基于单片机的温室大棚温度控制系统设计【开题报告】

合集下载

(完整word版)基于单片机数字温度计开题报告

(完整word版)基于单片机数字温度计开题报告
6. 研究(设计)课题特色
此次的多功能数字温度计不同于以往的传统数字温度计,它明显改善了数字温度计的性能,包括温度采集的速度和测量精度大幅度提高,测量温度的范围也得到了明显的提高。如果继续提高测量精度,可以直接作为工业测温仪器使用,由美国DALLAS半导体公司新研制的DS18B20型高分辨力智能温度传感器,能输出12位二进制数据,其分辨力高达0.0625℃,测温精度为±0.1℃。随着单片机、温度传感器和数码管显示驱动等技术的不断发展,要实现更加高的精度、显示速率快的数字温度计将很快能够实现。
4.课题的意义
本课题研究的重要意义在于生产过程中随着科技的不断发展,现代社会对各种信息参数的准确度和精确度的要求都有了几何级的增长,而如何准确而又迅速的获得这些参数,就需要受制于现代信息基础的发展水平。在三大信息信息采集(即传感器技术)、信息传输(通信技术)和信息处理(计算机技术)中,传感器属于信息技术的前沿尖端产品,尤其是数字温度传感器技术,在我国各领域已经应用的非常广泛可以说是渗透到社会的每一个领域,与人民的生活和环境的温度息息相关
2.课题背景
单片机自问世以来,性能不断提高和完善,其资源又能满足很多应用场合的需要,加之单片机具有集成度高、功能强、速度快、体积小、功耗低、使用方便、价格低廉等特点,因此,在工业控制、智能仪器仪表、数据采集和处理、通信系统、高级计算器、家用电器等领域的应用日益广泛,并且正在逐步取代现有的多片微机应用系统。单片机的潜力越来越被人们所重视。特别是当前用CMOS工艺制成的各种单片机,由于功耗低,使用的温度范围大,抗干扰能力强,能满足一些特殊要求的应用场合,更加扩大了单片机的应用范围,也进一步促使单片机性能的发展。而现在的单片机在农业上页有了很多的应用。随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中数字温度计就是一个典型的例子,但人们对它的要求越来越高,要为现代人工作、科研、生活、提供更好的更方便的设施就需要从数单片机技术入手,一切向着数字化控制,智能化控制方向发展。

基于单片机的温室大棚环境参数自动控制系统

基于单片机的温室大棚环境参数自动控制系统

基于单片机的温室大棚环境参数自动控制系统一、本文概述随着科技的发展和现代化农业的需求增长,温室大棚环境参数的自动控制已成为提高农业生产效率、保证农产品质量的重要手段。

本文将介绍一种基于单片机的温室大棚环境参数自动控制系统,该系统能够实时监测并调控温室内的温度、湿度、光照等关键环境参数,以实现最优化的作物生长环境。

本文将首先概述系统的整体架构和工作原理,然后详细介绍各个组成部分的设计和实现,包括传感器选择、单片机编程、执行机构控制等。

还将讨论系统的优点、实际应用情况以及可能存在的问题和改进方向。

通过本文的阐述,旨在为相关领域的研究人员和从业者提供有益的参考,推动温室大棚环境参数自动控制系统的发展和应用。

二、单片机技术概述单片机,全称为单片微型计算机(Single-Chip Microcomputer),是一种集成电路芯片,它采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU、随机存储器RAM、只读存储器ROM、多种I/O 口和中断系统、定时器/计时器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到一块硅片上构成的一个小而完善的微型计算机系统,在工业控制领域广泛应用。

单片机具有体积小、功耗低、控制功能强、扩展灵活、微型化和使用方便等优点。

单片机技术自20世纪70年代诞生以来,经历了从4位、8位、16位到32位等几大阶段的发展。

随着微处理器、半导体及超大规模集成电路技术的迅猛发展,单片机的技术也在不断进步。

目前,单片机已成为计算机发展和应用的一个重要方面。

在温室大棚环境参数自动控制系统中,单片机作为核心控制单元,负责接收各种传感器采集的数据,并根据预设的控制算法对这些数据进行处理,从而控制温室内的环境参数,如温度、湿度、光照等。

单片机通过其强大的数据处理能力和灵活的I/O控制能力,实现了对温室环境的精确控制,提高了温室大棚的生产效率和产品品质。

单片机还具有高度的集成性和扩展性,可以通过添加不同的外设模块,实现对温室大棚内其他环境参数的监控和控制,如土壤湿度、二氧化碳浓度等。

基于单片机的温室大棚温度控制系统设计_毕业论文剖析

基于单片机的温室大棚温度控制系统设计_毕业论文剖析
程序代码如下:
ORG 00H
JMP START
ORG 0BH
JMP TIM0
START: MOV TMOD,#01H
MOV TH0,#60
MOV TL0,#76
SETB TR0
MOV IE,#82H
MOV R4,#09H
MOV R0,#30H
CLEAR: MOV @R0,#00H
DJNZ R4,CLEAR
JMP WAIT
ADC: MOVX A,@R0
MOV 37H,A
CLR C
SUBB A,36H
JC TDOWN
TUP: MOV A,37H
CLR C
SUBB A,34H
JNC POFF
JMP LOOP
PON: CLR P2.1
JMP START0
POFF: SETB P2.1
JMP LOOP
TDOWN: MOV A,37H
图4 ADC0804
如图4,A/D转换器就是模拟/数字转换器,是将输入的模拟信号转换成数字信号。信号输入端的信号可以是传感器或是转换器的输出,而ADC输出的数字信号可以提供给微处理器,以便更广泛地应用。
ADC0804电压输入与数字输出关系如下表2所示:
十六进制
二进制码二
与满刻度的比率
相对电压值VREF=2.56伏
A
1010
10/16
10/256
3.200
0.200
9
1001
9/16
9/256
2.880
0.180
8
1000
8/16
8/256
2.560
0.160
7
0111
7/16

基于单片机的温室大棚温度控制系统设计【开题报告】

基于单片机的温室大棚温度控制系统设计【开题报告】

毕业设计(论文)开题报告题目:基于单片机的温室大棚温度控制系统设计专业:电子信息工程1选题的背景、意义国内对温室环境控制技术研究起步较晚。

自20世纪80年代以来,我国工程技术人员在吸收发达国家高科技温室生产技术的基础上,进行了温室中温度、湿度和二氧化碳等单项环境因子控制技术的研究[1]。

实践证明,单因子控制技术在保证作物获得最佳环境条件方面有一定的局限性。

1996年江苏理工大学研制出一套温室环境控制设备,能对营养液系统、温度、光照、二氧化碳施肥等进行综合控制,在一个150M2的温室内,实现了上述四个因子的综合控制,是目前国产化温室计算机控制系统较为典型的研究成果[2]。

