幂的乘方与积的乘方(一)教学设计

合集下载

七年级数学下册《幂的乘方与积的乘方》教案、教学设计

七年级数学下册《幂的乘方与积的乘方》教案、教学设计
1.教学活动设计:
将学生分成若干小组,针对教师提出的问题,进行小组讨论。讨论过程中,教师巡回指导,引导学生深入探讨幂的乘方与积的乘方的运算规律。
2.教学内容:
(1)讨论幂的乘方与积的乘方的运算规律;
(2)探讨幂的乘方与积的乘方在实际问题中的应用;
(3)分享各自解题的方法和技巧。
(四)课堂练习
1.教学活动设计:
4.针对学生在积的乘方学习中可能遇到的困难,设计具有启发性的例题和练习题,帮助学生逐步突破难点,增强自信心。
三、教学重难点和教学设想
(一)教学重难点
1.重点:幂的乘方与积的乘方的概念及其运算规律。
2.难点:
(1)理解幂的乘方的意义,能够灵活运用幂的乘方进行计算;
(2)掌握积的乘方的运算规律,解决实际问题中的积的乘方问题;
(3)鼓励学生积极参与课堂讨论,培养学生的表达能力和团队合作精神;
(4)定期进行阶段性的评价,了解学生的学习进度,及时调整教学策略。
4.教学反思:
(1)在教学过程中,关注学生的反馈,根据学生的实际情况调整教学节奏和难度;
(2)注重培养学生的数学思维,提高学生分析问题和解决问题的能力;
(3)课后及时反思教学效果,总结经验教训,不断优化教学方法和策略。
1.关注学生对幂的概念的理解,引导学生从已知的幂的运算规律出发,逐步探索幂的乘方法则;
2.重视学生的个体差异,针对不同学生的学习能力和接受程度,进行分层教学,确保每个学生都能掌握基本概念和运算方法;
3.注重培养学生的逻辑思维能力和空间想象能力,通过丰富的教学活动,激发学生的学习兴趣,提高学生的课堂参与度;
讨论结束后,每组选派一名代表进行课堂分享。
5.预习作业:预习下一节课的内容——整式的乘法法则,为课堂学习做好准备。

北师大版七下数学1.2.2幂的乘方与积的乘方教学设计

北师大版七下数学1.2.2幂的乘方与积的乘方教学设计

北师大版七下数学1.2.2幂的乘方与积的乘方教学设计一. 教材分析北师大版七下数学1.2.2幂的乘方与积的乘方是本册书中的一个重要内容,主要让学生掌握幂的乘方和积的乘方的运算法则。

本节课的内容在学生的学习过程中起到了承上启下的作用,为后续学习指数函数和其他数学概念奠定了基础。

教材通过丰富的例题和练习题,引导学生理解和掌握幂的乘方与积的乘方的运算规律,提高学生的数学运算能力。

二. 学情分析学生在学习本节课之前,已经掌握了有理数的乘方、幂的定义等基础知识,对于幂的运算有一定的了解。

但学生对于幂的乘方和积的乘方的运算法则的理解和应用能力还有待提高。

因此,在教学过程中,教师需要结合学生的实际情况,通过生动的实例和丰富的练习,引导学生深入理解幂的乘方与积的乘方的运算规律,提高学生的数学运算能力。

三. 教学目标1.理解幂的乘方的运算法则;2.理解积的乘方的运算法则;3.能够运用幂的乘方与积的乘方的运算规律解决实际问题。

四. 教学重难点1.幂的乘方的运算法则;2.积的乘方的运算法则;3.幂的乘方与积的乘方的运算规律的应用。

五. 教学方法1.实例教学:通过生动的实例,引导学生理解幂的乘方与积的乘方的运算规律;2.小组合作:学生进行小组讨论,培养学生的合作意识和团队精神;3.练习巩固:通过丰富的练习题,巩固学生对幂的乘方与积的乘方的运算规律的理解;4.问题解决:引导学生运用幂的乘方与积的乘方的运算规律解决实际问题。

六. 教学准备3.练习题;4.教学工具:黑板、粉笔、投影仪等。

七. 教学过程1.导入(5分钟)教师通过一个实例,如“计算(-3)^2 * (-3)^3”,引导学生思考幂的乘方和积的乘方的运算规律。

2.呈现(10分钟)教师通过多媒体课件,呈现幂的乘方与积的乘方的运算法则,并用生动的实例进行解释。

3.操练(10分钟)教师学生进行小组合作,让学生通过互相讨论和解答练习题,巩固对幂的乘方与积的乘方的运算规律的理解。

幂的乘方与积的乘方说课教案

幂的乘方与积的乘方说课教案

幂的乘方与积的乘方(一)》说课教案一、教材分析(一)本节内容在教材中的地位与作用。

幂的运算,是把前面学过的数的运算抽象为式的运算,幂的乘方与积的乘方是本章的第二节,是在学生已有的同底数幂的乘法运算性质的基础上,通过做幂的乘方后,再明晰的幂的乘方运算性质,是进一步学习幂的运算的基础,是今后学习整式乘法的重要基础,也是今后学习方程、不等式、函数等知识的储备内容,同时也是学习物理、化学、生物等学科必不可少的解题工具。

因此,本节课的知识承上启下,具有重要作用。

(二)教学目标在本课的教学中,不仅要让学生学会如何进行幂的乘方的运算,更主要地是要让学生掌握研究问题的方法,初步领悟化归的数学思想。

同时,还要让学生感受到数学来源于生活,又服务于生活的基本事实,从而激发学生学习数学的兴趣。

为此,我确立如下教学目标:知识与技能:理解幂的乘方的运算性质,能熟练的运用性质进行计算,并能说出每一步计算的依据。

过程与方法:经历探索幂的乘方性质的过程,结合探究活动,掌握幂的乘方的运算性质的运用方法和技巧。

情感态度和价值观:进一步体会幂的意义,发展归纳、概括、推理能力和有条理的数学表达能力,增强学数学的信心。

(三)教材重难点由于本节课是探索并运用幂的运算的性质的第二个基本性质,故我确定“以理解并掌握运算性质”作为教学的重点,而将其灵活的运用作为教学的难点。

同时,我将采用让学生通过先“做”,然后思考、猜想、合作探究、媒体演示的方式以及渗透从一般到特殊、从具体到抽象的数学思想方法教学来突出重点、突破难点。

(四)教具准备:相关多媒体课件。

二、教法选择与学法指导本节课主要是理解、掌握性质并运用运算性质计算,故我在课堂教学中将尽量为学生提供“做”中“学”的时空,让学生进行小组合作学习,在“做”的过程中潜移默化地渗透一些数学思想方法,遵循“教是为了不教”的原则,让学生自得知识、自觅规律、自悟原理。

三、教学流程(一)创设情景,激发求知欲望首先,我提出一个趣味性问题:谁能在黑板上写下100个410的乘积?根据经验,同学们发现写不下。

2.1.2幂的乘方与积的乘方 教学设计 2

2.1.2幂的乘方与积的乘方 教学设计 2

2.1.2幂的乘方与积的乘方教学设计幂的乘方(1)【教学内容分析】本节课通过合作探究得到幂的乘方法则,进而运用该法则进行计算。

【教学目标】1、经历探索幂的乘方的法则,进一步体会幂的意义,发展推理能力和有条理的表达能力,培养从特殊到一般,从具体到抽象的逐步概括抽象的认识能力。

2、了解幂的乘方的运算法则,并能利用法则进行计算和解决一些实际问题。

【教学重点、难点】重点是法则的探索过程和法则的灵活应用。

难点是幂的乘方与同底数幂相乘的混合运算。

【教学准备】展示课件。

【教学过程】教学过程设计说明一、回顾与思考1、学习(1)幂的意义a·a·……a=a nn个a相乘(2)同底数幂的相乘法则a m·a n=a m+n(m,n都是正整数)二、创设情景,导入课题1、课件展示乒乓球和足球的图片,先让学生直观体会两个球体的体积的大小的悬殊比例,然后让他们猜想足球的体积大约是乒乓球体积的多少倍?同学讨论、交流。

