一 激光基本性质
浅谈普通光源与激光

浅谈普通光源与激光摘要:本文主要概括了普通光源与激光的产生差别,激光的原理和发展历程。
以及性质的不同而在运用中的不同,从而更深刻的让我们对这两个东西产生认识的兴趣以及加深对它们的了解。
关键词:本质性质发展运用总的来说“光”就是一种频率极高的电磁波,具备一定的能量和动量;但是,它具备通常电波所不具备的特殊性,比如它的产生和检测,以及与其他物质相互作用等过程中显露出粒子性的特征,①.接下来我们就来说一说道‘普通光源与激光’一、什么是光源,普通光源的分类。
闪烁物体叫作光源,光源与普通光源与激光光源之分后。
激光光源由特定的闪烁物质及特定的结构部件所共同组成,而普通光源则随处可见。
根据光源中基本发光单元激发方式的不同,普通光源大体可以分为以下几类:1)化学发光。
闪烁过程中辐射体内部出现化学变化,靠消耗自身化学能量而闪烁。
例如燃烧、放烟火等。
2)热致发光。
温度低的物体可以收到红外线。
例如白炽灯、太阳光等。
3)电致发光。
依靠电场能量的激发而发光。
如闪电、电弧灯、火花放电、辉光放电等。
4)光致发光。
用外来光激发所引起的发光现象。
如日光灯、夜光表急某些交通指示牌上的磷光物质的闪烁都属光致发光。
上面的各种闪烁方式的相同,但总的来说普通光源的原理就是自发性地原子和光子的光子。
上述各种闪烁过程,其差别就是唤起的方式相同,而闪烁的微观机制确就是共同的。
即为在外界条件的鞭策下,光源中的原子、分子稀释能量而处在一种不稳定的激发态。
在没任何外界促进作用的情况下,它能够自发性地光子回低激发态或基态,并升空出来一定频率的电磁波。
②二、激光是怎么发现的,以及在激光发现后历程。
总的来说激光就是一种人工的光,它的大多数去至于人工制作,并且只要是因为激光器的产生大大的大力推进了激光事业的发展,堪称就是一个划时代的措施。
迄今为止,光学已经有两千余年的历史,但在激光产生之前,人们使用的光源主要是炽热物体的热辐射和气体放电管,机理是自发发射,这是一个随机过程,相干性不好,两个光源甚至同一个光源的两点发出的光也不能形成干涉条纹。
常用激光介绍范文

常用激光介绍范文激光(Laser)是一种特殊的光,它具有高度的单色性、高亮度和高直行性。
激光的产生和特性使其在众多领域有重要的应用,例如科学研究、医疗、通信、材料加工等。
激光的产生是通过激发原子、分子或离子的能级跃迁来实现的。
当这些粒子在受到外界能量激发后返回基态时,会释放出光的能量。
与其他光源相比,激光具有高度的单色性,即发出的光具有非常狭窄的频率范围。
这使得激光在科学实验中可以精确测量光谱学特性,例如分析化学物质的成分和结构。
激光还具有高亮度,即单位面积光强非常高。
这使得激光在医疗领域有广泛的应用,例如激光手术和激光疗法。
激光手术通过将激光束聚焦在患者体内的目标组织上,实现非接触式精确切割。
激光疗法则利用激光的光热效应,将激光能量转化为组织热能,用于治疗癌症、皮肤病等疾病。
激光还被广泛应用于通信领域。
激光通过光纤传输可以实现大量信息的高速传输。
这种技术在现代通信系统中得到了广泛应用,无论是互联网、移动通信还是电视、电台等广播媒体,都离不开激光的应用。
激光通信具有高速传输、抗干扰能力强、信号损耗小等优点,已成为现代通信领域的重要技术。
另外,激光在材料加工中也有重要的应用。
激光切割、激光打标和激光焊接等技术,可以实现对各种材料的高精度加工。
激光切割利用激光束的高能量密度将材料切割成所需形状,广泛应用于金属、塑料、玻璃等材料的切割加工。
激光打标则通过刻蚀或氧化材料表面,实现对产品的标记和标识。
而激光焊接则可以实现对材料的高精度连接,广泛应用于制造业的焊接工艺。
总之,激光作为一种特殊的光源,具有高度的单色性、高亮度和高直行性,被广泛应用于科学研究、医疗、通信、材料加工等领域。
激光的应用不断推动各个领域的发展和进步,为人类带来更多的便利和创新。
随着激光技术的不断发展,相信激光在更多领域将会有更深入的应用和突破。
激光基本概述范文

激光基本概述范文激光是一种特殊的光辐射,具有单色性、相干性和方向性等特点。
激光器是一种能产生激光的装置,通常由激发源、增益介质和光腔三部分组成。
激光由于其特殊的性质,在科研、医疗、通信、材料加工等多个领域有着广泛的应用。
激光的单色性是指激光具有极窄的频率谱线,一般能够达到很高的频率稳定性。
这是由于激光的产生依赖于特定的能级跃迁,因此能够产生具有固定频率的光波。
与其他光源相比,激光的单色性使得其具有更强的穿透力和辨识能力。
激光的相干性是指激光光束中的光波具有非常好的相位关系。
这种相位关系使得激光光束能够形成明亮、锐利、高对比度的干涉条纹。
相干性使得激光在干涉、衍射和散射等方面有着独特的应用,例如激光干涉测量和激光全息术等。
激光的方向性是指激光光束能够在相当长的距离上保持较小的光束发散角度。
这是由于激光的光波具有在空间上高度一致的波前形状,能够通过适当设计的光学系统将光束聚焦成较小的点。
激光的方向性使得其在光通信、激光雷达等领域有着广泛的应用。
激光器是产生激光的装置,根据辐射介质的不同,可分为气体激光器、固体激光器和半导体激光器等。
气体激光器利用气体放电产生激发能级,再通过受激辐射过程产生激光。
常见的气体激光器包括氦氖激光器、二氧化碳激光器等。
固体激光器利用固体增益介质,通过光泵浦方式产生激发能级,再进行受激辐射过程得到激光。
常见的固体激光器有Nd:YAG激光器、激光二极管等。
半导体激光器是利用半导体材料的特殊性质产生激光,这类激光器尺寸小、功耗低,广泛应用于光通信和激光打印等领域。
激光的应用十分广泛,其中激光切割是一种主要的激光材料加工方法,广泛应用于金属、塑料、木材等材料的切割和雕刻领域。
激光打印技术利用激光的单色性和方向性,可以高速、高质量地实现文件和图像的打印。
此外,激光还在医疗领域有着广泛的应用,例如激光治疗和激光手术等。
总之,激光作为一种特殊的光辐射,具有单色性、相干性和方向性等特点。
激光器是产生激光的装置,根据辐射介质的不同有气体激光器、固体激光器和半导体激光器等。
激光特性

