高考数学专题复习

合集下载

高考数学复习专题 基本不等式 (文 精讲)

高考数学复习专题 基本不等式  (文 精讲)

专题7.3 基本不等式【核心素养分析】1.了解基本不等式的证明过程;2.会用基本不等式解决简单的最大(小)值问题. 【知识梳理】知识点一 基本不等式ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 知识点二 几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R);(2)b a +ab ≥2(a ,b 同号);(3)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R);(4)⎝⎛⎭⎫a +b 22≤a 2+b22(a ,b ∈R); (5)2ab a +b≤ab ≤a +b 2≤a 2+b 22(a >0,b >0). 知识点三 算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.知识点四 利用基本不等式求最值问题 已知x >0,y >0,则(1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 24(简记:和定积最大). 【特别提醒】1.此结论应用的前提是“一正”“二定”“三相等”.“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指等号成立.2.连续使用基本不等式时,牢记等号要同时成立. 【典例剖析】 高频考点一 利用基本不等式求最值【例1】【2020·江苏卷】已知22451(,)x y y x y +=∈R ,则22x y +的最小值是 ▲ .【举一反三】(2020·江苏省南京模拟)函数y =x 2+2x -1(x >1)的最小值为________【方法技巧】利用基本不等式解决条件最值的关键是构造和为定值或积为定值,主要有三种思路: (1)对条件使用基本不等式直接求解.(直接法)(2)针对待求最值的式子,通过拆项(添项)、分离常数、变系数、凑因子等方法配凑出和或积为常数的两项,然后用基本不等式求解.(配凑法)(3)已知条件中有值为1的式子,把待求最值的式子和值为1的式子相乘,再用基本不等式求解.(常数代换法)【变式探究】(2019·天津卷)设x >0,y >0,x +2y =4,则(x +1)(2y +1)xy 的最小值为 .【变式探究】(2020·辽宁省葫芦岛模拟)已知a >0,b >0,且2a +b =ab -1,则a +2b 的最小值为( ) A .5+2 6B .8 2C .5D .9高频考点二 利用基本不等式解决实际问题【例2】【2019·北京卷】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.,,,,,,,,【方法技巧】利用基本不等式解决实际问题的三个注意点 (1)设变量时,一般要把求最大值或最小值的变量定义为函数. (2)解应用题时,一定要注意变量的实际意义及其取值范围.(3)在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解.【变式探究】(2020·山西省大同模拟)经测算,某型号汽车在匀速行驶过程中每小时耗油量y (L)与速度x (km /h )(50≤x ≤120)的关系可近似表示为y =⎩⎨⎧175(x 2-130x +4 900),x ∈[50,80),12-x60,x ∈[80,120].(1)该型号汽车的速度为多少时,可使得每小时耗油量最少?(2)已知A ,B 两地相距120 km ,假定该型号汽车匀速从A 地驶向B 地,则汽车速度为多少时总耗油量最少?专题7.3 基本不等式【核心素养分析】1.了解基本不等式的证明过程;2.会用基本不等式解决简单的最大(小)值问题. 【知识梳理】知识点一 基本不等式ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 知识点二 几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R);(2)b a +ab ≥2(a ,b 同号);(3)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R);(4)⎝⎛⎭⎫a +b 22≤a 2+b22(a ,b ∈R); (5)2ab a +b≤ab ≤a +b 2≤a 2+b 22(a >0,b >0). 知识点三 算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.知识点四 利用基本不等式求最值问题 已知x >0,y >0,则(1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 24(简记:和定积最大). 【特别提醒】1.此结论应用的前提是“一正”“二定”“三相等”.“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指等号成立.2.连续使用基本不等式时,牢记等号要同时成立. 【典例剖析】高频考点一 利用基本不等式求最值【例1】【2020·江苏卷】已知22451(,)x y y x y +=∈R ,则22x y +的最小值是 ▲ . 【答案】45【解析】∵22451x y y +=∴0y ≠且42215y x y -=∴422222222114144+2555555y y y x y y y y y-+=+=≥⋅=,当且仅当221455y y =,即2231,102x y ==时取等号. ∴22xy +的最小值为45. 【举一反三】(2020·江苏省南京模拟)函数y =x 2+2x -1(x >1)的最小值为________【答案】23+2【解析】∵x >1,∴x -1>0,∴y =x 2+2x -1=(x 2-2x +1)+(2x -2)+3x -1=(x -1)2+2(x -1)+3x -1=(x -1)+3x -1+2≥23+2.当且仅当x -1=3x -1,即x =3+1时,等号成立.【方法技巧】利用基本不等式解决条件最值的关键是构造和为定值或积为定值,主要有三种思路: (1)对条件使用基本不等式直接求解.(直接法)(2)针对待求最值的式子,通过拆项(添项)、分离常数、变系数、凑因子等方法配凑出和或积为常数的两项,然后用基本不等式求解.(配凑法)(3)已知条件中有值为1的式子,把待求最值的式子和值为1的式子相乘,再用基本不等式求解.(常数代换法)【变式探究】(2019·天津卷)设x >0,y >0,x +2y =4,则(x +1)(2y +1)xy 的最小值为 .【答案】92【解析】(x +1)(2y +1)xy =2xy +x +2y +1xy =2xy +5xy =2+5xy ,∵x >0,y >0且x +2y =4, ∴4=x +2y ≥22xy ,∴xy ≤2,∴1xy ≥12,∴2+5xy ≥2+52=92.【变式探究】(2020·辽宁省葫芦岛模拟)已知a >0,b >0,且2a +b =ab -1,则a +2b 的最小值为( ) A .5+2 6 B .8 2 C .5 D .9【答案】A【答案】∵a >0,b >0,且2a +b =ab -1, ∴a =b +1b -2>0,∴b >2,∴a +2b =b +1b -2+2b =2(b -2)+3b -2+5≥5+22(b -2)·3b -2=5+2 6.当且仅当2(b -2)=3b -2,即b =2+62时取等号.∴a +2b 的最小值为5+26,故选A 。