近年来,在国产化技术不断取得进展的同时,也加快了引进国外大型现代化温室设备和综合控制系统的进程。

这些现代温室的引进,对促进我国温室计算机的应用与发展,无疑起到了非常积极的推动作用。

[3]可以看出我国温室设施计算机应用,在总体上正从消化吸收、简单应用阶段向实用化、综合性应用阶段过渡和发展。

但是,大部分不够理想。

在技术上,以单片机控制的单参数单回路系统居多,尚无真正意义上的多参数综合控制系统,与欧美等发达国家相比,存在较大差距,尚需深入研究[4]。

温度、湿度作为温室的重要因素,它们是非常重要的物理量,温度、湿度控制广泛应用于人们的生产和生活中,人们通常使用温度计、湿度计来采集温度和湿度,通过人工加热、加湿、通风和降温设备来控制温湿度,这样不但控制精度低、实时性差,而且操作人员的劳动强度大。

即使有些用户采用半导体二极管作为温度传感器,但由于其互换性差,效果也不理想。

在某些行业中对温湿度的要求较高,由于温度过高或过低引起的元器件失效或由于环境湿度过高而引起的事故时有发生,对系统的可靠运行造成影响,甚至危及到系统局部及操作人员的安全[2]。

所以实施对温度的监控也日显重要。

本课题只要采用51单片机对蔬菜大棚中温度、湿度的数据进行采集、测量和控制[5]。

基于单片机的蔬菜大棚温度控制系统

基于单片机的蔬菜大棚温度控制系统

基于单片机的蔬菜大棚温度控制系统一、概述随着现代农业技术的快速发展,蔬菜大棚作为一种重要的农业生产设施,其智能化、自动化管理已成为提升农业生产效率、保障农产品质量的重要手段。

在蔬菜大棚的生产环境中,温度是一个至关重要的因素,直接影响到作物的生长速度和产量。

开发一套稳定可靠的蔬菜大棚温度控制系统显得尤为重要。

本文介绍了一种基于单片机的蔬菜大棚温度控制系统。

该系统通过单片机作为核心控制器,结合传感器技术、控制算法和执行机构,实现对大棚内温度的实时监测和智能调控。

系统不仅具有硬件结构简单、成本低廉的优点,而且通过合理的控制策略,能够实现对大棚内温度的精确控制,为蔬菜生长提供最佳的环境条件。

该系统在实际应用中,可以有效提高蔬菜大棚的生产效率,降低能耗和人力成本,同时提高农产品的产量和质量,具有重要的实际应用价值和推广意义。

在接下来的章节中,我们将详细介绍该系统的硬件设计、软件编程、控制策略以及实际运行效果,以期为相关领域的研究和实践提供参考和借鉴。

1. 介绍蔬菜大棚温度控制的重要性。

蔬菜大棚作为一种现代农业设施,通过调控生长环境,显著提高了蔬菜的产量和品质。

温度是影响蔬菜生长的关键因素之一。

适宜的温度不仅有助于蔬菜的正常生长,还能有效防止病虫害的发生,从而提高蔬菜的抗病能力和产量。

蔬菜大棚的温度控制具有极其重要的意义。

适宜的温度是蔬菜生长的基础。

不同种类的蔬菜对温度的要求各不相同,但总体来说,适宜的温度范围能够促进蔬菜的光合作用,加速营养物质的合成和转运,从而提高蔬菜的生长速度和产量。

同时,适当的温差还有利于提高蔬菜的抗逆性,增强其对极端天气的适应能力。

温度控制对于防止病虫害的发生至关重要。

高温或低温环境都可能导致蔬菜生长异常,进而引发各种病虫害。

通过精确控制大棚内的温度,可以有效降低病虫害的发生概率,减少农药的使用量,从而保障蔬菜的品质和安全。

温度控制还能提高蔬菜大棚的生产效益。

在适宜的温度条件下,蔬菜的生长周期缩短,产量增加,品质提升,这都将直接带来经济效益的提升。

基于单片机的智能温室大棚系统设计与实现

基于单片机的智能温室大棚系统设计与实现

基于单片机的智能温室大棚系统设计与实现1. 引言1.1 背景智能温室大棚系统是一种利用现代科技手段来监控和调控温室内环境的系统。

随着人们对食品安全和环境保护意识的提高,温室大棚种植逐渐成为现代农业的重要组成部分。

传统的温室大棚存在管理不便、资源浪费和生产效率低下等问题,因此迫切需要一种智能化的系统来解决这些问题。

传统温室大棚管理主要依靠人工操作,容易受到外界气候和人为因素的影响,使得温室内环境控制困难。

而智能温室大棚系统则通过使用各种传感器来监测温室内外环境数据,实时调控温度、湿度、光照等因素,从而提高生产效率和保障农作物的生长质量。

本研究旨在基于单片机技术设计并实现一套智能温室大棚系统,从而提升温室管理的效率和水平。

通过传感器采集数据、控制系统设计、通信系统设计、数据处理与管理等方面的研究,力求构建一套稳定可靠、智能化程度高的温室管理系统,为现代农业生产提供一种全新的解决方案。

【背景】1.2 研究意义智能温室大棚系统的设计与实现是当前农业领域的研究热点之一。

随着人口的不断增加和气候变化的影响,传统农业生产面临着诸多挑战,如病虫害防治困难、气象变化频繁等。

研究开发一种能够实现自动化、智能化管理的温室大棚系统具有重要的意义。

智能温室大棚系统能够实现对温度、湿度、光照等环境参数进行监测和控制,从而有效提高作物生长的质量和产量。

通过传感器实时采集数据,并利用单片机进行控制和决策,可以实现对温室环境的精准调控,提高作物的生长环境,减少能源消耗,提高生产效率。

这对于农业生产的可持续发展和粮食安全具有重要意义。

智能温室大棚系统还可以实现远程监控和管理,农民可以通过手机或电脑实时查看温室环境数据,及时调整相关参数,解决传统农业生产中人工管理不便、信息不对称等问题。

研究基于单片机的智能温室大棚系统设计与实现具有重要的理论和实际意义,有助于推动农业现代化进程,提高农业生产的效益和质量。

1.3 研究目的研究目的旨在通过基于单片机的智能温室大棚系统设计与实现,实现对温室环境的监测和自动控制,从而提高农作物的生长效率和质量。

大棚温度控制系统设计报告

大棚温度控制系统设计报告

课程设计主要任务基于AT89S52单片机的温度测量控制系统,数字温度传感器DS18B20通过单总线与单片机连接,实现温度测量控制,主要性能为:(1)通过该系统实现对大棚温度的采集和显示;(2)对大棚所需适宜温度进行设定;(3)当大棚内温度参数超过设定值时控制通风机进行降温,当温度低于设定值时利用热风机进行升温控制;(4)通过显示装置实时监测大棚内温度变化,便于记录和研究;系统的设计指标(1)温度控制范围:0℃~+50℃;(2)温度测量精度:±2℃;(3)显示分辨率:0.1℃;(4)工作电压:220V/50Hz ±10%目录第一章序言 1 第二章总体设计及个人分工 2 第三章传感器设计及应用 4 第四章总结8第一章序言随着人口的增长,农业生产不得不采取新的方法和途径满足人们生活的需要,大棚技术的出现改善了农业生产的窘迫现状。