激光的发射原理及产生过程的特殊性决定了激光具有普通光所不具有的特点:即三好(单色性好、相干性好、方向性好)一高(亮度高)。
1 单色性好:普通光源发射的光子,在频率上是各不相同的,所以包含有各种颜色。
而激光发射的各个光子频率相同,因此激光是最好的单色光源。
由于光的生物效应强烈地依赖于光的波长,使得激光的单色性在临床选择性治疗上获得重要应用。
此外,激光的单色特性在光谱技术及光学测量中也得到广泛应用,已成为基础医学研究与临床诊断的重要手段。
2 相干性好:由于受激辐射的光子在相位上是一致的,再加之谐振腔的选模作用,使激光束横截面上各点间有固定的相位关系,所以激光的空间相干性很好(由自发辐射产生的普通光是非相干光)。
激光为我们提供了最好的相干光源。
正是由于激光器的问世,才促使相干技术获得飞跃发展,全息技术才得以实现。
3 方向性好:激光束的发散角很小,几乎是一平行的光线,激光照射到月球上形成的光斑直径仅有1公里左右。
而普通光源发出的光射向四面八方,为了将普通光沿某个方向集中起来常使用聚光装置,但即便是最好的探照灯,如将其光投射到月球上,光斑直径将扩大到1 000公里以上。
激光束的方向性好这一特性在医学上的应用主要是激光能量能在空间高度集中,从而可将激光束制成激光手术刀。
另外,由几何光学可知,平行性越好的光束经聚焦得到的焦斑尺寸越小,再加之激光单色性好,经聚焦后无色散像差,使光斑尺寸进一步缩小,可达微米级以下,甚至可用作切割细胞或分子的精细的“手术刀”。
4 亮度高:激光的亮度可比普通光源高出1012-1019倍,是目前最亮的光源,强激光甚至可产生上亿度的高温。
激光的高能量是保证激光临床治疗有效的最可贵的基本特性之一。
利用激光的高能量还可使激光应用于激光加工工业及国防事业等。
切换到宽屏19362超声波探伤编辑超声波探伤是利用超声能透入金属材料的深处,并由一截面进入另一截面时,在界面边缘发生反射的特点来检查零件缺陷的一种方法,当超声波束自零件表面由探头通至金属内部,遇到缺陷与零件底面时就分别发生反射波,在荧光屏上形成脉冲波形,根据这些脉冲波形来判断缺陷位置和大小。
激光与物质相互作用

激光与物质相互作用是一个极其广泛的研究领域,涉及到光学、物理、化学、医学等多个学科。
本文将从激光的基本性质、激光与物质的相互作用、激光应用等方面进行探讨。
一、激光的基本性质激光是一种特殊的光,与一般光有很大的不同。
它是指在一个封闭的光学腔中产生的光,具有高度的单色性、方向性和相位激发性。
这种特殊的光源可以通过控制光的频率、功率、径向模式和纵向模式等特性,产生不同的光束。
激光通常由三个基本部分组成:激光受体(激光介质)、激发体(激光泵浦源)和光腔。
激光受体是一种特殊的物质,通常是晶体或气体,可以在泵浦源的激发下产生光。
激发体则是提供能量的源头,常见的泵浦源包括闪光灯、电子束、激光二极管等。
光腔是一个空腔,它包含了激光受体和激发体,并用来引导光束,保证激光稳定输出。
二、激光与物质的相互作用激光与物质的相互作用是指激光辐射与物质发生的相互作用。
具体来说,激光辐射会引发物质内部的原子、分子、离子等进行相应的反应,从而改变物质的性质和行为。
一般来说,激光与物质的相互作用主要包括两种形式:线性光学和非线性光学。
线性光学是指激光在物质中传播时,遵循麦克斯韦方程组的规律,不会改变激光本身的性质。
而非线性光学则是指激光辐射与物质相互作用时,会引发一些非线性效应,例如激光飞秒脉冲、倍频、和频、差频、自聚焦等。
激光与物质的相互作用在实际应用中有很广泛的应用。
例如,激光切割、激光打标、激光焊接等都是利用激光与物质的相互作用产生的物理效应,实现材料加工和标记等目的。
此外,激光还可以应用于化学、医学等领域,例如激光手术、激光疗法等都是利用激光与生物组织的相互作用,达到治疗和诊断的效果。
三、激光的应用激光在现代科技中应用广泛,不仅有创造性的科学研究价值,而且已成为许多高技术产业的核心元器件,涉及到航空、航天、军事、医疗、工业制造等领域。
以下是一些典型的激光应用举例:1.激光材料加工由于激光具有高能量、高单色性等特点,因此它在材料加工领域中得到了广泛应用。
激光基本特征

