第十三章课后习题答案教学文案
第13章课后练习
---------------------------------------------------------------最新资料推荐------------------------------------------------------第13章课后练习第 13 章课后练习一、单项选择题 1.题目位置:2009 年梦想成真系列辅导书《应试指南财务管理》(新考生版)第 238 页第 1 题在效率良好的条件下,根据下期一般应该发生的生产要素消耗量、预计价格和预计生产经营能力利用程度制定出来的标准成本称为()。
A.理想标准成本B.现行标准成本C.基本标准成本D.正常标准成本 2.题目位置:2009 年梦想成真系列辅导书《应试指南财务管理》(新考生版)第 238 页第 3 题下列说法不正确的是()。
A.理想标准成本不能作为考核的依据B.在标准成本系统中,广泛使用现行标准成本C.现行标准成本可以成为评价实际成本的依据D.基本标准成本不宜用来直接评价工作效率和成本控制的有效性3.题目位置:2009 年梦想成真系列辅导书《应试指南财务管理》(新考生版)第 238 页第 9 题本月生产产品 400 件,使用材料 2500 千克,材料单价为 0.55 元/千克;直接材料的单位产品标准成本为 3 元,即每件产品耗用 6 千克直接材料,每千克材料的标准价格为 0.5 元。
则()。
A.直接材料价格差异为 125 元B.直接材料价格差异为 1201/ 10元 C.直接材料标准成本为 1250 元 D.直接材料用量差异为 55 元 4.题目位置:2009 年梦想成真系列辅导书《应试指南财务管理》(新考生版)第 239 页第 12 题下列说法正确的是()。
A.材料数量差异应该全部由生产部门承担责任B.直接人工工资率差异的具体原因会涉及生产部门或其它部门C.数量差异的大小是由用量脱离标准的程度以及实际价格高低所决定的D.数量差异=(实际数量-标准数量)标准价格,其中的标准数量=标准产量单位产品标准用量 5.题目位置:2009 年梦想成真系列辅导书《应试指南财务管理》(新考生版)第 239 页第 16 题下列关于成本控制的说法不正确的是()。
黄亚钧《微观经济学》(第3版)习题详解(第13章 不完全信息)
黄亚钧《微观经济学》(第3版)第十三章 不完全信息课后习题详解跨考网独家整理最全经济学考研真题,经济学考研课后习题解析资料库,您可以在这里查阅历年经济学考研真题,经济学考研课后习题,经济学考研参考书等内容,更有跨考考研历年辅导的经济学学哥学姐的经济学考研经验,从前辈中获得的经验对初学者来说是宝贵的财富,这或许能帮你少走弯路,躲开一些陷阱。
以下内容为跨考网独家整理,如您还需更多考研资料,可选择经济学一对一在线咨询进行咨询。
1.假定一个女大学生预期效用函数U 为:11/U M =-其中,M 为其预期未来一生收入的现值。
她大学毕业后有两个选择:一是确定成为一名教师,M 为5;二是可能成为一名电影明星:如果她成功了,M 为400,可能性为1%;如果她失败了,只能干别的工作,M 为2。
(1)请问这位大学生会作出什么选择?(2)如果大学生已经选择成为一名教师,这时一家演出公司组织了一个招考明星的面试,请问她愿意为这次面试支付多少费用?解:(1)如果这位女大学生选择当教师,那么她的效用为:111/11/50.8U M =-=-=如果她选择成为电影明星,那么她的预期效用为:()()20.0111/4000.9911/20.505EU =⨯-+⨯-=显然,12U EU >。
因此,女大学生会选择当教师。
(2)设她愿意为面试支付的费用为P ,据题意,其预期效用为:()()30.0111/4000.9911/5EU P P =⨯--+⨯--⎡⎤⎡⎤⎣⎦⎣⎦即()()310.0111/4000.9911/50.8EU P P U =⨯--+⨯--==⎡⎤⎡⎤⎣⎦⎣⎦,得到,0.0494P =。
那么,她愿意为面试支付的费用为0.0494。
2.(1)一个人自知身患绝症,在保险公司未察觉的情况下,他购买了双份的保险,不久便去世,其亲属得到了双倍的赔偿。
(2)一个人已经购买了人寿保险,为了从保险公司得到赔偿来满足家庭的生计需要,企图自杀。
13章计算参考答案
十三章参考答案13、14、切入点:(1)这里注意的是,消费是可支配收入的函数,同时在三部门经济中考虑到政府转移支付时,参考课本404页,均衡收入决定公式为1r i g t t y αβββ+++-=-,根据给定条件可以得到均衡收入。
(2)根据本章所学的乘数公式,可以计算出各种乘数。
(3)先计算出均衡收入和充分就业国民收入的差额,再根据计算出的各种乘数,得到答案。
15、切入点:这里需要注意看P403页的内容。
0m m y γ=+,nx x m =-中,x 是国外购买里决定的常量。
根据所给的500.05nx y =-,可以得到500.05m x nx x y =-=-+,这里可以认为边际进口倾向0.05γ=,050m x =-。
根据四部门经济中均衡收入公式01r i g t t x m y αβββγ+++-+-=-+可以得到均衡收入。
另外注意四部门经济中,投资乘数11k βγ=-+解:(1)均衡收入:01r i g t t x m y αβββγ+++-+-=-+ 030,0.8,60,50,50,50,0.05n i g t m x αβγ======-= 3060500.8505060010.80.05x x y ++-⨯++-==-+ (2)均衡收入水平上的净出口:500.05500.0560020nx y =-=-⨯=(3)投资乘数:114110.80.05k βγ===-+-+ (4)投资从60增加到70,均衡收入增加到:600600410640y k i =+=+⨯=净出口:500.05500.0564018nx y =-=-⨯=(5)净出口变动为400.05nx y =-后,均衡收入: 3060500.8504056010.80.05x x y ++-⨯++-==-+ 净出口余额:400.05400.0556012nx y =-=-⨯=。
人教版九年级物理第十三章第1节13.1《分子热运动》课后练习(word版包含答案)
九年级物理《分子热运动》同步练习一、单选题(选择一个正确的选项)1 、下列现象用分子动理论解释正确的是()A、石灰石能被粉碎成粉末,说明物质是由分子组成的B、墨水在热水中比在冷水中扩散快,说明温度越高,分子运动速度越快C、“破镜不能重圆”,说明分子间有斥力D、水往低处流说明分子在不停做无规则运动2 、生活中的下列现象,用分子的相关知识解释不正确的是()A、湿衣服在日照下比在阴暗处干得更快,说明分子运动速率与温度有关B、成熟的菠萝蜜会散发出浓浓的香味,说明分子在不断地运动C、水沸腾时,掀起壶盖,说明分子大小随温度升高而增大D、液化石油气经加压后贮存在钢瓶中,说明分子之间有间隙3 、春天到来,各校采取各种措施防止流行病传染,对以下两种防护措施的物理解释正确的是()A、用醋熏教室时,对醋进行加热使其温度升高,使醋分子的无规则运动加剧B、用醋熏教室时,加热使醋温度升高,醋分子的无规则运动减缓C、用消毒液擦拭教室门窗后,可以闻到气味,这是升华现象D、用消毒液擦拭教室门窗后,可以闻到气味,这是凝华现象4 、下列说法正确的是()A、一杯热水逐渐变凉了,是因为水内部分子无规则运动的速度变大了B、两个光滑的铅块压紧后会黏在一起,说明分子间存在着引力C、摩托车发动机发动一段时间后,排气管热得发烫,这是通过做功改变了物体的内能D、上海世博会的举办地点选择在南浦大桥和卢浦大桥之间的黄浦江两岸,原因之一是水的比热容小,温差变化较小,可以产生“冬暖夏凉”的效果5 、下列现象不可能出现的是()A、现在科学家可以用一定的技术手段使一个物体内所有分子都停止运动B、寒冷的冬天,冰冻的衣服会变干C、把酒精反复涂在温度计的玻璃泡上,用扇子扇,温度计的度数会降低D、在海拔6km的高原,水的沸点低于100℃6 、关于分子动理论的下列说法中,错误的是()A、扩散现象表明物体中的分子永不停息地做无规则运动B、一根铁棒很难被拉断,说明铁分子间有相互作用的引力C、固体和液体很难被压缩,说明分子间没有空隙D、分子间的引力和斥力是同时存在的7 、下列例子中不能说明分子不停地作无规则运动的是()A、冬天腌咸菜,菜变咸了B、潮湿的衣服变干了C、汽车开过时,马路上尘土飞扬D、箱子里放几颗卫生球,几天后整个相子都充满卫生球味8 、下列说法正确的是( )A、移动电话的声音信号是由超声波传递的B、车胎上有凹凸不平的花纹是为了减小摩擦C、“闻其声而知其人”,这是依据声音的响度不同来判断的D、糖在热水中溶解得快,说明温度越高,分子的热运动越激烈9 、下列现象中能说明分子在不断运动的是()A、近几年,西北、华北地区出现沙尘暴B、显微镜下看到微生物不停地运动C、手接触带电验电器的金属球,箔片闭合D、未进家门,已经闻到炒菜的香味10 、下列现象中能反映分子运动的现象是( )A、擦黑板时,粉笔灰在空中飞舞B、打开一盒香皂,很快就会闻到香味C、粉笔蹭到衣服上,在衣服上留下粉笔痕迹D、冬天,雪花漫天飞舞11 、张华同学对有关厨房中物理问题的解答,不正确的是()A、洗碗时“油花”漂浮在水面上,其原因是油的密度小于水的密度B、用高压锅煮饭熟得快是因为高压锅内气压大、水的沸点较高C、将一小勺盐放入满杯水中,水面未发生明显变化,说明分子间有引力D、拧开醋瓶的瓶盖,醋味扑鼻是由于分子不停地做无规则运动12 、两滴水银相互接近时能自动结合为一滴较大的水银滴,这一事实说明()A、分子间存在斥力B、分子间有间隙C、物质间有扩散的现象D、分子间存在引力13 、把100毫升酒精和100毫升水混合在一起,体积小于200毫升.这个现象说明()A、分子间有间隙B、分子是有质量的C、分子间有力的作用D、分子是可以再分的14 、小阳对正在抽烟的爸爸说:“吸烟不但危害您的健康,我和妈妈也在被动吸烟。