塑料大棚技术就是模拟生物生长的条件,创造人工的气象环境,消除温度对农作物生长的限制,使农作物在不适宜的季节也能满足市场的需求。

随着大棚技术的普及,对大棚温度的控制成为了一个重要课题。

早期的温度控制是简单的通过温度计测量,然后进行升温或降温的处理,进行的是人工测量,耗费大量的人力物力,温度控制成为一项复杂的程序。

大多数的蔬菜大棚以单个家庭作业为主,种植户为蔬菜大棚配备多参数的智能设备,经济成本很高,因此将温度控制由复杂的人为控制转化为自动化的机械控制成为必然。

目前现代化的温度控制已经发展的很完备了,通过传感器检测基本上可以实现对各个执行机构的自动控制,应用自动控制和电子计算机实现农业生产和管理的自动化,是农业现代化的重要标志之一。

近年来电子技术和信息技术的飞速发展,温度计算机控制与管理系统正在不断吸收自动控制和信息管理领域的理论和方法,结合温室作物种植的特点,不断创新,逐步完善,从而使温室种植业实现真正意义上的现代化,产业化。

温度计算机控制及管理技术便函先在发达国家得到广泛应用,后来各发展中国家也都纷纷引进,开发出适合自己的系统。

基于单片机的温度控制系统设计开题报告

基于单片机的温度控制系统设计开题报告

基于单片机的温度控制系统设计开题报告基于单片机的温度控制系统设计开题报告一、引言在现代科技飞速发展的时代,单片机技术已经成为各种智能控制系统的核心。

本文旨在探讨基于单片机的温度控制系统设计,从简单的温度监测到复杂的温度控制,通过对单片机技术的灵活运用,实现对温度的精确控制,以及实现一定的智能化操作。

二、温度控制系统的基本原理温度控制系统是利用各种传感器检测环境温度,通过单片机进行数据处理,并利用执行器对环境温度进行调节的系统。

温度控制系统的基本原理是通过对环境温度的实时监测和分析,准确调节加热或降温装置,使环境温度保持在设定的范围内。

三、基于单片机的温度监测系统设计在温度控制系统中,温度监测是至关重要的一环。

我们可以使用单片机搭建一个简单的温度监测系统,通过传感器获取环境温度,并将数据传输给单片机进行实时监测和显示。

这里可以采用LM35温度传感器,并通过单片机的模拟输入引脚来获取温度数据。

通过LED数码管或LCD屏幕,实现对环境温度的实时显示。

还可以设置温度报警功能,一旦温度超出设定范围,系统会自动报警,提醒用户及时处理。

四、基于单片机的温度控制系统设计在温度监测系统的基础上,我们可以进一步设计出一个温度控制系统。

通过对温度控制器的灵活配置,实现对加热或降温设备的精确控制。

在这个系统中,单片机不仅需要实现对环境温度的实时监测,还需要根据监测到的数据进行相应的控制操作。

当环境温度过高时,单片机可以控制风扇或空调进行降温操作;当环境温度过低时,单片机可以控制加热设备进行加热操作。

这种基于单片机的温度控制系统,不仅可以实现对环境温度的精确控制,还可以节省能源,提高系统的智能化水平。

五、个人观点和理解通过对基于单片机的温度控制系统设计的探讨,我对单片机在智能控制领域的应用有了更深入的理解。

单片机不仅可以实现简单的温度监测,还可以实现复杂的温度控制,通过对传感器的数据采集和单片机的运算处理,实现对环境温度的精确控制。

基于单片机的温室大棚温湿度检测系统开题报告

基于单片机的温室大棚温湿度检测系统开题报告

2、国内外发展情况(文献综述)
国外计算机用于温室环境控制技术研究较早,开始于上世纪 70 年代末。随着通讯技术及计算 机技术的发展,温室环境调控技术得到了迅速发展。 1978 年日本学者首先研制出微型计算机温室 综合环境控制系统,随着计算机技术的发展,80 年代末出现了分布式控制系统,开发和研制计算 机数据采集控制系统的多因子综合控制系统。目前发达国家可以根据温室作物的要求和特点,对 温室内光照、温度、水分、气、誉肥等诸多因子进行自动控制。目前,_美国已将全球定位系统、 电脑和遥感遥侧等高新技术应用于温室生产,有 82%的温室使用计算机进行控制,存 67%的农户 使用计算机,其中 27%的农户还运用了网络技术。炙现在国外温室环境控制技术正朝着高科技方 向发展,网络技术、一遥测技术己逐渐应用子管理与控制系统中。
基于单片机的温湿度检测系统在温室大棚中的应用
1、研究目的和意义
随着单片机和传感技术的迅速发展,自动检测领域发生了巨大变化,温室环境自动监测控制 方面的研究有了明显的进展,并且必将以其优异的性能价格比,逐步取代传统的温度控制措施。 但是,目前应用于温室大棚的温度检测系统大多采用模拟温度传感器、多路模拟开关、AM 转换器 及单片机等组成的传输系统。这种温度采集系统需要在温室大棚内布置大量的测温电缆,才能把 现场传感器的信号送到采集卡上,安装和拆卸繁杂,成本也高。同时线路上传送的是模拟信号, 易受干扰和损耗,测量误差也比较大。为了克服这些缺点,本文参考了一种基于单片机并采用数 字化单总线技术的温度测控系统应用于温室大棚的的设计方案,根据实用者提出的问题进行了改 进,提出了一种新的设计方案。
国内对温室控制技术研究起步较晚。近几年来,我国加大了在温室结构和温室控制方面的研 究力度。温室设施计算机应用,在总体上正从消化吸收、简单应用阶段向实用化、综合性应用阶 段过渡和发展。但是,大部分采用的都是简单的直接数字控制方法,即在程序中设定各环境因子 的上下限,当测定的环境参数超过上下限时,启动环境控制的硬件系统和机构。这种方法尚不能 根据作物对环境的反应进行实时控制。目前国内温室专家决策系统的研究,针对农业病虫害诊断 性方面的较多,而对于温室环境控制,乃至整个温室监控管理方面的研究不多。尤其是智能决策 系统在温室应用方面的研究历史相对较短,还处于刚刚起步阶段,有些方面甚至处于空白阶段。 将智能决策支持系统运用到温室环境因子的控制中,正是目前智能温室发展的趋势。在各个方面 与欧美等发达国家相比,存在较大差距,尚需深入研究。