最后,告诉他们足球的半径是乒乓球半径的几倍,充分的复习回顾与本节课有联系的认识,便于建构新知和理解法则之间的联系,对建构正确的模型大有好处。

设计从实际问题引入幂的乘方运算,学生在探索这个问题的过程中,将自然地体会幂的乘方运算的必要性,了解数学与现实世界的让他们算足球的体积是乒乓球体积的多少倍?而导入新课。

2、,从计算的结果我们看出:球体的体积与半径的大小有着紧密的联系,如果甲球的半径是乙球的n倍,那么甲球的体积是乙球的体积n3倍。

地球、木星、太阳可以近似地看成球体,木星、太阳的半径分别约为地球的10倍和102倍,它们的体积约是地球的多少倍?学生独立思考后回答:木星的体积是地球的体积的103倍,而太阳的体积则是地球的体积的(102)3。

你知道(102)3到底是多少倍吗?猜想一下,并说明你的理由。

半径扩大的倍数与体积扩大的倍数哪个变化更大?这节课我们共同研究“幂的乘方”。

三、合作学习,建立模型1、做一做计算下列各式,并说明理由(1)(102)3(2)(34)2(3)(a3)5(4)(a m)n由学生合作完成,探索幂的乘方的法则的归纳过程,经小组讨论,交流各自的想法,看看别人是怎么运算出结果的,和自己的想法有何区别,最后指名让小组代表说自己的想法和运算过程及运算结果。

数学初一下苏科版8.2幂的乘方与积的乘方(第1课时)教案

数学初一下苏科版8.2幂的乘方与积的乘方(第1课时)教案

数学初一下苏科版8.2幂的乘方与积的乘方(第1课时)教案学习目标知识与技能:1.能说出幂的乘方的运算性质,并会用符号表示;2、使学生能运用幂的乘方法那么进行计算,并能说出每一步运算的依据。

过程与方法:在推导幂的乘方法那么过程中,培养学生逻辑思维和分析问题的能力。

情感、态度与价值观:经历探究幂的乘方的运算性质过程,进一步体会幂的意义,从中感受具体到抽象、特别到一般的思考方法,进展数感和归纳能力。

学习重点理解并掌握幂的乘方法那么、学习难点幂的乘方法那么的灵活运用、教学流程预习导1.航一个正方体的棱长是100 mm, 即102 mm,它的体积是多少?2、在黑板上写下100个104的乘积,你能有简便的写法呢?依照乘方的定义,100个104相乘,能够写成〔104〕100,你会计算吗?合作探究【一】新知探究:做一做:先说出以下各式的意义,再计算以下各式:〔23〕2=_________________;〔a4〕3=_________________;〔a m〕5=_________________从上面的计算中,你发明了什么规律?上面各式括号中基本上幂的形式,然后再乘方、即:幂的乘方猜想:〔a m〕n等于什么?你的猜想正确吗?〔讨论,充分发表自己的看法〕一般地有:因此得(a m)n = a mn(m,n基本上正整数)这确实是说,幂的乘方,底数不变,指数相乘、〔学生自己归纳〕【二】例题分析:例 1:计算:(1)(106)2;(2)(a m)4(m为正整数);(3)-(y3)2;(4)(-x3)3、注意:符号和乘方的关系、例 2:计算:x2·x4+(x3)2; (2)(a3)3·(a4)3.比较:同底数幂相乘,积的乘方与合并同类项之间的区别。

【三】展示交流:1、下面的计算对不对?假如不对,应怎么样改正:(1) (a5)2 = a7; (2) a5· a2=a10、2、填空:〔1〕108=〔〕2;〔2〕b27=(b3)( );(3)(y m)3=( )m; (4)p2nn+2=( )2.3、请你比较340与430的大小。

幂的乘方与积的乘方教案

幂的乘方与积的乘方教案

第三章第4节 幂的乘方与积的乘方(一)东岳中学 兰顺河教学内容 幂的乘方教学目标1. 经历探索幂的乘方的运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力。

2. 了解幂的乘方的运算性质,能运用“幂的乘方”法则进行运算。

教学重难点1. 重点:幂的乘方法则及用法则进行计算。

2. 难点:幂的乘方法则和同底数幂相乘的法则的区别及这两个法则的混合运用。

教学过程一. 创设情境,提出问题:1.你知道吗如果甲球的半径是乙球的n 倍,那么甲球的体积是乙球的3n 倍。

地球、木星、太阳可以近似地看作是球体。

木星的半径约是地球的10倍,太阳的半径约是地球的210倍,它们的体积分别约是地球的多少倍由学生独立思考后可得出:木星的体积是地球的310倍,太阳的体积是地球的32)10(倍(即610倍)。

引导学生观察电脑展示的上图,通过比较三个球体的大小,体会球体扩大的倍数比半径扩大的倍数大得多。

2.提出问题 4a 的意义是什么把4a 看成底数,则34)(a 的意义是什么怎样计算34)(a 二. 探索规律,得出结论1. 计算下列各式,并说明理由(学生先独立完成计算,后学习小组讨论说明理由,再 电脑展示推理过程)(1)42)6(; (2)32)(a ; (3)2)(m a ; (4)n m a )(。

n m a )(=(•m a •m a •m a …m a •)=m m m a+⋅⋅⋅++ =mn a即 n m a )(=mn a (n m ,都是正整数)2.鼓励学生自己发现幂的乘方性质的特点(如底数和指数发生了什么变化),运用自己的语言进行描述:幂的乘方,底数不变,指数相乘。

3. 让学生回顾这一性质得来的过程,进一步体会幂的意义。

并引导学生剖析法则:(1) 公式中的底数a 可以是具体的数,也可以是代数式。

(2) 注意幂的乘方中指数相乘,而同底数幂的乘法中是指数相加。

三. 运用法则,进行计算例1 计算:(1)32)10(; (2)55)(b ; (3)3)(n a ;(4)m x )(2-; (5)y y •32)(; (6)4362)()(2a a -。