大学物理第十三章课后答案
习题十三13-1 衍射的本质是什么?衍射和干涉有什么联系和区别 ?答:波的衍射现象是波在传播过程中经过障碍物边缘或孔隙时所发生的展衍现象• 其实质是 由被障碍物或孔隙的边缘限制的波阵面上各点发出的无数子波相互叠加而产生. 而干涉则是 由同频率、同方向及位相差恒定的两列波的叠加形成.13-2 在夫琅禾费单缝衍射实验中,如果把单缝沿透镜光轴方向平移时,衍射图样是否会 跟着移动?若把单缝沿垂直于光轴方向平移时,衍射图样是否会跟着移动 ?答:把单缝沿透镜光轴方向平移时, 衍射图样不会跟着移动. 单缝沿垂直于光轴方向平移时, 衍射图样不会跟着移动.13-3 什么叫半波带?单缝衍射中怎样划分半波带 ?对应于单缝衍射第 3级明条纹和第4级暗条纹,单缝处波面各可分成几个半波带?λ答:半波带由单缝 A 、B 首尾两点向'方向发出的衍射线的光程差用2来划分•对应于第3级明纹和第4级暗纹,单缝处波面可分成 7个和8个半波带. a Sin =(2k • 1) “ =(2 3 ■ 1) “ =7∙.∙由 22 2a Sin -4 ' - 8—213-4 在单缝衍射中,为什么衍射角 ,愈大(级数愈大)的那些明条纹的亮度愈小 ? 答:因为衍射角「愈大则asin「值愈大,分成的半波带数愈多,每个半波带透过的光通量 就愈小,而明条纹的亮度是由一个半波带的光能量决定的,所以亮度减小.13-5 若把单缝衍射实验装置全部浸入水中时,衍射图样将发生怎样的变化?如果此时用公mλasin =(2k 1) (k =1,2,)式 2来测定光的波长,问测出的波长是光在空气中的还是在水中的波长?k ■解:当全部装置浸入水中时,由于水中波长变短,对应asin 「= k ∙ = n ,而空气中为asi n「= k ∙,∙. Si n 「=n Sin ",即「=n :,水中同级衍射角变小,条纹变密.λ如用asin(2k ■ I)2 (k=1,2,…)来测光的波长,则应是光在水中的波长.(因asin‘ 只代表光在水中的波程差)•13-6 在单缝夫琅禾费衍射中,改变下列条件,衍射条纹有何变化 ?(1)缝宽变窄;(2)入射光波长变长;(3)入射平行光由正入射变为斜入射. 解:(1)缝宽变窄,由asin ' =k'知,衍射角「变大,条纹变稀;(2) ,变大,保持a, k不变,则衍射角 「亦变大,条纹变稀; (3) 由正入射变为斜入射时, 因正入射时asin即=k ∙;斜入射时,a(Sin「-Sin^)^k-,保持a ,'不变,则应有 ^ k或k二::k •即原来的k 级条纹现为k级.13-7 单缝衍射暗条纹条件与双缝干涉明条纹的条件在形式上类似,两者是否矛盾 ?怎样说明?λ答:不矛盾•单缝衍射暗纹条件为.asin=k' =2k 2 ,是用半波带法分析(子波叠加问 题)•相邻两半波带上对应点向'方向发出的光波在屏上会聚点一一相消, 而半波带为偶数,故形成暗纹;而双缝干涉明纹条件为dsin a ,描述的是两路相干波叠加问题,其波程差为波长的整数倍,相干加强为明纹.13-8 光栅衍射与单缝衍射有何区别 ?为何光栅衍射的明条纹特别明亮而暗区很宽 ?答:光栅衍射是多光束干涉和单缝衍射的总效果. 其明条纹主要取决于多光束干涉.光强与缝数N 2成正比,所以明纹很亮;又因为在相邻明纹间有 (N -1)个暗纹,而一般很大,故 实际上在两相邻明纹间形成一片黑暗背景.13-9 试指出当衍射光栅的光栅常数为下述三种情况时,哪些级次的衍射明条纹缺级 ?(1) a+b=2a;(2)a+b=3a;(3)a+b=4a.解:由光栅明纹条件和单缝衍射暗纹条件同时满足时,出现缺级.即"(a +b)si n d =±k ?* (k =0,1,2,…) a sin W = ±k 九 (^ = 1,2∙…)a +b * k = k H可知,当 a 时明纹缺级.(1)a∙b =2a 时,k = 2,4,6,•…偶数级缺级;(2) a b =3a 时,k=3,6,9,•…级次缺级;⑶ a ∙b =4a , k=4,8,12,∙∙级次缺级.13-10 若以白光垂直入射光栅,不同波长的光将会有不同的衍射角.问 (1)零级明条纹能 否分开不同波长的光?(2)在可见光中哪种颜色的光衍射角最大 ?不同波长的光分开程度与什 么因素有关?解:(1)零级明纹不会分开不同波长的光. 因为各种波长的光在零级明纹处均各自相干加强. ⑵可见光中红光的衍射角最大,因为由(a' b) sin :护=k ‘,对同一 k 值,衍射角 -'.ο13-11 一单色平行光垂直照射一单缝, 若其第三级明条纹位置正好与 6000 A的单色平行光的第二级明条纹位置重合,求前一种单色光的波长. 解:单缝衍射的明纹公式为a sin = (2 k 1)2o当人=6000 A 时 k = 2,='X 时,k = 3 重合时'角相同,所以有5 ■ X6000 =4286 o7Ao13-12 单缝宽0.10mm,透镜焦距为50Cm 用^ =5000 A 的绿光垂直照射单缝•求:(1) 位于透镜焦平面处的屏幕上中央明条纹的宽度和半角宽度各为多少 ?(2)若把此装置浸入水中(n=1.33),中央明条纹的半角宽度又为多少 ?AλL X = 2 f解:中央明纹的宽度为na-Sin —半角宽度为 na(1)空气中,n=1,所以A5000 汇 10 “J:x =2 0.5厂=5.0 100.10 汉 10ma sin 即=(22 1)-6000=(2 3 ■ 1)1015000 X 10 一 3V - Sin厂=5.0 10 一0.10x10 一rad(2)浸入水中,n=1.33 ,所以有105000 x10一3:^=2 0.50- 3.76 10 _1.33x0.10x10—mI5000 00」° 3V - Sin 3 : 3.7610 一 1.33 X 0.1 X10 一 rad13-13 用橙黄色的平行光垂直照射一宽为 a=0.60mm 的单缝,缝后凸透镜的焦距 f=40.0cm ,观察屏幕上形成的衍射条纹•若屏上离中央明条纹中心 1.40mm 处的P 点为一明条纹;求:(1)入射光的波长;(2)P 点处条纹的级数;(3)从P 点看,对该光波而言,狭缝处的波面可分成几个半波带?X 1.4 J3.5 10 tan f 4002 0.6 3.5 10 2k 1k = 4 得)-4 = 4700o若-3 = 6000 A ,则P 点是第3级明纹;o若-4 =4700 A ,贝U P 点是第4级明纹.a Sin = (2k 亠 1)-⑶由2可知,当k=3时,单缝处的波面可分成2k 1当k=4时,单缝处的波面可分成2kTo13-14用‘氛=5900A 的钠黄光垂直入射到每毫米有500条刻痕的光栅上,问最多能看到第几级明条纹? 1 a+b = J二o解:500 mm =2.010 mm = 2.010 A由(a ' b )sin ' = k '知,最多见到的条纹级数ka +b 2.0 汇104k max ==fc3.39∣Z-Qkmax^3所以有5900,即实际见到的最高级次为o 13-15 波长为5000A 的平行单色光垂直照射到每毫米有200条刻痕的光栅上,光栅后的透解:(1)由于P 点是明纹,故有a sin ' = (2k 1)—2 , k =1,2,3 - ■ 2a sin 2k 1X4.2 X10 °2k 1k =3,得 K =6000 mmoA=7个半波带;=9个半波带.<Pmax 对应的max镜焦距为60cm. 求:(1)屏幕上中央明条纹与第一级明条纹的间距;(2)当光线与光栅法线成30°斜入射时,中央明条纹的位移为多少?1a +b = ------ =5.0x10~6解: 200 mm 5.0 10 - m(1)由光栅衍射明纹公式X Sin Φ = tan W =— (a +b) sin 申=k k ,因k =1 ,又fX 1(a +b)所以有f这就是中央明条纹的位移值•o13-16 波长九=6000A 的单色光垂直入射到一光栅上,第二、第三级明条纹分别出现在 Sin=0∙20与Sin =0∙30处,第四级缺级.求:(1)光栅常数;(2)光栅上狭缝的宽度;⑶ 在90°> ’ > -90 °范围内,实际呈现的全部级数.解:(1)由(a b) Sin= k,式对应于Sin :1=0∙2° 与Sin ;:2=0∙30 处满足:-Lo0.20 (a b) =2 6000 10 I. 100.30 (a b) =3 600010得 a ∙ b =6.0 10 * m(2)因第四级缺级,故此须同时满足(a ■ b) Sin = k ■a sin = k ,= 1.5 10 "βk解得取=1 ,得光栅狭缝的最小宽度为 1.5 10 m⑶由(a b) Sin = k ■k 土(a ■ b) Sin λπW =—当 2,对应 k = k m aXa +b .66.0 10 k10λ6000 10500010 210 恥 60 10 一X l5.0 10 -⑵对应中央明纹, 2= 6.0 10 一k = 0 =6 Cm正入射时, (a -b) Sin 斜入射时, (a -b)(sin=0二Sin所以 Sin=0日)=0 即Sin 申±sin 日=0Sinl : tanXCP二 30=1 60 10 2 2=3010m = 30Cm因_4 , _ 8缺级,所以在-9°:::「::: 9°范围内实际呈现的全部级数为k = 0, 一1, _2, _3, _5, _6, 一7, _9 共 15 条明条纹(k= 1° 在 k= 9° 处看不到).o13-17 一双缝,两缝间距为 0.1mm ,每缝宽为0.02mm ,用波长为4800A 的平行单色光垂 直入射双缝,双缝后放一焦距为 50cm 的透镜.试求:(1)透镜焦平面上单缝衍射中央明条纹 的宽度;(2)单缝衍射的中央明条纹包迹内有多少条双缝衍射明条纹 ? 解:(1)中央明纹宽度为 (2)由缺级条件a sin = k '■(a - b) sin = k ■0.1k " = 5k ' 0.02 k =1,2,即k=5,10,15,…缺级V -1.221 .22 5000= 30.5 10 D0.2d4f tan v : f v - 50030 .5 10 一 =1.5.∙.爱里斑半径2mm13-19已知天空中两颗星相对于一望远镜的角距离为 4.84 × 10-6rad ,它们都发出波长为o5500A 的光,试问望远镜的口径至少要多大,才能分辨出这两颗星 ?解:由最小分辨角公式J -1.22 —D5λ5.5j<10D =1.22 — =1 .22- = 13.864.84 10 Cmo13-20已知入射的X 射线束含有从0.95〜1.30A 范围内的各种波长,晶体的晶格常数为 o2.75 A ,当X 射线以45°角入射到晶体时,问对哪些波长的 X 射线能产生强反射? 解:由布喇格公式2d Sin=k'_ 2d Sin 申λ = --------得k时满足干涉相长Qo当 k =1 时,& = m 、s in 45=3.89 A2 2.75 sin 45Λ --1.91 ok =2 时,2AI 。
