ+=两边分别平方得221cos cos 2cos cos 4αβαβ++=把1sin sin 3αβ+=两边分别平方得221sin sin 2sin sin 9αβαβ++=把所得两式相加,得1322(cos cos sin sin )36αβαβ++=,即1322cos()36αβ+-=,所以59cos()72αβ-=-3、由sin()sin 3παα++= 可得3sin 2αα=4sin()65πα+=-. 又02πα-<<,所以366πππα-<+<,于是3cos()65πα+=.所以cos cos[()]66ππαα=+-4、22sin 22sin 2sin cos 2sin 2sin cos (cos sin )sin 1tan cos sin 1cos x x x x x x x x x x x x x x +++==---1tan sin 2sin 2tan()1tan 4x x x x x π+==+-由177124x ππ<<得5234x πππ<+<,又3cos()45x π+=,所以4sin()45x π+=-,4tan()43x π+=-所以cos cos[()]cos()cos sin()sin 444444x x x x ππππππ=+-=+++=,sin 10x =-,7sin 22sin cos 25x x x ==, 所以2sin 22sin 281tan 75x x x +=--, 5、把已知代入222sin cos (sin cos )2sin cos 1θθθθθθ+=+-=,得22(2sin )2sin 1αβ-=.变形得2(1cos2)(1cos2)1αβ---=,2cos2cos2αβ=,224cos 24cos 2αβ= 本题从对比已知条件和所证等式开始,可发现应消去已知条件中含θ的三角函数.考虑sin cos θθ+,sin cos θθ这两者又有什么关系及得上解法. 5、6两题上述解法称为消去法6、()21cos22sin(2)16f x x x m x m π=+++=+++.由 [0,]2x π∈ 得72[,]666x πππ+∈,于是有216m ++=. 解得3m =.()2sin(2)4()6f x x x R π=++∈的最小值为242-+=,此时x 的取值集合由322()62x k k Z πππ+=+∈,求得为2()3x k k Z ππ=+∈7、设AP x =,AQ y =,BCP α∠=,DCQ β∠=,则tan 1x α=-,tan 1y β=- 于是2()tan()()x y x y xyαβ-++=+-又APQ ∆的周长为2,即2x y +,变形可得2()2xy x y =+- 于是2()tan()1()[2()2]x y x y x y αβ-++==+-+-.又02παβ<+<,所以4παβ+=,()24PCQ ππαβ∠=-+=.8、(1)由221sin cos 5sin cos 1ββββ⎧+=⎪⎨⎪+=⎩,可得225sin 5sin 120ββ--=解得4sin 5β=或3sin 5β=-(由(0,)βπ∈,舍去)所以13cos sin 55ββ=-=-,于是4tan 3β=-(2)根据所给条件,可求得仅由sin ,cos ,tan βββ表示的三角函数式的值,例如,sin()3πβ+,cos22β+,sin cos 2tan βββ-,sin cos 3sin 2cos ββββ-+,等等.。
高一数学必修4模块训练10答案
高一数学必修4模块训练10一.选择题:1、设34sin ,cos 55α=-α=,那么下列的点在角α的终边上的是( ) (A ) (4,-3) (B ) (-4,3) (C) (3,-4) (D) (-3,4) 2、与向量a =(12,5)平行的单位向量为( )A .125,1313⎛⎫- ⎪⎝⎭B .125,1313⎛⎫-- ⎪⎝⎭C .125125,,13131313⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭或D .125125,,13131313⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭或 3、已知扇形的周长是12,面积是8,则扇形的中心角的弧度数是( )A .1B 、4C 、1或4D 、2或44、将函数))(6sin(R x x y ∈+=π的图象上所有的点向左平行移动4π个单位长度,再把图象上各点的横坐标 扩大到到原来的2倍(纵坐标不变),则所得到的图象的解析式为()A 、))(1252sin(R x x y ∈+=πB 、))(1252sin(R x x y ∈+=πC 、))(122sin(R x x y ∈-=πD 、))(2452sin(R x x y ∈+=π 5、已知D 、E 、F 分别是△ABC 三边,AB 、BC 、CA 的中点,则()BF DE FD BF AB ⋅+⋅的值为( ) (A ) 2 (B ) 1 (C )12 (D) 136、如右图所示,在平行四边形ABCD 中,E 、F 分别是BC 、CD 边中点,CE 与AF 交于点H ,设a AB =,b BC =,则等于( )A .b a 5452-B .b a 5452+ C .b a 5452+- D .b a 5452-- 7、若sin cos αβ=,22ππα-<<,0βπ<<,则αβ+值为( ) (A ) 32π (B ) π (C ) 2π (D ) 0 8、定义在R 上的偶函数)(x f 满足)()2(x f x f =+且)(x f 在]2,3[--上是减函数,又βα,是锐角三角形的两个内角,则( )A 、)(cos )(sin βαf f >B 、)(cos )(sin βαf f <C 、)(sin )(sin βαf f >D 、)(cos )(cos βαf f < 二.填空题:9、已知正方形ABCD 的边长为1,设,,,c a ===则c b a +-的模为10、下面给出的四个命题:①若a b ⊥,则2()a b a b ⋅=⋅②若//,//a b b c ,则//a c③若,a b 的夹角为θ,那么sin 0θ> ④对一切向量,a b ,都有22||()a b a b +=+成立,正确的命题的序号为_______(将所有正确命题都填上).三.解答题:11、设,i j 是直角坐标系中,x 轴、y 轴正方向上的单位向量,设a (m 1)i 3j =+- b i (m 1)j =+-(1)若(()()a b a b +⊥-,求m .(2)若3m =时,求,a b 的夹角θ的余弦值.(3)是否存在实数m ,使//a b ,若存在求出m 的值,不存在说明理由.12. 设、是两个不共线的非零向量(R t ∈) (1)记),(31,,t +===那么当实数t 为何值时,A 、B 、C 三点共线? (2)若 1201||||夹角为与且b a b a ==,那么实数x 为何值时||b x a -的值最小?参考答案一、选择题:ACCBCBCB二、填空题:9.3; 10.①④;三、解答题: 11、解:(1)2-=m ;(2)552cos -=θ;(3)m 不存在;12、解: (1)t=21 (2)当21-=x 时,||x -的值最小。
高一数学必修4模块训练2答案
高一数学必修4模块训练2
一.选择题:
1.( C )
A B C D
2.已知, , 且, 则等于( A )
A -1
B -9
C 9
D 1
3.下列函数中, 最小正周期为的是(B )
A B C D
4.要得到的图像, 需要将函数的图像( A )
A 向左平移个单位
B 向右平移个单位
C. 向左平移个单位 D 向右平移个单位
5.化简的结果是(D )(A)(B)(C)(D)
6.函数在一个周期内的图象如下,此函数的解析式为(A )(A)(B)
(C)(D)
7.在锐角△ABC中,设则x,y的大小关系为( B )(A)(B)(C)(D)
8.若,则的值是(D )
(A)-2 (B)-1 (C)1 (D)2
二.填空题:
9.若与共线,则=-6 ;
10.若,则= -3 ;
三.解答题:
11.已知向量, 的夹角为, 且, , 若, , 求
(1) ; (2) .