鲁教版数学六年级下册6.2《幂的乘方与积的乘方》教学设计

鲁教版数学六年级下册6.2《幂的乘方与积的乘方》教学设计

鲁教版数学六年级下册6.2《幂的乘方与积的乘方》教学设计一. 教材分析《幂的乘方与积的乘方》是鲁教版数学六年级下册第6.2节的内容。

本节内容是在学生掌握了有理数的乘方的基础上进行的,是进一步深化幂的运算规则,培养学生对幂的运算能力,为学习初中数学打下基础。

本节课的主要内容是让学生掌握幂的乘方与积的乘方的运算法则,并能够灵活运用。

二. 学情分析六年级的学生已经掌握了有理数的乘方,对幂的概念和运算规则有一定的了解。

但是,对于幂的乘方与积的乘方的运算法则,还需要进一步的引导和讲解。

此外,学生的数学思维能力和解决问题的能力有待提高。

三. 教学目标1.理解幂的乘方与积的乘方的运算法则。

2.能够运用幂的乘方与积的乘方的运算法则进行计算。

3.提高学生的数学思维能力和解决问题的能力。

四. 教学重难点1.幂的乘方与积的乘方的运算法则。

2.灵活运用幂的乘方与积的乘方的运算法则解决问题。

五. 教学方法1.讲解法:对幂的乘方与积的乘方的运算法则进行详细的讲解,让学生理解和掌握。

2.案例分析法:通过具体的案例,让学生理解和运用幂的乘方与积的乘方的运算法则。

3.练习法:通过课堂练习和课后作业,巩固学生对幂的乘方与积的乘方的运算法则的理解和运用。

六. 教学准备1.PPT课件:制作幂的乘方与积的乘方的运算法则的PPT课件。

2.教学案例:准备一些典型的幂的乘方与积的乘方的运算案例。

3.练习题:准备一些幂的乘方与积的乘方的运算练习题。

七. 教学过程1.导入(5分钟)通过复习有理数的乘方,引导学生回顾幂的概念和运算规则。

然后,提出本节课的主要学习内容:幂的乘方与积的乘方。

2.呈现(15分钟)利用PPT课件,展示幂的乘方与积的乘方的运算法则。

通过详细的讲解,让学生理解和掌握运算法则。

3.操练(15分钟)让学生通过课堂练习,运用幂的乘方与积的乘方的运算法则进行计算。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)通过一些典型的案例,让学生运用幂的乘方与积的乘方的运算法则进行计算。

1.2.1幂的乘方与积的乘方(教案)

1.2.1幂的乘方与积的乘方(教案)
不过,我也注意到,在小组讨论中,部分学生显得有些被动,可能是因为他们对主题不够熟悉,或者是对自己的观点不够自信。在未来的课堂中,我需要更多地鼓励这些学生,提供更多的支持和引导,帮助他们更好地参与到讨论中来。
最后,今天的总结回顾环节,我尝试让学生们自己总结所学内容,我发现这样的方式能够有效地帮助他们巩固知识点。但同时,我也意识到,对于一些理解上仍有障碍的学生,我需要提供更个性化的辅导,确保每个人都能跟上课程的进度。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“幂的乘方与积的乘方在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
1.2.1幂的乘方与积的乘方(教案)
一、教学内容
本节课选自教材第七章第一节《幂的乘方与积的乘方》,主要包括以下内容:
1.幂的乘方:同底数幂相乘,底数不变,指数相加。
-举例:\(a^m \times a^n = a^{m+n}\)
2.积的乘方:多个数相乘,每个因数分别乘方,再将所得的幂相乘。
-举例:\(ab^n = a^n \times b^n\)
3.应用实例:运用幂的乘方与积的乘方解决实际问题。
二、核心素养目标
本节课旨在培养学生以下核心素养:
1.理解幂的乘方与积的乘方的概念,形成严谨的逻辑思维,提升数学抽象能力。
2.能够运用幂的乘方与积的乘方法则,解决实际问题,培养数学建模和问题解决能力。
3.在探索幂的乘方与积的乘方过程中,培养数学运算和数据分析能力,提高数学素养。

《幂的乘方与积的乘方》 教学设计

《幂的乘方与积的乘方》 教学设计

《幂的乘方与积的乘方》教学设计一、教学目标1、知识与技能目标理解幂的乘方和积的乘方的运算法则。

能够熟练运用幂的乘方和积的乘方的运算法则进行计算。

2、过程与方法目标通过观察、类比、猜想、归纳等数学活动,经历幂的乘方和积的乘方运算法则的推导过程,培养学生的逻辑推理能力和数学思维能力。

通过实际问题的解决,让学生体会数学与生活的紧密联系,提高学生应用数学知识解决实际问题的能力。

3、情感态度与价值观目标让学生在数学活动中体验成功的喜悦,增强学习数学的自信心。

培养学生勇于探索、敢于创新的精神,以及合作交流的意识。

二、教学重难点1、教学重点幂的乘方和积的乘方的运算法则。

正确运用幂的乘方和积的乘方的运算法则进行计算。

2、教学难点幂的乘方和积的乘方运算法则的推导过程。

灵活运用幂的乘方和积的乘方的运算法则解决问题。

三、教学方法讲授法、启发式教学法、练习法四、教学过程1、导入新课回顾同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加。

即:\(a^m×a^n = a^{m+n}\)(\(m\)、\(n\)为正整数)提出问题:如果一个幂的指数再乘方,或者几个同底数幂相乘,结果又会怎样呢?从而引出本节课的课题——幂的乘方与积的乘方。

2、讲授新课(1)幂的乘方计算:\((a^m)^n\)(\(m\)、\(n\)为正整数)引导学生思考:这个式子表示什么意义?讲解:\((a^m)^n\)表示\(n\)个\(a^m\)相乘,即:\\begin{align}(a^m)^n&=a^m×a^m×\cdots×a^m\\&=a^{m+m+\cdots+m}\\&=a^{mn}\end{align}\得出幂的乘方法则:幂的乘方,底数不变,指数相乘。

即:\((a^m)^n = a^{mn}\)(\(m\)、\(n\)为正整数)(2)积的乘方计算:\((ab)^n\)(\(n\)为正整数)引导学生思考:这个式子表示什么意义?讲解:\((ab)^n\)表示\(n\)个\(ab\)相乘,即:\\begin{align}(ab)^n&=(ab)×(ab)×\cdots×(ab)\\&=(a×a×\cdots×a)×(b×b×\cdots×b)\\&=a^n×b^n\end{align}\得出积的乘方法则:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。

幂的乘方与积的乘方

幂的乘方与积的乘方

第二节 幂的乘方与积的乘方(1)【学习目标】1、经历探索幂的乘方性质,进一步体会幂的乘方。

2、了解幂的乘方运算性质,能利用性质进行计算和解决实际问题。

3、经历自主探索冪的乘方运算性质的过程,能用代数式和文字准确表达性质;通过由特殊到一般的猜想与说理、验证,培养说理能力和归纳表达能力。

【学习方法】 自主探究与合作交流 【学习重点】冪的乘方运算性质。

【学习难点】冪的乘方运算性质的灵活运用。

【学习过程】 模块一 预习反馈 一.学习准备1.幂的意义:na 表示______个______连乘,其中a 是________,n 是_______.2. a m· a n= (m 、n 为正整数)即同底数幂相乘, 不变,指数 . 3.计算下列各式,结果用幂的形式表示。

(1)541010⨯=_______________________(2) 432333⨯⨯=__________________ (3) 441010⨯=______________________(4) 222333⨯⨯=__________________ 二.解读教材 1.你知道()3210等于多少吗?()3210=222101010⨯⨯(根据幂的意义)=22210++ (根据同底数幂的乘法)=610=3210⨯2.计算下列各式,并说明理由。

(1)()426=( )×( )×( )×( )=()()()()()()⨯+++=66(2)32)(a =( )×( )×( )=()()()()()⨯++=a a(3)2)(m a =( )×( )=()()()()⨯+=a a(4)n m a )(=( )×( )×……×( )×( )=()()()()()⨯+++=a a即: 3.例题观摩 (1)6232355)5(==⨯ (2)71663232)(y y y y y y y y ==⋅=⋅=⋅+⨯()n m a =_______________(m 、n 为正整数) 。