西方经济学 高鸿业主编 第13章 课后习题答案
A.实际储蓄等于实际投资; B.实际消费加实际投资等于产出值;
C.计划储蓄等于计划投资; D.总投资等于企业部门的收入。
2.当消费函数为c=a+by(a>0,0<b<1),这表明,平均消费倾向(A )。
A.大于边际消费倾向; B.小于边际消费倾向;
(2)我们可直接根据三部门经济中有关乘数的公式,得到乘数值
投资乘数:ki=11-β=11-0.8=5
政府支出乘数:kg=5(与投资乘数相等)
税收乘数:kt=-β1-β=-0.81-0.8=-4
转移支付乘数:ktr=β1-β=0.81-0.8=4
平衡预算乘数等于政府支出(购买)乘数和税收乘数之和,即
Δy(1-β)=Δg(1-β)
可见,ΔyΔg=1-β1-β=1,即平衡预算乘数(用kb表示)kb=ΔgΔy=1。
这一结论也可以通过将政府购买支出乘数和税收乘数直接相加而得
kg+kt=11-β(1-t)+-β(1-t)1-β(1-t)=1
11.为什么有了对外贸易之后,封闭经济中的一些乘数会变小些?
解答:当处于均衡产出水平时,计划存货投资一般不为零,而非计划存货投资必然为零。这是因为计划存货投资是计划投资的一部分,而均衡产出就是等于消费加计划投资的产出,因此计划存货不一定是零。计划存货增加时,存货投资就大于零;计划存货减少时,存货投资就小于零。需要指出的是,存货是存量,存货投资是流量,存货投资是指存货的变动。在均衡产出水平上,计划存货投资是计划投资的一部分,它不一定是零,但是非计划存货投资一定是零,如果非计划存货投资不是零,那就不是均衡产出了。比方说,企业错误估计了形势,超出市场需要而多生产了产品,就造成了非计划存货投资。
13章 课堂互动 参考答案
第十三章课堂互动参考答案课堂互动11.Only the thought of his mother gave him the strength.只要一想到母亲,他就有了力量。
2. The sight of the orphan always reminds me of his parents.看到这个孤儿,我总会想到其父母。
3. Most boys have an inclination for sports.大多数男孩爱好体育活动。
4. The students are all on the tiptoe of expectation of the arrival of their international teacher.学生翘首盼望外籍教师的到来。
5. Failure in a required subject may result in the denial of a diploma.修不完必修课就可能拿不到学位。
6.And if you think you’ll abandon meat and become a vegetarian, you have the choice of very expensive organically-grown vegetables or a steady diet of pesticides every time you think you’re eating fresh salads and vegetables, or just having an innocent glass of water! (New Concept English)如果你不想吃肉食品而成为一位素食者,那么你就选吃价格贵的有机培植蔬菜,或是当你认为在吃新鲜色拉和新鲜蔬菜,或饮用一杯无公害的水的时候,实际上你每次都在不断地吃进杀虫剂。
课堂互动21.Basic science has not only come to the assistance of already existing empirical technology, it has often preceded technological innovations.基础科学不仅求助于现存的以经验为基础的技术,而且还常先于技术革新。
新人教版九年级物理第十三章课后习题答案
第十三章第一节《分子热运动》1. 把分子看成球体,一个挨着一个紧密平铺成一层(像每个围棋格子中放一个棋子一样),组成一个单层分子的正方形,边长为1 cm 。
该正方形中约有多少个分子?这些分子数目大约是全球人口数目的多少倍?2. 扩散现象跟人们的生活密切相关,它有时对人们有用,例如腌制鸭蛋就是通过扩散使盐进入蛋中;它有时又对人们有害,如人造木板粘接剂中的甲醛扩散在空气中造成环境污染。
请你分别列举一个扩散现象有用和有害的实例。
3. 两个杯子中分别盛有质量相同的冷水和热水,向其中分别放入同样的糖块,经过一段相同的时间(两杯中的糖块都还没有全部溶解),品尝杯中的水,哪一杯更甜?为什么?4. 把干净的玻璃板吊在弹簧测力计的下面(例如用吸盘吸住玻璃板或用细线绑住玻璃板),读出测力计的示数。
使玻璃板水平接触水面,然后稍稍用力向上拉玻璃板(图13.1-8)。
弹簧测力计的示数有什么变化?解释产生这个现象的原因。
5. 下表归纳了固、液、气三态物质的宏观特性和微观特性,请完成这个表格。
图13.1-8 测力计的示数有变化吗?图13.1-8 测力计的示数有变化吗?第一节课后习题答案1. 分子的直径大约为10-10m,该正方形每条边排列的分子数目为n=m 102-10m 101-⨯=108个,故该正方形中约有的分子数为108×108=1016个,全球人口数目约为60亿,即6×109,故这些分子的数目大约是全球人口数目的91610610⨯=1.67×106倍。
2. 扩散现象有用的例子:为了预防感冒,在教室里熏醋,不久醋味就扩散到教室的每个地方。
扩散现象有害的例子:一个人吸烟,由于烟的扩散,会让房间里所有人都被动吸烟。
3. 在热水杯中的水更甜。
我们感觉到甜味是由于糖分子与水分子之间的扩散。
由于分子运动的快慢与温度有关,温度越高,分子运动越快,故热水杯中的糖分子扩散更快,糖水更甜。
4. 弹簧测力计的示数会增大。
新第十三章参考答案
第十三章参考答案:第十三章 选修3-513.1 动量、动量守恒定律及其探究【典型例题】[例1]A 、C [例2]A[例3]选V 0方相为政方向,设小孩b 跃出后小船向前行驶的速度为V ,根据动量守恒定律,有 υυm m MV V m M -+=+0)2(……①解得: 0)21(V MmV += ……② [例4]球1和球2的质量m 1和m 2,立柱的高h ,桌面离地面的高H ,m 1)(2h a g -=m 1)(2h b g -+ m 2c )(2h H g+【自我检测】 1、A2、(1)B 的右端至D 板的距离L 2(2) ;测量质量、时间、距离等存在误差,由于阻力、气垫导轨不水平等造成误差.(只要答对其中两点即可)3、设人第一次推出后自身速度为V 1, 则:MV 1=mV ,人接后第二次推出,自身速度为V 2,则mV+2mV=MV 2(因为人每完成接后推一次循环动作,自身动量可看成增加2mV)设人接后第n 次推出,自身速度为V n ,则mV+2mV(n-1)=MV n∴V n =Mm(2n-1)V , 若V n ≥V ,则人第n 次推出后,不能再接回,将有关数据代入上式得n ≥8.25,∴n=9 【课后练习】1、A2、D3、A4、D5、A6、ACD7、BC8、C9、s m kg /8.0⋅10、s m kg s m kg /12,/26⋅⋅,0, 11、(1)乙车与甲车碰撞过程中,小物体仍保持静止,甲、乙组成的系统动量守恒,112202v m v m v m +=乙车速度为sm m v m v m v /148254211022=⨯-⨯=-=方向仍向左(2)小物体m 在乙上滑至两者有共同速度的过程中动量守恒:V m m v m )(222+=有sm m m v m V /8.04114222=+⨯=+=对小物体m 是作匀加速直线运动, 应用牛顿第二定律得a=μg 又有s g V a V t 4.0//===μ12、设m 3速度至少为v 3,m 3和m 2发射前后动量守恒:2233v m v m =,m 1和m 3粘合前后1313301v )m m (v m v m +=-,不相撞条件是:21v v ≤解之:33210213m )m m m (v m m v ++=。
第十三章答案
参考答案[A型题]47.B C D48.A B D49.A D50.B51.A C[B型题][名词解释]65.某些肺部疾患,如肺动脉压降低,肺动脉栓塞,肺血管受压扭曲和肺泡壁毛细血管床减少等时,VA/VQ比率增高,患部肺泡血流少而通气多,吸入的空气没有或很少参与气体交换,因而与气道的情况类似,即犹如增加了肺泡死腔量,称为死腔样通气。