解: (1)
(2)
所以
12.已知函数。
(Ⅰ)求的周期和振幅;
(Ⅱ)在给出的方格纸上用五点作图法作出在一个周期内的图象。
(Ⅲ)写出函数的递减区间。
解:(Ⅰ)==
函数的周期为T=,振幅为2。
(Ⅱ)列表:
0 2 0 -2 0 (Ⅲ)由解得:
所以函数的递减区间为。
高一数学上:必修4答案
高一数学上:必修4答案高中数学新课程讲学练参考答案高一(上):必修4一、数学④§1.1.1 任意角1.D;2.A;3.C;4.A;5.B;6.二;7.1110;8.-π7.π;44 = 56.176.296。
k|kγ360+135≤α≤kγ360+180 orkγ360+315≤α≤kγ360+360.k∈Z}k|kγ360+150≤α≤kγ360+210.k∈Z}α]9.(1) 一或三;(2) 一或二或三;10.β11.(1) α ∈ [β。
β+π);(2) α ∈ (-π。
π],α ≠ β12.(1) {β|β=k·360°。
k∈Z};(2) {β|β=k·360°+180°。
k∈Z};3) {β|β=k·180°。
k∈Z};(4) {β|β=k·90°。
k∈Z}13.(1) -50,(2) 310,(3) 670二、数学④§1.1.2 弧度制1.C;2.C;3.B;4.B;5.C;6.三;7.(2)、(3);8.-π8;9.2kπ-π6.k∈Z;10.{β|β=π+2kπ。
k∈Z};11.(1) β ∈ [0.π) or β ∈ [2kπ-π。
2kπ)。
k∈Z;2) (β+π) ∈ [0.π) or (β+π) ∈ [2kπ-π。
2kπ)。
k∈Z;12.(1) l = 8α/10π/3.when α=2.S_max=1π。
S=50(-);2) S = 4+4α+α2/33π(dm);the total area of the sector is π(dm2)13.XXX XXX:三、数学④§1.2.1 任意角的三角函数1.A;2.C;3.B;4.D;6.7.±π/133.±。
8.-4322;9.{3.-1};10.2kπ+π/3 or 2kπ+2π/15.k∈Z;11.(1) β ∈ (2kπ-π/3.2kπ+π/3);(2) β ∈ (-π/2+2kπ。
高一数学必修1、4基础题及答案
必修1 第一章 集合基础测试一、选择题(共12小题,每题5分,四个选项中只有一个符合要求)1.下列选项中元素的全体可以组成集合的是 ( ) A.学校篮球水平较高的学生B.校园中长的高大的树木C.2007年所有的欧盟国家D.中国经济发达的城市2.方程组20{=+=-y x y x 的解构成的集合是( )A .)}1,1{(B .}1,1{C .(1,1)D .}1{3.已知集合A ={a ,b ,c },下列可以作为集合A 的子集的是 ( ) A. a B. {a ,c } C. {a ,e } D.{a ,b ,c ,d } 4.下列图形中,表示N M ⊆的是 ( )5.下列表述正确的是 ( ) A.}0{=∅ B. }0{⊆∅ C. }0{⊇∅ D. }0{∈∅ 6、设集合A ={x|x 参加自由泳的运动员},B ={x|x 参加蛙泳的运动员},对于“既参加自由泳又参加蛙泳的运动员”用集合运算表示为 ( ) A.A∩B B.A ⊇B C.A ∪B D.A ⊆B 7.集合A={x Z k k x ∈=,2} ,B={Z k k x x ∈+=,12} ,C={Z k k x x ∈+=,14} 又,,B b A a ∈∈则有 ( ) A.(a+b )∈ A B. (a+b) ∈B C.(a+b) ∈ C D. (a+b) ∈ A 、B 、C 任一个8.集合A ={1,2,x },集合B ={2,4,5},若B A ={1,2,3,4,5},则x =( ) A. 1 B. 3 C. 4 D. 5 9.满足条件{1,2,3}⊂≠M ⊂≠{1,2,3,4,5,6}的集合M 的个数是( )A. 8 B . 7 C. 6 D. 510.全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 , 6 },那么集合 { 2 ,7 ,8}是 ( )MNAMNBNMCMNDA. A BB. B AC. B C A C U UD. B C A C U U11.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z 则,≤≤ ( )A .{}01,B .{}101-,,C .{}012,, D .{}1012-,,, 12. 如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是 ( )A .0B .0 或1C .1D .不能确定二、填空题(共4小题,每题4分,把答案填在题中横线上)13.用描述法表示被3除余1的集合 . 14.用适当的符号填空:(1)∅ }01{2=-x x ; (2){1,2,3} N ; (3){1} }{2x x x =; (4)0 }2{2x x x =. 15.含有三个实数的集合既可表示成}1,,{aba ,又可表示成}0,,{2b a a +,则=+20042003b a .16.已知集合}33|{≤≤-=x x U ,}11|{<<-=x x M ,}20|{<<=x x N C U 那么集合=N ,=⋂)(N C M U ,=⋃N M .三、解答题(共4小题,共44分,解答应写出文字说明,证明过程或演算步骤)17. 已知集合}04{2=-=x x A ,集合}02{=-=ax x B ,若A B ⊆,求实数a 的取值集合.18. 已知集合}71{<<=x x A ,集合}521{+<<+=a x a x B ,若满足 }73{<<=x x B A ,求实数a 的值.19. 已知方程02=++b ax x .(1)若方程的解集只有一个元素,求实数a ,b 满足的关系式; (2)若方程的解集有两个元素分别为1,3,求实数a ,b 的值20. 已知集合}31{≤≤-=x x A ,},{2A x y x y B ∈==,},2{A x a x y y C ∈+==,若满足B C ⊆,求实数a 的取值范围.必修1 函数的性质一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+ 1C .y =x2D .y =2x 2+x +1 2.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( )A .-7B .1C .17D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( )A .(3,8)B .(-7,-2)C .(-2,3)D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( ) A .(0,21) B .( 21,+∞) C .(-2,+∞) D .(-∞,-1)∪(1,+∞)5.函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内 ( )A .至少有一实根B .至多有一实根C .没有实根D .必有唯一的实根6.若q px x x f ++=2)(满足0)2()1(==f f ,则)1(f 的值是 ( )A 5B 5-C 6D 6-7.若集合}|{},21|{a x x B x x A ≤=<<=,且Φ≠B A ,则实数a 的集合( )A }2|{<a aB }1|{≥a aC }1|{>a aD }21|{≤≤a a8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t ) =f (5-t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是 ( ) A .]1,(],0,(-∞-∞ B .),1[],0,(+∞-∞ C .]1,(),,0[-∞+∞ D ),1[),,0[+∞+∞10.若函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围 ( )A .a ≤3B .a ≥-3C .a ≤5D .a ≥311. 函数c x x y ++=42,则 ( )A )2()1(-<<f c fB )2()1(->>f c fC )2()1(->>f f cD )1()2(f f c <-<12.已知定义在R 上的偶函数()f x 满足(4)()f x f x +=-,且在区间[0,4]上是减函数则( )A .(10)(13)(15)f f f <<B .(13)(10)(15)f f f <<C .(15)(10)(13)f f f <<D .(15)(13)(10)f f f <<.二、填空题:13.函数y =(x -1)-2的减区间是___ _.14.函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时是增函数,当x ∈(-∞,-2]时是减函数,则f (1)= 。
高一数学必修4模块训练1答案
高一数学必修4模块训练1一.选择题:1.-215°是 ( B )(A )第一象限角 (B )第二象限角(C )第三象限角 (D )第四象限角2.角α的终边过点P (4,-3),则αcos 的值为 ( C )(A )4 (B )-3 (C )54(D )53-3.若0cos sin <αα,则角α的终边在 ( C )(A )第二象限 (B )第四象限 (C )第二、四象限 (D )第三、四象限4.函数x x y 22sin cos -=的最小正周期是 ( A )(A )π (B )2π(C )4π(D )π25.给出下面四个命题:① =+;②=+B ;③=-; ④00=⋅AB 。
其中正确的个数为 ( B )(A )1个 (B )2个 (C )3个 (D )4个6.向量)2,1(-=a ,)1,2(=b ,则 ( B )(A )a ∥ (B )⊥(C )a 与b 的夹角为60° (D )a 与b 的夹角为30°7. 在下面给出的四个函数中,既是区间)2,0(π上的增函数,又是以π为周期的偶函数的是(D ) (A )x y 2cos = (B )x y 2sin = (C )|cos |x y = (D )|sin |x y =8.若=(2,1),=(3,4),则向量在向量方向上的投影为( B )(A )52 (B )2 (C )5 (D )10二.填空题:9.已知点A (2,-4),B (-6,2),则AB 的中点M 的坐标为 (-2,-1) ;10.若21tan =α,则ααααcos 3sin 2cos sin -+= -3 ;三.解答题:11.求值:(1))623tan(π-; (2)︒75sin解:(1)336tan )64tan()623tan(==+-=-ππππ(2)原式=︒︒+︒︒=︒+︒30sin 45cos 30cos 45sin )3045sin(=42621222322+=⨯+⨯12.设)1,3(=OA ,)2,1(-=OB ,OB OC ⊥,BC ∥OA ,试求满足OC OA OD =+的OD 的坐标(O 为坐标原点)。