七年级数学上11.2积的乘方和幂的乘方教学设计

七年级数学上11.2积的乘方和幂的乘方教学设计
3.教师讲解幂的乘方的运算法则,如:(a^m)^n = a^(m*n),并解释其含义。
(三)学生小组讨论
1.教师将学生分成小组,每组选择一个或多个实例,讨论积的乘方和幂的乘方的运算法则。
2.学生在小组内分享自己的思考和理解,共同探讨解决方法。
3.各小组汇报讨论成果,全班共同总结积的乘方和幂的乘方的规律。
2.引导学生发现幂的乘方的规律,如:(a²)³ = a^(2*3),并解释其意义。
【小组合作】
1.学生分小组讨论,总结积的乘方和幂的乘方的运算法则。
2.各小组汇报成果,全班共同总结出积的乘方和幂的乘方的规律。
【实例讲解】
教师通过具体实例,讲解积的乘方和幂的乘方的应用,如:计算(2×3)²、(x²)³等。
(2)实施多元化评价,结合课堂练习、课后作业、小组讨论等多种形式,全面评估学生的学习效果。
(3)关注学生的情感态度与价值观,鼓励学生积极参与数学学习,培养良好的学习习惯。
4.教学拓展:
(1)结合生活实际,设计富有挑ቤተ መጻሕፍቲ ባይዱ性的数学问题,让学生在解决问题中运用积的乘方和幂的乘方的知识。
(2)引导学生探索积的乘方和幂的乘方在其他学科领域的应用,如物理学、化学等,提高学生的综合素养。
(二)教学设想
1.教学方法:
(1)采用情境导入法,通过实际问题引入积的乘方和幂的乘方的概念,激发学生的学习兴趣。
(2)运用直观演示法,借助教具和多媒体手段,让学生感受积的乘方和幂的乘方的意义,降低学习难度。
(3)采用自主探究法和小组合作法,引导学生自主发现和总结积的乘方和幂的乘方的运算法则,培养学生的自主学习能力和团队合作精神。
2.教学策略:
(1)针对学生的个体差异,实施差异化教学,关注每个学生的学习进度,提高教学质量。

北师大版七下数学1.2.1幂的乘方与积的乘方教学设计

北师大版七下数学1.2.1幂的乘方与积的乘方教学设计

北师大版七下数学1.2.1幂的乘方与积的乘方教学设计一. 教材分析北师大版七下数学1.2.1幂的乘方与积的乘方是本节课的主要内容。

通过学习本节课,学生能够理解幂的乘方与积的乘方的概念,掌握幂的乘方与积的乘方的运算方法,以及了解幂的乘方与积的乘方在实际问题中的应用。

二. 学情分析在学习本节课之前,学生已经学习了幂的概念和运算方法,对于幂的乘方和积的乘方可能存在一定的模糊认识。

因此,在教学过程中,需要引导学生通过观察、操作、思考、交流等活动,逐步理解幂的乘方与积的乘方的概念和运算方法。

三. 教学目标1.理解幂的乘方与积的乘方的概念。

2.掌握幂的乘方与积的乘方的运算方法。

3.能够运用幂的乘方与积的乘方解决实际问题。

四. 教学重难点1.幂的乘方与积的乘方的概念。

2.幂的乘方与积的乘方的运算方法。

五. 教学方法采用问题驱动法、案例教学法、小组合作学习法等教学方法,引导学生通过观察、操作、思考、交流等活动,逐步理解幂的乘方与积的乘方的概念和运算方法。

六. 教学准备1.教学PPT。

2.教学案例。

3.学习任务单。

七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的主题,例如:一个长方体的体积是2^3*3^2,求这个长方体的表面积。

引导学生思考如何解决这个问题,从而引出幂的乘方与积的乘方的概念。

2.呈现(10分钟)通过PPT展示幂的乘方与积的乘方的定义和运算方法,引导学生观察和思考,从而理解幂的乘方与积的乘方的概念和运算方法。

3.操练(10分钟)学生独立完成学习任务单上的相关题目,教师巡回指导,解答学生的问题。

4.巩固(10分钟)学生分组讨论,通过案例教学法,分析并解决实际问题,巩固幂的乘方与积的乘方的概念和运算方法。

5.拓展(10分钟)引导学生思考幂的乘方与积的乘方在实际问题中的应用,例如:科学计算、工程设计等。

6.小结(5分钟)教师引导学生总结本节课的主要内容和收获,学生分享自己的学习心得。

7.家庭作业(5分钟)布置相关的家庭作业,巩固所学知识。

(湘教版)七年级数学下册:2.1.2《幂的乘方与积的乘方》教案

(湘教版)七年级数学下册:2.1.2《幂的乘方与积的乘方》教案

(湘教版)七年级数学下册:2.1.2《幂的乘方与积的乘方》教案一. 教材分析《幂的乘方与积的乘方》是湘教版七年级数学下册第2章第1节的内容。

本节课主要让学生掌握幂的乘方运算法则和积的乘方运算法则,培养学生运用幂的运算性质解决实际问题的能力。

教材通过引入实例,引导学生发现规律,从而得出幂的乘方与积的乘方的运算法则。

二. 学情分析学生在之前的学习中已经掌握了有理数的乘法、幂的定义及简单的幂的运算。

但对于幂的乘方与积的乘方,学生可能存在理解上的困难。

因此,在教学过程中,教师需要注重引导学生发现规律,让学生在理解的基础上掌握运算法则。

三. 教学目标1.理解幂的乘方与积的乘方的运算法则。

2.能够运用幂的运算性质解决实际问题。

3.培养学生的观察能力、推理能力及运用数学知识解决实际问题的能力。

四. 教学重难点1.教学重点:幂的乘方与积的乘方的运算法则。

2.教学难点:理解幂的乘方与积的乘方的本质,能够灵活运用运算法则解决实际问题。

五. 教学方法1.情境教学法:通过引入实例,让学生在实际问题中发现幂的乘方与积的乘方的规律。

2.引导发现法:教师引导学生观察、分析、推理,从而得出幂的乘方与积的乘方的运算法则。

3.实践操作法:让学生在课堂上动手操作,巩固幂的乘方与积的乘方的运算法则。

六. 教学准备1.教学课件:制作课件,展示幂的乘方与积的乘方的实例及运算法则。

2.教学素材:准备一些实际问题,让学生在解决实际问题的过程中运用幂的运算性质。

3.学生活动材料:为学生提供一些练习题,让学生在课堂上进行实践操作。

七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,让学生尝试解决。

例如:计算(23)2,32×33等。

引导学生发现这些问题都可以转化为幂的乘方与积的乘方的问题。

2.呈现(10分钟)教师通过课件展示幂的乘方与积的乘方的实例,引导学生发现规律。

如:(a m)n=a mn,(ab)n=a n b n等。

让学生总结出幂的乘方与积的乘方的运算法则。

幂的乘方与积的乘方教案

幂的乘方与积的乘方教案

教师学生年级七年级授课时间2018.05授课课题幂的乘方及积的乘方授课类型新授课教学目标1. 体会幂的意义,会用同底数幂的乘法性质进行计算,并能解决一些实际问题。

2. 会用幂的乘方、积的乘方性质进行计算,并能解决一些实际问题。

教学重点及难点重点:(1)同底数幂的乘法性质及其运算。

(2)幂的乘方及积的乘方性质的正确、灵活运用。

难点:(1)同底数幂的乘法性质的灵活运用。

(2)探索幂的乘方、积的乘方两个性质过程中发展推理能力和有条理的表达能力。

参考资料教学过程复习巩固新课导入授课内容分析、推导(突出教学内容要点,采用的教学方法等,要求简明扼要,若有及教材中相同的文字、表格、例题等不要在教案上照抄,可注明教材页码。