高考数学知识点总结(全而精-一轮复习必备)

高考数学知识点总结(全而精-一轮复习必备)

高中数学第一章-集合考试内容:集合、子集、补集、交集、并集.逻辑联结词.四种命题.充分条件和必要条件.考试要求: (1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合.(2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.§01. 集合与简易逻辑 知识要点一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:二、知识回顾:(一)集合1.基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2.集合的表示法:列举法、描述法、图形表示法.集合元素的特征:确定性、互异性、无序性. 集合的性质:①任何一个集合是它本身的子集,记为;②空集是任何集合的子集,记为;③空集是任何非空集合的真子集;如果,同时,那么A = B.如果.[注]:①Z = {整数}(√) Z ={全体整数} (×)②已知集合S 中A 的补集是一个有限集,则集合A 也是有限集.(×)(例:S=N ; A=,则C s A= {0})A A ⊆A ⊆φB A ⊆A B ⊆C A C B B A ⊆⊆⊆,那么,+N③空集的补集是全集.④若集合A=集合B,则C B A=,C A B =C S(C A B)=D(注:C A B =).3. ①{(x,y)|xy =0,x∈R,y∈R}坐标轴上的点集.②{(x,y)|xy<0,x∈R,y∈R二、四象限的点集.③{(x,y)|xy>0,x∈R,y∈R} 一、三象限的点集.[注]:①对方程组解的集合应是点集.例:解的集合{(2,1)}.②点集与数集的交集是. (例:A ={(x,y)| y =x+1} B={y|y =x2+1} 则A∩B =)4. ①n个元素的子集有2n个. ②n个元素的真子集有2n-1个. ③n个元素的非空真子集有2n-2个.5. ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题逆命题.②一个命题为真,则它的逆否命题一定为真. 原命题逆否命题.例:①若应是真命题.,则a+b = 5,成立,所以此命题为真.②.1或y = 2.,故是的既不是充分,又不是必要条件.⑵小范围推出大范围;大范围推不出小范围.3.例:若.4.集合运算:交、并、补.5.主要性质和运算律(1)包含关系:(2)等价关系:(3)集合的运算律:交换律:结合律:分配律:.∅∅∅}⎩⎨⎧=-=+1323yxyxφ∅⇔⇔325≠≠≠+baba或,则且1≠x3≠y1≠∴yx且3≠+yx21≠≠yx且255xxx或,⇒{|,}{|}{,}A B x x A x BA B x x A x BA x U x A⇔∈∈⇔∈∈⇔∈∉U交:且并:或补:且C,,,,,;,;,.UA A A A U A UA B B C A C A B A A B B A B A A B B⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇CUA B A B A A B B A B U⊆⇔=⇔=⇔=C.;ABBAABBA==)()();()(CBACBACBACBA==)()()();()()(CABACBACABACBA==0-1律:等幂律:求补律:A∩C U A=φA∪C U A=U C U U=φ C Uφ=U反演律:C U(A∩B)= (C U A)∪(C U B) C U(A∪B)= (C U A)∩(C U B)6.有限集的元素个数定义:有限集A的元素的个数叫做集合A的基数,记为card( A)规定 card(φ) =0.基本公式:(3) card( U A)= card(U)- card(A)(二)含绝对值不等式、一元二次不等式的解法及延伸1.整式不等式的解法根轴法(零点分段法)①将不等式化为a0(x-x1)(x-x2)…(x-x m)>0(<0)形式,并将各因式x的系数化“+”;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(x的系数化“+”后)是“>0”,则找“线”在x轴上方的区间;若不等式是“<0”,则找“线”在x轴下方的区间.(自右向左正负相间)则不等式的解可以根据各区间的符号确定.特例①一元一次不等式ax>b解的讨论;②一元二次不等式ax2+box>0(a>0)解的讨论.>∆0=∆0<∆二次函数cbxaxy++=2(0>a)的图象,,,A A A U A A U A UΦ=ΦΦ===.,AAAAAA==(1)()()()()(2)()()()()()()()()card A B card A card B card A Bcard A B C card A card B card Ccard A B card B C card C Acard A B C=+-=++---+x)0)((002211><>++++--aaxaxaxa nnnn原命题若p 则q否命题若┐p 则┐q 逆命题若q 则p 逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互一元二次方程()的根002>=++a c bx ax 有两相异实根)(,2121x x x x <有两相等实根ab x x 221-== 无实根的解集)0(02>>++a c bx ax {}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R 的解集)0(02><++a c bx ax {}21x x x x << ∅∅2.分式不等式的解法(1)标准化:移项通分化为>0(或<0); ≥0(或≤0)的形式,(2)转化为整式不等式(组)3.含绝对值不等式的解法(1)公式法:,与型的不等式的解法.(2)定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题.4.一元二次方程根的分布一元二次方程ax 2+bx+c=0(a≠0)(1)根的“零分布”:根据判别式和韦达定理分析列式解之.(2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之.(三)简易逻辑1、命题的定义:可以判断真假的语句叫做命题。