基于单片机的蔬菜大棚温度控制系统

基于单片机的蔬菜大棚温度控制系统

基于单片机的蔬菜大棚温度控制系统随着现代农业的发展,蔬菜大棚已成为农业生产的重要设施。

温度是蔬菜生长的重要环境因素之一,直接影响到蔬菜的产量和品质。

因此,设计一种基于单片机的蔬菜大棚温度控制系统,对于提高蔬菜生产效率和品质具有重要意义。

本文将介绍一种基于单片机的蔬菜大棚温度控制系统的设计思路、硬件选择、软件设计和实现过程。

单片机、蔬菜大棚、温度控制、传感器、继电器、软件设计、硬件选择蔬菜大棚温度控制的重要性不言而喻,适宜的温度能够促进蔬菜的生长,提高产量和品质。

传统的蔬菜大棚温度控制方式往往依赖于人工操作和经验,存在着一定的不准确性和滞后性。

而基于单片机的温度控制系统可以实现对大棚温度的实时监测和自动控制,具有简单、可靠、自动化等优点,能够有效提高蔬菜大棚的生产效率和品质。

基于单片机的蔬菜大棚温度控制系统主要采用传感器采集大棚内的温度数据,通过单片机进行处理和判断,再通过继电器控制加热和降温设备的开关,实现对大棚温度的自动控制。

系统硬件主要包括传感器、单片机、继电器和加热、降温设备等。

传感器选择温湿度传感器,能够同时采集温度和湿度数据,便于对大棚环境进行全面监测。

单片机可选择常见的8051系列单片机,具有成本低、体积小、性能稳定等优点。

继电器选择固态继电器,具有快速、稳定、可靠等优点。

加热和降温设备可根据实际需要选择电暖器或制冷机等。

系统软件主要包括数据采集、处理、存储和输出控制等功能。

软件设计要实现以下功能:(1)实时采集大棚内的温度和湿度数据;(2)对采集到的数据进行处理和判断,根据设定的温度上下限自动控制继电器的开关,实现对加热和降温设备的控制;(3)将采集和处理后的数据存储到存储器中,以便于后续分析和故障排查;(4)提供可视化界面,方便用户实时查看大棚温度控制情况。

在实现过程中,首先需要根据硬件选择和系统需求进行软件架构设计,然后编写数据采集、处理、存储和输出控制等功能的程序代码。

在程序调试过程中,通过不断优化算法和修正错误,逐步完善系统功能。

基于单片机的温度控制系统设计开题报告

基于单片机的温度控制系统设计开题报告

开题报告主题:基于单片机的温度控制系统设计一、概述在现代工业生产和生活中,温度控制系统在各个领域发挥着至关重要的作用。

无论是工业生产中的恒温恒湿设备,还是家用电器中的空调和冰箱,都需要进行温度控制。

而基于单片机的温度控制系统设计,能够结合先进的控制算法和传感器技术,实现精准的温度控制,提高效率,降低能耗,确保产品质量和生活舒适度。

本开题报告旨在探讨基于单片机的温度控制系统设计的相关内容,为后续的研究工作提供理论基础和技术支持。

二、概述基于单片机的温度控制系统设计,是将单片机作为控制核心,通过传感器采集环境温度数据,经过控制算法计算和处理,输出控制信号以调节加热或制冷设备实现温度控制。

该系统具有控制精度高、响应速度快、稳定性好等特点,适用于各种场景的温度控制需求。

三、技术原理1. 传感器模块温度控制系统设计中,常用的温度传感器有NTC热敏电阻、PTC热敏电阻、热电偶、温度传感器芯片等。

传感器模块负责采集环境温度数据,并将其转换为电信号输入到单片机系统中。

2. 控制算法控制算法是温度控制系统的核心部分,其设计直接影响到系统的稳定性和响应速度。

常用的控制算法包括PID算法、模糊控制算法、神经网络控制算法等,通过对采集到的温度数据进行计算和处理,输出控制信号以实现温度调节。

3. 单片机系统单片机作为控制核心,接收传感器模块采集的温度数据,并经过控制算法处理后输出控制信号,驱动执行机构实现温度控制。

常用的单片机包括STC系列、AT89C系列、PIC系列等,选择合适的单片机对系统性能和成本都有重要影响。

四、应用场景基于单片机的温度控制系统设计可以在工业、农业、家用电器等领域得到广泛应用。

1. 工业应用:恒温恒湿设备、热处理设备、温控风扇等2. 农业应用:温室大棚、孵化器、水产养殖等3. 家用电器应用:空调、冰箱、温控水壶等五、研究内容基于单片机的温度控制系统设计涉及到传感器技术、控制算法设计、单片机系统开发等多个方面的内容,具体研究工作包括但不限于以下几点:1. 传感器模块的选型和接口设计2. 控制算法的设计与优化3. 单片机系统的硬件设计与软件开发六、个人观点基于单片机的温度控制系统设计是一项具有挑战性和实用价值的研究课题。

《基于单片机的农业大棚温湿度检测系统设计开题报告1600字》

《基于单片机的农业大棚温湿度检测系统设计开题报告1600字》

基于单片机的农业大棚温湿度检测系统设计开题报告课题性质:应用基础型课题来源:随着时代的发展,农业技术的创新,对农业的发展要求也越来越高,比如农业大棚,如果能够准确的控制大棚的温度和湿度,从而提高温室使用率,对农业的发展也有很大的促进作用。

在当前的发展阶段,我国的温室种植技术已经得到了广泛的应用,相关的资料显示,温室的种植面积还在增加,而温室的种植技术最大的作用就是让各种作物的生长更加健康,所以温度和湿度的控制就显得尤为关键。