)一:知识归纳1.同底数幂的意义乘方:求n个相同因数a的积的运算叫做乘方读法:a n读作a的n次幂(或a的n次方)。

同底数幂是指底数相同的幂,如:23及25,a4及a,()a b23及()a b27,()x y-2及()x y-3等等。

注意:底数a可以是任意有理数,也可以是单项式、多项式。

2. 同底数幂的乘法性质a a am n m n·=+(m,n都是正整数)这就是说,同底数幂相乘,底数不变,指数相加。

当三个或三个以上同底数幂相乘时,也具有这一性质,例如:a a a am n p m n p··=++(m,n,p都是正整数)3. 幂的乘方的意义幂的乘方是指几个相同的幂相乘,如()a53是三个a5相乘读作a的五次幂的三次方,()a m n是n个a m相乘,读作a的m次幂的n次方4. 幂的乘方性质na指数幂底数()a a m n mn =(m ,n 都是正整数)这就是说,幂的乘方,底数不变,指数相乘。

注意:(1)不要把幂的乘方性质及同底数幂的乘法性质混淆,幂的乘方运算,是转化为指数的乘法运算(底数不变);同底数幂的乘法,是转化为指数的加法运算(底数不变)。

(2)此性质可逆用:()a a mn mn=。

(完整word)幂的乘方与积的乘方(一,二)教案

(完整word)幂的乘方与积的乘方(一,二)教案

幂的乘方与积的乘方(一)教学目标 1使学生理解并掌握幂的乘方法则; 2使学生能运用幂的乘方法则进行计算; 3在推导幂的乘方法则过程中,培养学生逻辑思维和分析问题的能力教学重点和难点 重点:理解并掌握幂的乘方法则 难点:幂的乘方法则的灵活运用课堂教学过程设计一、引导学生猜想幂的乘方法则 1根据你自己的理解,说明(a 4)3所表示的意义是什么?这种运算叫什么好?通过分析可引出:(a 4)3=a 4·a 4·a 4这种运算可叫幂的乘方,我们今天就学习它的性质(板书课题:幂的乘方) 2猜想(a 4)3有无简便的计算方法?((a 4)3=a 3×4.) 3你能证明自己猜出的“方法”吗?二、引导学生证明幂的乘方法则利用乘方的意义与同底数幂的乘法法则可得(a 4)3=a 4·a 4·a 4=a 4+4+4=a 12=a 3×4.一般地有,.mn m n m m m a n m m m a a a a a m ==⋅=+++个个于是得(a m )n =a mn (m ,n 都是正整数)这就是说,幂的乘方,底数不变,指数相乘。

三、引导学生剖析幂的乘方法则 1公式中的底数a 可以是具体的数,也可以是代数式 2注意幂的乘方中指数相乘,而同底数幂的乘法中是指数相加 3多重乘方可以重复运用上述法则,如[(a m )n ]p =(a mn )p =a mnp四、应用举例 变式练习例 计算:(1)(107)2; (2)(z 4)4; (3)-(y 4)3; (4)(a m )4解:(1)(107)2=107×2=1014; (2)(z 4)4=z 4×4=z 16;(3)-(y 4)3=—y 4×3=-y 12; (4)(a m )4=a m ×4=a 4m第(1)小题由学生口答,教师板演;第(2),(3),(4)小题由学生板演课堂练习 1计算:(1)(103)3; (2)(x 4)3; (3)-(x 3)5;(4)(a 2)3·a 5; (5)(x 2)8·(x 4)4; (6)—(x m )5 2下面的计算对不对?如果不对,应怎样改正:(1)(a 5)2=a 7; (2)a 5·a 2=a 10 3计算:(1)[⎪⎭⎫⎝⎛-312]3; (2)(a 2)3·(a 3)4; (3)[(x —y)2]3·(x —y )。

《幂的乘方与积的乘方》word教案 (公开课获奖)2022北师版 (1)

《幂的乘方与积的乘方》word教案 (公开课获奖)2022北师版 (1)