高一数学必修四作业本答案
答案与提示第一章三角函数1.1任意角和弧度制1.1.1任意角1.B.2.C.3.C.4.-1485°=-5×360°+315°.5.{-240°,120°}.6.{α|α=k·360°-490°,k∈Z};230°;-130°;三.7.2α的终边在第一、二象限或y轴的正半轴上,α2的终边在第二、四象限.集合表示略.8.(1)M={α|α=k·360°-1840°,k∈Z}.(2)∵α∈M,且-360°≤α≤360°,∴-360°≤k·360°-1840°≤360°.∴1480°≤k·360°≤2200°,379≤k≤559.∵k∈Z,∴k=5,6,故α=-40°,或α=320°.9.与45°角的终边关于x轴对称的角的集合为{α|α=k·360°-45°,k∈Z},关于y轴对称的角的集合为{α|α=k·360°+135°,k∈Z},关于原点对称的角的集合为{α|α=k·360°+225°,k∈Z},关于y=-x对称的角的集合为{α|α=k·360°+225°,k∈Z}.10.(1){α|30°+k·180°≤α≤90°+k·180°,k∈Z}.(2){α|k·360°-45°≤α≤k·360°+45°,k∈Z}.11.∵当大链轮转过一周时,转过了48个齿,这时小链轮也必须同步转过48个齿,为4820=2.4(周),即小链轮转过2.4周.∴小链轮转过的角度为360°×24=864°.1.1.2弧度制1.B.2.D.3.D.4.αα=kπ+π4,k∈Z.5.-5π4.6.111km.7.π9,7π9,13π9.8.2π15,2π5,2π3,4π5.9.设扇形的圆心角是θrad,∵扇形的弧长是r θ,∴扇形的周长是2r+rθ,依题意,得2r+rθ=πr,∴θ=π-2,∴扇形的面积为S=12r2θ=12(π-2)r2.10.设扇形的半径为R,其内切圆的半径为r,由已知得l=π2R,R=2lπ.又∵2r+r=R,∴r=R2+1=(2-1)R=2(2-1)πl,∴内切圆的面积为S=πr2=4(3-22)πl2.11.设圆心为O,则R=5,d=3,OP=R2-d2=4,ω=5rad/s,l=|α|R,α=ωt=25rad,l=4×25=100(cm).1.2任意角的三角函数1.2.1任意角的三角函数(一)1.B.2.B.3.C.4.k.5.π6,56π.6.x|x≠2kπ+32π,k∈Z.7.-25.8.2kπ+π2,2kπ+π,k∈Z.9.α为第二象限角.10.y=-3|x|=-3x(x≥0),3x(x<0),若角α的终边为y=3x(x<0),即α是第三象限角,则sinα=-31010,tanα=3;若角α的终边为y=-3x(x≥0),即α是第四象限角,则sinα=-31010,tanα=-3.11.f(x)=-(x-1)2+4(0≤x≤3).当x=1时,f(x)max=f(1)=4,即m=4;当x=3时,f(x)min=f(3)=0,即n=0.∴角α的终边经过点P(4,-1),r=17,sinα+cosα=-117+417=31717.1.2.1任意角的三角函数(二)1.B.2.C.3.B.4.334.5.2.6.1.7.0.8.x|2kπ+π≤x<2kπ+32π,或x=2kπ,k∈Z.9.(1)sin100°·cos240°<0.(2)tan-11π4-cos-11π4>0.(3)sin5+tan5<0. 10.(1)sin25π6=sin4π+π6=sinπ6=12.(2)cos-15π4=cos-4π+π4=cosπ4=22.(3)tan13π3=tan4π+π3=tanπ3=3.11.(1)∵cosα>0,∴α的终边在第一或第四象限,或在x轴的非负半轴上;∵tanα<0,∴α的终边在第四象限.故角α的集合为α2kπ-π2<α<2kπ,k∈Z.(2)∵2kπ-π2<α<2kπ,k∈Z,∴kπ-π4<α2<kπ,k∈Z .当k=2n(n∈Z)时,2nπ-π4<α2<2nπ,n∈Z,sinα2<0,cosα2>0,tanα2<0;当k=2n+1(n∈Z)时,2nπ+3π4<α2<2nπ+π,n∈Z,sinα2>0,cosα2<0,tanα2<0. 1.2.2同角三角函数的基本关系1.B.2.A.3.B.4.-22.5.43.6.232.7.4-22.8.α2kπ+π2<α<2kπ+3π2,或α=kπ,k∈Z.9.0.10.15.11.3+12.1.3三角函数的诱导公式(一)1.C.2.A.3.B.4.-1-a2a.5.12.6.-cos2α.7.-tanα.8.-2sinθ.9.32.10.-22+13.11.3.1.3三角函数的诱导公式(二)1.C.2.A.3.C.4.2+22.5.-33.6.13.7.-73.8.-35.9.1.10.1+a4.11.2+3.1.4三角函数的图象与性质1.4.1正弦函数、余弦函数的图象1.B.2.C.3.B.4.3;-3.5.2.6.关于x轴对称.7.(1)取(0,0),π2,1,(π,2),3π2,1,(2π,0)这五点作图.(2)取-π2,0,0,12,π2,0,π,-12,3π2,0这五点作图.8.五点法作出y=1+sinx的简图,在同一坐标系中画出直线y=32,交点有2个.9.(1)(2kπ,(2k+1)π)(k∈Z).(2)2kπ+π2,2kπ+32π(k∈Z).10.y=|sinx|=sinx(2kπ≤x≤π+2kπ,k∈Z),-sinx(π+2kπ<x<2π+2kπ,k∈Z),图象略.y=sin|x|=sinx(x≥0),-sinx(x<0),图象略.11.当x>0时,x>sinx;当x=0时,x=sinx;当x<0时,x<sinx,∴sinx=x只有一解.1.4.2正弦函数、余弦函数的性质(一)1.C.2.A.3.D.4.4π.5.12,±1.6.0或8.提示:先由sin2θ+cos2θ=1,解得m=0,或m=8.7.(1)4.(2)25π.8.(1)π.(2)π.9.32,2.10.(1)sin215π<sin425π.(2)sin15<cos5.11.342.1.4.2正弦函数、余弦函数的性质(二)1.B.2.B.3.C.4.<.5.2π.6.3,4,5,6.7.函数的最大值为43,最小值为-2.8.-5.9.偶函数.10.f(x)=log21-sin2x=log2|cosx|.(1)定义域:xx≠kπ+π2,k∈Z.(2)值域:(-∞,0]. (3)增区间:kπ-π2,kπ(k∈Z),减区间:kπ,kπ+π2(k∈Z).(4)偶函数.(5)π.11.当x<0时,-x>0,∴f(-x)=(-x)2-sin(-x)=x2+sinx.又∵f(x)是奇函数,∴f(-x)=-f(x).∴f(x)=-f(-x)=-x2-sinx.1.4.3正切函数的性质与图象1.D.2.C.3.A.4.5π.5.tan1>tan3>tan2.6.kπ2-π4,0(k∈Z).7.2kπ+6π5<x<2kπ+3π2,k∈Z .8.定义域为kπ2-π4,kπ2+π4,k∈Z,值域为R,周期是T=π2,图象略.9.(1)x=π4.(2)x=π4或54π.10.y|y≥34.11.T=2π,∴f99π5=f-π5+20π=f-π5,又f(x)-1是奇函数,∴f-π5-1=-fπ5-1f-π5=2-fπ5=-5,∴原式=-5.1.5函数y=Asin(ωx+φ)的图象(一)1.A.2.A.3.B.4.3.5.-π2.6.向左平移π4个单位.7.y=sinx+2的图象可以看作是将y=sinx图象向上平移2个单位得到,y=sinx-1的图象可以看作是将y=sinx图象向下平移1个单位而得到.8.±5.9.∵y=sin3x-π3=sin3x-π9,∴可将y=sin3x的图象向右平移π9个单位得到.10.y=sin2x+π4的图象向左平移π2个单位,得到y=sin2x+π2+π4,故函数表达式为y=sin2x+5π4.11.y=-2sinx-π3,向左平移m(m>0)个单位,得y=-2sin(x+m)-π3,由于它关于y轴对称,则当x=0时,取得最值±2,此时m-π3=kπ±π2,k∈Z,∴m的最小正值是5π6.1.5函数y=Asin(ωx+φ)的图象(二)1.D.2.A.3.C.4.y=sin4x.5.-2a;-310a+2ka(k∈Z);-2a.6.y=3sin6x+116π.7.方法1y=sinx横坐标缩短到原来的12y=sin2x向左平移π6个单位y=sin2x+π6=y=sin2x+π3.方法2y=sinx向左平移π3个单位y=sinx+π3横坐标缩短到原来的12y=sin2x+π3.8.(1)略.(2)T=4π,A=3,φ=-π4.9.(1)ω=2,φ=π6.(2)x=12kπ+π6(k∈Z),12kπ-112π,0(k∈Z).10.(1)f(x)的单调递增区间是3kπ-5π4,3kπ+π4(k∈Z).(2)使f(x)取最小值的x的集合是x|x=7π4+3kπ,k∈Z.11.(1)M=1,m=-1,T=10|k|π.(2)由T≤2,即10|k|π≤2得|k|≥5π,∴最小正整数k 为16.1.6三角函数模型的简单应用(一)1.C.2.C.3.C.4.2sinα.5.1s.6.k·360°+2125°(k∈Z).7.扇形圆心角为2rad时,扇形有最大面积m216.8.θ=4π7或5π7.9.(1)设振幅为A,则2A=20cm,A=10cm.设周期为T,则T2=0.5,T=1s,f=1Hz.(2)振子在1T内通过的距离为4A,故在t=5s=5T内距离s=5×4A=20A=20×10=200cm=2(m).5s末物体处在点B,所以它相对平衡位置的位移为10cm.10.(1)T=2πs.(2)12π次.11.(1)d-710=sint-1.8517.5π.(2)约为5.6秒.1.6三角函数模型的简单应用(二)1.D.2.B.3.B.4.1-22.5.1124π.6.y=sin52πx+π4.7.95.8.12sin212,1sin12+2.9.设表示该曲线的三角函数为y=Asin(ωx+φ)+b.由已知平均数量为800,最高数量与最低数量差为200,数量变化周期为12个月,所以振幅A=2002=100,ω=2π12=π6,b=800,又7月1日种群数量达最高,∴π6×6+φ=π2.∴φ=-π2.∴种群数量关于时间t的函数解析式为y=800+100sinπ6(t-3).10.由已知数据,易知y=f(t)的周期T=12,所以ω=2πT=π6.由已知,振幅A=3,b=10,所以y=3sinπ6t+10.11.