2023届新高考数学复习:专项(唯一零点求值问题)经典题提分练习(附答案)

2023届新高考数学复习:专项(唯一零点求值问题)经典题提分练习(附答案)

2023届新高考数学复习:专项(唯一零点求值问题)经典题提分练习一、单选题1.(2023ꞏ全国ꞏ高三专题练习)已知函数()222e ex xf x x a +--=++++有唯一零点,则实数=a ( ) A .1 B .1- C .2D .2-2.(2023ꞏ全国ꞏ高三专题练习)已知函数()()π4π4sin cos x x f x e ea x x --=+-+有唯一零点,则=a ( )A .πeB .4πeC D .13.(2023ꞏ全国ꞏ高三专题练习)已知函数()g x ,()h x 分别是定义在R 上的偶函数和奇函数,且()()sin x g x h e x x x ++=-,若函数()()20202320202x f g x x λλ-=---有唯一零点,则实数λ的值为 A .1-或12B .1或12-C .1-或2D .2-或14.(2023ꞏ全国ꞏ高三专题练习)已知函数()()222212e 222x x x f x a a ---=-+-有唯一零点,则负实数=a A .2-B .12-C .1-D .12-或1-5.(2023ꞏ全国ꞏ高三专题练习)已知函数()()11123e 22x x x f x a a ---=-+-有唯一零点,则负实数=a ( )A .13-B .12-C .-3D .-26.(2023ꞏ全国ꞏ高三阶段练习)已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则=a A .12-B .13C .12D .17.(2023春ꞏ云南曲靖ꞏ高三曲靖一中校考阶段练习)已知函数()1122222x x f x m x x --+⎛⎫=++- ⎪⎝⎭有唯一零点,则m 的值为( ) A .12-B .13C .12 D .188.(2023春ꞏ山西ꞏ高三统考)已知数列{}n a 的首项11a =,函数()()41cos 221n n f x x a x a +=+-+有唯一零点,则通项n a =( )A .13n -B .12n -C .21n -D .32n -9.(2023ꞏ全国ꞏ高三专题练习)已知函数()g x ,()h x 分别是定义在R 上的偶函数和奇函数,且()()e +=+x g x h x x ,若函数()()12e 12λλ-=+--x f x g x 有唯一零点,则正实数λ的值为( )A .13B .12C .1D .210.(2023春ꞏ辽宁ꞏ高三校联考期末)已知函数()g x ,()h x 分别是定义在R 上的奇函数和偶函数,且()()3x g x h x e x x +=+-,若函数()()2022220226x f x h x λλ-=---有唯一零点,则实数λ的值为( )A .1-或12B .1或12-C .12-或13D .2-或111.(2023春ꞏ福建泉州ꞏ高三福建省德化第一中学校考开学考试)已知函数()()11sin 2x x f x x a e e π--+⎛⎫=++⎪⎝⎭有唯一零点,则=a ( )A .1-B .12-C .12D .112.(2023ꞏ全国ꞏ高三专题练习)已知函数()()()2ln 1ln f x x x a x =-+--有唯一零点,则=a ( )A .0B .12-C .1D .213.(2023春ꞏ重庆九龙坡ꞏ高三重庆市育才中学校考阶段练习)已知函数()(),g x h x 分别是定义在R 上的偶函数和奇函数,且()()x g x h x e x +=+,若函数()()12216x f x g x λλ-=+--有唯一零点,则正实数λ的值为( )A .12B .13C .2D .314.(2023ꞏ全国ꞏ高三专题练习)已知函数2112()cos(1)1()x x x x a e e x f x --+=-+++--有唯一零点,则=a ( ) A .1B .13-C .13D .1215.(2023ꞏ全国ꞏ高三专题练习)若函数33()|3|x x f x x e e m --=-+++有唯一零点,则实数m 的值为( ) A .0B .-2C .2D .-116.(2023春ꞏ广西ꞏ高三校联考阶段练习)已知关于x 的函数()22214f x bx bx x b b =-+-++-有唯一零点x a =,则a b +=( )A .1-B .3C .1-或3D .417.(2023春ꞏ广东广州ꞏ高三广州六中校考)已知函数()(),g x h x 分别是定义在R 上的偶函数和奇函数,且()()sin x g x h e x x x ++=-,若函数()()20212320212x f x g x λλ-=---有唯一零点,则实数λ的值为( )A .1-或12 B .1或12-C .1-或2D .2-或1二、填空题18.(2023ꞏ上海ꞏ高三专题练习)若函数()()232xf x m x m x R =-+-∈有唯一零点,则实数m 的值为_________.19.(2023ꞏ上海ꞏ高三专题练习)若函数||2()2||2()x f x a x a x R =-+-∈有唯一零点,则实数a 的值为__________.20.(2023ꞏ全国ꞏ高三专题练习)若函数2()28ln 14f x x x x m =---有唯一零点,则实数m 的值_______. 21.(2023ꞏ全国ꞏ高三假期作业)已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则=a ________ 三、双空题22.(2023ꞏ浙江ꞏ高三专题练习)已知函数()f x ,()g x 分别是定义在R 上的偶函数和奇函数,且满足()()2x f x g x x +=-,则(0)f 的值为________:若函数2022()2(2021)2x h x f x λλ-|=---∣有唯一零点,则实数λ的值为________.23.