传统的温度和湿度控制工作,都是在温室里面进行的。

通过悬挂温度表和湿度仪来检测室内的温度和湿度,如果温度过高,就要进行喷洒降温,如果湿度过高,则要进行通风降低湿度。

这些过程基本全靠人工操作,耗费了很多的时间和精力以及大人力、物力等。

传统温度测量计如下图所示:图1-1传统温度测量计为了解决这些问题,开发设计合理高性能的控制系统是设计的关键。

首先我们采用最为先进的科学智能的监测系统,可对室内的环境做进一步的检测,通过这样的方式我们可实时了解温湿度值及更好的分析数值变化。

其次可以采用更智能科学的方式对室内的温度和湿度进行远程监控,以便及时发现并处理问题。

本设计根据联系农户的需求及承受能力,设计一种满足自动化,便于操作的温湿度控制系统。

主要控制器采用STM32单片机作为主控制器,采用传感器技术。

单片机由上、下两个机位组成,对信息进行处理.所述执行机构包括加湿装置、通风装置,温度装置等。

自主的控制温室大棚内的各项参数及变化,形成一个自动控制体系。

它们不仅成本低、可控性强、易与扩展设计的特点并且普遍适用于农业工业多方面发展中,有效推动市场发展。

课题简介:随着农业事业和温室智能控制的迅猛发展,温室的自动化控制逐渐成为农业从事者的急切需求,对温室农作物的优质生产、高效性生产有着重大的现实意义。

针对我国温室自动控制系统自动化程度低、不具有普及性的发展现状,为提高温湿度控制的精确性和稳定性,运用单片机和传感器等技术,设计一套对温室的温湿度进行测控的较为实用的温室自动控制系统。

基于单片机的温度控制系统毕业设计开题报告

基于单片机的温度控制系统毕业设计开题报告

基于单片机的温度控制系统毕业设计开题报告河北农业大学毕业论文﹙设计﹚开题报告题目基于单片机的温度控制系统设计学生姓名王传秀学号 2008234020323所在院(系) 信息科学与技术学院专业班级电子信息科学与技术指导教师贾雨琛2012 年 04 月 9 日题目基于单片机的温度控制系统设计一、选题的目的及研究意义这次毕业设计选题的目的主要是让生活在信息时代的我们,将所学知识应用于生产生活当中,掌握系统总体设计的流程,方案的论证,选择,实施与完善。

通过对温度控制通信系统的设计、制作、了解信息采集测试、控制的全过程,提高在电子工程设计和实际操作方面的综合能力,初步培养在完成工程项目中所应具备的基本素质和要求。

培养研发能力,通过对电子电路的设计,初步掌握在给定条件和要求的情况下,如何达到以最经济实用的方法、巧妙合理地去设计工程系统中的某一部分电路,并将其连接到系统中去。

提高查阅资料、语言表达能力和理论联系实际的技能。

当今社会温度的测量与控制系统在生产与生活的各个领域中扮着越来越重要的角色,大到工业冶炼,物质分离,环境检测,电力机房,冷冻库,粮仓,医疗卫生等方面,小到家庭冰箱,空调,电饭煲,太阳能热水器等方面都得到了广泛的应用,温度控制系统的广泛应用也使得这方面研究意义非常的重要。

温度信号由18B20温度传感器进行采集,然后经过转换成数字信号后传入单片机,由单片机对数字信号进行相应的处理,从而得到温度控制的目的,然后输出在数码管上进行显示。

首先要解决的是对18B20数字温度传感器本身的属性,它的用法,各个性能参数,内部功能有一个很好的掌握,还要对51单片机[2]的用法,外围电路(温度检测电路,温度控制电路,单片机串口通信的电路,复位电路,数码管显示电路[3])的设计接法进行进一步的掌握,最后就是软件编写部分了,软件部分需要解决的问题有18B20初始化模块,18B20对温度的获取并转换模块,温度数据的处理模块,温度数据显示模块,超高(低)温控制模块,串口初始化模块。

基于单片机的温室大棚温湿度控制系统设计

基于单片机的温室大棚温湿度控制系统设计

基于单片机的温室大棚温湿度控制系统设计一、本文概述随着现代农业技术的快速发展,温室大棚作为农业现代化的重要标志之一,已经成为提高农业生产效率、实现优质高效农业生产的重要途径。