激光基本特征激光是指一束高度聚焦、具有单色性、相干性和高亮度等特征的光束。
激光是由处于激发态的原子或分子释放出来的光子所组成的。
激光的基本特征是指激光独特的性质和行为,下面将从以下几个方面详细介绍激光的基本特征。
1. 单色性激光的单色性指激光所产生的光是单一频率的。
激光的单色性由于激发态原子或分子之间的能级结构和产生激光的物质的特性所决定。
激光所具有的单色性使其在科学研究、医学、通信等领域具有广泛的应用。
2. 相干性激光的相干性是指激光光波中光子的相位关系保持一致的特性。
激光光束的相干性使其具有干涉、衍射等特性。
激光的相干性能够保持光束的集中性,使得激光在远距离传输时损失较小,有助于激光的聚焦和精确测量。
3. 高亮度激光的高亮度是指激光的亮度远远高于其他光源。
激光的高亮度是由于激光所具有的高度聚焦特性和聚光能力优秀的光学系统所决定的。
高亮度的激光在医学、材料加工和军事等领域有着广泛的应用。
4. 窄束性激光的窄束性是指激光光束的直径非常小。
与其他光源相比,激光光束的直径可以达到亚微米甚至更小的级别。
激光的窄束性使得激光光束能够在远距离传输时保持高度集中,从而实现高精度的光学操作。
5. 高能量激光所具有的高能量使得其在科学研究、医学治疗和军事应用等领域展现出巨大的潜力。
激光的高能量是由于激发态原子或分子释放出的光子具有高能量特性所决定的。
高能量的激光在材料切割、焊接、打孔等领域具有重要的应用价值。
总之,激光的基本特征是单色性、相干性、高亮度、窄束性和高能量。
这些特征使得激光在科学研究、医学、工业生产等领域发挥着重要的作用。
随着激光技术的不断发展壮大,激光领域的应用将会更加广泛。
激光原理_第1章_激光的基本理论

3.简并态—— 同一能级的各状态称简并态 例:计算1s和2p态的简并度
原子状态 n l
ml ms 简并度
1s
1
00
f1=2
1
2p
21
0
f2=6
-1
18
第一章 激光的基本原理
二、玻耳兹曼分布及粒子数反转
1. 玻耳兹曼分布(热平衡分布)
(19.77eV) 10-6 S
23
四、黑体辐射及其公式 1、描述黑体辐射的典型物理量
①单色能量密度 ,T:单位体积内,频率处于 附近
单位频率间隔内的电磁辐射能量,它是频率和温度的函 数。
注:寻求 的,T 函数形式进而确定单色辐出度的形式是当
时黑体辐射研究者们的一大目标!
②单光位波频模率密间度隔内n的:光腔波内模单式位数体。积中频率处于 附 近
n f e 2
2 (E2 E1 ) / kbT
讨论(设f i= f j) :
n1 f1
(1)如果E2 - E1很小,且满足 △E = E2 - E1<<kbT,则
n2 e (E2 E1 ) / kbT 1
n1
19
第一章 激光的基本原理
n f e 2
2 ( E2 E1 ) / kbT
第一章 激光的基本原理
前言
光具有波粒二象性,在描述光的性质是,可 以从其粒子性和光的波动性两个方面来描述光的 性质,进而引入了光波模式和光子模式来描述;
在激光产生的过程中,受激辐射和自发辐射 是其产生的基本原理,同时分析要实现光的受激 辐射放大需要满足集居数反转(粒子数反转)。
1
第一章 激光的基本原理
yz第一章_激光的基本原理

二.光波模式和光子状态(相格)
光波模式:在一个有边界条件限制的空间V内,存在的 一系列具有特定波矢 k 的平面驻波。
1.1
19
相 干 性 的 光 子 描 述
1.从波动性描述光波模式 求体积为V的空腔内模式数目。 设空腔为V=Δ xΔ yΔ z的立方体,则沿三个坐标轴方 向传播的波分别应满足的驻波条件为:
4
1917年以后近四十年内: 量子理论的发展; 粒子数反转的有效实现;电 子学与微波技术的发展
1954:美国汤斯(C.H.Townes)
前苏联巴索夫(N.G.Basov) 与
普洛霍洛夫 (A.M.Prokhorov)
第一次实现氨分子微波量子振荡器(MASER)
由于在量子电子学方面的卓越成就和激光器发展上的 突出贡献,普罗霍罗夫,巴索夫和美国物理学家汤斯一
单位体积内处于两能级的原子数分别用n2和n1表示,如 P10图 (1.2.2)所示。
1.自发辐射
处于高能级E2的一个原子自发地向E1跃迁,并发射 一个能量为 hv 的光子。这种过程称为自发跃迁。由原 子自发跃迁发出的光波称为自发辐射。
光 的 受 激 辐 射 基 本 概 念
1.2
33
自发跃迁过程用自发跃迁几率A21描述。A21定义为: 单位时间内n2个高能态原子中发生自发跃迁的原子数与 n2的比值:
zhangyuscaueducn电子科学与技术教研室光电子学是汇集光子学电子学光子技术与电子技术的一门学科电子学研究电子作为信息和能量载体的科学光子学研究光子作为信息和能量载体的科学光子技术相干光的产生激光原理激光原理48学时相干光的控制调制偏转光频率波长变换相干光的检测及应用光电子技术电子技术光与电是兄弟光是波长更短的电磁波lightamplificationstimulatedemission科学技术发展规律基础理论研究新技术产品开发产业激光是一批科学家集体智慧的发明激光受激辐射光放大改变世界的光二十世纪对世界文明最有影响的发明之一1917
周炳坤激光原理与技术课件第一章 激光的基本原理

1 Lc = cΔt = cτ c = c Δν
τ c 即相干时间。对波列进行
频谱分析的频带宽度:
I (ν0 )
I (ν )
1 Δν = Δt
I (ν 0 ) 2
Δν
Δν 是光源单色性的量度: 1 Lc = cΔt = c Δν
相干时间与频带宽度的关系为:
ν0
ν
(1.1.16)
τ c = Δt =
1 2
cπ ⎛ m 2 n2 q 2 ⎞ ωmnq = ⎜ 2 + 2 + 2 ⎟ η ⎝ 4a 4b l ⎠ 结论:不考虑偏振态的情况下,一组(m、n、q)值 对应一个模,求出(m、n、q)值的数目就可以得到 空腔中的模数
1 2
(二)、波矢空间和模密度 1、波矢空间 ——用 k x 、 y 、 z 作为坐标建立的空间称为波矢空间 k k
2
ν
k=
2π
λ
=
2πνη c
2πη dk = dν c
模密度 nν ——单位体积内在频率ν 处单位频率间隔内的模式数:
Nν 8πν 2η 3 = nν = Vdν c3
(*)
(三)、光子状态相格
光子的运动状态,受量子力学测不准关系制约——微观粒子 的坐标和动量不能同时准确测定,遵循测不准关系:
一维: 三维:
Δk z =
π
l
⎛ 2π ⎞ 且有: k = k + k + k = ⎜ ⎟ ⎝ λ ⎠ 2 ⎛ 2 ⎞ m2 n2 q2 = + 2 + 2 ⎜ 2 ⎜ λ mnq ⎟ ⎟ 4a 4b l ⎝ ⎠
2 2 2 x 2 y 2 z
ν mnq
c ⎛ m2 n2 q 2 ⎞ = ⎜ 2+ 2+ 2 ⎟ l ⎠ 2η ⎝ 4a 4b
激光做的实验报告