66.肺顺应性是指在静态情况下,外来压力克服肺弹性阻力所引起的肺容量变化,弹性阻力大,则肺扩张度小,表示肺顺应性小,肺淤血、水肿, 纤维化等均可降低肺的顺应性,增加吸气时的弹性阻力。
67.气道狭窄或阻塞引起的肺泡通气不足称为阻塞性通气障碍,有中央性道阻塞和外周气道阻塞两类。
68.肺泡扩张受限制所引起的肺泡通气不足称为限制性通气障碍。
可有呼吸肌活动障碍或胸壁和肺的顺应性降低所致。
69.正常时,肺泡每分通气量(V)每分约4L,肺血流量(Q)约为每分5L,V/Q为0.8,在大多数呼吸系统疾病时,肺泡通气和血流量的改变多不相平行,使部分肺泡V/Q比率降低或升高,V/Q比率的变动范围也扩大,因而使肺泡通气血流比例严重失调,不能保证有效的换气而导致呼吸衰竭。
70.某些肺部疾患使肺泡通气严重不均,病变部位肺泡通气明显减少,而血流未相应减少,甚至还可因炎症充血使血流增多,V/Q显著降低,以致流经这部分肺泡的静脉血未经充分气体交换,便渗入动脉血中,因类似动-静脉短路,故称为功能性分流。
71.肺泡与血经肺泡-毛细血管膜进行气体交换的过程是一物理性弥散过程,当肺泡膜面积减少,肺泡膜厚度增加或血液与肺泡接触时间过短时,单位时间内气体的弥散量减少,称弥散障碍。
72.是指在某些疾病过程中(例如创伤、烧伤、感染等)特别是在休克初期复苏后,突然出现以进行性缺氧和呼吸困难为特征的急性呼吸衰竭综合症。
73.由于外呼吸功能严重障碍,以致在静息时出现动脉血氧分压低于正常范围(PaO<60mmHg)或伴有动脉血二氧化碳分压高于正常范围的情况(PaCO >50mmHg)称为呼吸衰竭。
第13章 课后习题答案 .doc
第13章课后习题答案13-1解(1 )( 2 )==2879.13mm( 3 )不考虑带的弹性滑动时,( 4 )滑动率时,13-2解(1 )( 2 )=(3 )= =13-3解由图可知=图13.6 题13-3 解图13-4解(1 )=( 2 )由教材表13-2 得=1400mm( 3 )13-5解由教材表13-6 得由教材表13-4 得:△=0.17kW, 由教材表13-3 得:=1.92 kW, 由教材表13-2 得:,由教材表13-5 得:取z=313-6解由教材表13-6 得由图13-15 得选用 A 型带由教材表13-3 得选初选取==1979.03mm由教材表13-2 得=2000mm由教材表13-3 得:=1.92 kW,由教材表13-4 得:△=0.17kW 由教材表13-2 得:,由教材表13-5 得:取z=413-7解选用A 型带时,由教材表13-7 得,依据例13-2 可知:,=2240mm , a =757mm ,i=2.3 ,。
由教材表13-3 得=2.28 kW,由教材表13-4 得:△=0.17kW,由教材表13-2 得:取z =5由此可见,选用截面小的 A 型带较截面大的 B 型带,单根带的承载能力减小,所需带的根数增多。
13-8 解略。
13-9解由教材表13-9 得p =15.875mm ,滚子外径15.875(0.54+cot =113.90mm15.875(0.54+cot =276.08mm=493.43mm13-10解(1)由图13-33得查教材表13-11,得取由式(13-18)得P ≤( 2 )由图13-33 得可能出现链板疲劳破坏( 3 )由图13-34 查得可用滴油润滑。
13-11解( 1 )链轮齿数假定,由教材表13-10,取,,选实际传动比链轮节数初选中心距=取由教材表13-13查得取估计此链传动工作位于图13-33所示曲线的左侧,由教材表13-11得采用单排链,≤由教材图13-33得当=960r/min时,08A链条能传递的功率满足要求,节距p =12.7mm。
熊伟运筹学第2版13章参考答案
运筹学(第2版)习题答案1--3习题一1.1 讨论下列问题:(1)在例1.2中,如果设x j (j=1,2,…,7)为工作了5天后星期一到星期日开始休息的营业员,该模型如何变化.(2)在例1.3中,能否将约束条件改为等式;如果要求余料最少,数学模型如何变化;简述板材下料的思路.(3)在例1.4中,若允许含有少量杂质,但杂质含量不超过1%,模型如何变化.(4)在例1.6中,假定同种设备的加工时间均匀分配到各台设备上,要求一种设备每台每天的加工时间不超过另一种设备任一台加工时间1小时,模型如何变化.(5)在单纯形法中,为什么说当00(1,2,,)k ik a i m λ>≤=L 并且时线性规划具有无界解。
1.2 工厂每月生产A 、B 、C 三种产品 ,单件产品的原材料消耗量、设备台时的消耗量、资源限量及单件产品利润如表1-23所示.310和130.试建立该问题的数学模型,使每月利润最大.【解】设x 1、x 2、x 3分别为产品A 、B 、C 的产量,则数学模型为123123123123123max 1014121.5 1.2425003 1.6 1.21400150250260310120130,,0Z x x x x x x x x x x x x x x x =++++≤⎧⎪++≤⎪⎪≤≤⎪⎨≤≤⎪⎪≤≤⎪≥⎪⎩ 1.3 建筑公司需要用6m 长的塑钢材料制作A 、B 两种型号的窗架.两种窗架所需材料规格及数量如表1-24所示:【解】设x j (j =1,2,…,14)为第j 种方案使用原材料的根数,则 (1)用料最少数学模型为14112342567891036891112132347910121314min 2300322450232400232346000,1,2,,14jj j Z x x x x x x x x x x x x x x x x x x x x x x x x x x x x x j ==⎧+++≥⎪++++++≥⎪⎪++++++≥⎨⎪++++++++≥⎪⎪≥=⎩∑L 用单纯形法求解得到两个基本最优解X (1)=( 50 ,200 ,0 ,0,84 ,0,0 ,0 ,0 ,0 ,0 ,200 ,0 ,0 );Z=534 X (2)=( 0 ,200 ,100 ,0,84 ,0,0 ,0 ,0 ,0 ,0 ,150 ,0 ,0 );Z=534 (2)余料最少数学模型为134131412342567891036891112132347910121314min 0.60.30.70.40.82300322450232400232346000,1,2,,14j Z x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x j =+++++⎧+++≥⎪++++++≥⎪⎪++++++≥⎨⎪++++++++≥⎪⎪≥=⎩L L 用单纯形法求解得到两个基本最优解X (1)=( 0 ,300 ,0 ,0,50 ,0,0 ,0 ,0 ,0 ,0 ,200 ,0 ,0 );Z=0,用料550根 X (2)=( 0 ,450 ,0 ,0,0 ,0,0 ,0 ,0 ,0 ,0 ,200 ,0 ,0 );Z=0,用料650根 显然用料最少的方案最优。
第13章光的干涉习题答案word精品文档9页
思 考 题13-1.单色光从空气射入水中,则( )(A )频率、波长和波速都将变小 (B )频率不变、波长和波速都变大 (C )频率不变,波长波速都变小 (D )频率、波长和波速都不变 答:频率ν不变,nλλ=,vcn =,而水空气n n <,故选(C ) 13-2.如图所示,波长为λ的单色平行光垂直入射到折射率为n 2、厚度为e 的透明介质薄膜上,薄膜上下两边透明介质的折射率分别为n 1和n 3,已知n 1<n 2, n 2>n 3,则从薄膜上下两表面反射的两光束的光程差是( )(A)2en 2。
(B) 2en 2+2λ。
(C) 2en 2-λ。
(D) 2en 2+22n λ。
答:由n 1<n 2, n 2>n 3可知,光线在薄膜上下两表面反射时有半波损失,故选(B)。
13-3 来自不同光源的两束白光,例如两束手电筒光,照射在同一区域内,是不能产生干涉花样的,这是由于( )(A) 白光是由许多不同波长的光构成的。
(B) 来自不同光源的光,不能具有正好相同的频率。
(C) 两光源发出的光强度不同。
(D) 两个光源是独立的,不是相干光源。
答:普通的独立光源是非相干光源。
选(D )。
13-4在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是( ) (A)使屏靠近双缝。
(B)使两缝的间距变小。
(C)把两个缝的宽度稍微调窄。
(D)改用波长较小的单色光源。
答:由条纹间距公式af x λ2=∆,可知选(B )。
13-5.在杨氏双缝实验中,如以过双缝中点垂直的直线为轴,将缝转过一个角度α,转动方向如图所示,则在屏幕上干涉的中央明纹将( )(A)向上移动 (B)向下移动 (C)不动 (D)消失答:中央明纹出现的位置是光通过双缝后到屏幕上光程差为0的地方,故选(A ) 13-6.在双缝干涉实验中,入射光的波长为λ,用玻璃纸遮住双缝中的一条缝,若玻璃纸中的光程比相同厚度的空气的光程大2.5λ,则屏上原来的明纹处( )(A) 仍为明条纹思考题13-5图en 1n 2n 3λ(B) 变为暗条纹(C) 既非明条纹,也非暗条纹(D) 无法确定是明条纹还是暗条纹 答:明条纹和暗条纹光程差2λ,故选(B)。
九年级物理第十三章《内能》--知识点+例题+综合测试题+详细答案
第一节 分子热运动扩散1、定义:不同分子互相接触时,彼此进入对方的现象叫扩散。
其实质是分子(原子)的互相渗透。
2、扩散现象表明:一切物质的分子都在做永不停息的无规则运动,也说明物质的分子间存在间隙。
3、影响因素:温度越高,扩散越快。