温湿度作为影响植物生长的重要因素,对其进行有效控制对温室大棚内植物的生长具有至关重要的意义。

传统的温室大棚温湿度控制主要依赖人工经验和手工操作,这种方法不仅效率低下,而且很难实现对温湿度的精确控制。

基于单片机的温室大棚温湿度控制系统的设计研究成为了当前的研究热点。

本文旨在设计并实现一种基于单片机的温室大棚温湿度控制系统,通过自动采集和分析温室大棚内的温湿度数据,实现对温室大棚温湿度的精确控制。

本文首先介绍了温室大棚温湿度控制的重要性和现状,然后详细阐述了基于单片机的温室大棚温湿度控制系统的总体设计方案,包括硬件设计和软件设计。

接着,本文详细介绍了系统的主要功能模块,包括温湿度数据采集模块、数据处理与分析模块、控制执行模块等。

本文对所设计的系统进行了实验验证,并对实验结果进行了分析和讨论。

本文的研究不仅有助于实现对温室大棚温湿度的精确控制,提高农业生产效率,同时也为农业现代化的实现提供了新的技术支持。

希望本文的研究能够为相关领域的研究人员和实践者提供有益的参考和借鉴。

二、系统总体设计在《基于单片机的温室大棚温湿度控制系统设计》的项目中,系统的总体设计是确保整个控制系统能够稳定运行并实现预期功能的关键环节。

总体设计主要涉及到硬件和软件两个方面。

硬件设计方面,首先需要选择合适的单片机作为核心控制器。

考虑到系统的实时性、稳定性和成本等因素,我们选择了性价比较高的STC89C52单片机。

该单片机具有高速、低功耗、易于编程等优点,非常适合用于温室大棚的温湿度控制。

除了单片机外,还需要设计外围电路,包括温湿度传感器的选择、信号调理电路、显示电路、报警电路以及执行机构控制电路等。

我们将选用DHT11温湿度传感器来实时监测大棚内的温湿度,通过信号调理电路将传感器输出的模拟信号转换为单片机能够识别的数字信号。

基于单片机温度控制系统开题报告

基于单片机温度控制系统开题报告
4、完成全部电路板的焊接以及软件编写和调试。
5、选择相关的英文文献并翻译。
6、写毕业设计的论文,并准备答辩。
7、论文答辩并提交论文及相关资料。
六、指导教师审批意见(对选题的可行性、研究方法、进度安排作出评价,对是否开题作出决定):
指导教师: (签名)
年 月 日
三、毕业设计(论文)所采用的研究方法和手段:
研究方法:以理论为基础,以试验为根本。从51单片机的基础知识入门,逐步延伸到系统的设计、制作和测试。
研究手段:在老师指导下完成电路图的设计,对原理图进行论证分析其正确性,电路元件的购买,自己动手焊接电路板,软件的编写,自己动手调试程序验证实验电路的正确性。
5.于京,张景璐.51系列单片机C程序设计与应用案例.中国电力出版社.
6.蔡杏山.Protel 99 SE 电路设计.人民邮电出版社.
7.杨小川.Protel DXP 设计指导教程. 清华大学出版社.
五、毕业设计进度安排:
1、毕业设计选题并对选题进行相应的评估。
2、查Байду номын сангаас资料,并写开题报告。
3、完成电路图设计,进行中期答辩
测量温度的方法很多,按照测量体是否与被测介质接触,可分为接触式测温法和非接触式测温法两大类。温度测量应用中有多种类型的传感器,其中有热敏电阻、热电偶等。热敏电阻由于体积小,重复性好,测量方法简单,所以在一般的测量系统中广泛应用,但是热敏电阻作为传感器的测温系统需要A/D转换,信号放大与处理,并且测量精度不高,这也是热敏电阻的缺点、不足。另一种热电偶传感器,能够检测更宽的温度范围,还具有较高的性价比。而且热电偶的鲁棒性、可靠性和快速响应时间使其成为各种工作环境下的首要考虑。但是,热电偶传感器也存在一些缺陷,比如线性特性较差,信号电平很低,常常需要放大或高分辨率数据转换器进行处理。随着科学技术的快速发展,特别是现代仪器的发展,微型化、集成化、数字化成为传感器发展的一个重要方向,本文所采用的DALLAS公司生产的一种新型温度传感器DS18B20,其优点急温度测量、A/D转换于一体,测量范围宽-55℃~+125℃,精度高达0.0625℃。它采用单总线协议,即与微机接口仅需要占用一个I/O端口,不需要任何外部原件,DS18B20能代替模拟温度传感器和信号处理单元,直接测量温度并以数字信号输出(9位数字码串行输出)极大的简化了整体电路,可使整个系统更加小型化、低功耗。由于DS18B20直接输出数字量,并直接与单片机连接,所以控制简单,它的单总线特性使其便于扩展,可以在一根总线上接挂多个DS18B20来扩展系统,组建测量网络。综上所述,采用DS18B20与单片机所组成的系统,结构简单,抗干扰能力强,适合于恶劣的测量环境,也适用于日常生活和工农业生产中,有很高的应用前景。

智能温室大棚开题报告

智能温室大棚开题报告
从国内外温室控制技术的发展状况来看,温室环境控制技术大致经历三个发展阶段:
1)手动控制。
这是在温室技术发展初期所采取的控制手段,其时并没有真正意义上的控制系统及执行机构。生产一线的种植者既是温室环境的传感器,又是对温室作物进行管理的执行机构,他们是温室环境控制的核心。通过对温室内外的气候状况和对作物生长状况的观测,凭借长期积累的经验和直觉推测及判断,手动调节温室内环境。种植者采用手动控制方式,对于作物生长状况的反应是最直接、最迅速且是最有效的,它符合传统农业的生产规律。但这种控制方式的劳动生产率较低,不适合工厂化农业生产的需要,而且对种植者的素质要求较高。
2.国内外研究现状
温室是一种可以改变植物生长环境、为植物生长创造最佳条件、避免外界四季变化和恶劣气候对其影响的场所。它以采光覆盖材料作为全部或部分结构材料,可在冬季或其他不适宜露地植物生长的季节栽培植物。温室生产以达到调节产期,促进生长发育,防治病虫害及提高质量、产量等为目的。而温室设施的关键技术是环境控制,该技术的最终目标是提高控制与作业精度。
[14]National Semlcondactor. ADC0809UserGuider[M]. [s. L]: National
Semiconductor.2002.
[15] Anon.ChipconAS Smart RF CC2420 Preliminary Datasheet [Z].[S.1.]:Chipcon.2006.
此外,国外温室业正致力于向高科技方向发展。遥测技术、网络技术、控制局域网已逐渐应用于温室的管理与控制中。控制要求能在远离温室的计算机控制室就能完成,即远程控制。另外该网络还连接有几个通讯平台,用户可以在遥远的地方通过形象、直观的图形化界面与这种分布式的控制系统对话,就像在现场操作一样,给人以身临其境之感。

基于单片机的大棚温湿度控制系统设计

基于单片机的大棚温湿度控制系统设计

有了比较精确的延时保证,就可以对DS18B20进行初始化、数据写、数据读。根据时序图,不难写出相应的函数。
3.2 湿度传感器HM1500LF
湿度传感器HM1500LF是法国Humirel公司生产的一种低价位的线性电压输出湿度传感器,HM1500LF的测湿元件选用湿敏电容,利用电容量与相对湿度的函数关系即可测量湿度。DS2450是美国Dallas公司最新推出的一种符合单总线协议的可组网集成A/D芯片,四个湿度传感器分别接到一片DS2450的四个模拟电压输入通道A,B,C,D上,电路采用+5 V电源供电,必须在上电完毕后向地址1CH写入40H,使模拟电路永久地保持在工作状态。利用该电路湿度检测信号在测量现场就被直接转换为数字信号,因此HM1500LF和DS2450组合在一起,就构成一个单总线数字湿度传感器模块。
上位机即PC机使用DELPHI软件编写的一个数据库管理系统,可直接设置温度的上下限值和读取下位机的数据,并对下位机内的控制设备进行操作,调节大棚内温湿度状态。形成作物生长的走势图,从而通过生长走势图得出适合各种作物生长的最佳环境参数条件,为今后的温室种植提供参考。
上下位机之间通过符合串行总线RS 232标准的通信通道以事先约定的协议进行通信。系统原理图。
4.3 LCD液晶显示子程序模块
液晶的使用首先要复位,其分为内部RESET电路复位和5所示的条件才能复位,否则只能用程序进行复位。
4.4 串口通信子程序
单片机和通用微机进行通信时,首先要设置串行口的波特率为9 600 b/s,1位停止位,无奇偶校验。串口通信程序可以采用查询和中断的方式,由于单片机发送子程序的查询和中断方式的资源占用是一样的,故发送采用查询,接收子程序采用中断。
4.2 DS18B20的子程序模块

温室大棚自动控制系统开题报告(可编辑修改word版)

温室大棚自动控制系统开题报告(可编辑修改word版)

题目:温室大棚自动控制系统的设计学院:专业:学生姓名:学号:指导教师:开题时间:1、文献综述1.课题研究的目的和意义随着改革开放,特别是 90 年代以来,我国的温室大棚产业得到迅猛的发展,以蔬菜大棚、花卉为主植物栽培设施栽培在大江南北遍地开花,随着政府对城市蔬菜产业的不断投入,在乡镇内蔬菜大棚产业被看作是 21 世纪最具活力的新产业之一。