激光做的实验报告引言激光(laser)是一种高度集中的、以光的形式输出的电磁辐射,具有高亮度、单色性和聚束性等特点。
激光在科学研究、医学、通信等领域有着广泛的应用。
为了深入理解激光的性质和特点,本实验利用激光进行了一系列实验。
实验目的1. 掌握激光的原理和基本性质;2. 了解激光的衰减特性和聚焦效应;3. 观察激光干涉和衍射现象。
实验器材1. 激光器2. 干涉仪3. 衍射装置4. 表面粗糙度测量仪实验步骤1. 实验一:激光的特性观察1. 打开激光器电源,调整合适的工作模式;2. 用屏障遮挡激光,观察激光的不可见性和直线传播特性;3. 用烟雾等物质使激光束可见,观察激光的亮度和聚束特性。
2. 实验二:激光光束的衰减特性1. 准备一段适量长的光学纤维;2. 分别将一端对准光源和光测器,记录光测器的光强;3. 逐渐往光源的方向增加一定长度的纤维,记录不同距离的光强;4. 利用实验数据,绘制光强与光传播距离的曲线。
3. 实验三:激光干涉和衍射现象1. 设置干涉仪的光路,调整合适的位置和角度;2. 观察干涉纹的产生和特点;3. 改变光源、干涉仪的角度或波长,观察干涉纹的变化;4. 放置衍射装置,观察衍射光的分布。
4. 实验四:表面粗糙度测量1. 准备一块具有不同表面粗糙度的材料;2. 利用衍射装置,观察和测量不同材料的衍射花样;3. 根据衍射花样的特点,计算材料的表面粗糙度。
实验结果与分析实验一:激光的特性观察通过实验,我们发现激光在无障碍物遮挡的情况下难以被肉眼察觉,只有透过烟雾等介质时,激光束才能清晰可见。
这表明激光束具有高度的单色性和方向性。
此外,我们还观察到激光的亮度在一定程度上随着聚束程度的增加而增强。
实验二:激光光束的衰减特性实验结果显示,随着光传播距离的增加,光强逐渐减小。
并且,通过光强与距离的关系曲线,我们可以计算出光在光学纤维中的衰减常数,从而评估纤维的质量和性能。
实验三:激光干涉和衍射现象我们观察到干涉纹的产生和特点。
激光原理及应用

5、医疗领域应用
(1)激光美容:激光是通过产生高能量,聚焦精确,具有 一定穿透力的单色光,作用于人体组织而在局部产生高热量 从而达到去除或破坏目标组织的目的。
各种不同波长的脉冲激光可治 疗各种血管性皮肤病及色素沉着, 如雀斑、老年斑等,以及去纹身、 洗眼线、洗眉等;而近年来一些 新型的激光仪在进行除皱、磨皮 换肤、治疗打鼾,美白牙齿等方 面取得了良好的疗效,为激光外 科开辟越来越广阔的领域。
激光控制核聚地质变勘探
4、信息领域应用
激光通信
光纤通信
5、医疗领域应用
激光在医学上的应用主要分三类:激光生命科 学研究、激光诊断、激光治疗
我激们光国生家命的科学科研学究工主作要者包在括激 光两育方种面方内面容做,了其一大是量激而光有育成种效;的 工其作二,就近是十以年激来光, 作我为国分用析激和光检育测种 方的法工已具培来养研出究棉生花物分、子油和菜细、胞水的稻、 小结麦构、、大性豆质、、玉功能米以、及果生树物、物家理蚕 等和优生良物品化种学和的品反系应近机4制0余。种。
2012年12月13日
3、方向性强——激光束的发散角很小,几乎是一平 行的光线。 4、亮度高——激光的亮度可比普通光源高出1012- 1019倍,是目前最亮的光源,强激光甚至可产生上 亿度的高温。
10
由于激光具有方向性好、亮度高、 单色性好、相干性好等特点!!! 因此,激光在许多领域中都得到广泛 应用......
激光的应用,按照激光探头是否与激光作用的物
质接触,分为接触式和非接触式两种工作模式;其应 用领域,主要有工业、医疗、商业、科研、信息和军 事六个领域。
激光原理(第1章)

tc = Dt = 1/Dv
上式说明,光源单色性越好,则相干时间越长。
物理光学中曾经证明:在图1.1.4中,由线度为Dx的光源A照明的
S1和S2两点的光波场具有明显空间相干性的条件为 DxLx/R ≤ (1.1.18) (1.1.19) (1.1.20)
式中 为光源波长。距离光源R处的相干面积 Ac 可表示为
上 述 基 本 关 系 式 (1.1.1) 和 (1.1.3) 后 来 为 康 普 顿 (Arthur Compton)散射实验所证实(1923年),并在现代量子电动力学中 得到理论解释。量子电动力学从理论上把光的电磁(波动)理论 和光子(微粒)理论在电磁场的量子化描述的基础上统一起来, 从而在理论上阐明了光的波粒二象性。在这种描述中,任意电 磁场可看作是一系列单色平面电磁波(它们以波矢k为标志)的线 性叠加,或一系列电磁波的本征模式(或本征状态)的叠加。但 每个本征模式所具有的能量是量子化的,即可表为基元能量hv 的整数倍。本征模式的动量也可表为基元动量 hkl 的整数倍。 这种具有基元能量hvl和基元动量hkl的物质单元就称为属于第 l 个本征模式(或状态)的光子。具有相同能量和动量的光子彼此 间不可区分,因而处于同一模式(或状态)。每个模式内的光子 数目是没有限制的。
空间称为相空间,相空间内的一点表示质点的一个运动状态。
当宏观质点沿某一方向(例如:x轴)运动时,它的状态变化对应 于二维相空间(x, Px)的一条连续曲线,如图1.1.2 所示。但是,
光子的运动状态和经典宏观质点有着本质的区别,它受量子力
学测不准关系的制约。
测不准关系表明:微观粒子的坐标和动量不能同时准确测定,
hv
式中 h=6.626×10-34Js,称为普朗克常数。
激光原理及应用复习资料(1)