(2023春ꞏ江苏苏州ꞏ高三校考期末)已知函数g (x ),h (x )分别是定义在R 的偶函数和奇函数,且满足()()sin ,x g x h x e x x +=+-则函数g (x )的解析式为_________;若函数|2021|2()3(2021)2x f x g x λλ-=---有唯一零点,则实数λ的值为_________.参考答案一、单选题1.(2023ꞏ全国ꞏ高三专题练习)已知函数()222e ex xf x x a +--=++++有唯一零点,则实数=a ( ) A .1 B .1- C .2 D .2-【答案】D【答案解析】设()(2)e e x xg x f x x a -=-=+++,定义域为R,∴()e e e e ()x x x xg x x a x a g x ---=-+++=+++=,故函数()g x 为偶函数,则函数(2)f x -的图象关于y 轴对称, 故函数()f x 的图象关于直线2x =-对称, ∵()f x 有唯一零点, ∴(2)0f -=,即2a =-. 故选:D .2.(2023ꞏ全国ꞏ高三专题练习)已知函数()()π4π4sin cos x x f x e ea x x --=+-+有唯一零点,则=a ( )A .πeB .4πeC D .1【答案】C【答案解析】令()()ππ44sin cos 0x x f x e ea x x --=+-+=,则π44ππs in 4x x eex --⎛++=⎫ ⎪⎝⎭,记π4x t -=,则πsin cos 2t t e e t t -⎛⎫++= ⎪⎝⎭=,令(),t t e t g e -=+则()(),()t t g t t e e t g g -=-∴=-+,所以()g t 是偶函数,图象关于y 轴对称,因为()f x 只有唯一的零点,所以零点只能是0,t =2,a =∴=故选:C3.(2023ꞏ全国ꞏ高三专题练习)已知函数()g x ,()h x 分别是定义在R 上的偶函数和奇函数,且()()sin x g x h e x x x ++=-,若函数()()20202320202x f g x x λλ-=---有唯一零点,则实数λ的值为 A .1-或12 B .1或12-C .1-或2D .2-或1【答案】A【答案解析】已知()()sin xg x h e x x x ++=-,①且()g x ,()h x 分别是R 上的偶函数和奇函数,则()()()sin xx g x e x x h -+---=++,得:()()sin xe x x g x h x --=-+,②①+②得:()2x xe e g x -+=,由于2020x -关于2020x =对称, 则20203x -关于2020x =对称,()g x 为偶函数,关于y 轴对称,则()2020g x -关于2020x =对称, 由于()()20202320202x f g x x λλ-=---有唯一零点,则必有()20200f =,()01g =,即:()()0223021202020f g λλλλ=--=--=,解得:1λ=-或12. 故选:A.4.(2023ꞏ全国ꞏ高三专题练习)已知函数()()222212e 222x x x f x a a ---=-+-有唯一零点,则负实数=a A .2- B .12-C .1-D .12-或1-【答案】A【答案解析】函数()()222212e222x x x f x a a ---=-+-有唯一零点, 设2x t -=,则函数()212e 222t tt y a a -=-+-有唯一零点,则()212e 222t tt a a --+=设()()()()()112e 222e 2222t t t tt t g t a g t a g t ---=-+-=-+= ,,∴()g t 为偶函数,∵函数()f t 有唯一零点, ∴()y g t =与2y a =有唯一的交点,∴此交点的横坐标为0,22a a ,∴-= 解得2a =- 或1a =(舍去),故选A .5.(2023ꞏ全国ꞏ高三专题练习)已知函数()()11123e 22x x x f x a a ---=-+-有唯一零点,则负实数=a ( )A .13-B .12-C .-3D .-2【答案】C【答案解析】注意到直线1x =是13e x y -=和1122x x y --=+的对称轴,故1x =是函数()f x 的对称轴,若函数有唯一零点,零点必在1x =处取得,所以 ()21320f a a =--=,又0a <,解得3a =-.选C.6.(2023ꞏ全国ꞏ高三阶段练习)已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则=a A .12-B .13C .12D .1【答案】C【答案解析】因为()221111()2()1()1x x x x f x x x a e e x a e e --+--+=-++=-++-,设1t x =-,则()()()21t t f x g t t a e e -==++-,因为()()g t g t =-,所以函数()g t 为偶函数,若函数()f x 有唯一零点,则函数()g t 有唯一零点,根据偶函数的性质可知,只有当0=t 时,()0g t =才满足题意,即1x =是函数()f x 的唯一零点,所以210a -=,解得12a =.故选:C. 7.