4、理解扩散现象①扩散现象只能发生在不同的物质之间。
②不同物质只有相互接触时才能发生扩散现象。
③扩散现象是两种物质的分子彼此进入对方。
④不同状态的物体之间也可以发生扩散现象。
【例1】将一滴红墨水滴入一盆清水中,后来整盆水都变红了,这是 现象;将 3 cm3水和3 cm3酒精注入一个量杯,摇晃后发现,水和酒精的总体积小于6 cm3,这说明分子间有 .【例2】下列事例中,不能说明分子不停地做无规则运动的是A .在教室中烧醋杀菌时满屋都会闻到醋味B .拿粉笔用力在黑板上写字C .香水瓶打开盖后,满屋充满香味D .水洒在地上,过一会儿全蒸发了分子热运动一切物质的分子都在不停地做无规则运动。
由于分子的运动与温度有关,所以这种无规则的运动叫做分子的热运动。
温度越高,热运动越剧烈。
【例3】有关分子热运动,下列说法正确的是()A.液体很难被压缩,说明分子间有引力B.用手捏海绵,海绵的体积变小了,说明分子间有间隙C.有霾天气大量极细微的尘粒悬浮在空中,说明分子在做无规则运动D.在做墨水滴入水中的扩散实验中,我们看不到墨水的分子在运动【4】下列有关分子热运动和内能的说法中正确的是()A.水和酒精混合后总体积变小,说明了分子之间是有间隙的B.液体有流动性,但不易被压缩,是因为液体分子间没有引力、只有斥力C.小明在平直跑道上匀速跑步时,机械能不变,因此其内能也不变D.我们经常看到室内的灰尘随意飘动,说明了空气分子的无规则运动分子动理论1、分子动理论内容物质是由分子组成的的,一切物质的分子都在不听地做无规则运动,分子间存在相互作用的引力和斥力。
2、分子间的作用力分子间同时存在相互作用的引力和斥力,当分子距离很小时,引力小于斥力,表现为斥力;当分子间距离稍大时,引力大于斥力,表现为引力;当分子间距离很大时,分子间作用力变得十分微小,可以忽略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十三章 热力学基础13 -1 如图所示,bca 为理想气体绝热过程,b1a 和b2a 是任意过程,则上述两过程中气体作功与吸收热量的情况是( )(A) b1a 过程放热,作负功;b2a 过程放热,作负功(B) b1a 过程吸热,作负功;b2a 过程放热,作负功(C) b1a 过程吸热,作正功;b2a 过程吸热,作负功(D) b1a 过程放热,作正功;b2a 过程吸热,作正功分析与解 bca ,b1a 和b2a 均是外界压缩系统,由⎰=V p W d 知系统经这三个过程均作负功,因而(C)、(D)不对.理想气体的内能是温度的单值函数,因此三个过程初末态内能变化相等,设为ΔE .对绝热过程bca ,由热力学第一定律知ΔE =-W bca .另外,由图可知:|W b2a |>|W bca |>|W b1a |,则W b2a <W bca <W b1a .对b1a 过程:Q =ΔE +W b1a >ΔE +W bca =0 是吸热过程.而对b2a 过程:Q =ΔE +W b2a <ΔE +W bca =0 是放热过程.可见(A)不对,正确的是(B).13 -2 如图,一定量的理想气体,由平衡态A 变到平衡态B ,且它们的压强相等,即p A =p B ,请问在状态A 和状态B 之间,气体无论经过的是什么过程,气体必然( )(A) 对外作正功 (B) 内能增加(C) 从外界吸热 (D) 向外界放热分析与解 由p -V 图可知,p A V A <p B V B ,即知T A <T B ,则对一定量理想气体必有E B >E A .即气体由状态A 变化到状态B,内能必增加.而作功、热传递是过程量,将与具体过程有关.所以(A)、(C)、(D)不是必然结果,只有(B)正确.13 -3 两个相同的刚性容器,一个盛有氢气,一个盛氦气(均视为刚性分子理想气体).开始时它们的压强和温度都相同,现将3J 热量传给氦气,使之升高到一定的温度.若使氢气也升高同样的温度,则应向氢气传递热量为( )(A) 6J (B) 3 J (C) 5 J (D) 10 J分析与解 当容器体积不变,即为等体过程时系统不作功,根据热力学第一定律Q =ΔE +W ,有Q =ΔE .而由理想气体内能公式T R i M m E Δ2Δ=,可知欲使氢气和氦气升高相同温度,须传递的热量 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=e e e 222e 2H H H H H H H H /:i M m i M m Q Q .再由理想气体物态方程pV =mM RT ,初始时,氢气和氦气是具有相同的温度、压强和体积,因而物质的量相同,则3/5/:e 2e 2H H H H ==i i Q Q .因此正确答案为(C).13 -4 有人想像了四个理想气体的循环过程,则在理论上可以实现的为( )分析与解由绝热过程方程pVγ=常量,以及等温过程方程pV=常量,可知绝热线比等温线要陡,所以(A)过程不对,(B)、(C)过程中都有两条绝热线相交于一点,这是不可能的.而且(B)过程的循环表明系统从单一热源吸热且不引起外界变化,使之全部变成有用功,违反了热力学第二定律.因此只有(D)正确.13 -5一台工作于温度分别为327 ℃和27 ℃的高温热源与低温源之间的卡诺热机,每经历一个循环吸热2 000 J,则对外作功()(A) 2 000J(B) 1 000J(C) 4 000J(D) 500J分析与解热机循环效率η=W/Q吸,对卡诺机,其循环效率又可表为:η=1-T2 /T1,则由W /Q吸=1 -T2 /T1可求答案.正确答案为(B).13 -6根据热力学第二定律()(A) 自然界中的一切自发过程都是不可逆的(B) 不可逆过程就是不能向相反方向进行的过程(C) 热量可以从高温物体传到低温物体,但不能从低温物体传到高温物体(D) 任何过程总是沿着熵增加的方向进行分析与解 对选项(B):不可逆过程应是指在不引起其他变化的条件下,不能使逆过程重复正过程的每一状态,或者虽然重复但必然会引起其他变化的过程.对选项(C):应是热量不可能从低温物体自动传到高温物体而不引起外界的变化.对选项(D):缺少了在孤立系统中这一前提条件.只有选项(A)正确. 13 -7 位于委内瑞拉的安赫尔瀑布是世界上落差最大的瀑布,它高979m.如果在水下落的过程中,重力对它所作的功中有50%转换为热量使水温升高,求水由瀑布顶部落到底部而产生的温差.( 水的比热容c 为4.18×103 J·kg -1·K -1 ) 分析 取质量为m 的水作为研究对象,水从瀑布顶部下落到底部过程中重力作功W =mgh ,按题意,被水吸收的热量Q =0.5W ,则水吸收热量后升高的温度可由Q =mc ΔT 求得.解 由上述分析得mc ΔT =0.5mgh水下落后升高的温度ΔT =0.5gh /c =1.15K13 -8 如图所示,一定量的空气,开始在状态A ,其压强为2.0×105Pa ,体积为2.0 ×10-3m 3 ,沿直线AB 变化到状态B 后,压强变为1.0 ×105Pa ,体积变为3.0 ×10-3m 3 ,求此过程中气体所作的功.分析 理想气体作功的表达式为()⎰=V V p W d .功的数值就等于p -V 图中过程曲线下所对应的面积.解 S ABCD =1/2(BC +AD)×CD故 W =150 J13 -9 汽缸内储有2.0mol 的空气,温度为27 ℃,若维持压强不变,而使空气的体积膨胀到原体积的3s 倍,求空气膨胀时所作的功.分析 本题是等压膨胀过程,气体作功()1221d V V p V p W V V -==⎰,其中压强p 可通过物态方程求得.解 根据物态方程11RT pV v =,汽缸内气体的压强11/V RT p v = ,则作功为 ()()J 1097.92/31112112⨯==-=-=RT V V V RT V V p W v v13 -10 一定量的空气,吸收了1.71×103J 的热量,并保持在1.0 ×105Pa 下膨胀,体积从1.0×10-2m 3 增加到1.5×10-2m 3 ,问空气对外作了多少功? 它的内能改变了多少?分析 由于气体作等压膨胀,气体作功可直接由W =p (V 2 -V 1 )求得.取该空气为系统,根据热力学第一定律Q =ΔE +W 可确定它的内能变化.在计算过程中要注意热量、功、内能的正负取值.解 该空气等压膨胀,对外作功为W =p (V 2-V 1 )=5.0 ×102J其内能的改变为Q =ΔE +W =1.21 ×103J13 -11 0.1kg 的水蒸气自120 ℃加热升温到140℃,问(1) 在等体过程中;(2) 在等压过程中,各吸收了多少热量? 根据实验测定,已知水蒸气的摩尔定压热容C p,m =36.21J·mol -1·K -1,摩尔定容热容C V,m =27.82J·mol -1·K -1. 分析 由量热学知热量的计算公式为T C Q m Δv =.按热力学第一定律,在等体过程中,T C E Q ΔΔm V,V v ==;在等压过程中, T C E V p Q ΔΔd m p,p v =+=⎰.解 (1) 在等体过程中吸收的热量为J 101.3ΔΔ3m V,V ⨯===T C Mm E Q (2) 在等压过程中吸收的热量为 ()J 100.4Δd 312m p,p ⨯=-=+=⎰T T C M m E V p Q 13 -12 如图所示,在绝热壁的汽缸内盛有1mol 的氮气,活塞外为大气,氮气的压强为1.51 ×105 Pa ,活塞面积为0.02m 2 .从汽缸底部加热,使活塞缓慢上升了0.5m.问(1) 气体经历了什么过程? (2) 汽缸中的气体吸收了多少热量? (根据实验测定,已知氮气的摩尔定压热容C p ,m =29.12J·mol -1·K -1,摩尔定容热容C V,m =20.80J·mol -1·K -1 )分析 因活塞可以自由移动,活塞对气体的作用力始终为大气压力和活塞重力之和.