尖峰:激光器开启时所发生的不连续的、尖锐的、大振幅脉冲。 (激光尖峰与弛豫振荡具体内容见书) 24.兰姆下陷:当激光器振荡模的频率被调谐至介质跃迁中心频率 0 时,输出功 率呈现出某种程度的降低。下陷宽度(介质中均匀加宽的线宽)。 25.均匀加宽激光器的模竞争:当数个模同时起振时必然存在诸模竞争反转原子
(3.添加)激光器的分类(记两三个例子):
①按工作物质的物态分类:气体激光器:氦氖激光器,co2 激光器,氩离子激
光器等。
②固体激光器:红宝石激光器,钇铝石榴石激光器,硅酸盐等。
③半导体激光器:砷化镓,硫化镉。
④液体激光器:。。化学激光器:。。自由电子激光器:。。X 射线激光器。。光纤激
光器。
第二章:激光的物理学基础
q q 1 -q C (详见书)。 2nL
29.横模图形及线偏振腔模结构见书 30.解释①横模:腔内电磁场在垂直于其传播方向的横向 X-Y 面内也存在稳定的 场分布,称为横模。 解释②横模:在腔镜面上经过一次往返传播后能“自再现”的稳定光场分布称 为自再现模或横模。 ③横模特点:光能集中在光斑中心部分,而边缘部分光强甚小。
则处于低能级 E1 上的院子由于吸收这个能量为 h 21 的光子而受到激发跃迁到高
能级 E2 上去,此物理过程称为光的受激吸收。
激光原理考点总结

对了课本两遍,基本覆盖所有考点,部分小四字体重在辅助理解。
有填空、名词解释、计算、简答。
计算题四个中出三个。
↖(^ω^)↗第一章1、光的基本性质:波粒二象性;波动性(电磁波),粒子性(光子流)。
2、光与物质的相互作用有:自发辐射、受激辐射、受激吸收。
普通光源中(自发辐射)占主要;激光器中(受激辐射)占主要。
3、简答:自发辐射、受激辐射、受激吸收之间关系:A21n2dt+B21n2ρv dt=B12n1ρv dt在光和大量原子系统的相互作用中,三者是同时发生的。
在单位体积中,在dt时间内,由高能级E2通过自发辐射和受激辐射而跃迁到低能级E1的原子数,应等于低能级E1吸收光子而跃迁到高能级E2的原子数。
4、光谱的(线型)和(宽度)与光的(时间相干性)直接相关。
自然增宽的线型函数:f N(v)=A/(4π2(v-v0)2+(1/2τ)2)f N(v)表示在频率v附近单位频率间隔的相对光强随频率的分布。
A为比例常数。
所得谱线的自然增宽是因为作为电偶极子看待的原子做衰减振动而造成的谱线增宽。
5、(名词解释)光的多普勒效应:随着光源和接收器的相对运动而发生光源的频率发生改变(频移)称为多普勒效应。
运动对向接受体频率增高,背向接受体频率降低。
6、(名词解释)均匀增宽与非均匀增宽:均匀增宽:自然增宽和碰撞增宽中每一个原子所发的光对谱线内任一频率都有贡献,而且这个贡献对每个原子都是等同的,这种增宽为均匀增宽。
非均匀增宽:不同粒子对谱线不同频率部分的贡献不同, 即可分辨谱线线型哪一频带是由哪些特定粒子发射的(∵热运动速度矢量相同的粒子引起的频移相同)7、(简答)实现光的放大的条件:1)需要一个激励能源,用于把介质的粒子不断地由低能级抽送到高能级上去;2)需要合适的发光介质(激光工作物质),它能在激励能源的作用下形成n2/g2>n1/g1的粒子数密度反成分布状态。
8、(简答)产生激光的条件:1)有提供放大作用的增益介质作为激光工作物质,其激活粒子(原子、分子或离子)有适合于产生受激辐射的能级结构;2)有外界激励源,将下能级的粒子抽运到上能级,使激光上下能级之间产生粒子数反转;3)有光学谐振腔,增长激光介质的工作长度,控制光束的传播方向,选择被放大的受激辐射光频率以提高单色性。
激光基础知识