(2023春ꞏ云南曲靖ꞏ高三曲靖一中校考阶段练习)已知函数()1122222x x f x m x x --+⎛⎫=++- ⎪⎝⎭有唯一零点,则m 的值为( ) A .12-B .13C .12 D .18【答案】D【答案解析】()f x 有零点,则211222112224x x m x x x --+⎛⎫⎛⎫+=-+=--+ ⎪ ⎪⎝⎭⎝⎭,令12t x =-,则上式可化为()21224t t m t -+=-+, 因为220t t -+>恒成立,所以24122t tt m --+=+,令()21422tt t h t --+=+,则()()()2211222244t t t tt t h t h t ----+-+-===++, 故()h t 为偶函数,因为()f x 有唯一零点,所以函数()h t 的图象与=y m 有唯一交点, 结合()h t 为偶函数,可得此交点的横坐标为0,故()001102842m h -===+. 故选:D8.(2023春ꞏ山西ꞏ高三统考)已知数列{}n a 的首项11a =,函数()()41cos 221n n f x x a x a +=+-+有唯一零点,则通项n a =( )A .13n -B .12n -C .21n -D .32n -【答案】C【答案解析】()()()()()()4411cos 221cos 221n n n n f x x a x a x a x a f x ++-=-+--+=+-+= , ()f x \为偶函数,图象关于y 轴对称,()f x \的零点关于y 轴对称,又()f x 有唯一零点,()f x \的零点为0x =,即()()10210n n f a a +=-+=,121n n a a +∴=+,即()1121n n a a ++=+, 又112a +=,∴数列{}1n a +是以2为首项,2为公比的等比数列, 12n n a ∴+=,则21n n a =-.故选:C.9.(2023ꞏ全国ꞏ高三专题练习)已知函数()g x ,()h x 分别是定义在R 上的偶函数和奇函数,且()()e +=+x g x h x x ,若函数()()12e 12λλ-=+--x f x g x 有唯一零点,则正实数λ的值为( )A .13B .12C .1D .2【答案】C【答案解析】由题设,()()()()()()e e xxg x h x x g x h x x g x h x -⎧+=+⎪⎨-+-=-=-⎪⎩,可得:()e e 2x xg x -+=,由()()12e12λλ-=+--x f x g x ,易知:()f x 关于1x =对称.当1x ≥时,1112()e (e e )22x x x f x λλ---=++-,则111()e (e e )02x x x f x λ---'=+->,所以()f x 单调递增,故1x <时()f x 单调递减,且当x 趋向于正负无穷大时()f x 都趋向于正无穷大, 所以()f x 仅有一个极小值点1,则要使函数只有一个零点,即()10f =,解得1λ=. 故选:C10.(2023春ꞏ辽宁ꞏ高三校联考期末)已知函数()g x ,()h x 分别是定义在R 上的奇函数和偶函数,且()()3x g x h x e x x +=+-,若函数()()2022220226x f x h x λλ-=---有唯一零点,则实数λ的值为( )A .1-或12 B .1或12-C .12-或13D .2-或1【答案】C【答案解析】由题意,函数()g x ,()h x 分别是奇函数和偶函数,且()()3x g x h x e x x +=+-,可得()()()()()()33x x g x h x e x x g x h x g x h x e x x -⎧+=+-⎪⎨-+-=-+=-+⎪⎩,解得()2x xe e h x -+=, 则()()2x xe e h x h x -+-==,所以()h x 为偶函数,又由函数()()2022220226x f x h x λλ-=---关于直线2022x =对称,且函数()f x 有唯一零点,可得()20220f =,即00022602e e λλ+⨯-=-, 即2160λλ--=,解得13λ=或12λ=-.故选:C.11.(2023春ꞏ福建泉州ꞏ高三福建省德化第一中学校考开学考试)已知函数()()11sin 2x x f x x a e e π--+⎛⎫=++⎪⎝⎭有唯一零点,则=a ( )A .1-B .12-C .12D .1【答案】B【答案解析】因为函数()()11sin 2x x f x x a e e π--+⎛⎫=++⎪⎝⎭, 令1x t -=,则()()()()sin 1cos 22t t t tg t t a e e t a e e ππ--⎛⎫⎛⎫=+++=++ ⎪ ⎪⎝⎭⎝⎭为偶函数,因为函数()()11sin 2x x f x x a e e π--+⎛⎫=++⎪⎝⎭有唯一零点, 所以()()cos 2t tg t t a e e π-⎛⎫=++ ⎪⎝⎭有唯一零点,根据偶函数的对称性,则()0120g a =+=, 解得12a =-,故选:B12.(2023ꞏ全国ꞏ高三专题练习)已知函数()()()2ln 1ln f x x x a x =-+--有唯一零点,则=a ( )A .0B .12-C .1D .2【答案】C【答案解析】函数()f x 的定义域为()1,a -,则1a >-,()1121f x x x x a'=--+-, 则()()()2211201f x x x a ''=++>+-,所以,函数()f x '在()1,a -上为增函数,当1x +→-时,()f x '→-∞,当x a -→时,()f x '→+∞, 则存在()01,x a ∈-,使得()000011201f x x x x a '=--=+-,则0001121x a x x =--+, 当01x x -<<时,()0f x '<,此时函数()f x 单调递减, 当0x x a <<时,()0f x ¢>,此时函数()f x 单调递增,()()()()20000min ln 1ln f x f x x x a x ∴==-+--,由于函数()()()2ln 