1.2 幂的乘方与积的乘方(一)●教学目标(一)教学知识点1.经历探索幂的乘方的运算性质的过程,进一步体会幂的意义.2.了解幂的乘方的运算性质,并能解决一些实际问题.(二)能力训练要求1.在探索幂的乘方的运算性质的过程中,发展推理能力和有条理的表达能力.2.学习幂的乘方的运算性质,提高解决问题的能力.(三)情感与价值观要求在发展推理能力和有条理的表达能力的同时,进一步体会学习数学的兴趣,培养学习数学的信心,感受数学的内在美.●教学重点幂的乘方的运算性质及其应用.●教学难点幂的运算性质的灵活运用.●教学方法引导——探究相结合教师由实际情景引导学生探究幂的乘方的运算性质,并能灵活运用.●教具准备投影片三张第一张:做一做,记作(§1.2.1 A)第二张:例题,记作(§1.2.1 B)第三张:练习,记作(§1.2.1 C)●教学过程Ⅰ.提出问题,引入新课[师]我们先来看一个问题:一个正方体的边长是102毫米,你能计算出它的体积吗?如果将这个正方体的边长扩大为原来的10倍,则这个正方体的体积是原来的多少倍?[生]正方体的体积等于边长的立方.所以边长为102毫米的正方体的体积V=(102)3立方毫米;如果边长扩大为原来的10倍,即边长变为102×10毫米即103毫米,此时正方体的体积变为V1=(103)3立方毫米.[师](102)3,(103)3很显然不是最简,你能利用幂的意义,得出最后的结果吗?大家可以独立思考.[生]可以.根据幂的意义可知(102)3表示三个102相乘,于是就有(102)3=102×102×102=102+2+2=106;同样根据幂的意义可知(103)3=103×103×103=103+3+3=109.于是我们就求出了V=106立方毫米,V1=109立方毫米.我们还可以计算出当这个正方形边长扩大为原来的10倍时,体积就变为原来的1000倍即103倍.[生]也就是说体积扩大的倍数,远大于边长扩大的倍数.[师]是的!我们再来看(102)3,(103)3这样的运算.102,103是幂的形式,因此我们把这样的运算叫做幂的乘方.这节课我们就来研究幂的第二个运算性质——幂的乘方.Ⅱ.探索幂的乘方的运算性质出示投影片(§1.2.1 A)做一做:计算下列各式并说明理由.(1)(62)4;(2)(a2)3;(3)(a m)2;(4)(a m)n.[师]我们观察不难发现,上面的4个小题都是幂的乘方的运算,下面就请同学们利用幂的意义和我们学习过的内容解答它们.[生](1)(62)462·62·62·6262+2+2+2=68.[师]第①步和第②步推出的理由是什么呢?[生]第①步的理由是利用了幂的意义.(62)4表示4个62相乘;第②步的理由是利用了我们刚学过的同底数幂的乘法:底数不变,指数相加.[师]观察上面的运算过程,底数和指数发生了怎样的变化?[生]结果的指数8=2×4,刚好是原式子中两个指数的积,而运算前后的底数没变,还是6.[师]接下来的(2)、(3)、(4)小题是不是可以同样地利用幂的意义和同底数幂的乘法的性质来推出结果呢?[生]可以![师]下面我们就请三位同学到黑板上推出,其余的同学观察他们做的有无错误.[生](2)(a 2)3=a 2·a 2·a 2=a 2+2+2=a 6=a 2×3;(3)(a m )2=a m ·a m =a m +m =a 2m;(4)(a m )n=ma n mm m a a a 个•••⋅⋅⋅ = mn mm m a 个+⋅⋅⋅++=a mn.[师生共析]由上面的“做一做”我们就推出了幂的乘方的运算性质,即 (a m )n =a mn(m ,n 都是正整数)用语言表述即为:幂的乘方,底数不变,指数相乘. 在幂的乘方的运算中,指数的运算也降了一级. Ⅲ.例题出示投影片(§1.2.1 B) [例1]计算:(1)(102)3;(2)(b 5)5;(3)(a n )3;(4)-(x 2)m;(5)(y 2)3·y ;(6)2(a 2)6-(a 3)4.[例2]如果甲球的半径是乙球的n 倍,那么甲球的体积是乙球的n 3倍.地球、木星、太阳可以近似地看做是球体.木星、太阳的半径分别约是地球的10倍和102倍,它们的体积分别约是地球的多少倍?[师]我们首先看例1的(1)、(2)、(3)题,可以发现它们都是幂的乘方的运算.我们开始练习幂的乘方的运算性质,不要着急直接套入公式(a m )n =a mn中,而应进一步体会乘方的意义和幂的意义.我们只要明白了算理,熟悉后就可直接代入,下面就请几个同学回答.[生](1)(102)3=102·102·102=102+2+2=102×3=106;(2)(b 5)5=b 5·b 5·b 5·b 5·b 5=b 5+5+5+5+5=b 5×5=b 25;(3)(a n )3=a n·a n·a n=an +n +n=a 3n.[师]很好!下面我们再来试做例1中(4)、(5)、(6)题.[生](4)-(x 2)m表示(x 2)m的相反数,所以-(x 2)m=-2222x m x x x 个•••⋅⋅⋅=- 2222个m x +⋅⋅⋅++=-x 2m;(5)(y 2)3·y 中既含有乘方运算,也含有乘法运算,按运算顺序,应先乘方,再做乘法,所以,(y 2)3·y =(y 2·y 2·y 2)·y =y2×3·y =y 6·y =y 6+1=y 7;(6)2(a 2)6-(a 3)4按运算顺序应先算乘方,最后再化简.所以 2(a 2)6-(a 3)4=2a2×6-a3×4=2a 12-a 12=a 12.[师]接下来,我们再来看幂的乘方在实际中的应用——例2. [生]根据例2中的前提条件,可得木星的体积是地球体积的103倍;太阳的体积是地球体积的(102)3倍即106倍. [师]很好!我们观察例2图中的木星、太阳、地球的体积不难发现这个图直观地表现了体积扩大的倍数与半径扩大的倍数之间的关系.比较木星、太阳、地球三个球体的大小,可知体积扩大的倍数比半径扩大的倍数大得多.Ⅳ.练一练出示投影片(§1.2.1 C) 1.计算:(1)(103)3;(2)-(a 2)5;(3)(x 3)4·x 2; (4)[(-x )2]3;(5)(-a )2(a 2)2; (6)x ·x 4-x 2·x 3.2.判断下面计算是否正确?如有错误请改正: (1)(x 3)3=x 6;(2)a 6·a 4=a 24.[师]我们首先来回顾一下(a m )n =a mn(m 、n 都是正整数)是怎样推出来的.[生](a m )n 表示n 个a m 相乘,根据乘方的意义(a m )n=ma n mm m m a a a a 个••••⋅⋅⋅,再根据同底数幂的乘法的运算性质,可由ma n mm m m a a a a 个••••⋅⋅⋅= mn mm n a 个+⋅⋅⋅++=a mn.[师]我们能够很好地体会和理解了幂的意义和同底数幂乘法的运算性质,接下来我们就来完成“练一练”.[生]1.解:(1)(103)3=103×3=109; (2)-(a 2)5=-a 2×5=-a 10;(3)(x 3)4·x 2=x3×4·x 2=x 12·x 2=x 12+2=x 14;(4)[(-x )2]3=(-x )2×3=(-x )6=x 6; (5)(-a )2·(a 2)2=a 2·a2×2=a 2·a 4=a 2+4=a 6;(6)x ·x 4-x 2·x 3=x 1+4-x 2+3=x 5-x 5=0.[师]2.(1)(x 3)3=x 6不正确,因为(x 3)3表示三个x 3相乘即x 3·x 3·x 3=x 3+3+3=x3×3=x 9.或直接根据幂的乘方的运算性质:底数不变,指数相乘,得(x 3)3=x3×3=x 9.(2)a 6·a 4=a 24不正确.因为a 6·a 4=(a ·a ·a ·a ·a ·a )(a ·a ·a ·a )=aa a a 个10•••⋅⋅⋅=a 10或根据同底数幂乘法的运算性质:底数不变,指数相加,得a 6·a 4=a 6+4=a 10.[师]我们学习了幂的乘方的运算性质很容易与同底数幂的乘法的运算性质混淆.通过练习的第2题,同学们可反思一下做题的过程,注意幂的意义和乘方的意义,真正地去理解这两个幂的运算性质,而不是去单纯的记忆.Ⅴ.课时小结我们这节课通过乘方的意义和幂的意义推出了幂的乘方的运算性质,并通过实际问题体会到了学习这个性质的必要性,从而提高了我们的推理能力,有条理的语言表达能力和解决实际问题的能力.Ⅵ.课后作业1.课本P 6,习题1.2的第1、2、3题.2.反思做题过程,自己对出现的错误加以改正,并写入成长记录中. Ⅶ.活动与探究 观察下列等式: 1×2=31×1×2×3, 1×2+2×3=31×2×3×4, 1×2+2×3+3×4=31×3×4×5, 1×2+2×3+3×4+4×5=31×4×5×6, ……根据以上规律,请你猜测:1×2+2×3+3×4+4×5+…+n (n +1)= (n 为自然数).[过程]解这一类题目,要用到归纳推理,它是一种很重要的数学思想方法.数学史上许多重要的发现,如哥德巴赫猜想,四色猜想等,就是由数学家的探索、总结、猜想而得.猜想的结论是否正确,必须经过严格的证明,才能辨明是非,通过观察比较,本题的规律较为明显.结论:1×2+2×3+3×4+…+n(n+1)=31n(n+1)(n+2)关于它的证明在以后学习了数学归纳法后一目了然.●板书设计§1.2.1 幂的乘方与积的乘方(一) 一、提出问题:(102)3,(103)3如何计算?二、根据乘方的意义和幂的意义,推出幂的乘方的运算性质(102)3=102·102·102=102+2+2=102×3=106;(103)3=103·103·103=103+3+3=103×3=109;(62)4=62·62·62·62=62+2+2+2=62×4=68;……(a m)n=manmmm aaa个•••=mnmmma个+++=a mn得出:幂的乘方,底数不变,指数相乘.三、例题四、练习第五章反比例函数一、学生知识状况分析通过本章的学习,学生已经经历抽象反比例函数概念的过程,理解了反比例函数的概念,会作出反比例函数的图象,并探索和掌握其性质,能从函数图象中获取信息来解决实际问题。