容器内气体压强将保持不变.对等压过程,吸热T C Q Δm p,p v =.ΔT 可由理想气体物态方程求出.解 (1) 由分析可知气体经历了等压膨胀过程.(2) 吸热T C Q Δm p,p v =.其中ν =1 mol ,C p,m =29.12J·mol -1·K-1.由理想气体物态方程pV =νRT ,得ΔT =(p 2V 2 -p 1 V 1 )/R =p(V 2 -V 1 )/R =p· S· Δl /R则 J 105.293m p,p ⨯==pS ΔSΔl C Q13 -13 一压强为1.0 ×105Pa,体积为1.0×10-3m 3的氧气自0℃加热到100 ℃.问:(1) 当压强不变时,需要多少热量?当体积不变时,需要多少热量?(2) 在等压或等体过程中各作了多少功?分析 (1) 求Q p 和Q V 的方法与题13-11相同.(2) 求过程的作功通常有两个途径.① 利用公式()V V p W d ⎰=;② 利用热力学第一定律去求解.在本题中,热量Q 已求出,而内能变化可由()12m V,V ΔT T C E Q -==v 得到.从而可求得功W .解 根据题给初态条件得氧气的物质的量为mol 1041.4/2111-⨯===RT V p Mm v 氧气的摩尔定压热容R C 27m p,=,摩尔定容热容R C 25m V,=. (1) 求Q p 、Q V等压过程氧气(系统)吸热()J 1.128Δd 12m p,p =-=+=⎰T T C E V p Q v等体过程氧气(系统)吸热()J 5.91Δ12m V,V =-==T T C E Q v(2) 按分析中的两种方法求作功值解1 ① 利用公式()V V p W d ⎰=求解.在等压过程中,T R Mm V p W d d d ==,则得 J 6.36d d 21p ===⎰⎰T T T R Mm W W 而在等体过程中,因气体的体积不变,故作功为()0d V ==⎰V V p W② 利用热力学第一定律Q =ΔE +W 求解.氧气的内能变化为()J 5.91Δ12m V,V =-==T T C Mm E Q 由于在(1) 中已求出Q p 与Q V ,则由热力学第一定律可得在等压过程、等体过程中所作的功分别为J 6.36Δp p =-=E Q W0ΔV V =-=E Q W13 -14 如图所示,系统从状态A 沿ABC 变化到状态C 的过程中,外界有326J 的热量传递给系统,同时系统对外作功126J.当系统从状态C 沿另一曲线CA 返回到状态A 时,外界对系统作功为52J ,则此过程中系统是吸热还是放热?传递热量是多少?分析 已知系统从状态C 到状态A ,外界对系统作功为W CA ,如果再能知道此过程中内能的变化ΔE AC ,则由热力学第一定律即可求得该过程中系统传递的热量Q CA .由于理想气体的内能是状态(温度)的函数,利用题中给出的ABC 过程吸热、作功的情况,由热力学第一定律即可求得由A 至C 过程中系统内能的变化ΔE AC ,而ΔE AC =-ΔE AC ,故可求得Q CA .解 系统经ABC 过程所吸收的热量及对外所作的功分别为Q ABC =326J , W ABC =126J则由热力学第一定律可得由A 到C 过程中系统内能的增量ΔE AC =Q ABC -W ABC =200J由此可得从C 到A ,系统内能的增量为ΔE CA =-200J从C 到A ,系统所吸收的热量为Q CA =ΔE CA +W CA =-252J式中负号表示系统向外界放热252 J.这里要说明的是由于CA 是一未知过程,上述求出的放热是过程的总效果,而对其中每一微小过程来讲并不一定都是放热.13 -15 如图所示,一定量的理想气体经历ACB 过程时吸热700J ,则经历ACBDA 过程时吸热又为多少?分析 从图中可见ACBDA 过程是一个循环过程.由于理想气体系统经历一个循环的内能变化为零,故根据热力学第一定律,循环系统净吸热即为外界对系统所作的净功.为了求得该循环过程中所作的功,可将ACBDA 循环过程分成ACB 、BD 及DA 三个过程讨论.其中BD 及DA 分别为等体和等压过程,过程中所作的功按定义很容易求得;而ACB 过程中所作的功可根据上题同样的方法利用热力学第一定律去求.解 由图中数据有p A V A =p B V B ,则A 、B 两状态温度相同,故ACB 过程内能的变化ΔE CAB =0,由热力学第一定律可得系统对外界作功W CAB =Q CAB -ΔE CAB =Q CAB =700J在等体过程BD 及等压过程DA 中气体作功分别为()⎰==0d BD V V p W()⎰-=-==J 1200d 12A DA V V P V p W则在循环过程ACBDA 中系统所作的总功为J 500DA BD ACB -=++=W W W W负号表示外界对系统作功.由热力学第一定律可得,系统在循环中吸收的总热量为J 500-==W Q负号表示在此过程中,热量传递的总效果为放热.13 -16 在温度不是很低的情况下,许多物质的摩尔定压热容都可以用下式表示2m p,2--+=cT bT a C式中a 、b 和c 是常量,T 是热力学温度.求:(1) 在恒定压强下,1 mol 物质的温度从T 1升高到T 2时需要的热量;(2) 在温度T 1 和T 2 之间的平均摩尔热容;(3) 对镁这种物质来说,若C p ,m 的单位为J·mol -1·K -1,则a =25.7J·mol -1·K-1 ,b =3.13 ×10-3J·mol -1·K-2,c =3.27 ×105J·mol -1·K.计算镁在300K时的摩尔定压热容C p,m ,以及在200K和400K之间C p,m 的平均值. 分析 由题目知摩尔定压热容C p,m 随温度变化的函数关系,则根据积分式⎰=21d m p,p T T T C Q 即可求得在恒定压强下,1mol 物质从T 1 升高到T 2所吸收的热量Qp .故温度在T 1 至T 2之间的平均摩尔热容()12p m p,/T T Q C -=. 解 (1) 11 mol 物质从T 1 升高到T 2时吸热为()()()()11122122122m p,p d 2d 21----+-+-=-+==⎰⎰T T c T T b T T a T cT bT a T C Q T T (2) 在T 1 和T 2 间的平均摩尔热容为()()21212p m p,//T T c T T a T T Q C -+=-=(3) 镁在T =300 K 时的摩尔定压热容为-1-12m p,K mol J 9.232⋅⋅=-+=-cT bT a C镁在200 K 和400 K 之间C p ,m 的平均值为()-1-12112m p,K mol J 5.23/⋅⋅=-+=T T c T T a C13 -17 空气由压强为1.52×105 Pa ,体积为5.0×10-3m 3 ,等温膨胀到压强为1.01×105 Pa ,然后再经等压压缩到原来的体积.试计算空气所作的功. 解 空气在等温膨胀过程中所作的功为()()2111121T /ln /ln p p V p V V RT Mm W == 空气在等压压缩过程中所作的功为()⎰-==12d V V p V p W利用等温过程关系p 1 V 1 =p 2 V 2 ,则空气在整个过程中所作的功为()J 7.55/ln 11122111=-+=+=V p V p p p V p W W W T p13 -18 如图所示,使1mol 氧气(1) 由A 等温地变到B ;(2) 由A 等体地变到C ,再由C 等压地变到B.试分别计算氧气所作的功和吸收的热量.分析 从p -V 图(也称示功图)上可以看出,氧气在AB 与ACB 两个过程中所作的功是不同的,其大小可通过()V V p W d ⎰=求出.考虑到内能是状态的函数,其变化值与过程无关,所以这两个不同过程的内能变化是相同的,而且因初、末状态温度相同T A =T B ,故ΔE =0,利用热力学第一定律Q =W +ΔE ,可求出每一过程所吸收的热量.解 (1) 沿AB 作等温膨胀的过程中,系统作功()()J 1077.2/ln /ln 31⨯===A B B A A B AB V V V p V V RT Mm W 由分析可知在等温过程中,氧气吸收的热量为Q AB =W AB =2.77 ×103J (2) 沿A 到C 再到B 的过程中系统作功和吸热分别为W ACB =W AC +W CB =W CB =p C (V B -V C )=2.0×103JQ ACB =W A CB =2.0×103 J13 -19 将体积为1.0 ×10-4m 3 、压强为1.01×105Pa 的氢气绝热压缩,使其体积变为2.0 ×10-5 m 3 ,求压缩过程中气体所作的功.(氢气的摩尔定压热容与摩尔定容热容比值γ=1.41)分析 可采用题13-13 中气体作功的两种计算方法.(1) 气体作功可由积分V p W d ⎰=求解,其中函数p (V )可通过绝热过程方程pV C γ= 得出.(2)因为过程是绝热的,故Q =0,因此,有W =-ΔE ;而系统内能的变化可由系统的始末状态求出.解 根据上述分析,这里采用方法(1)求解,方法(2)留给读者试解.设p 、V 分别为绝热过程中任一状态的压强和体积,则由γγpV V p =11得 γγV V p p -=11氢气绝热压缩作功为J 0.231d d 121211121-=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡-===⎰⎰-V V V V γp V V V p V p W V V γγ 13 -20 试验用的火炮炮筒长为3.66 m ,内膛直径为0.152 m ,炮弹质量为45.4kg ,击发后火药爆燃完全时炮弹已被推行0.98 m ,速度为311 m·s -1 ,这时膛内气体压强为2.43×108Pa.