(1)图略.(2)y-12.47=cos2π(x-172)365,约为19.4h.单元练习1.C.2.B.3.C.4.D.5.C.6.C.7.B.8.C.9.D.10.C.11.5π12+2kπ,13π12+2kπ(k∈Z).12.4412.13.-3,-π2∪0,π2.14.1972π.15.原式=(1+sinα)21-sin2α-(1-sinα)21-sin2α=1+sinα|cosα|-1-sinα|cosα|=2sinα|cosα|. ∵α为第三象限角,|cosα|=-cosα,∴原式=-2tanα.16.1+sinα+cosα+2sinαcosα1+sinα+cosα=sin2α+cos2α+2sinαcosα+sinα+cosα1+sinα+cosα=(sinα+cosα)2+sinα+cosα1+sinα+cosα=(sinα+cosα)·(1+sinα+cosα)1+sinα+cosα=sinα+cosα. 17.f(x)=(sin2x+cos2x)2-sin2xcos2x2-2sinxcosx-12sinxcosx+14cos2x=1-sin2xcos2x2(1-sinxcosx)-12sinxcosx+14cos2x=12+12sinxcosx-12sinxcosx+14cos2x=12+14cos2x.∴T=2π2=π,而-1≤cos2x≤1,∴f(x)max=34,f(x)min=14.18.∵Aπ3,12在递减段上,∴2π3+φ∈2kπ+π2,2kπ+3π2.∴2π3+φ=5π6,φ=π6.19.(1)周期T=π,f(x)的最大值为2+2,此时x∈x|x=kπ+π8,k∈Z;f(x)的最小值为2-2,此时x ∈x|x=kπ-38π,k∈Z;函数的单调递增区间为kπ-3π8,kπ+π8,k∈Z.(2)先将y=sinx(x∈R)的图象向左平移π4个单位,而后将所得图象上各点的横坐标缩小为原来的12,纵坐标扩大成原来的2倍,最后将所得图象向上平移2个单位.20.(1)1π.(2)5π或15.7s.(3)略.第二章平面向量2.1平面向量的实际背景及基本概念2.1.1向量的物理背景与概念2.1.2向量的几何表示(第11题)1.D.2.D.3.D.4.0.5.一个圆.6.②③.7.如:当b是零向量,而a与c不平行时,命题就不正确.8.(1)不是向量.(2)是向量,也是平行向量.(3)是向量,但不是平行向量.(4)是向量,也是平行向量.9.BE,EB,BC,CB,EC,CE,FD(共7个).10.AO,OA,AC,CA,OC,CO,DO,OD,DB,BD,OB,BO(共12个). 11.(1)如图.(2)AD的大小是202m,方向是西偏北45°.2.1.3相等向量与共线向量1.D.2.D.3.D.4.①②.5.④.6.③④⑤.7.提示:由AB=DC AB=DC,AB∥DC ABCD为平行四边形AD=BC.(第8题)8.如图所示:A1B1,A2B2,A3B3.9.(1)平行四边形或梯形.(2)平行四边形.(3)菱形.10.与AB相等的向量有3个(OC,FO,ED),与OA平行的向量有9个(CB,BC,DO,OD,EF,FE,DA,AD,AO),模等于2的向量有6个(DA,AD,EB,BE,CF,FC).11.由EH,FG分别是△ABD,△BCD的中位线,得EH∥BD,EH=12BD,且FG∥BD,FG=12BD,所以EH=FG,EH∥FG且方向相同,∴EH=FG.2.2平面向量的线性运算2.2.1向量加法运算及其几何意义1.D.2.C.3.D.4.a,b.5.①③.6.向南偏西60°走20km.7.作法:在平面内任取一点O,作OA=a,AB=b,BC=c,则OC=a+b+c,图略.8.(1)原式=(BC+CA)+(AD+DB)=BA+AB=0.(2)原式=(AF+FE)+(ED+DC)+CB=AE+EC+CB=AB.9.2≤|a+b|≤8.当a,b方向相同时,|a+b|取到最大值8;当a,b方向相反时,|a+b|取到最小值2.10.(1)5.(2)24.11.船沿与河岸成60°角且指向上游的方向前进,船实际前进的速度为33km/h.2.2.2向量减法运算及其几何意义1.A.2.D.3.C.4.DB,DC.5.b-a.6.①②.7.(1)原式=(PM+MQ)+(NP-NQ)=PQ+QP=0.(2)原式=(BC-BD)+(CA+AD)+CD=DC+CD+CD=CD.8.CB=-b,CO=-a,OD=b-a,OB=a-b.9.由AB=DC,得OB-OA=OC-OD,则OD=a-b+c.10.由AB+AC=(AD+DB)+(AE+EC)及DB+EC=0得证.11.提示:以OA,OB为邻边作OADB,则OD=OA+OB,由题设条件易知OD与OC为相反向量,∴OA+OB+OC=OD+OC=-OC+OC=0.2.2.3向量数乘运算及其几何意义1.B.2.A.3.C.4.-18e1+17e2.5.(1-t)OA+tOB.6.③.7.AB=12a-12b,AD=12a+12b.8.由AB=AM+MB,AC=AM+MC,两式相加得出.9.由EF=EA+AB+BF与EF=ED+DC+CF两式相加得出.10.AD=a+12b,AG=23a+13b,GC=13a+23b,GB=13a-13b.11.ABCD是梯形.∵AD=AB+BC+CD=-16a+2b=2BC,∴AD∥BC且AD≠BC.2.3平面向量的基本定理及坐标表示2.3.1平面向量基本定理2.3.2平面向量的正交分解及坐标表示1.D.2.C.3.C.4.(-2,3),(23,2).5.1,-2.6.①③.7.λ=5.提示:BD=CD-CB=-3i+(3-λ)j,令BD=kAB(k∈R),求解得出.8.16.提示:由已知得2x-3y=5,5y-3x=6,解得x=43,y=27.9.a=-1922b-911c.提示:令a=λ1b+λ2c,得到关于λ1,λ2的方程组,便可求解出λ1,λ2的值.10.∵a,b不共线,∴a-b≠0,假设a+b和a-b共线,则a+b=λ·(a-b),λ∈R,有(1-λ)a+(1+λ)b=0.∵a,b不共线,∴1-λ=0,且1+λ=0,产生矛盾,命题得证.11.由已知AM=tAB(t∈R),则OM=OA+AM=OA+tAB=OA+t(OB-OA)=(1-t)OA+tOB,令λ=1-t,μ=t,则OM=λOA+μOB,且λ+μ=1(λ,μ∈R).2.3.3平面向量的坐标运算2.3.4平面向量共线的坐标表示1.C.2.D.3.D.4.(12,-7),1,12.5.(-2,6)6.(20,-28)7.a-b=(-8,5),2a-3b=(-19,12),-13a+2b=233,-5.8.AB+AC=(0,1),AB-AC=(6,-3),2AB+12AC=92,-1.9.提示:AB=(4,-1),EF=EA+AB+BF=83,-23=23AB.10.31313,-21313或-31313,21313.11.(1)OP=OA+tAB=(1,2)+t(3,3)=(1+3t,2+3t),当点P在第二象限内时,1+3t<0,且2+3t >0,得-23<t<-13.(2)若能构成平行四边形OABP,则OP=AB,得(1+3t,2+3t)=(3,3),即1+3t=3,且2+3t=3,但这样的实数t不存在,故点O,A,B,P不能构成平行四边形.2.4平面向量的数量积2.4.1平面向量数量积的物理背景及其含义1.C.2.C.3.C.4.-122;-32.5.(1)0.(2)±24.(3)150°.6.①.7.±5.8.-55;217;122.9.120°.10.-25.提示:△ABC为直角三角形,∠B=90°,∴AB·BC=0,BC与CA的夹角为180°-∠C,CA与AB的夹角为180°-∠A,再用数量积公式计算得出.11.-1010.提示:由已知:(a+b)·(2a-b)=0,且(a-2b)·(2a+b)=0,得到a·b=-14b2,a2=58b2,则cosθ=a·b|a||b|=-1010.2.4.2平面向量数量积的坐标表示、模、夹角1.B.2.D.3.C.4.λ>32.5.(2,3)或(-2,-3).6.[-6,2].7.直角三角形.提示:AB=(3,-2),AC=(4,6),则AB·AC=0,但|AB|≠|AC|.8.x=-13;x=-32或x=3.9.1213,513或-1213,-513.10.正方形.提示:AB=DC,|AB|=|AD|,AB·AD=0.11.当C=90°时,k=-23;当A=90°时,k=113;当B=90°时,k=3±132.2.5平面向量应用举例2.5.1平面几何中的向量方法1.C.2.B.3.A.4.3.5.a⊥b.6.②③④.7.提示:只需证明DE=12BC即可.8.(7,-8).9.由已知:CN=NA,BN=NP,∴AP=NP-NA=BN-CN=BC,同理可证:QA=BC,∴AP=QA,故P,A,Q三点共线.10.连结AO,设AO=a,OB=b,则AB=a+b,OC=-b,AC=a-b,|a|=|b|=r,∴AB·AC=a2-b2=0,∴AB ⊥AC.11.AP=4PM.提示:设BC=a,CA=b,则可得MA=12a+b,BN=a+13b,由共线向量,令PA=mMA,BP=nBN及PA+BP=BA=a+b,解得m=45,所以AP=4PM.2.5.2向量在物理中的应用举例1.B.2.D.3.C.4.|F||s|cosθ.5.(10,-5).6.④⑤.7.示意图略,603N.8.102N.9.sinθ=v21-v22|v1|.(第11题)10.(1)朝与河岸成60°的角且指向上游的方向开.(2)朝与河岸垂直的方向开.11.(1)由图可得:|F1|=|G|cosθ,|F2|=|G|·tanθ,当θ从0°趋向于90°时,|F1|,|F2|都逐渐增大.(2)令|F1|=|G|cosθ≤2|G|,得cosθ≥12,∴0°≤θ≤60°.(第12(1)题)12.(1)能确定.提示:设v风车,v车地,v风地分别表示风对车、车对地、风对地的相对速度,则它们的关系如图所示,其中|v车地|=6m/s,则求得:|v风车|=63m/s,|v风地|=12m/s.(2)假设它们线性相关,则k1a1+k2a2+k3a3=0(k1,k2,k3不全为零),得(k1,0)+(k2,-k2)+(2k3,2k3)=(0,0),有k1+k2+2k3=0,且-k2+2k3=0,可得适合方程组的一组不全为零的解:k1=-4,k2=2,k3=1,所以它们线性相关.(3)假设满足条件的θ存在,则由已知有:(a+b)2=3(a-b)2,化简得,|a|2-4|a||b|cosθ+|b|2=0,令t=|a||b|,则t2-4cosθ·t+1=0,由Δ≥0得,cosθ≤-12或cosθ≥12,故0≤θ≤π3或2π3≤θ≤π时,等式成立.单元练习1.C.2.A.3.C.4.A.5.C.6.C.7.D.8.D.9.C.10.B.11.