1ln f x x x a x =-+--有唯一零点,则()()()()20000min ln 1ln 0f x f x x x a x ==-+--=,由0000112011x a x x x ⎧=->⎪-+⎨⎪>-⎩,解得01x -<<所以,()()()2220000000200002111ln 1ln ln 1ln 2ln 0111x x x x x x x a x x x x ⎡⎤⎛⎫-++=-++-=+-=⎢⎥ ⎪-+++⎢⎥⎝⎭⎣⎦,令()()2212ln 11x x x x x ϕ⎡⎤=+-⎢⎥++⎢⎥⎣⎦,其中112x --<<, ()()()()()()()()()2432322212222482422122221122111x x x x x x x x x x x x x x x x x x ϕ⎡⎤++++++'=+⋅-=+=⎢⎥--+-++-++⎢⎥⎣⎦()()()()222241222211x x x xx x ++-=+-+,112x -<<,则22210x x +-<,10x +>,220x ->,则()0x ϕ'<,所以,函数()x ϕ在11,2⎛⎫- ⎪ ⎪⎝⎭上单调递减,且()00ϕ=,00x ∴=, 从而可得11a=,解得1a =. 故选:C.13.(2023春ꞏ重庆九龙坡ꞏ高三重庆市育才中学校考阶段练习)已知函数()(),g x h x 分别是定义在R 上的偶函数和奇函数,且()()x g x h x e x +=+,若函数()()12216x f x g x λλ-=+--有唯一零点,则正实数λ的值为( )A .12 B .13C .2D .3【答案】A【答案解析】由已知条件可知()()()()()()xxg x h x e xg x h x e x g x h x -⎧+=+⎪⎨-+-=-=-⎪⎩由函数奇偶性易知()2x x e e g x -+=令()()226xx g x ψλλ=+-,()x ψ为偶函数.当0x ≥时,()'2202x xxe e x ln ψλ--=+>,()x ψ单调递增,当0x <时,()x ψ单调递减,()x ψ仅有一个极小值点()0,f x ()x ψ图象右移一个单位,所以仅在1处有极小值,则函数只有1一个零点,即()10f =, 解得12λ=,故选:A14.(2023ꞏ全国ꞏ高三专题练习)已知函数2112()cos(1)1()x x x x a e e x f x --+=-+++--有唯一零点,则=a ( ) A .1B .13-C .13D .12 【答案】D【答案解析】因为21(1)()(1)(e e )cos(1)2x x f x x a x ---=-+++--,令1x t -= 则2()(e e )cos 2t t g t t a t -=+++-,因为函数()2112(1(s ))co 1x x x x a e e f x x --+=-+++--有唯一零点, 所以()g t 也有唯一零点,且()g t 为偶函数,图象关于y 轴对称,由偶函数对称性得(0)0g =,所以2120a +-=,解得12a =, 故选:D.15.(2023ꞏ全国ꞏ高三专题练习)若函数33()|3|x x f x x e e m --=-+++有唯一零点,则实数m 的值为( ) A .0B .-2C .2D .-1【答案】B【答案解析】设()(3)||x x g x f x x e e m -=+=+++,∴()||||()x x x x g x x e e m x e e m g x ---=-+++=+++=故函数()g x 为偶函数,则函数(3)f x +的图像关于y 轴对称,故函数()f x 的图像关于直线3x =对称, ∵()f x 有唯一零点∴(3)0f =,即2m =-,经检验,33()|3|2x x f x x e e --=-++-仅有1个零点3x =.故选:B.16.(2023春ꞏ广西ꞏ高三校联考阶段练习)已知关于x 的函数()22214f x bx bx x b b =-+-++-有唯一零点x a =,则a b +=( )A .1-B .3C .1-或3D .4【答案】B 【答案解析】22()(1)14f x b x x b =-+-+-,令1t x =-, 则有22()4g t bt t b =++-是偶函数,若只有唯一零点,则必过原点,即(0)0g =,从而2b =±.当2b =-时,有3个零点,舍去.故2b =,此时10t a =-=,则1a =,故3a b +=.故选:B17.(2023春ꞏ广东广州ꞏ高三广州六中校考)已知函数()(),g x h x 分别是定义在R 上的偶函数和奇函数,且()()sin x g x h e x x x ++=-,若函数()()20212320212x f x g x λλ-=---有唯一零点,则实数λ的值为( ) A .1-或12B .1或12-C .1-或2D .2-或1【答案】A【答案解析】已知()()sin x g x h e x x x ++=-,① 且()g x ,()h x 分别是R 上的偶函数和奇函数,则()()()sin x x g x e x x h -+---=++,得:()()sin x e x x g x h x --=-+,②①+②得:()2x xe e g x -+=, 由于2021x -关于2021x =对称, 则20213x -关于2021x =对称,()g x 为偶函数,关于y 轴对称,则()2021g x -关于2021x =对称,由于()()20212320212x f x g x λλ-=---有唯一零点,则必有()20210f =,()01g =,即:()()0223022021120g f λλλλ=--=--=,解得:1λ=-或12.故选:A.二、填空题18.