激光基础知识听到激光这个词,大家可能有些害怕,因为它让人想起了星球大战中太空战士的利器,或者是手术台上医生的手术刀。
但是,激光并不总是伤人的武器,它也存在于我们的日常生活中。
比如说“镭射”(Laser),全息照片等都是激光技术在在现实中的应用,给我们的生活带来了极大的便利。
激光原来和我们如此的接近!激光的最初中文名叫做“镭射”、“莱塞”,是它的英文名称LASER的音译,是取自英文Light Amplification by Stimulated Emission of Radiation的各单词的头一个字母组成的缩写词。
意思是“受激辐射的光放大”。
什么叫做“受激辐射”?它基于伟大的科学家爱因斯坦在1916年提出了的一套全新的理论。
这一理论是说在组成物质的原子中,有不同数量的粒子(电子)分布在不同的能级上,在高能级上的粒子受到某种光子的激发,会从高能级跳到(跃迁)到低能级上,这时将会辐射出与激发它的光相同性质的光,而且在某种状态下,能出现一个弱光激发出一个强光的现象。
这就叫做“受激辐射的光放大”,简称激光。
一个科学的理论从提出到实现,往往要经过一段艰难的道路。
爱因斯坦提出的这个理论也是如此。
它很长一段时间被搁置在抽屉里无人问津。
1950年,波尔多一所中学的教师阿尔弗雷德·卡斯特勒同让·布罗塞尔发明了“光泵激”技术。
这一发明后来被用来发射激光,并使他在1966年获得了诺贝尔物理学奖。
激光器的发明实际上提出了更多的问题。
它必须使反射谐振器适应极短的波长。
1951年,美国哥伦比亚大学的一位教授查尔斯·汤斯(Townes)对微波的放大进行了研究,经过三年的努力,他成功地制造出了世界上第一个“微波激射器”,即“受激辐射的微波放大”的理论。
汤斯在这项研究中花费了大量的资金,因此他的这项成果被人们起了个绰号叫做“钱泵”,说他的这项研究花了很多的钱。
后来汤斯教授和他的学生阿瑟·肖洛(Schawlow,诺贝尔物理奖的获得者)想,既然我们已经成功地研究了微波的放大,就有可能把微波放大的技术应用于光波。
激光原理性质及应用

3.2 激光通讯
系统重量轻:发射机功耗低,供电系统重量轻;光束集中,散射角小 ,导致发射和接收望远镜的口径都很小,摆脱了微波系统巨大的碟形 天线,重量和体积减轻很多非常有利于卫星通信。
微 波 天 线
激 光 天 线
但是激光在大气中传输时受雨、雾、雪、霜等影响,衰耗要增大,故一般 用于边防、海岛、跨越江河等近距离通信,以及大气层外的卫星间通信和 深空通信
hν = E 2 − E1 hν = E 2 − E1
1.激光原理
1.1物质与光相互作用 受激吸收、自发辐射、受激辐射。 受激吸收:处于较低能级的粒子受到外界 的激发,吸收能量,跃迁到与此能量相对 应的较高能级。 自发辐射:处于高能级的电子以一定的概 率自发地(没有吸收外部能量)从高能级 向低能级跃迁,并放出能量与两能级能量 差相等的光子。
疝 灯
2 激光的特点
干涉性好 激光可以步调一致地向同一方向传播,可以用 透镜把它们会聚到一点上,把能量高度集中起, 一台巨脉冲红宝石激光器的亮度比太阳表面的亮 度高若干倍。 但是它的能量密度很大因为它的作用范围很小, 一般只有一个点,所以短时间里聚集起大量的能 量。
3 激光的应用
3.1医学中的应用 医学中的应用 医学是应用激光技术最早、最广泛和最活 跃的一门边缘学科。在1960年世界上第一 台红宝石激光器研制成功后的第二年激光 光视网膜凝固机就在眼病治疗获得应用。 目前激光治疗在临床可分为:眼科激光治 疗、外科激光手术、用于美容目的的皮肤 病激光治疗、口腔激光和激光理疗等等。
3.4 激光冷却
1985年,美籍华裔物理学家朱棣文和他的同事首次实现了激 光冷却原子的实验,并得到了极低温度——24µK(绝对0度 是0K)的钠原子气体。
3.4 激光武器
光(激光)基本特性

2
Vd ν
经典粒子的状态 粒子: 描述一维经典粒子的状态: 粒子: 描述一维经典粒子的状态: x, px 用相空间描述: 用相空间描述: x x--px相空间的点描述粒子的状 态,曲线描述过程
px
微观粒子必服从测不准原理 微观粒子必服从测不准原理
∆ x∆ p x ≈ h
x
px
对于三维微观粒子: 对于三维微观粒子: 微观粒子
2. 麦克斯韦建立了光的电磁理论 19世纪初,电的发明和应用,将人类带进了电器时代。 19世纪初,电的发明和应用,将人类带进了电器时代。 世纪初 1863年英国物理学家麦克斯韦 以库仑、安培、 年英国物理学家麦克斯韦, 1863年英国物理学家麦克斯韦,以库仑、安培、法拉第在 电学上的发现为基础作了进一步发展,创立了电磁波理论。 电学上的发现为基础作了进一步发展,创立了电磁波理论。 其要点是:变化的电场产生磁场,变化的磁场产生电场, 其要点是:变化的电场产生磁场,变化的磁场产生电场, 二者交替产生由近及远的传播,既电磁波。 二者交替产生由近及远的传播,既电磁波。并建立了著名 的麦克斯韦方程。1887年赫兹用实验的方法产生了电磁波, 的麦克斯韦方程。1887年赫兹用实验的方法产生了电磁波, 年赫兹用实验的方法产生了电磁波 证实了麦克斯韦的电磁波理论。1901年俄国物理学家列别 证实了麦克斯韦的电磁波理论。1901年俄国物理学家列别 捷夫用实验测定了光压,结果与电磁理论十分相互, 捷夫用实验测定了光压,结果与电磁理论十分相互,从而 进一步巩固了光的电磁理论, 进一步巩固了光的电磁理论,麦克斯韦电磁波的传播速度 其速度在真空中为每秒30万公里, 30万公里 上有限的 ,其速度在真空中为每秒30万公里,与光速一 样,从而确认了光波也是电磁波。 从而确认了光波也是电磁波。 应用光的电磁波理论, 应用光的电磁波理论,基本上能比较完满地解释光的 发射、折射、干涉、衍射、偏振、双折射等与光的传播性 发射、折射、干涉、衍射、偏振、 有关的一系列重要现象。 有关的一系列重要现象。
激光基础学习知识原理考试基本概念