①②③④.12.-7.13.λ>103.14.0,2.15.53.16.2-2.17.④.18.(1)-13.(2)19.19.(1)(4,2).(2)-41717.提示:可求得MA·MB=5(x-2)2-8;利用cos∠AMB=MA·MB|MA|·|MB|,求出cos∠AMB的值.20.(1)提示:证(a-b)·c=0.(2)k<0,或k>2.提示:将式子两边平方化简.21.提示:证明MN=13MC即可.22.D(1,-1);|AD|=5.提示:设D(x,y),利用AD⊥BC,BD∥BC,列出方程组求出x,y的值.第三章三角恒等变换3.1两角和与差的正弦、余弦和正切公式3.1.1两角差的余弦公式1.D.2.A.3.D.4.6+24.5.cosx-π6.6.cosx.7.-7210.8.121-m2+32m.9.-2732.10.cos(α-β)=1.提示:注意-1≤sinα≤1,-1≤sin β≤1,可得cosα=cosβ=0.11.AD=6013.提示:设∠DAB=α,∠CAB=β,则tanα=32,tanβ=23,AD=5cos(α-β).3.1.2两角和与差的正弦、余弦、正切公式1.A.2.B.3.C.4.2cosx+π6.5.62.6.a2+b2,ba2+b2,aa2+b2.7.-32+36.8.725.9.22-36.10.sin2α=-5665.提示:2α=(α+β)+(α-β).11.tan∠APD=18.提示:设AB=1,BP=x,列方程求出x=23,再设∠APB=α,∠DPC=β,则tanα=32,tanβ=34,而∠APD=180°-(α+β).3.1.3二倍角的正弦、余弦、正切公式1.C.2.C.3.D.4.sinθ2-cosθ2或2sinθ2-π4.5.-36.6.-2cosθ2.7.336625.8.18tan10°.提示:乘以8sin10°8sin10°.9.-12.10.α+2β=3π4.提示:tan2β=125,2β也为锐角.11.tan2α=-34.提示:3α=2α+α,并注意角的范围及方程思想的应用.3.2简单的三角恒等变换(一)1.B.2.A.3.C.4.sin2α.5.1.6.12.7.提示:利用余弦二倍角公式.8.2m4-3m2.9.提示:利用sin2θ2+cos2θ2=1.10.2-3.提示:7°=15°-8°.11.[-3,3].提示:令cosα+cosβ=t,利用|cos(α-β)|≤1,求t的取值范围.3.2简单的三角恒等变换(二)1.C.2.A.3.C.4.π2.5.[-2,2].6.-12.提示:y=12cos2x.7.周期为2π,最大值为2,最小值为-2.8.kπ+π8,kπ+5π8(k∈Z).9.(1,2].10.y=2sin2x-π6-1,最大值为1,最小值为-3,最小正周期为π.11.定义域为x∈Rx≠kπ+π2,k∈Z,值域为[-2,2].提示:y=2sin2xx≠kπ+π2(k∈Z). 3.2简单的三角恒等变换(三)1.B.2.D.3.A.4.90°.5.102;π2.6.2.7.-7.8.5-22,5+22.9.1.提示:“切”化“弦”.10.Smax=4.提示:设∠AOB=θ.11.有效视角为45°.提示:∠CAD=α-β,tanα=2,tanβ=13.单元练习1.D.2.C.3.B.4.D.5.B.6.B.7.B.8.B.9.A.10.D.11.a1-b.12.725.13.1665.14.4.15.-6772.16.-2+308.17.0.18.-tanα.19.2125.20.1625.提示:α-2β=(α-β)-β,且0<α-β<π.21.提示:1-cos2θ=2sin2θ.22.(1)f(x)=3+4cos2x+π3,最小正周期为π.(2)[3-23,7].综合练习(一)1.D.2.C.3.B.4.A.5.A.6.D.7.A.8.D.9.C.10.C11.12.12.0.13.(3,5).14.2sin1.15.41.16.2π.17.②③.18.提示:AB=a+3b,AC=13a+b.19.(1)-13.(2)-83.20.(1)θ=45°.(2)λ=-1.21.6365或-3365.提示:cosα=±45.22.sin2α=-2425;cosβ=-3+4310.提示:β=2kπ+α+π3(k∈Z).综合练习(二)1.A.2.D.3.D.4.A.5.C.6.D.7.D.8.B.9.C.10.C.11.2kπ-5π6,2kπ+π6(k∈Z).12.102.13.(1,-1).14.1.15.5∶1.16.锐角.17.π6或2π3.18.33-410.19.∠ABC=45°.提示:利用向量.20.(1)-1225.(2)-75.21.OD=(11,6).提示:设OD=(x,y),列方程组.22.(1)单调递增区间:23kπ+π6,23kπ+π2(k∈Z),单调递减区间:23kπ+π2,23kπ+5π6(k∈Z).(2)-22,1.。
高一数学必修4测试题(含答案)
高一数学必修4测试题一、选择题(本大题共12小题,每小题3分,共36分) 1.下列各角中,与角330°的终边相同的有是( )A .510°B .150°C .-150°D .-390° 2.若点P 在4π-的终边上,且|OP |=2,则点P 的坐标为( )A .(2,2)B .(2,2-)C .(2,2-)D .(2,2--)3.已知(2,3)a =,(,6)b x =-,若a 与b 共线,则x = ( )A .4B .3C .-3D .-4 4.若0cos sin >⋅θθ,则θ为( ) A .第一或第三象限角 B .第二或第三象限角C .第一或第四象限角D .第三或第四象限角5.设向量1(cos ,)2a α=的模为2,则cos 2α= ( )A .41-B .21-C .21 D .23 6.函数()sin()cos()1212f x x x ππ=--,则()f x 的最小正周期是( )A .2πB .2π C .πD .4π7.设M 是□ABCD 的对角线的交点,O 为任意一点(且不与M 重合),则OD OC OB OA +++ 等于( )A .OMB .2OMC .3OMD .4OM8.把函数x y sin =的图象上所有点的横坐标缩短到原来的21倍(纵坐标不变),然后把图 象向左平移4π个单位,则所得到图象对应的函数解析式为 ( )A .)421sin(π+=x yB .)42sin(π+=x yC .)821cos(π+=x yD .)22sin(π+=x y。
高一数学必修4模块训练10答案
高一数学必修4模块训练10一.选择题:1、设34sin ,cos 55α=-α=,那么下列嘚点在角α嘚终边上嘚是( ) (A ) (4,-3) (B ) (-4,3) (C) (3,-4) (D) (-3,4) 2、与向量a =(12,5)平行嘚单位向量为( )A .125,1313⎛⎫- ⎪⎝⎭B .125,1313⎛⎫-- ⎪⎝⎭C .125125,,13131313⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭或 D .125125,,13131313⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭或 3、已知扇形嘚周长是12,面积是8,则扇形嘚中心角嘚弧度数是( )A .1B 、4C 、1或4D 、2或44、将函数))(6sin(R x x y ∈+=π嘚图象上所有嘚点向左平行移动4π个单位长度,再把图象上各点嘚横坐标扩大到到原来嘚2倍(纵坐标不变),则所得到嘚图象嘚解析式为()A 、))(1252sin(R x x y ∈+=πB 、))(1252sin(R x x y ∈+=πC 、))(122sin(R x x y ∈-=π D 、))(2452sin(R x x y ∈+=π 5、已知D 、E 、F 分别是△ABC 三边,AB 、BC 、CA 嘚中点,则()BF DE FD BF AB ⋅+⋅嘚值为( ) (A ) 2 (B ) 1 (C )12 (D) 136、如右图所示,在平行四边形ABCD 中,E 、F 分别是BC 、CD 边中点,CE 与AF 交于点H ,设a AB =,b BC =,则AH 等于( )A .b a 5452-B .b a 5452+ C .b a 5452+- D .b a 5452-- 7、若sin cos αβ=,22ππα-<<,0βπ<<,则αβ+值为( ) (A ) 32π (B ) π (C ) 2π (D ) 08、定义在R 上嘚偶函数)(x f 满足)()2(x f x f =+且)(x f 在]2,3[--上是减函数,又βα,是锐角三角形嘚两个内角,则( )A 、)(cos )(sin βαf f >B 、)(cos )(sin βαf f <C 、)(sin )(sin βαf f >D 、)(cos )(cos βαf f <二.填空题:9、已知正方形ABCD 嘚边长为1,设,,,c AC b BC a AB ===则c b a +-嘚模为10、下面给出嘚四个命题:①若a b ⊥,则2()a b a b ⋅=⋅②若//,//a b b c ,则//a c③若,a b 嘚夹角为θ,那么sin 0θ>④对一切向量,a b ,都有22||()a b a b +=+成立,正确嘚命题嘚序号为_______(将所有正确命题都填上).三.解答题:11、设,i j 是直角坐标系中,x 轴、y 轴正方向上嘚单位向量,设a (m 1)i 3j =+- b i (m 1)j =+-(1)若(()()a b a b +⊥-,求m .(2)若3m =时,求,a b 嘚夹角θ嘚余弦值.(3)是否存在实数m ,使//a b ,若存在求出m 嘚值,不存在说明理由.12. 设a 、b 是两个不共线嘚非零向量(R t ∈)(1)记),(31,,b a OC b t OB a OA +===那么当实数t 为何值时,A 、B 、C 三点共线? (2)若 1201||||夹角为与且b a b a ==,那么实数x 为何值时||b x a -嘚值最小?参考答案一、选择题:ACCBCBCB二、填空题:9.3; 10.①④;三、解答题: 11、解:(1)2-=m ;(2)552cos -=θ;(3)m 不存在;12、解: (1)t=21 (2)当21-=x 时,||b x a -嘚值最小。
人教版高一数学必修四测试题(含详细答案)