幂的乘方与积的乘方教案学习专用

幂的乘方与积的乘方教案学习专用

幂的乘方与积的乘方教案学习专用教学目标:1.理解幂的乘方和积的乘方的概念。

2.学习幂的乘方和积的乘方的运算法则。

3.能够应用幂的乘方和积的乘方的运算法则解决实际问题。

教学重点:1.幂的乘方和积的乘方的概念理解。

2.运用幂的乘方和积的乘方的运算法则解决问题。

教学准备:1.黑板、白板和书写工具。

2.习题集以及课堂练习材料。

教学过程:Step 1: 引入幂的乘方和积的乘方的概念(10分钟)教师可以通过一个简单的问题或一个实际的例子来引入幂的乘方和积的乘方的概念。

例如,在我们日常生活中,可以举例解释2的3次幂和3的2次幂的概念。

可以画出一个正方形,每个边长都是2cm,在黑板上记录为2^3,然后解释为2*2*2、同样地,可以画出一个正方形,每个边长都是3cm,记录为3^2,解释为3*3Step 2:讲解幂的乘方的运算法则(20分钟)在黑板上列一些幂的乘方的练习题,例如2^3*2^4,10^2*10^3等,并让学生解答。

之后,教师解答这些问题,展示幂的乘方的运算法则。

-幂的乘方的法则:(a^m)^n=a^(m*n)-幂的乘法法则:a^m*a^n=a^(m+n)Step 3:讲解积的乘方的运算法则(20分钟)在黑板上列一些积的乘方的练习题,例如(2*3)^4,(5*10)^3等,并让学生解答。

之后,教师解答这些问题,展示积的乘方的运算法则。

-积的乘方的法则:(a*b)^n=a^n*b^nStep 4:综合运用幂的乘方和积的乘方的运算法则解决问题(30分钟)教师列举一些实际应用问题,例如一个正方形的边长是10cm,问面积是多少?一个长方形的长是5cm,宽是3cm,问面积是多少?学生利用幂的乘方和积的乘方的运算法则解决这些问题,并进行讨论。

Step 5:小结与课堂练习(15分钟)教师对幂的乘方和积的乘方的运算法则进行小结,并鼓励学生通过课堂习题巩固所学内容。

Step 6:作业布置(5分钟)布置相关的作业,要求学生利用幂的乘方和积的乘方的运算法则解决一些问题,并在下堂课上进行批改和讲解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