设此后膛内气体做绝热膨胀,直到炮弹出口.求(1) 在这一绝热膨胀过程中气体对炮弹作功多少?设摩尔定压热容与摩尔定容热容比值为 1.2γ=.(2) 炮弹的出口速度(忽略摩擦).分析 (1) 气体绝热膨胀作功可由公式1d 2211--==⎰γV p V p V p W 计算.由题中条件可知绝热膨胀前后气体的体积V 1和V 2,因此只要通过绝热过程方程γγV p V p 2211=求出绝热膨胀后气体的压强就可求出作功值.(2) 在忽略摩擦的情况下,可认为气体所作的功全部用来增加炮弹的动能.由此可得到炮弹速度.解 由题设l =3.66 m,D =0.152 m ,m =45.4 kg ,l 1=0.98 m ,v 1=311 m·s -1 ,p 1 =2.43×108Pa ,γ=1.2.(1) 炮弹出口时气体压强为()()Pa 1000.5//7112112⨯===γγl l p V V p p 气体作功J 1000.54π11d 6222112211⨯=--=--==⎰D γl p l p γV p V p V p W (2) 根据分析2122121v v m m W -=,则 -121s m 563⋅=+=v 2W/m v13 -21 1mol 氢气在温度为300K,体积为0.025m 3 的状态下,经过(1)等压膨胀,(2)等温膨胀,(3)绝热膨胀.气体的体积都变为原来的两倍.试分别计算这三种过程中氢气对外作的功以及吸收的热量.分析 这三个过程是教材中重点讨论的过程.在p -V 图上,它们的过程曲线如图所示.由图可知过程(1 ) 作功最多, 过程( 3 ) 作功最少.温度T B >T C >T D ,而过程(3) 是绝热过程,因此过程(1)和(2)均吸热,且过程(1)吸热多.具体计算时只需直接代有关公式即可.解 (1) 等压膨胀()()J 1049.23⨯==-=-=A A B AA AB A p RT V V V RT V V p W v()J 1073.8273,,⨯===-=+=A A m p A B m p p p T R T C T T C E ΔW Q v v (2) 等温膨胀 J 1073.12ln /3⨯===A A RT V W C T vRTlnV对等温过程ΔE =0,所以J 1073.13⨯==T T W Q(3) 绝热膨胀T D =T A (V A /V D )γ-1=300 ×(0.5)0.4=227.4K对绝热过程a 0Q =,则有 ()()J 1051.125Δ3,⨯=-=-=-=D A D A m V a T T R T T C E W v 13 -22 绝热汽缸被一不导热的隔板均分成体积相等的A 、B 两室,隔板可无摩擦地平移,如图所示.A 、B 中各有1mol 氮气,它们的温度都是T0 ,体积都是V0 .现用A 室中的电热丝对气体加热,平衡后A 室体积为B 室的两倍,试求(1) 此时A 、B 两室气体的温度;(2) A 中气体吸收的热量.分析 (1) B 室中气体经历的是一个绝热压缩过程,遵循绝热方程TVγ-1 =常数,由此可求出B 中气体的末态温度TB .又由于A 、B 两室中隔板可无摩擦平移,故A 、B 两室等压.则由物态方程pV A =νRT A 和pV B =νRT B 可知T A =2T B .(2) 欲求A 室中气体吸收的热量,我们可以有两种方法.方法一:视A 、B 为整体,那么系统(汽缸)对外不作功,吸收的热量等于系统内能的增量.即QA =ΔE A +ΔE B .方法二:A 室吸热一方面提高其内能ΔE A ,另外对“外界”B 室作功WA.而对B 室而言,由于是绝热的,“外界” 对它作的功就全部用于提高系统的内能ΔEB .因而在数值上W A =ΔE B .同样得到Q A =ΔE A +ΔE B . 解 设平衡后A 、B 中气体的温度、体积分别为T A ,T B 和V A ,V B .而由分析知压强p A =p B =p .由题已知⎩⎨⎧=+=022V V V V V B A B A ,得⎩⎨⎧==3/23/400V V V V B A (1) 根据分析,对B 室有B γB γT V T V 1010--=得 ()0010176.1/T T V V T γB B ==-;0353.2T T T B A ==(2) ()()0007.312525ΔΔT T T R T T R E E Q B A A A A =-+-=+= 13-23 0.32 kg 的氧气作如图所示的ABCDA 循环,V 2 =2V 1 ,T 1=300K,T 2=200K,求循环效率.分析 该循环是正循环.循环效率可根据定义式η=W /Q 来求出,其中W 表示一个循环过程系统作的净功,Q 为循环过程系统吸收的总热量. 解 根据分析,因AB 、CD 为等温过程,循环过程中系统作的净功为()()()J 1076.5/ln /ln 32121211⨯=-==+=V V T T R M m V V RT Mm W W W CD AB由于吸热过程仅在等温膨胀(对应于AB 段)和等体升压(对应于DA 段)中发生,而等温过程中ΔE =0,则AB AB W Q =.等体升压过程中W =0,则DA DA E Q Δ=,所以,循环过程中系统吸热的总量为()()()()J 1081.325/ln /ln Δ42112121,121⨯=-+=-+=+=+=T T R M m V V RT Mm T T C M m V V RT Mm E W Q Q Q m V DAAB DA AB 由此得到该循环的效率为 %15/==Q W η13 -24 图(a)是某单原子理想气体循环过程的V -T 图,图中V C =2V A .试问:(1) 图中所示循环是代表制冷机还是热机? (2) 如是正循环(热机循环),求出其循环效率.分析 以正、逆循环来区分热机和制冷机是针对p -V 图中循环曲线行进方向而言的.因此,对图(a)中的循环进行分析时,一般要先将其转换为p -V 图.转换方法主要是通过找每一过程的特殊点,并利用理想气体物态方程来完成.由图(a)可以看出,BC 为等体降温过程,CA 为等温压缩过程;而对AB 过程的分析,可以依据图中直线过原点来判别.其直线方程为V =CT ,C 为常数.将其与理想气体物态方程pV =m/MRT 比较可知该过程为等压膨胀过程(注意:如果直线不过原点,就不是等压过程).这样,就可得出p -V 图中的过程曲线,并可判别是正循环(热机循环)还是逆循环(制冷机循环),再参考题13-23的方法求出循环效率.解 (1) 根据分析,将V -T 图转换为相应的p -V 图,如图(b)所示.图中曲线行进方向是正循环,即为热机循环.(2) 根据得到的p -V 图可知,AB 为等压膨胀过程,为吸热过程.BC 为等体降压过程,CA 为等温压缩过程,均为放热过程.故系统在循环过程中吸收和放出的热量分别为()A B m p T T C M m Q -=,1 ()()A C A A B m V V V RT Mm T T C M m Q /ln ,2+-= CA 为等温线,有T A =T C ;AB 为等压线,且因V C =2V A ,则有T A =T B /2.对单原子理想气体,其摩尔定压热容C p ,m =5R/2,摩尔定容热容C V ,m =3R/2.故循环效率为()()3/125/2ln 2312/5/2ln 321/112=+-=⎥⎦⎤⎢⎣⎡+-=-=A A A T T T Q Q η 13 -25 一卡诺热机的低温热源温度为7℃,效率为40%,若要将其效率提高到50%,问高温热源的温度需提高多少?解 设高温热源的温度分别为1T '、1T '',则有12/1T T η'-=', 12/1T T η''-=''其中T 2 为低温热源温度.由上述两式可得高温热源需提高的温度为K 3.931111Δ211=⎪⎪⎭⎫ ⎝⎛'--''-='-''=T ηηT T T 13 -26 一定量的理想气体,经历如图所示的循环过程.其中AB 和CD 是等压过程,BC 和DA 是绝热过程.已知B 点温度T B =T 1,C 点温度T C =T 2.(1) 证明该热机的效率η=1-T 2/T 1 ,(2) 这个循环是卡诺循环吗?分析 首先分析判断循环中各过程的吸热、放热情况.BC 和DA 是绝热过程,故Q BC 、Q DA 均为零;而AB 为等压膨胀过程(吸热)、CD 为等压压缩过程(放热),这两个过程所吸收和放出的热量均可由相关的温度表示.再利用绝热和等压的过程方程,建立四点温度之间的联系,最终可得到求证的形式. 证 (1) 根据分析可知 ()()⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=---=---=-=B A C D B C A B D CA B m p C D m p AB CD T T T T T T T T T T T T C MT T C M m Q Q η1/11111,, (1) 与求证的结果比较,只需证得BA C D T T T T = .为此,对AB 、CD 、BC 、DA 分别列出过程方程如下V A /T A =V B /T B (2)V C /T C =V D /T D (3) C γC B γB T V T V 11--= (4)A γA D γD T V T V 11--= (5)联立求解上述各式,可证得η=1-T C /T B =1-T 2/T 1(2) 虽然该循环效率的表达式与卡诺循环相似,但并不是卡诺循环.其原因是:① 卡诺循环是由两条绝热线和两条等温线构成,而这个循环则与卡诺循环不同;② 式中T 1、T 2的含意不同,本题中T 1、T 2只是温度变化中两特定点的温度,不是两等温热源的恒定温度.13 -27 一小型热电厂内,一台利用地热发电的热机工作于温度为227℃的地下热源和温度为27℃的地表之间.