高一数学试题(必修4)(特别适合按14523顺序的省份)必修4 第一章三角函数(1)一、选择题:1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是()A.B=A∩C B.B∪C=C C.AC D.A=B=C2 等于()A B C D3.已知的值为()A.-2 B.2 C.D.-4.下列函数中,最小正周期为π的偶函数是()A.y=sin2xB.y=cos C .sin2x+cos2x D. y=5 若角的终边上有一点,则的值是()A B C D6.要得到函数y=cos()的图象,只需将y=sin的图象()A.向左平移个单位 B.同右平移个单位C.向左平移个单位 D.向右平移个单位7.若函数y=f(x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将整个图象沿x轴向左平移个单位,沿y轴向下平移1个单位,得到函数y=sinx的图象则y=f(x)是()A.y= B.y=C.y=D.8. 函数y=sin(2x+)的图像的一条对轴方程是()A.x=-B. x=- C .x=D.x=9.若,则下列结论中一定成立的是()A. B. C. D.10.函数的图象()A.关于原点对称 B.关于点(-,0)对称 C.关于y轴对称 D.关于直线x=对称11.函数是()A.上是增函数 B.上是减函数C.上是减函数D.上是减函数12.函数的定义域是()A.B.C. D.二、填空题:13. 函数的最小值是 .14 与终边相同的最小正角是_______________15. 已知则 .16 若集合,,则=_______________________________________三、解答题:17.已知,且.a)求sinx、cosx、tanx的值.b)求sin3x – cos3x的值.18 已知,(1)求的值(2)求的值19. 已知α是第三角限的角,化简20.已知曲线上最高点为(2,),由此最高点到相邻的最低点间曲线与x轴交于一点(6,0),求函数解析式,并求函数取最小值x的值及单调区间必修4 第一章三角函数(2)一、选择题:1.已知,则化简的结果为()A. B. C. D. 以上都不对2.若角的终边过点(-3,-2),则( )A.sin tan>0 B.cos tan>0C.sin cos>0 D.sin cot>03 已知,,那么的值是()A B C D4.函数的图象的一条对称轴方程是()A. B. C. D.5.已知,,则tan2x= ( ) A. B. C. D.6.已知,则的值为()A. B. 1 C. D. 2 7.函数的最小正周期为()A.1 B. C. D.8.函数的单调递增区间是()A. B.C. D.9.函数,的最大值为()A.1 B. 2 C. D.10.要得到的图象只需将y=3sin2x的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位 D.向右平移个单位11.已知sin(+α)=,则sin(-α)值为()A. B. — C. D. —12.若,则()A. B. C. D.二、填空题13.函数的定义域是14.的振幅为初相为15.求值:=_______________16.把函数先向右平移个单位,然后向下平移2个单位后所得的函数解析式为________________________________三、解答题17 已知是关于的方程的两个实根,且,求的值18.已知函数,求:(1)函数y的最大值,最小值及最小正周期;(2)函数y的单调递增区间19.已知是方程的两根,且,求的值20.如下图为函数图像的一部分(1)求此函数的周期及最大值和最小值(2)求与这个函数图像关于直线对称的函数解析式必修4 第三章三角恒等变换(1)一、选择题:1.的值为 ( )A 0BC D2.,,,是第三象限角,则()A B C D3.设则的值是( )A B C D4. 已知,则的值为()A B C D5.都是锐角,且,,则的值是()A B C D6. 且则cos2x的值是()A B C D7.在中,的取值域范围是 ( )A B C D8. 已知等腰三角形顶角的余弦值等于,则这个三角形底角的正弦值为()A B C D9.要得到函数的图像,只需将的图像()A、向右平移个单位B、向右平移个单位C、向左平移个单位D、向左平移个单位10. 函数的图像的一条对称轴方程是()A、 B、 C、 D、11.若是一个三角形的最小内角,则函数的值域是( )A B C D12.在中,,则等于 ( )A B C D二、填空题:13.若是方程的两根,且则等于14. .在中,已知tanA ,tanB是方程的两个实根,则15. 已知,则的值为16. 关于函数,下列命题:①若存在,有时,成立;②在区间上是单调递增;③函数的图像关于点成中心对称图像;④将函数的图像向左平移个单位后将与的图像重合.其中正确的命题序号(注:把你认为正确的序号都填上)三、解答题:17. 化简18. 求的值.19. 已知α为第二象限角,且sinα=求的值.20.已知函数,求(1)函数的最小值及此时的的集合。
高一数学必修4模块训练5答案
高一数学必修 4 模块训练 5一 .选择题:1、已知 sin() 0, cos() 0 ,则角所在的象限是()A 、第一象限B 、第二象限C 、第三象限D 、第四象限2、 ycos x, x[, ] 的值域是 ()6 2A 、 [0,1]B 、 [ 1,1]C 、 [0,3 ] D 、 [ 1 ,0]223、若角的终边过点 P ( 4a,3 a) (a0) ,则 sincos 等于( )11C 、1D 、不可以确立,与 a 的值相关A 、B 、5554、函数 f (x) sin( x) 在 (0,2 ) 上的图象与 x 轴的交点的横坐标为()6A 、或 11B 、 或5C 、5或 11D 、 或76 66666665、以下判断正确的选项是()A 、若向量 AB 与CD 是共线向量,则 A,B,C,D 四点共线B 、单位向量都相等C 、共线的向量,若起点不一样,则终点必定不一样D 、模为 0 是一个向量方向不确立的充要条件6、如图,在菱形 ABCD 中,以下式子建立的是()DCA 、 ABCDB 、 AB BCC 、 AD CBD 、 ADBCABi , j7s t是非零实数, 是单位向量, 当两向量 s i t j , t i s j 的模相等时,i , j的夹角是 ()、设 ,A 、B 、4 C 、D 、6328、点 P 在平面上作匀速直线运动,速度向量 v (4, 3) (即点 P 的运动方向与 v 同样,且每秒挪动的距离为 | v |各单位)。
设开始时点P 的坐标为( -10, 10),求 5 秒后点 P 的坐标为( )A 、 (2,4)B 、 ( 30,25)C 、 (10, 5)D 、 (5, 10)二 .填空题:13、函数 y sin x3 cos x 在区间 [0, ] 上的最小值为 _______________;214、设向量 a 与b 的夹角为 ,且 a (3,3), 2b a ( 1,1),则 10 cos;三.解答题:11、已知函数f (x) 2sin( x) 2sin x, x, 0 .32(Ⅰ)若cosx 3, 求函数 f (x) 的值;3(Ⅱ)求函数 f (x) 的值域。
【新教材】高中数学新教材人教A版选择性必修培优练习:专题05 直线的倾斜角与斜率(学生版+解析版)
专题05 直线的倾斜角与斜率一、单选题1.(2020·四川省高二期末(理))直线x =( ) A .30B .45C .60D .902.(2019·四川省仁寿一中高二期中(文))若直线1x =的倾斜角为α,则α=( ) A .0B .3πC .2π D .π3.(2020·江苏省丹徒高中高一开学考试)直线10x y ++=的倾斜角为( )A .4πB .34π C .54π D .2π 4.(2019·江苏省扬州中学高一期中)如果()3,1A 、()2,B k -、()8,11C 在同一直线上,那么k 的值是( ) A .-6B .-7C .-8D .-95.(2019·山东省高二期中)若直线过点(2,4),(1,4+,则此直线的倾斜角是( ) A .30︒B .60︒C .120︒D .150︒6.(2019·浙江省高三期中)以下哪个点在倾斜角为45°且过点(1,2)的直线上( ) A .(﹣2,3)B .(0,1)C .(3,3)D .(3,2)7.(2020·四川省高二期末(理))已知一直线经过两点(2,4)A ,(,5)B a ,且倾斜角为135°,则a 的值为( ) A .-1B .-2C .2D .18.(2019·浙江省高二期中)直线x sin α+y +2=0的倾斜角的取值范围是( ) A .[0,π) B .3[0,][,)44πππ⋃ C .[0,]4πD .[0,][,)42πππ⋃9.(2019·内蒙古自治区高二期末(文))已知直线l 的倾斜角为α,若tan 3πα⎛⎫+= ⎪⎝⎭α=( )A .0B .2π C .56π D .π10.(2019·浙江省镇海中学高一期末)已知直线倾斜角的范围是,32ππα⎡⎫∈⎪⎢⎣⎭2,23ππ⎛⎤⎥⎝⎦,则此直线的斜率的取值范围是( ) A.⎡⎣B.(,-∞)+∞ C.⎡⎢⎣⎦D.,⎛-∞ ⎝⎦⎫+∞⎪⎪⎣⎭二、多选题11.(2020·吴江汾湖高级中学高一月考)下列说法中正确的是( ) A .若α是直线l 的倾斜角,则0180α≤< B .若k 是直线l 的斜率,则k ∈RC .任意一条直线都有倾斜角,但不一定有斜率D .任意一条直线都有斜率,但不一定有倾斜角12.(2020·江苏省苏州实验中学高一月考)有下列命题:其中错误的是( ) A .若直线的斜率存在,则必有倾斜角与之对应; B .若直线的倾斜角存在,则必有斜率与之对应; C .坐标平面上所有的直线都有倾斜角; D .坐标平面上所有的直线都有斜率.13.(2018·全国单元测试)已知直线1:10l x y --=,动直线2:(1)0()l k x ky k k R +++=∈,则下列结论错误..的是( ) A .不存在k ,使得2l 的倾斜角为90° B .对任意的k ,1l 与2l 都有公共点 C .对任意的k ,1l 与2l 都不.重合 D .对任意的k ,1l 与2l 都不垂直...三、填空题14.(2019·银川唐徕回民中学高三月考(理))已知点P (1),点Q 在y 轴上,直线PQ 的倾斜角为120°,则点Q 的坐标为_____.15.(2020·浙江省温州中学高三月考)平面直角坐标系中,直线倾斜角的范围为______,一条直线可能经过______个象限.16.(2019·浙江省效实中学高一期中)若直线斜率k ∈(-1,1),则直线倾斜角α∈________.17.(2018·山西省山西大附中高二期中(文))已知直线l 经过点()1,0P 且与以()2,1A ,()3,2B -为端点的线段AB 有公共点,则直线l 的倾斜角的取值范围为____. 四、解答题18.(2019·全国高一课时练习)已知点()1,2A ,在y 轴上求一点P ,使直线AP 的倾斜角为120︒. 19.(2019·全国高一课时练习)点(,)M x y 在函数28y x =-+的图像上,当[2,5]x ∈时,求11y x ++的取值范围.20.