温室是蔬菜等植物在栽培生产中必不可少的设施之一,不同种类的蔬菜对温度及湿度等生长所需条件的要求也不尽相同,为他们提供一个更适宜其生长的封闭的、良好的生存环境,从而可以通过提早或延迟花期,最终将会给我们带来巨大的经济效益。

温室是一种可以改变植物生长环境、为植物生长创造最佳条件、避免外界四季变化和恶劣天气对其影响的场所,它以采光覆盖材料作为全部或部分结构材料,可在冬季或其他不适宜露地植物生长的季节栽培植物。

而温室设施的关键技术是环境控制,该技术的最终目标是提高控制与作业精度。

国外对温室环境控制技术研究较早,始于 20 世纪70 年代。

显示采用模拟式的组合仪表,采集现场信息并进行指示、记录和控制。

80 年代末出现了分布式控制系统。

目前正开发和研制计算机数据采集控制系统的多因子综合控制系统。

现在世界各国的温室控制技术发展很快,一些国家在实现自动化的基础上正向着完全自动化、无人化的方向发展。

单片机是指一个集成在一块芯片上的完整计算机系统。

尽管他的大部分功能集成在一块小芯片上,也就是说一块芯片就成了一台计算机。

它的体积小、质量轻、价格便宜、为学习、应用和开发提供了便利条件。

单片机虽小,但它具有一个完整计算机所需要的大部分部件:CPU、内存、内部和外部总线系统,目前大部分还会具有外存。

同时集成诸如通讯接口、定时器,实时时钟等外围设备。

而现在最强大的单片机系统甚至可以将声音、图像、网络、复杂的输入输出系统集成在一块芯片上。

同时它也被称为微控制器(Microcontroller), 是因为它最早被用在工业控制领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

毕业设计(论文)开题报告题目:基于单片机的温室大棚温度控制系统设计专业:电子信息工程1选题的背景、意义国内对温室环境控制技术研究起步较晚。

自20世纪80年代以来,我国工程技术人员在吸收发达国家高科技温室生产技术的基础上,进行了温室中温度、湿度和二氧化碳等单项环境因子控制技术的研究[1]。

实践证明,单因子控制技术在保证作物获得最佳环境条件方面有一定的局限性。

1996年江苏理工大学研制出一套温室环境控制设备,能对营养液系统、温度、光照、二氧化碳施肥等进行综合控制,在一个150M2的温室内,实现了上述四个因子的综合控制,是目前国产化温室计算机控制系统较为典型的研究成果[2]。

近年来,在国产化技术不断取得进展的同时,也加快了引进国外大型现代化温室设备和综合控制系统的进程。

这些现代温室的引进,对促进我国温室计算机的应用与发展,无疑起到了非常积极的推动作用。

[3]可以看出我国温室设施计算机应用,在总体上正从消化吸收、简单应用阶段向实用化、综合性应用阶段过渡和发展。

但是,大部分不够理想。

在技术上,以单片机控制的单参数单回路系统居多,尚无真正意义上的多参数综合控制系统,与欧美等发达国家相比,存在较大差距,尚需深入研究[4]。

温度、湿度作为温室的重要因素,它们是非常重要的物理量,温度、湿度控制广泛应用于人们的生产和生活中,人们通常使用温度计、湿度计来采集温度和湿度,通过人工加热、加湿、通风和降温设备来控制温湿度,这样不但控制精度低、实时性差,而且操作人员的劳动强度大。

即使有些用户采用半导体二极管作为温度传感器,但由于其互换性差,效果也不理想。

在某些行业中对温湿度的要求较高,由于温度过高或过低引起的元器件失效或由于环境湿度过高而引起的事故时有发生,对系统的可靠运行造成影响,甚至危及到系统局部及操作人员的安全[2]。

所以实施对温度的监控也日显重要。

本课题只要采用51单片机对蔬菜大棚中温度、湿度的数据进行采集、测量和控制[5]。

2相关研究的最新成果及动态温度控制电路广泛应用于社会生活的各个领域,如家电、汽车、材料、电力电子等,常用的控制电路根据应用场合和所要求的性能指标有所不同,传统的继电器调温电路简单实用,但由于继电器动作频繁,可能会因触点不良而影响正常工作。

目前,温度控制系统的结构主要是以单片机为主板的控制系统。

一般以MCS51系列为基础。

采用8位CPU,从数据采样到算法控制都是由单片机完成的。

这种类型控制方式的优点是能够全局管理,操作简单,价格低廉,缺点是布线复杂,可靠性差,故障率高;且信号的输入、输出一般为模拟量,自动化程度低。

由于温室控制环境噪音大、环境恶劣,单一的CPU控制系统难以达到预期效果。

此外,还有基于IPC的温室控制系统,它配备了各种接口板,采集、控制和通信功能都由主机完成,能对温室各个参数进行有效的控制;基于PLC的温室控制系统,它将传统的继电器控制技术、计算机技术和通信技术融为一体,具有控制能力强、操作方便、可靠性高、适宜长期工作等特点;集散型温室控制系统,由于PC机的管理功能被多台现场控制站共享,节省了成本,提高了设备利用率,有利于温室群控[6]。

温度监测预警系统是针对蔬菜大棚温度监测而设计,同时也可用于粮食仓储、冷库及烟叶发酵等场合的温度监测。

塑料大棚是开发日光资源、充分利用太阳光能的主要形式之一,能避光、增产、保湿,为蔬菜生长创造一个良好环境。

蔬菜大棚作为一个相对封闭的环境,其内部形成了一个小气候环境,良好的空气环境是蔬菜正常生长的重要条件。

为了增产、增收,要注意大棚内部的气体、温度和湿度3个重要因素。

气体主要是指棚内的二氧化碳的含量。

当空气中的二氧化碳浓度提高到0.1%时,可使蔬菜的光合作用速率增加1倍以上,增产20%~80%;若使二氧化碳浓度降至0.005%时,光合作用几乎停止。

蔬菜生长的适宜温度为20°~30℃。

大棚内白天增温快,当棚外平均气温为15℃时,棚内可达40°~50℃。

因此,要适时调节棚内温度,避免高温危害。

塑料大棚经常处于密闭状态,蒸发量大大减小,内部湿度一般在80%~90%,湿度过大极易导致病虫害的发生。

现在对大棚内气体、温度和湿度的有效调节,主要是通过适时的通风来实现。

二氧化碳含量过大和湿度过大都会导致温度升高。

通过调节温度可以有效地控制二者的浓度。

因此,对棚内温度的控制是非常重要的。

本文介绍的分布式单总线蔬菜大棚温度监测预警系统,采用全数字化设计,直接监测每个棚内不同部分的温度,通过对温度的良好控制,有效地提高蔬菜的产量[7]。

3课题的研究内容及拟采取的研究方法(技术路线)、研究难点及预期达到的目标3.1研究目的本设计为一闭环控制系统,由89C51单片机,A/D转换电路,温度检测电路,湿度检测电路、控制系统组成。