(2023ꞏ上海ꞏ高三专题练习)若函数()()232x f x m x m x R =-+-∈有唯一零点,则实数m 的值为_________.【答案】1±【答案解析】()2,32()x x R f x m x m f x -∈-=--+-=()f x ∴是偶函数 根据偶函数的性质,可得(0)0f =,02320m +-=,解得1m =±当1m =时,此时()31xf x x =--,有唯一零点; 当1m =-时,此时()31xf x x =+-,也有唯一零点; 故1m =±时有唯一零点.故答案为:1±19.(2023ꞏ上海ꞏ高三专题练习)若函数||2()2||2()x f x a x a x R =-+-∈有唯一零点,则实数a 的值为__________.【答案】1-【答案解析】因为x R ∈,又||2()2||2()x f x a x a f x --=--+-=,所以函数为偶函数.因为函数有一个零点,根据偶函数的性质,可得(0)0f =,所以02220a +-=,解得1a =±.当1a =,此时||()2||1x f x x =--,知1(2)02f f ⎛⎫< ⎪⎝⎭,()f x 有零点(1x =),不符合题意: 当1a =-,此时||()2||1x f x x =+-在(0,)+∞上单调递增,()(0)0f x f >=,根据偶函数对称性,符合题意;所以1a =-.故答案为:1-20.(2023ꞏ全国ꞏ高三专题练习)若函数2()28ln 14f x x x x m =---有唯一零点,则实数m 的值_______.【答案】16ln 224--【答案解析】由题意,函数2()28ln 14f x x x x m =---有唯一零点,即方程228ln 14x x x m --=有唯一实数解,令2()28ln 14h x x x x =--,则82(4)(21)()414,0x x h x x x x x-+'=--=>, 当>4x 时,()0h x '>,当04x <<时,()0h x '<,所以()h x 在(4,)+∞上单调递增,在(0,4)上单调递减,则函数()h x 在4x =处取得最小值,最小值为(4)16ln 224h =--,要使得函数2()28ln 14f x x x x m =---有唯一零点,则16ln 224m =--.故答案为:16ln 224--.21.(2023ꞏ全国ꞏ高三假期作业)已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则=a ________ 【答案】12【答案解析】()()()()221111211x x x x f x x x a e e x a e e --+--+=-++=--++ 设1t x =-,则()()21t t f t t a e e -=-++定义域为R ,()()()()21t t f t t a e e f t --=--++= 所以()f t 为偶函数,所以()f x 的图像关于1x =成轴对称要使()f x 有唯一零点,则只能()10f =,即()2001210a e e -⨯++= 解得12a =, 故答案为:12.三、双空题22.(2023ꞏ浙江ꞏ高三专题练习)已知函数()f x ,()g x 分别是定义在R 上的偶函数和奇函数,且满足()()2x f x g x x +=-,则(0)f 的值为________:若函数2022()2(2021)2x h x f x λλ-|=---∣有唯一零点,则实数λ的值为________.【答案】 1 1-或12【答案解析】因为()g x 是定义在R 上的奇函数,所以有(0)0g =,因为()()2x f x g x x +=-,所以(0)(0)1f g +=,所以(0)1f =,令||2()2()2x F x f x λλ=--,因为()f x 是定义在R 上的偶函数,所以||2||2()2()22()2()x x F x f x f x f x λλλλ--=---=--=,所以()F x 是定义在R 上的偶函数,图象关于y 轴对称,所以|2021|2()2(2021)2(2021)x h x f x F x λλ-=---=-,所以()h x 的图象关于2021x =对称,因为()h x 有唯一零点,所以(2021)0h =,即21(0)20f λλ--=,即2120λλ--=,解得1λ=-或12.故答案为:1,1-或12. 23.(2023春ꞏ江苏苏州ꞏ高三校考期末)已知函数g (x ),h (x )分别是定义在R 的偶函数和奇函数,且满足()()sin ,x g x h x e x x +=+-则函数g (x )的答案解析式为_________;若函数|2021|2()3(2021)2x f x g x λλ-=---有唯一零点,则实数λ的值为_________.【答案】 ()12x x e e -+ 12或1-【答案解析】∵()g x ,()h x 分别是定义在R 上的偶函数和奇函数,∴()()g x g x -=,()()h x h x -=-又∵()()sin x g x h x e x x +=+-①,∴()()()()e sin x g x h x g x h x x x --+-=-=-+②①+②:2()e e x x g x -=+,∴()1()e e 2x x g x -=+, 又∵()()2021202112(2022021)21()3202123e 22x x x x f x g x e λλλλ----⎡⎤=---=-⋅+-⎣⎦, 又∵()f x 有唯一零点,等价于()213202x x x e e λλ--⋅+-=有唯一解, 设()21()322x x x t x e e λλ-=-+-, ∵()t x 为偶函数,∴当且仅当0x =时为唯一零点,∴2120λλ--=,解得12λ=或1λ=-. 故答案为:()12x x e e -+;12或1-。