(2020·广东省恒大足球学校高三期末)已知直线l :320x y +-=的倾斜角为角α. (1)求tan α;(2)求sin α,cos2α的值.21.(上海市七宝中学高二期中)已知直线l 的方程为320x my -+=,其倾斜角为α. (1)写出α关于m 的函数解析式; (2)若3,34ππα⎛⎫∈ ⎪⎝⎭,求m 的取值范围.22.(2019·全国高一课时练习)经过点(0,1)P -作直线l ,若直线l 与连接(1,2)(2,1)A B -、的线段总有公共点.(1)求直线l 斜率k 的范围; (2)直线l 倾斜角α的范围;23.(上海位育中学高二期中)直角坐标系xOy 中,点A 坐标为(-2,0),点B 坐标为(4,3),点C 坐标为(1,-3),且AM t AB =(t ∈R ).(1) 若CM ⊥AB ,求t 的值;(2) 当0≤ t ≤1时,求直线CM 的斜率k 和倾斜角θ的取值范围.专题05 直线的倾斜角与斜率一、单选题1.(2020·四川省高二期末(理))直线x =( ) A .30 B .45C .60D .90【答案】D 【解析】直线x ∴其倾斜角为90. 故选:D .2.(2019·四川省仁寿一中高二期中(文))若直线1x =的倾斜角为α,则α=( ) A .0 B .3πC .2π D .π【答案】C 【解析】直线1x =与x 轴垂直,故倾斜角为2π. 故选:C.3.(2020·江苏省丹徒高中高一开学考试)直线10x y ++=的倾斜角为( ) A .4π B .34π C .54π D .2π 【答案】B 【解析】由题意,直线10x y ++=的斜率为1k =- 故3tan 14k παα==-∴= 故选:B4.(2019·江苏省扬州中学高一期中)如果()3,1A 、()2,B k -、()8,11C 在同一直线上,那么k 的值是( ) A .-6 B .-7C .-8D .-9【答案】D 【解析】(3,1)A 、(2,)B k -、(8,11)C 三点在同一条直线上,∴直线AB 和直线AC 的斜率相等, ∴11112383k --=---,解得9k =-.故选:D .5.(2019·山东省高二期中)若直线过点(2,4),(1,4+,则此直线的倾斜角是( ) A .30︒ B .60︒C .120︒D .150︒【答案】C 【解析】由题意知,直线的斜率k =即直线的倾斜角α满足tan α=, 又0180α︒︒≤<,120α︒∴=,故选:C6.(2019·浙江省高三期中)以下哪个点在倾斜角为45°且过点(1,2)的直线上( ) A .(﹣2,3) B .(0,1)C .(3,3)D .(3,2)【答案】B 【解析】由直线的倾斜角为45°,则直线的斜率为tan 451k ==,则过点()2,3-与点(1,2)的直线的斜率为321213-=---,显然点()2,3-不满足题意;过点()0,1与点(1,2)的直线的斜率为12101-=-,显然点()0,1满足题意; 过点()3,3与点(1,2)的直线的斜率为321312-=-,显然点()3,3不满足题意; 过点()3,2与点(1,2)的直线的斜率为22031-=-,显然点()2,3-不满足题意; 即点()0,1在倾斜角为45°且过点(1,2)的直线上, 故选:B.7.(2020·四川省高二期末(理))已知一直线经过两点(2,4)A ,(,5)B a ,且倾斜角为135°,则a 的值为( )A .-1B .-2C .2D .1【答案】D 【解析】由直线斜率的定义知,tan1351AB k ==-, 由直线的斜率公式可得,542AB k a -=-, 所以5412a -=--,解得1a =. 故选:D8.(2019·浙江省高二期中)直线x sin α+y +2=0的倾斜角的取值范围是( ) A .[0,π) B .3[0,][,)44πππ⋃ C .[0,]4πD .[0,][,)42πππ⋃ 【答案】B 【解析】直线xsinα+y +2=0的斜率为k =﹣sinα, ∵﹣1≤sinα≤1,∴﹣1≤k ≤1 ∴倾斜角的取值范围是[0,4π]∪[34π,π) 故选:B .9.(2019·内蒙古自治区高二期末(文))已知直线l 的倾斜角为α,若tan 3πα⎛⎫+= ⎪⎝⎭α=( ) A .0 B .2π C .56π D .π【答案】A 【解析】tan 3πα⎛⎫+== ⎪⎝⎭tan 0α=,0απ≤<,0α∴=.故选:A10.(2019·浙江省镇海中学高一期末)已知直线倾斜角的范围是,32ππα⎡⎫∈⎪⎢⎣⎭2,23ππ⎛⎤⎥⎝⎦,则此直线的斜率的取值范围是( ) A.⎡⎣B.(,-∞)+∞ C.,33⎡-⎢⎣⎦D.,3⎛-∞-⎝⎦3⎫+∞⎪⎢⎪⎣⎭【答案】B 【解析】因为直线倾斜角的范围是,32ππα⎡⎫∈⎪⎢⎣⎭2,23ππ⎛⎤ ⎥⎝⎦,又直线的斜率tan k α=,,32ππα⎡⎫∈⎪⎢⎣⎭2,23ππ⎛⎤⎥⎝⎦.故tan tan3πα≥=2tan tan3πα≤=故(,k ∈-∞)+∞. 故选:B 二、多选题11.(2020·吴江汾湖高级中学高一月考)下列说法中正确的是( ) A .若α是直线l 的倾斜角,则0180α≤< B .若k 是直线l 的斜率,则k ∈RC .任意一条直线都有倾斜角,但不一定有斜率D .任意一条直线都有斜率,但不一定有倾斜角 【答案】ABC 【解析】A. 若α是直线l 的倾斜角,则0180α≤<,是正确的;B. 若k 是直线l 的斜率,则tan k α=∈R ,是正确的;C. 任意一条直线都有倾斜角,但不一定有斜率,倾斜角为90°的直线没有斜率,是正确的;D. 任意一条直线都有斜率,但不一定有倾斜角,是错误的,倾斜角为90°的直线没有斜率. 故选:ABC12.(2020·江苏省苏州实验中学高一月考)有下列命题:其中错误的是( ) A .若直线的斜率存在,则必有倾斜角与之对应; B .若直线的倾斜角存在,则必有斜率与之对应; C .坐标平面上所有的直线都有倾斜角;D .坐标平面上所有的直线都有斜率. 【答案】BD 【解析】任何一条直线都有倾斜角,但不是任何一条直线都有斜率 当倾斜角为90︒时,斜率不存在 故选:BD13.(2018·全国单元测试)已知直线1:10l x y --=,动直线2:(1)0()l k x ky k k R +++=∈,则下列结论错误..的是( ) A .不存在k ,使得2l 的倾斜角为90° B .对任意的k ,1l 与2l 都有公共点 C .对任意的k ,1l 与2l 都不.重合 D .对任意的k ,1l 与2l 都不垂直...【答案】AC 【解析】逐一考查所给的选项:A .存在0k =,使得2l 的方程为0x =,其倾斜角为90°,故选项不正确.B 直线1:10l x y --=过定点()0,1-,直线()()()2:1010l k x ky k k R k x y x +++=∈⇒+++=过定点()0,1-,故B 是正确的.C .当12x =-时,直线2l 的方程为1110222x y --=,即10x y --=,1l 与2l 都重合,选项C 错误;D .两直线重合,则:()()1110k k ⨯++-⨯=,方程无解,故对任意的k ,1l 与2l 都不垂直,选项D 正确. 故选:AC. 三、填空题14.(2019·银川唐徕回民中学高三月考(理))已知点P (1),点Q 在y 轴上,直线PQ 的倾斜角为120°,则点Q 的坐标为_____. 【答案】(0,-2) 【解析】因为Q 在y 轴上,所以可设Q 点坐标为()0,y ,又因为tan120︒==2y =-,因此()0,2Q -,故答案为()0,2-.15.(2020·浙江省温州中学高三月考)平面直角坐标系中,直线倾斜角的范围为______,一条直线可能经过______个象限. 【答案】0, 0,2,3【解析】平面直角坐标系中,直线倾斜角的范围为[)0,π,一条直线可能经过2个象限,如过原点,或平行于坐标轴; 也可能经过3个象限,如与坐标轴不平行且不过原点时; 也可能不经过任何象限,如坐标轴; 所以一条直线可能经过0或2或3个象限. 故答案为:[)0,π,0或2或3.16.(2019·浙江省效实中学高一期中)若直线斜率k ∈(-1,1),则直线倾斜角α∈________. 【答案】[0°,45°)∪(135°,180°) 【解析】直线的斜率为负时,斜率也随着倾斜角的增大而增大由于斜率有正也有负,且直线的斜率为正时,斜率随着倾斜角的增大而增大,故α∈(0°,45°);又直线的斜率为负时,斜率也随着倾斜角的增大而增大,故α∈(135°,180°);斜率为0时,α=0°.所以α∈[0°,45°)∪(135°,180°) 故答案为[0°,45°)∪(135°,180°) 17.(2018·山西省山西大附中高二期中(文))已知直线l 经过点()1,0P 且与以()2,1A ,()3,2B -为端点的线段AB 有公共点,则直线l 的倾斜角的取值范围为____. 【答案】3[0,][,)44πππ 【解析】当直线l 过B 时,设直线l 的倾斜角为α,则3tan 14παα=-⇒=当直线l 过A 时,设直线l 的倾斜角为β,则tan 14πββ=⇒=综合:直线l 经过点()P 1,0且与以()A 2,1,()B 3,2-为端点的线段AB 有公共点时,直线l 的倾斜角的取值范围为][30,,44πππ⎡⎫⋃⎪⎢⎣⎭四、解答题18.(2019·全国高一课时练习)已知点()1,2A ,在y 轴上求一点P ,使直线AP 的倾斜角为120︒.【答案】(0,2P 【解析】设(0,)P y ,201PA y k -=-,tan120︒∴=201y --,2y ∴=P ∴点坐标为(0,2.19.(2019·全国高一课时练习)点(,)M x y 在函数28y x =-+的图像上,当[2,5]x ∈时,求11y x ++的取值范围. 【答案】15,63⎡⎤-⎢⎥⎣⎦【解析】1(1)1(1)y y x x +--=+--的几何意义是过(,),(1,1)M x y N --两点的直线的斜率,点M 在线段28,[2,5]y x x =-+∈上运动,易知当2x =时,4y =,此时(2,4)M 与(1,1)N --两项连线的斜率最大,为53; 当5x =时,2y =-,此时(5,2)M -与(1,1)N --两点连线的斜率最小,为16-.115613y x +∴-+,即HF 的取值范围为15,63⎡⎤-⎢⎥⎣⎦20.(2020·广东省恒大足球学校高三期末)已知直线l :320x y +-=的倾斜角为角α.(1)求tan α;(2)求sin α,cos2α的值.