假定该热机每小时能从地下热源获取1.8 ×1011J的热量.试从理论上计算其最大功率为多少?分析 热机必须工作在最高的循环效率时,才能获取最大的功率.由卡诺定理可知,在高温热源T 1和低温热源T 2之间工作的可逆卡诺热机的效率最高,其效率为η=1-T 2/T 1 .由于已知热机在确定的时间内吸取的热量,故由效率与功率的关系式Q pt Q W η//==,可得此条件下的最大功率. 解 根据分析,热机获得的最大功率为()-1712s J 100.2//1/⋅⨯=-==t Q T T t Q ηp13 -28 有一以理想气体为工作物质的热机,其循环如图所示,试证明热()()1/1/12121---=p p V V γη 分析 该热机由三个过程组成,图中AB 是绝热过程,BC 是等压压缩过程,CA 是等体升压过程.其中CA 过程系统吸热,BC 过程系统放热.本题可从效率定义CA BC Q Q Q Q η/1/112-=-=出发,利用热力学第一定律和等体、等压方程以及γ=C p,m 桙C V,m 的关系来证明.证 该热机循环的效率为CA BC Q Q Q Q η/1/112-=-=其中Q BC =m /M C p,m (T C -T B ),Q CA =m/M C V,m (T A -T C ),则上式可写为1/1/11---=---=C A CB C A B C T T T T γT T T T γη 在等压过程BC 和等体过程CA 中分别有T B /V 1 =T C /V 2,T A /P 1 =T C /P 2,代入上式得()()1/1/12121---=p p V V γη 13 -29 如图所示为理想的狄赛尔(Diesel)内燃机循环过程,它由两绝热线AB 、CD 和等压线BC 及等体线DA 组成.试证此内燃机的效率为()()()1//1/12312123---=-V V V V γV V ηγγ证 求证方法与题13-28相似.由于该循环仅在DA 过程中放热、BC 过程中吸热,则热机效率为 ()()BC AD B C m p A D m V BCDA T T T T γT T C M T T C M m Q Q η---=---=-=111/1,, (1) 在绝热过程AB 中,有1211--=γB γA V T V T ,即()121//-=γA B V V T T (2)在等压过程BC 中,有23//V T V T B C =,即23//V V T T B C = (3)再利用绝热过程CD,得1311--=γC γD V T V T (4)解上述各式,可证得()()()1//1/12312123---=-V V V V γV V ηγγ 13 -30 如图所示,将两部卡诺热机连接起来,使从一个热机输出的热量,输入到另一个热机中去.设第一个热机工作在温度为T 1和T 2的两热源之间,其效率为η1 ,而第二个热机工作在温度为T 2 和T 3 的两热源之间,其效率为η2.如组合热机的总效率以η=(W 1 +W 2 )/Q 1 表示.试证总效率表达式为η=(1 -η1 )η2 +η1 或 η=1 -T 3/T 1分析 按效率定义,两热机单独的效率分别为η1=W 1 /Q 1和η2=W 2 /Q 2,其中W 1 =Q 1-Q 2 ,W 2 =Q 2-Q 3 .第一个等式的证明可采用两种方法:(1) 从等式右侧出发,将η1 、η2 的上述表达式代入,即可得证.读者可以一试.(2) 从等式左侧的组合热机效率η=(W 1 +W 2 )/Q 1出发,利用η1、η2的表达式,即可证明.由于卡诺热机的效率只取决于两热源的温度,故只需分别将两个卡诺热机的效率表达式η1=1-T 2 /T 1 和η2=1-T 3 /T 2 代入第一个等式,即可得到第二个等式.证 按分析中所述方法(2) 求证.因η1=W 1 /Q 1 、η2=W 2 /Q 2 ,则组合热机效率12211211121Q Q ηηQ W Q W Q W W η+=+=+= (1) 以Q 2 =Q 1-W 1 代入式(1) ,可证得η=η1 +η2 (1-η1 ) (2) 将η1=1-T 2 /T 1 和η2=1-T 3 /T 2代入式(2),亦可证得η=1-T 2 /T 1 +(1-T 3 /T 2 )T 2 /T 1 =1-T 3 /T 113 -31 在夏季,假定室外温度恒定为37℃,启动空调使室内温度始终保持在17 ℃.如果每天有2.51 ×108 J 的热量通过热传导等方式自室外流入室内,则空调一天耗电多少? (设该空调制冷机的制冷系数为同条件下的卡诺制冷机制冷系数的60%)分析 耗电量的单位为kW·h ,1kW·h =3.6 ×106J.图示是空调的工作过程示意图.因为卡诺制冷机的制冷系数为212T T T e k -=,其中T 1为高温热源温度(室外环境温度),T 2为低温热源温度(室内温度).所以,空调的制冷系数为e =e k · 60% =0.6 T 2/( T 1 -T 2 )另一方面,由制冷系数的定义,有e =Q 2 /(Q 1 -Q 2 )其中Q 1为空调传递给高温热源的热量,即空调向室外排放的总热量;Q 2是空调从房间内吸取的总热量.若Q ′为室外传进室内的热量,则在热平衡时Q 2=Q ′.由此,就可以求出空调的耗电作功总值W =Q 1-Q 2 .解 根据上述分析,空调的制冷系数为7.8%60212=-=T T T e在室内温度恒定时,有Q 2=Q ′.由e =Q 2 /(Q 1-Q 2 )可得空调运行一天所耗电功W =Q 1-Q 2=Q 2/e =Q ′/e =2.89×107=8.0 kW·h13 -32 一定量的理想气体进行如图所示的逆向斯特林循环(回热式制冷机中的工作循环),其中1→2为等温(T 1 )压缩过程,3→4为等温(T 2 )膨胀过程,其他两过程为等体过程.求证此循环的制冷系数和逆向卡诺循环制冷系数相等.(这一循环是回热式制冷机中的工作循环,具有较好的制冷效果.4→1过程从热库吸收的热量在2→3过程中又放回给了热库,故均不计入循环系数计算.)证明 1→2 过程气体放热2111lnV V RT Q v = 3→4 过程气体吸热 2122ln V V RT Q v = 则制冷系数 e =Q 2 /(Q 1-Q 2 )= T 2/( T 1-T 2 ).与逆向卡诺循环的制冷系数相同.13 -33 物质的量为ν的理想气体,其摩尔定容热容C V,m =3R/2,从状态A(p A ,V A ,T A )分别经如图所示的ADB 过程和ACB 过程,到达状态B(p B ,V B ,T B ).试问在这两个过程中气体的熵变各为多少? 图中AD 为等温线.分析 熵是热力学的状态函数,状态A 与B 之间的熵变ΔSAB 不会因路径的不同而改变.此外,ADB 与ACB 过程均由两个子过程组成.总的熵变应等于各子过程熵变之和,即DB AD AB S S S ΔΔΔ+=或CB AC AB S S S ΔΔΔ+=. 解 (1) ADB 过程的熵变为()()D B p,m A D B D D A T BD P D A T DBAD AB T T C V V T T C T W T Q T Q S S S /ln /ln /d /d /d /d ΔΔΔm p,v vR v +=+=+=+=⎰⎰⎰⎰ (1)在等温过程AD 中,有T D =T A ;等压过程DB 中,有V B /T B =V D /T D ;而C p ,m =C V ,m +R ,故式(1)可改写为()()()()A B A B A B p,m A B B D ADB V T V V V T C V T V T S /ln 23/ln /ln /ln ΔvR vR v vR +=+=(2) ACB 过程的熵变为()()C B V,m A C p,m CB AC BA ACB T TC V T C S S Q/T S /ln /ln ΔΔd Δv v +=+==⎰ (2)利用V C =V B 、p C =p A 、T C /V C =T A /V A 及T B /p B =T C /p C ,则式(2)可写为()()()()()()()A B A B A A B B V,m A B A B A B V,m ACB V T V V V p V p C V V p p V V R C S /ln23/ln /ln /ln /ln /ln ΔvR vR v vR v v +=+=++=通过上述计算可看出,虽然ADB 及ACB 两过程不同,但熵变相同.因此,在计算熵变时,可选取比较容易计算的途径进行.13 -34 有一体积为2.0 ×10-2m 3的绝热容器,用一隔板将其分为两部分,如图所示.开始时在左边(体积V 1 =5.0 ×10-3m 3)一侧充有1mol 理想气体,右边一侧为真空.现打开隔板让气体自由膨胀而充满整个容器,求熵变.分析 在求解本题时,要注意⎰=BA T Q S d Δ 的适用条件.在绝热自由膨胀过程中,d Q =0,若仍运用上式计算熵变,必然有ΔS =0.显然,这是错误的结果.由于熵是状态的单值函数,当初态与末态不同时,熵变不应为零.出现上述错误的原因就是忽视了公式的适用条件. ⎰=BA T Q S d Δ 只适用于可逆过程,而自由膨胀过程是不可逆的.因此,在求解不可逆过程的熵变时,通常需要在初态与末态之间设计一个可逆过程,然后再按可逆过程熵变的积分式进行计算.在选取可逆过程时,尽量使其积分便于计算.解 根据上述分析,在本题中因初末态时气体的体积V 1 、V 2 均已知,且温度相同,故可选一可逆等温过程.在等温过程中,d Q =d W =p d V ,而VRT M m p =,则熵变为 ()1-12K J 52.11/ln d 1d d Δ12⋅=====⎰⎰⎰V V R M m V V R M m T V p T Q S V V。