第一章1、激光与普通光源相比有三个主要特点:方向性好,相干性好,亮度高。
2、激光主要是光的受激辐射,普通光源主要光的自发辐射。
3、光的一个基本性质就是具有波粒二象性。
光波是一种电磁波,是一种横波。
4、常用电磁波在可见光或接近可见光的范围,波长为0.3~30μm,其相应频率为10^15~10^13。
5、具有单一频率的平面波叫作单色平面波,如果频率宽度Δν<<v 时,这种波叫作准单色波。
6、原子处于最低的能级状态称为基态,能量高于基态的其他能级状态叫作激发态。
7、两个或两个以上的不同运动状态的电子可以具有相同的能级,这样的能级叫作简并能级。
8、同一能级所对应的不同电子运动状态的数目,叫作简并度,用字母g表示。
9、辐射跃迁选择定则(本质:状态一定要改变),原子辐射或吸收光子,不是在任意两能级之间跃迁,能级之间必须满足下述选择定则:a、跃迁必须改变奇偶态;b、ΔJ=0,±1(J=0→J=0除外);对于采用LS耦合的原子还必须满足下列选择定则:c、ΔL=0,±1(L=0→L=0除外);d、ΔS=0,即跃迁时S不能发生改变。
10、大量原子所组成的系统在热平衡状态下,原子数按能级分布服从玻耳兹曼定律。
11、处于高能态的粒子数总是小于处在低能态的粒子数,这是热平衡情况的一般规律。
12、因发射或吸收光子从而使原子造成能级间跃迁的现象叫作辐射跃迁,必须满足辐射跃迁选择定则。
13、光与物质的相互作用有三种不同的基本过程:自发辐射,受激辐射,和受激吸收。
14、普通光源中自发辐射起主要作用,激光工作过程中受激辐射起主要作用。
15、与外界无关的、自发进行的辐射称为自发辐射。
自发辐射的光是非相干光。
16、能级平均寿命等于自发跃迁几率的倒数。
17、受激辐射的特点是:a、只有外来光子的能量hv=E2-E1时,才能引起受激辐射。
b、受激辐射所发出的的光子与外来光子的特性完全相同(频率相同,相位相同,偏振方向相同,传播方向相同)。
激光的性质工作原理和应用