【答案】(1)13-;(2)10;45 【解析】(1)因为直线320x y +-=的斜率为13-,且直线的倾斜角为角α, 所以1tan 3α=- (2)由(1)知1tan 3α=-, 22sin 1tan cos 3sin cos 1ααααα⎧==-⎪∴⎨⎪+=⎩解得sin 10cos αα⎧=⎪⎪⎨⎪=⎪⎩sin 10cos αα⎧=-⎪⎪⎨⎪=⎪⎩, 因为,2παπ⎛⎫∈ ⎪⎝⎭,所以sin cos αα⎧=⎪⎪⎨⎪=⎪⎩224cos 22cos 1215αα⎛∴=-=⨯-= ⎝⎭21.(上海市七宝中学高二期中)已知直线l 的方程为320x my -+=,其倾斜角为α.(1)写出α关于m 的函数解析式;(2)若3,34ππα⎛⎫∈ ⎪⎝⎭,求m 的取值范围. 【答案】(1)3arctan ,0,023arctan ,0m m m m m παπ⎧>⎪⎪⎪==⎨⎪⎪+<⎪⎩;(2)3,3m .【解析】(1)直线l 的方程为320x my -+=,其倾斜角为α,当0m =时,2πα=当0m >时,则斜率3tan k m α==,3arctan m α=, 当0m <时,则斜率3tan k m α==,3arctan mαπ=+, 所以3arctan ,0,023arctan ,0m m m m m παπ⎧>⎪⎪⎪==⎨⎪⎪+<⎪⎩; (2)当,32ππα时,33,,0,3k m m ,当2πα=时,0m =, 当3,24ππα时,3,1,3,0k m m , 综上所述:3,3m .22.(2019·全国高一课时练习)经过点(0,1)P -作直线l ,若直线l 与连接(1,2)(2,1)A B -、的线段总有公共点.(1)求直线l 斜率k 的范围;(2)直线l 倾斜角α的范围;【答案】(1)11k -≤≤(2)3044ππααπ≤≤≤<或 【解析】(1)2(1)110pA k --==-- 1(1)120pB k --==- l 与线段AB 相交pA pB k k k ∴≤≤11k ∴-≤≤(2)由(1)知0tan 11tan 0αα≤≤-≤<或由于tan 0,2y x π⎡⎫=⎪⎢⎣⎭在及(,0)2π-均为减函数3044ππααπ∴≤≤≤<或 23.(上海位育中学高二期中)直角坐标系xOy 中,点A 坐标为(-2,0),点B 坐标为(4,3),点C 坐标为(1,-3),且AM t AB =(t ∈R ).(1) 若CM ⊥AB ,求t 的值;(2) 当0≤ t ≤1时,求直线CM 的斜率k 和倾斜角θ的取值范围.【答案】(1) 15t =;(2) k ∈(-∞.,-1]⋃[2,+∞],3[arctan 2,]4πθ∈ 【解析】(1)由题意可得()42,30(6,3)AB =+-=,(6,3)AM t AB t t ==, ()12,30(3,3)AC =+--=-,所以(63,33)CM AM AC t t =-=-+, ∵CM AB ⊥,则CM AB ⊥,∴()()6633334590CM AB t t t ⋅=-++=-=, ∴解得15t =; (2)由01t ≤≤,AM t AB =,可得点M 在线段AB 上,由题中A 、B 、C 点坐标,可得经过A 、C 两点的直线的斜率11k =-,对应的倾斜角为34π,经过C 、B 两点的直线的斜率22k =,对应的倾斜角为2arctan ,则由图像可知(如图所示),直线CM 的斜率k 的取值范围为:1k ≤-或2k ≥,倾斜角的范围为:3[arctan 2,]4πθ∈.。
最新高一数学必修4模块训练7答案
高一数学必修4模块训练7一.选择题: 1、已知54cos -=α,53sin =α,那么α嘚终边所在嘚象限为( ) A 、第一象限B 、第二象限C 、第三象限D 、第四象限2、设a 3(,sin )2α=,b 1cos ,3α⎛⎫= ⎪⎝⎭, 且a ∥b ,则锐角α为( ) A 、30︒ B 、60︒ C 、45︒ D 、75︒ 3、已知3a =,23b =,3a b ⋅=-,则a 与b 嘚夹角是( ) A 、150︒ B 、120︒ C 、60︒ D 、30︒4、下列命题正确嘚个数是( )①0AB BA +=; ②00AB ⋅=; ③AB AC BC -=; ④00AB ⋅= A 、1 B 、2 C 、3 D 、45、已知3a =,4b =,且()a kb +⊥()a kb -,则k 等于( )A 、34±B 、43±C 、53±D 、54±6、下列各式中值等于12嘚是( )A 、sin15cos15οοB 、2tan 22.51tan 22.5οο- C 、22cos sin 1212ππ- D 、1cos32π+7、函数cos tan y x x = (22π<<π-x )嘚大致图象是( )8、把函数sin(2)3y x π=-嘚图象向右平移3π个单位得到嘚函数解析式为( )A 、sin(2)3y x π=-B 、sin(2)3y x π=+ C 、cos 2y x = D 、sin 2y x =-二.填空题:9、=++041tan 19tan 341tan 19tan 。
xx o A 2π-2π x xoB2π-2π x x oD2π-2π x x oC2π-2π 1 -1 1-1 -1 1-1 110、已知8a =,e 是单位向量,当它们之间嘚夹角为3π时,a 在e 方向上嘚投影为 。
三.解答题:11、已知α,β都是锐角,4sin 5α=,5cos()13αβ+=,求sin β嘚值12、已知O 为坐标原点,2(2cos ,1)OA x =,(1,3sin 2)OB x a =+(,x R a R ∈∈,a 是常数),若y OA OB =⋅(1)求y 关于x 嘚函数关系式()f x ; (2)若()f x 嘚最大值为2,求a 嘚值;(3)利用(2)嘚结论,用“五点法”作出函数()f x 在长度为一个周期嘚闭区间上嘚简图,并指出其单调区间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、A
y cos x , x [ , ] 的值域是[0,1] . 62
第2页共4页
3、C
4、C 5、D 6、D 7、D 8、C
若角
的终边过点
P (4a,3a)
(a
0)
,则 sin
cos
3a 5|a
|
4a 5|a|
a 5|a
|
1 5
.
f (x) sin(x ) 0 在 (0, 2 ) 上 x 5 或11 .
2
rr
r
rr
14、设向量 a与b 的夹角为 ,且 a (3,3), 2b a (1,1) ,则 10 cos
;
第1页共4页
三.解答题:
11、已知函数 f (x) 2sin(x ) 2sin x, 3
x
2
,
0
.
(Ⅰ)若 cos x 3 , 求函数 f (x) 的值; 3
(Ⅱ)求函数 f (x) 的值域。
()
B、单位向量都相等
C、共线的向量,若起点不同,则终点一定不同
D、模为 0 是一个向量方向不确定的充要条件
6、如图,在菱形 ABCD 中,下列式子成立的是
()
uuur uuur
uuur uuur
A、 AB CD B、 AB BC
uuur uuur
uuur uuur
C、 AD CB D、 AD BC
高一数学必修 4 模块训练 5
一.选择题:
1、已知 sin( ) 0, cos( ) 0 ,则角 所在的象限是
()
A、第一象限
B、第二象限
2、
y
cos
x,
x [
,
] 的值域是
62
A、 [0,1]
B、 [1,1]
C、第三象限
C、 [0,
3 ]
2
D、第四象限 ()
D、[ 1 , 0] 2
3、若角 的终边过点 P (4a,3a) (a 0) ,则 sin cos 等于
12、如图,已知 OPQ 是半径为 1,园心角为 的扇形,C 是扇形弧上的动点,ABCD 是扇形的内结矩形,记
3
COP ,求当角 取何值时, 矩形 ABCD 的面积最大?并求出这个最大值.
Q
D
α OA
C BP
参考答案
一、选择题
1、A sin( ) 0, cos( ) 0 sin 0, cos 0 ,则角 所在的象限是第一象限.
6
66
回顾向量的基本知识点.
uuur uuur 在菱形 ABCD 中 AD // BC, AD BC AD BC .
|
r si
t
r j
r ||t i
r s| j| 1 igj
0,
r i
,
r j
的夹角是
.
2
5 秒后点 P 坐标为(-10,10)+ 5(4, 3) = (10, 5) .
第3页共4页
sin cos
-
3 3
sin
=
sin
cos -
3 sin sin 3
= 1 sin2 +
3 cos2 -
3
=
3 sin(2 + )-
3
2
6
63
66
3
所以矩形 ABCD 面积的最大值为 。
6
此时 2 +
=
62
= 6
第4页共4页
3
2
3
…………2 分
f (x) 2(1 sin x 3 cos x) 2sin x 3 cos x sin x 1 6 ……5 分
2
2
3
(Ⅱ) f (x) 2 cos(x ) 6
……………7 分
Q x0 , x
2
3
66
1 cos(x ) 1
2
6
函数 f (x) 的值域为[ 1 , 2 ]
二.填空题:
9、1
y sin x 3 cos x 2sin(x ) 在区间[0, ]上的最小值为 1.
3
2
10、3
r
rr
a (3,3), 2b a (1,1) cos
3
10
,
10 cos 3.
10
三.解答题:
11、解:(Ⅰ)Q cos x 3 , x [ , 0], sin x 6
r
距离为 | v | 各单位)。设开始时点 P 的坐标为(-10,10),求 5 秒后点 P 的坐标为
(
)
A、 (2, 4)
B、 (30, 25)
C、 (10, 5)
D、 (5, 10)
二.填空题:
13、函数 y sin x
3 cos x 在区间[0, ] 上的最小值为_______________;
()
A、 1 5
B、 1 5
C、 1 5
D、不能确定,与 a 的值有关
4、函数 f (x) sin(x ) 在 (0, 2 ) 上的图象与 x 轴的交点的横坐标为 6
(
)
A、 或11 66
B、 或 5 66
C、 5 或11 66
D、 或 7 66
5、下列判断正确的是
uuur uuur A、若向量 AB与CD 是共线向量,则 A,B,C,D 四点共线
D
C
rr
r rr r
Ar r
B
7、设 s,t 是非零实数, i , j 是单位向量,当两向量 s i t j , t i s j 的模相等时, i , j 的夹角是(
)
A、
6
B、
4
C、
3
r 8、点 P 在平面上作匀速直线运动,速度向量 v (4, 3)
D、
2
r (即点 P 的运动方向与 v 相同,且每秒移动的
…………………10 分
12..
解:由题意可得
在三角形 OCB 中,OC=1, COP a , 所以 BC=sin OB=cos 在三角形 OAD 中, AOD ,AD=BC= sin
3
所以 OA= 3 sin 所以 AB=OB-OA= cos - 3 sin
3
3
则,矩形 ABCD 的面积为