幂的乘方与积的乘方(一)教学设计第一章 整式的乘除2 幂的乘方与积的乘方(第1课时)一、 学生起点分析:学生知识技能基础:学生通过对七年级上册数学课本的学习,已经掌握了用字母表示数的技能,并且了解了有关乘方的知识,根据幂的意义知道了式子:n an a a a a =⨯⨯⨯4434421ΛΛ个的成立,而通过对前一节课的学习,对于幂的运算中“同底数幂的乘法法则”已非常熟悉.学生活动经验基础:在前一节课学生已经经历从特殊到一般的研究过程,学习归纳概括的研究方法.在探讨“幂的乘方”的关系式中,学生仍可根据幂的意义的有关计算,经历从特殊到一般的研究过程,感受到知识之间的内在联系,能从具体情境中抽象出数量之间的变化规律,并且能够用字母表达式体现展示这一规律.同时在学习过程中,给学生足够的合作交流空间,加深对法则的探索过程及对算理的理解.二、 教学任务分析:教科书通过图中的木星、太阳和地球的大小,直观地表现了体积的倍数之间的关系.从实际问题引入幂的乘方运算.学生在探索这个问题的过程中,将自然地体会幂的乘方运算的必要性,了解数学与现实世界的联系,问题提出以后,教师可以鼓励学生根据幂的意义,独立得出木星、太阳的体积分别约是地球体积103和106倍.在教学中,教师要注意引导学生对幂的乘方一般规律的探索和表达,在利用具体数进行试验论证上多点时间,让学生习惯于对具体数的操作,教师可以通过提出“你发现的规律对任意一个数都成立吗?”等问题加以引导,并重视同伴之间的相互启发,在运算过程中,体会幂的乘方.因此,教师在教学中应提供丰富有趣的问题,鼓励学生通过独立思考与讨论发现关系,给学生留下充分探索和交流的空间,使学生经历从具体问题中抽象规律,用符号进行表示的过程.为此,本节课的教学目标是:1. 知识与技能:学习幂的乘方的运算性质,进一步体会幂的意义,并能解决实际问题.2. 过程与方法:经历探索幂的乘方运算性质的过程,发展推理能力和有条理的表达能力,提高解决问题的能力.3. 情感与态度:体会学习数学的兴趣,培养学习数学的信心,感受数学的内在美.三、 教学过程设计: 本节课设计了七个教学环节:复习回顾、情境引入、探究新知、落实基础、练习提高、课堂小结、布置作业.第一环节:复习回顾活动内容:复习已学过的幂的意义及幂的运算法则1. 幂的意义:n an a a a a =⨯⨯⨯4434421Λ个2. .n m n m a a a +=⋅(m 、n 为正整数)同底数幂相乘,底数不变,指数相加.活动目的:本堂课的学习方法仍是引导鼓励学生通过已学习的知识经过个人思考、小组合作等方式推导出本课新知,增强学生符号感.而这个过程离不开旧知识的铺垫,幂的意义在本节课中仍旧是法则推导的主要依据,其地位不可小觑,而同底数幂的乘法的推导过程,其中包含的算理知识在本堂课中仍是精神主旨,因而复习要细致.活动的注意事项:本堂课的学习方式即通过已经掌握的数学知识,经历探究的过程,推导出新的数学知识.因而要让学生体会知识间的融会贯通,彻底搞清楚其中的数学思想,并会模仿,建立模型.第二环节:情境引入活动内容:根据已经学习过的知识,带领学生回忆并探讨以下实际问题1. 乙正方体的棱长是 2 cm, 则乙正方体的体积 V 乙 = cm 3 .甲正方体的棱长是乙正方体的 5 倍,则甲正方体的体积V = cm 3 .2.球的体积公式是V =334r π,其中V 是体积、r 是球的半径地球、木星、太阳可以近似地看作球体.木星、太阳的半径分别约是地球的10倍和102倍,它们的体积分别约是地球的 倍和 倍.活动目的:正方体是学生非常熟悉的几何体,它的体积计算公式学生琅琅上口,但是当其棱长扩大一定的倍数后,新的正方体体积与原来正方体体积之间有怎样的数量关系呢?这是学生以前很少考虑过的.课本上的问题情境从木星、太阳和地球的体积大小入手,直观的表现体积倍数之间的关系,非常吸引人.学生在探索这个问题的过程中,将自然地体会幂的乘方运算的必要性,了解数学与现实世界的联系,问题提出以后,学生可以得出木星、太阳的体积分别约是地球体积103和(102)3倍.教师可以鼓励学生根据幂的意义,思考(102)3等于多少活动注意事项:在实际教学过程中应本着从学生实际出发的原则,首先从学生最为熟悉的正方体体积入手,通过具体数字来研究问题,这是良策.进而告知学生球的体积公式,给出具体数字再去研究第三环节:探究新知活动内容:1.通过问题情境继续研究:为什么()6321010=?让学生清楚运算之间的关系,题目所描述的是10的2次幂的三次方,其底数是幂的形式,然后根据幂的意义展开运算,去探究运算的过程.2.计算下列各式,并说明理由 .(1) (62)4 ; (2) (a 2)3 ; (3) (a m )2 ; (4) (a m )n .仿照前面,来研究以上四个题目的运算情况,实际上做到(3)题时可以猜想(4)题的结果,也为后面幂的乘方的法则推导带来指导性.完成本节课的主要教学任务. 活动目的:学习的过程中,时刻不能忘记学生是主体,一切教学活动都应当从学生已有的认知角度出发,问题环节设计跨越性不能太大,要让学生在不断的探索过程中得到不同程度的感悟,自己能够主动地去探究问题的实质,有成功的体验.活动的注意事项:本环节的引入是从问题情境开始的,能够引起学生兴趣,好奇心.激发求知欲.在探索的过程中学生将自然地体会幂的乘方运算的必要性,了解数学与现实世界的联系.问题提出后,教师应鼓励学生根据幂的意义,独立来完成这几个问题.前几个问题的目的,是夯实用幂的意义来处理这类问题的方法,让每个同学都能体会这种计算方法.而在计算2(4)题时,应先鼓励学生进行猜想结果,然后再来验证这样的一个字母表达的过程.探索的方式从特殊到一般,符合学生的认知规律,进而总结出幂的乘方的法则,这是本节课的重点.第四环节:落实基础活动内容:一、完成教科书例题1【例1】计算:(1) (102)3 ; (2) (b 5)5 ; (3) (a n )3;(4) -(x 2)m ; (5) (y 2)3 · y ; (6) 2(a 2)6 - (a 3)4 .二、随堂练习1.判断下面计算是否正确?如果有错误请改正:(1) (x 3)3 = x 6 ; (2)a 6 · a 4 = a 24 ..2.计算:(1) (103)3 ; (2) -(a 2)5 ; (3) (x 3)4 · x 2 ;(4) [(-x )2 ]3 ; (5) (-a )2(a 2)2; (6) x·x 4 – x 2 · x 3活动目的:学生刚刚接触到新的运算法则时,往往会感到十分的生疏,或者说对它的感觉仍旧停留在“雾里看花”状态,怎样拨开迷雾见真相?这需要一个过程,也就是对新知识从熟悉到熟练的过程,要达到这个目的一定要精选基本习题,所以在处理例题与随堂练习时,一定要“精心”,无论是基本的习题,还是变化的习题,都要以透彻为最终目标.活动的注意事项:在处理例题中前三个问题的困难不大,都是对法则的最基本应用.后三个题都有一定的变化形式,(4)题中“—”的理解在这里已经不是难点,(5)(6)题中出现了法则的混用,应当提醒学生一定考虑好运算顺序再出手,对于有疑问的地方多问几个为什么,不要造成知识上的夹生饭,不利于今后的学习.随堂练习仍要如此,在实际教学活动中,肯定有部分学生仍旧会出现幂的乘方与同底数幂的乘法分辨不清楚的现象,搞不明白何时指数相加,何时指数相乘,还需进一步让学生体会:幂的运算是指数部分做的运算,同底数幂的乘法,指数相加;幂的乘方,指数相乘;通过比较可以看出,指数的运算都降了一级,这也是区分的一种方式.第五环节:联系拓广活动内容:把所学知识面拓广,幂的运算都在指数上做文章,这节课的拓广题,也是以指数变化为主.⑴a12=(a3)()=(a2)()=a3a()=()3=()4⑵y3n=3,y9n=.⑶(a2)m+1=.⑷32﹒9m=3()活动目的:课本上的知识都是独立的,互相关联的内容和习题较少,而学习的目的不应是单独的模仿,根据多个知识交叉和综合点所涉及的问题处理也是早学习过程中应该逐渐摸索掌握的,经历这个过程实际上对所学的单独的知识又是一个更高的要求,应该让学生掌握,个别有困难的同学不做要求.活动的注意事项:题目综合性很强,完全围绕幂的运算来进行,主要让学生动脑子,分清指数部分究竟做何运算,实际上也就是辨别是同底数幂相乘还是幂的乘方.在考虑过程中必定要把两者结合起来考虑,确实有一定的难度.课堂上速度要放慢,给学生充分的讨论与思考的时间,可以启用分组讨论合作的方式,充分发挥学生的作用,让他们之间相互商量,相互启发,进行合作交流.在争论中发现问题要比盲目的接受知识更有意义,特别是学生之间通过合作学来的知识更能在脑海中留下深刻的印象.在教学过程中如果时间较紧,可从中选取个别题目来处理.第六环节:课堂小结活动内容:师生互相交流本堂课上应该掌握的幂的乘方的特征,教师对课堂上发现的学生掌握不好的地方给以强调.特别要注意已经学习过的两种幂的运算——同底数幂的乘法与幂的乘方,它们之间的联系与区别也是这堂课要掌握的.活动目的:课堂小结并不只是课堂知识点的回顾,要尽量让学生畅谈自己的切身感受,教师对于学生发言进行鼓励,对于两个知识点整合,更要有所思考,达到对所学知识巩固的目的.活动的注意事项:由于学习了两种幂的运算,题目的综合性加强了许多,在解答过程中对学生的辨析能力要求高了,学生肯定有不少疑惑,需要与他人交流,因而在小结时,留出比平时小结稍多一点的时间.在小结中,让学生谈出自己学习的体会,其中有能够掌握的,也有掌握不好的,掌握不好的可以结合相关习题进行点拨.第七环节:布置作业1.完成课本习题1.2的1、22.拓展作业:(1)填空:[(a-b)3]2=(b-a)()(2)若4﹒8m﹒16m=29,求m的值四、教学设计反思1.数学课堂应该是学生自主学习的课堂对于学生来说,学习数学的一个重要目的是要学会数学地思考,用数学的眼光去看世界.而对于教师来说,他还要从“教”的角度去看数学,他不仅要能“做”,还应当能够教会别人去“做”,为学生准备数学,即了解数学的产生、发展与形成的过程,在新的情境中使用不同的方式解释概念.当学生走进数学课堂时,他们的头脑并不是一张白纸——对数学有着自己的认识和感受.教师不能把他们看成“空的容器”,按照自己的意思往这些“空的容器”里“灌输数学”,这样常常会进入误区,因为师生之间在数学知识、数学活动经验、兴趣爱好、社会生活阅历等方面存在很大的差异,这些差异使得他们对同一个教学活动的感觉通常是不一样的.要想多“制造”一些供课后反思的数学学习素材,一个比较有效的方式就是在教学过程中尽可能多地把学生头脑中问题“挤”出来,使他们解决问题的思维过程暴露出来. 并且能够通过自己的视角发现问题,用自己的智慧解决问题,把培养学生能力放于首位.2.课后反思也是学生应具备的思维品质教得好本质上是为了促进学得好.但在实际教学过程中是否能够合乎我们的意愿呢?实践表明,培养学生把解题后的反思应用到整个数学学习过程中,养成检验、反思的习惯,是提高学习效果、培养能力的行之有效的方法.解题是学生学好数学的必由之路,但不同的解题指导思想就会有不同的解题效果,养成对解题后进行反思的习惯,即可作为学生解题的一种指导思想. 反思对学生思维品质的各方面的培养都有作积极的意义.反思题目结构特征可培养思维的深刻性;反思解题思路可培养思维的广阔性;反思解题途径,可培养思维的批判性;反思题目结论,可培养思维的创造性;运用反思过程中形成的知识组块,可提高学生思维的敏捷性;反思还可提高学生思维自我评价水平……,可以说反思是培养学生思维品质的有效途径. 有研究发现,数学思维品质以深刻性为基础,而思维的深刻性是在对数学思维活动的不断反思中实现的,大家知道,数学在锻炼人的逻辑思维能力方面有特殊的作用,而这种锻炼老师不可能传授,只能由学生在独立活动过程中获得.因此,在不增加学生负担的前提下,要求作业之后尽量写反思,利用作业空出的反思栏给老师提出问题,结合作业作出合适的反思,对学生来说是培养思维能力的一项有效的活动.。

相关文档
最新文档