激光的性质工作原理和应用激光是一种能够产生高度聚焦、高强度、高单色性的光束的装置。
由于其独特的性质,激光在各种领域都得到了广泛应用。
激光的性质主要包括单色性、相干性、方向性和强度聚焦性。
首先,激光具有单色性。
激光是一种单色光,也就是说,它由同一频率或波长的光子组成。
在激光装置中,通过选择性放大特定波长的光,可以得到具有极窄频谱线宽的激光光束。
其次,激光具有相干性。
相干性是指光波的波峰与波谷之间存在固定的相位关系。
激光中的光波具有非常强的相干性,能够表现出明显的干涉和衍射效应。
再次,激光具有方向性。
激光光束是非常高度方向性的,其光线几乎是平行传播的。
这是因为激光是通过受激辐射产生的,光线受到封闭的光学腔限制,只能在一个方向上传播。
最后,激光具有强度聚焦性。
激光可以通过透镜或反射镜来聚焦,使其能量密度在一个非常小的区域内集中。
这种强度聚焦的特性使得激光在材料加工、医疗、通信等领域有着广泛的应用。
激光的工作原理主要涉及受激辐射、受激吸收和泵浦过程。
首先是受激辐射。
当一个物质处于激发态时,如果有外来的光子与其相互作用,就会引发物质的电子跃迁,由高能级跃迁到低能级,并发射出与外界光子相位相同、频率相同、方向相同的光子。
这个过程叫做受激辐射。
其次是受激吸收。
当激光束通过材料时,它会与材料中的电子相互作用。
如果激光的能量正好与材料中的电子能级间隔相同,那么电子就会在受到激光的作用下从低能级跃迁到高能级,并吸收了激光的能量。
最后是泵浦过程。
泵浦过程是指通过外界能量输入的方式将物质的电子激发到高能级。
常见的泵浦方式包括光泵浦、电泵浦和化学泵浦等。
激光的应用非常广泛,涵盖了许多领域。
以下是一些常见的应用:首先是工业应用。
激光在制造业中广泛应用于切割、焊接、打孔和表面处理等加工过程中。
其强度聚焦和高方向性的特性使得激光能够在微米或甚至亚微米尺度上进行精确的加工,提高了制造效率和产品质量。
其次是医疗学应用。
激光在眼科手术、皮肤整容、血管疾病治疗等方面有着重要的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1958: 美国汤斯与肖洛(A.L.Schawlow)提出了利用开放式 光学谐振腔实现光振荡的新思想;布隆伯根(N.Bloembergen) 提出利用光泵浦三能级系统实现粒子数反转分布的新构思
(1)定义
A21
dn 21 dt
sp
1 n2
E1
dn21:dt时间内由E2跃迁到E1的粒子数密度
n2:E2能级的粒子数密度
(2)大小
1 A21 2
2:能级寿命(E2能级上的粒子数 由初始值减至其1/e所用时间)
(3)单位:s-1
证
A21
dn 21 dt
sp
1 n2
n2(t)=n2(0)-n21(t)
dn 2 dt
dn 21 dt
A21n 2
dn 2 n2
A21dt
dn n2 (t)
2
n n2 (0) 2
A21
t
dt
0
ln
n2 (t) n2 (0)
A21t
lne A21t
n2 (t) n2 (0)eA21t
令
n2 (t)
1 e
n2 (0)
A212=1
则
1 e
n2
(0)
n
2
(0)eA212
4k
2dk
k x k y k z
1 8
4k 2dk 3
k 2dkV
2 2
k 2 2 c
dk 2 d c
dk 2 d c
V
-+d内的模式数:dM
4 2 2
c2
2
c
d
V
2 2
4 2d
c3
V
考虑到每个驻波有两种不同的偏振态,故单色
模密度为
8 2 m c3
4、光波模式的相干性
(m
dM
dVd
)
同一光波模式的光波是相干的
tc t
(2)场频函数E():光场随频率变换的函数关系
(场时函数的付里叶变换) E( ) F[E(t)]
t tc
E(t) E0rect(
2 )ei20t tc
F[E0rect(t)] E0 sin c()
t
F
[
E0
rect( )]
tc t
tc
E0tc
sin
c( tc
)
F[E0rect(
tc 2 )] E0tc sin
解
Ac
D22 As
0.52 (50001010)2 10 104
6.251011m2
例4 波长为= 4000Å的光子,其单色性参数为 R=10 -5,求此光子的位置不确定量
解
p h
dp
d
h
2
p
h 2
xp h
x
h p
2
R
4000 1010 105
0.04m
§2 光波模式与光子态 一、光波模式
(2)同一光波模式中的光子为相同光子态 4、光子态的相干性
同一光子态的光子是相干的 5、光子简并度
(1)同一光子态的处的单色模密度
解
c
3108 5000 1010
61014 Hz
m
8 2
c3
83.14 (61014)2 (3108 )3
X射线激光器
激光加工技术
激光雕刻
激光焊接
激光工艺 激光工艺
激光投影
激光通信技术
光导纤维
光信息处理机
激光存储技术
光盘存储
激光载体
激光治疗
治疗近视眼
激光手术 切除染色体致病基因
激光武器
战术激光武器
地炮测距仪 地基战略激光武器
自激光器发明后,由于激光的单色性、方向性、相干性和高亮 度极好,为人类带来了一种崭新的强光源。在46年的发展期间, 满足不同需要的激光器先后研制成功,有固体激光器、半导体激光 器、气体激光器、液体激光器,以及远红外、远紫外激光器、X射 线激光器、量子阱激光器、量子级联激光器、孤子激光器和激光蝴 蝶结激光器等。
(1)定义 某时刻沿光传播方向两个不同地点光场 有相干性的最大空间间隔,即光波列长度
(2)大小
Lc
tcc
c
c:光在真空中的速度
(3)本质 反映光源单色性
2、横向空间相干性——相干面积
(1)定义 某时刻在与光传播方向垂直的平面上使
任意两点光场有相干性的最大空间面积
(2)大小
Ac
D22 As
:光波长,As:光源面积 D:光源与平面距离
二、光子态
1、光子性质
(1)具有三量(能量、动量、质量)
E h hc
P
h
k
2
(P h
c
h)
h=6.6310-34Js:普郎克常数
(2)服从玻色-爱因斯坦分布
同一状态的光子数无限制 (3)具有两种独立的偏振态
2、光子态 无法区分的光子所处状态
m
h
c2
h
c
3、光子态与光波模式的等价关系 (1)同一光子态的光子属于相同的光波模式
单位距离所产生的相移
z
y
x m
2
2 x m
2
x
k x x
m
x
x y
m kx x
ky
n y
q kz z
k x x
k y
y
kz z
每个模式在k空间第一卦限内对应一个点 kz
每个模式在k空间占据体积为
k x k y k z
x
y
z
3 V
kx
k ky
k-k+dk内的模式数:dM
1 8
激光科学技术的发展不仅能导致许多重要的应用,而且还能
带动多种学科的发展。自由电子激光对加速器和同步辐射技术的 带动、X光激光对等离子体物理和原子物理的带动就是极好的例 子。激光的发展还大大推动着非线性光学、光谱学、激光与物质 相互作用的研究以及与激光有关的各种交叉学科的进展。当年, 激光的发现令人兴奋;46年后的今天,激光大范围地改变了科技 、产业和战略面貌,在21世纪,激光这种新型的光,必将更加灿 烂辉煌!
c(
tc
)e
i
2
tc 2
E0tc sin
c(tc )eitc
t tc
F[E0rect(
2 tc
)ei20t ]
E0tc
sin
c[ (
0 )tc ]ei ( 0 )tc
(3)强频函数(光谱):光强随频率变换的函数关系
(场频函数的模平方) I E( ) 2
E( ) E0tc sin c[ ( 0 )tc ]ei ( 0 )tc I (ν) E02tc2 sin c2[ (ν ν0 )tc ] I0 sin c2[ (ν ν0 )tc ]
第三部分:谐振腔原理
第五章 光学谐振腔基本理论 第六章 平行平面腔 第七章 稳定球面腔 第八章 高斯光束
第四部分:巨脉冲技术
第九章 调Q技术 第十章 锁模技术
前言
激光 (Laser), 全名“辐射的受激发射光放大”。
(Light Amplification by Stimulated Emission of Radiation)
激光原理与技术
教师:于文兵
E-mail:yuwhict@ 电话:62894516
总学时:54 理论学时:54
教材:激光原理与激光技术 俞宽新编
主要参考书:激光原理
周炳琨
激光原理及应用 陈家璧
教学内容 第一部分:激光基本知识
第一章 激光基本原理
第二部分:激光发光机理
第二章 辐射场与物质的相互作用 第三章 介质对光的增益 第四章 连续激光器的稳态工作特性
d d
0 0
证
1
tc
tc
Lc c
0
c 0
R 1 0 c 0 0 0tc c Lc Lc
例1 中心波长为0=0.5 m的某光源单色性参数 为R= 10-5,求此光源的相干长度与相干时间
解 R 0
Lc
Lc
0 R
0.5106 105
0.05m
tc
Lc c
0.05 3108
证 分配到每一个模式上的能量
h
E h
e kT 1
u
dE dVd
EdM dVd
Em
8 2
c3
h
h
e kT 1
8h 3
c3
1
h
e kT 1
二、自发辐射跃迁 (Spontaneous emission)
1、定义 发2一、光个跃粒频迁子率几从为率高(爱能 E因级2 h斯EE2坦1自系发的数跃光)迁子到低能级E1,并发E2射
证
② s1
2a
③
①
s1
s2 s2
2b
O
D
当s2-s1=/2时,O处干涉条纹消失
s1 (1 x)n
D2 (b a)2 D[1 1 nx,(x 0)
(b a)2 D2
1
]2
②
2a ①
③
s1 s1
s2 s2
2b
O
(b a)2
(b a)2
D[1 2D2 ] D 2D
D
s2
D2 (b a)2 D (b a)2 2D
5、1960.7:美国休斯公司实验室梅曼(T.H.Maiman) 制成世界上第一台红宝石固态激光器,标志着激光 器诞生。