温度检测电路将检测到的温度转换成电压,该模拟电压经ADC0809转换后,进入89C51单片机,单片机通过比较输入温度与设定温度来控制风扇或电炉驱动电路,当棚内温度在设定范围内时,单片机不对风扇或电炉发出动作。

实现了对大棚里植物生长温度及土壤和空气湿度的检测,监控,并能对超过正常温度、湿度范围的状况进行实时处理,使大棚环境得到了良好的控制[8]。

该设计还具有对温度的实时显示功能,对棚内环境温度的预设功能。

3.2研究方法及内容1硬件电路设计(1)微处理器选择。

选用ATMEL公司的AT89C52单片机作为微处理器。

它是一种低功耗、高效率的CMOS型8位微处理器,内置8k字节的闪速程序存储器、256字节RAM、32位并行I/O口、3个16位定时/计数器、6个中断源和1个全双工串行I/O口,采用12MHz晶体振荡器[9]。

(2)扩展存储器设计。

在此监测系统中,要记录大量的数据,且考虑到以后功能增加的需要,扩展了1片6264数据存储器。

另外,还要记录大量传感器的序列编码(每个序列编码64位共8字节),且此序列号一经写入就不得随意更改。

考虑到便于在线注册,故必须采用E2PROM。

因此,扩展了1片2864作为记录传感器序列编码的数据存储器[10]。

(3)传感器接口电路。

传感器在工作过程中使用单总线与单片机进行数据交换,数据和指令的读写遵循严格的时序要求,故对于传感器接口的设计要满足单片机和传感器对单总线的电平进行可靠的控制,且要有足够的驱动能力。

这里,采用三态数据锁存器74HC373连接所有传感器。

两个锁存器作为一组,其中一个作为写入口,另一个作为读入口,两者共用同一物理地址。

通过这两个锁存器实现对单总线的读写分开,保证时序的正确[11]。

(4)显示器键盘接口电路。

采用点阵式液晶显示器进行显示。

利用它可以直观地显示出各个传感器的温度数值、传感器的编号及各种操作提示。

键盘采用3键结构,分别为功能选择键及上下翻页键,完成传感器的注册注销等各种操作[12]。

(5)串行通讯电路。

用于单片机与上位PC机之间的数据通讯。

单片机作为一个监测模块,采用中断方式将传感器的数据传送给上位机,由上位机进行统一管理[13]。

(6)报警电路。

使用指示灯和蜂鸣器作为警示,一旦有温度超过上限或是低于下限,系统就会立即声光报警。

软件设计监测模块软件主要实现对传感器的各种操作。

开始时,要对系统进行初始化和自检;接着就要分别采集各个传感器的温度数据,并显示和存储。

监控模块与上位机之间采用中断通讯方式。

为避免干扰传感器与单片机的握手协议,在对传感器进行操作前要关中断,操作结束后再开中断[14]。

3.3研究方法及内容2温湿度监控由中央控制装置、终端控制设备、传感器等组成。

先编制出温室花卉各生育阶段最适环境条件的管理程序表,存储于电子计算机的记忆装置中,电子计算机根据程序表确认、修正温室内的参数,并给终端控制系统指令。

终端控制设备向中央控制装置输送检测信息,根据中央控制装置的指令输出控制信号,使电器机械设备执行动作,实现温室环境调节。

该系统可自动控制加热、加湿处理。

根据需要,通过键盘将信息输入中央管理室,根据情况可随时调节环境。

温湿度监控系统在大型现代化温室的利用,是设施栽培高新技术的体现[15]。

一、温湿度监系统控硬件(一)硬件的基本组成MCS-51系列单片机中的8031、6M晶震、30pF电容;共阳极七段数码显示管三个;按键一组5个;型号为WZB-003,分度号为BA2的铂热电阻变送器作为温度传感器;光耦合双向可控硅驱动器;型号为HM1500的湿度传感器;电磁继电器;8位模数转换器ADC0809;外部扩展EPROM 2764程序存储器;串并转换器74LS164;8位地址锁存器74LS373;蜂鸣报警器[16]。

(二)硬件电路结构框图系统的硬件电路包括主机(8031)、温度检测、温度控制、湿度检测、湿度控制和人机对话(键盘/显示/报警)6个主要部分。

先对各部分电路介绍如下:(1) 主机选用MCS-51系列单片机中的89Atc51单片机作为控制系统的核心,外部扩展ROM用EPROM 2764作为程序存储器。

它的引脚的输入/输出电平既与TTL电平兼容,又与CMOS电平兼容。

温度检测这部分包括温度传感器、变送器和A/D转换三个部分。

温度传感器和变送器类型的选择与被控温度的范围和精度有关。

型号为WZB-003,分度号为BA2的铂热电阻适用于0°C~500°C的温度测量范围,可以满足本系统的要求。

变送器将电阻信号转变成为与温度成正比的电压,当温度在0°C~500°C时,变送器送出0V~4.9V的电压[18]。

A/D转换器件的选择主要是取决于温度的控制精度,本系统要求温度控制误差不大于2摄氏度,采用8位A/D转换器,其最大量化误差为1,完全能够满足精度要求。

这里我们采用ADC0809作为A/D转换器。

电路设计好后,调整变送器的输出,使0°C~500°C的温度变化对应于0V~4.9V 的电压输出,则A/D转换的数字量为00H~FAH,即0~250,则转换结果乘以2正好是温度值。

用这一方法,一方面可以减少标度转换的工作量,另一方面,还可以避免标度转换带来的误差。

(2) 温度控制加热器的控制用双向可控硅驱动器来实现,双向可控硅驱动器与加热器串接在交流220V市电回路中。

单片机的P1.7口通过光隔离器和三极管驱动电路送到双向可控硅驱动器控制端,由P1.7口的高低电平来控制双向可控硅驱动器的导通与断开,从而控制加热器对温室进行加热、降温处理。

(4)湿度检测这部分包括湿度传感器和A/D转换两个部分。

湿度传感器类型的选择也与被控温度的范围和精度有关。

为使系统结构更加紧凑合理,以及降低成本,和湿度检测电路共用一个A/D转换器ADC0809。

调整变送器的输出,使0%RH~100%RH 的湿度变化对应于0V~4V的电压输出,则A/D转换的数字量为00H~64H(0%RH~100%RH) ,即0~100,采样检验结果2次, 则转换结果除以2正好是湿度值。

相关文档
最新文档