高考数学专题复习 (28)

高考数学专题复习 (28)

数列{1+2n-1}的前 n 项和为( )
A.1+2n
B.2+2n
C.n+2n-1
D.n+2+2n
解:由题意得 an=1+2n-1,所以 Sn=n
+11--22n=n+2n-1.故选 C.
22-1 1+32-1 1+42-1 1+…+(n+11)2-1的值为(
)
A.2(nn++12)
B.34-2(nn++12)
①n(n1+1)=
- n1+1;
②(2n-1)1(2n+1)=
2n1-1-2n1+1;
③n(n+1)1(n+2)=
n(n1+1)-(n+1)1(n+2);

1 a+
= b
( a- b);
⑤(n+n1)!=
-(n+11)!;
⑥Cmn -1= ⑦n·n!=
; !-n!;
⑧an=Sn-Sn-1(n≥2). 2.数列应用题常见模型
(1)单利公式
利息按单利计算,本金为 a 元,每期利率为 r,存期
为 x,则本利和 y=

(2)复利公式
利息按复利计算,本金为 a 元,每期利率为 r,存
期为 x,则本利和 y=

(3)产值模型
原来产值的基础数为 N,平均增长率为 p,对于时
间 x,总产值 y=

(4)递推型
递推型有 an+1=f(an)与 Sn+1=f(Sn)两类.
+190,…,若 bn=ana1n+1,数列{bn}的前 n 项和记为 Sn,则 S2 019
=________.
n(n+1)
解:由条件得到数列{an}的通项为 an=
2 n+1
=n2,则 an+1=n+2 1,所
以 bn=ana1n+1=n(n4+1)=41n-n+1 1,则 Sn=4(1-12+12-13+…+1n-n+1 1) =41-n+1 1=n4+n1,将 n=2 019 代入得到 S2 019=2500159.故填2500159.

高考数学专题复习题:数学归纳法

高考数学专题复习题:数学归纳法

高考数学专题复习题:数学归纳法一、单项选择题(共6小题)1.利用数学归纳法证明不等式1111()2321nf n ++++<- (2n ≥,且*n ∈N )的过程,由n k =到1n k =+时,左边增加了()A .12k -项B .2k 项C .1k -项D .k 项2.用数学归纳法证明:()()()1221121n n n ++++=++ ,在验证1n =成立时,左边所得的代数式是()A .1B .13+C .123++D .1234+++3.用数学归纳法证明等式()()()3412332n n n +++++++= ()N,1n n ∈≥时,第一步验证1n =时,左边应取的项是()A .1B .12+C .123++D .1234+++4.用数学归纳法证明:11112321n n ++++<- ,()N,1n n ∈≥时,在第二步证明从n k =到1n k =+成立时,左边增加的项数是()A .2k B .21k -C .12k -D .21k +5.已知n 为正偶数,用数学归纳法证明1111111122341242n n n n ⎛⎫-+-+⋅⋅⋅+=++⋅⋅⋅+ ⎪-++⎝⎭时,若已假设n k =(2k ≥,k 为偶数)时命题为真,则还需要再证()A .1n k =+时等式成立B .2n k =+时等式成立C .22n k =+时等式成立D .()22n k =+时等式成立6.现有命题()()()11*1112345611442n n n n n ++⎛⎫-+-+-++-=+-+∈ ⎪⎝⎭N ,用数学归纳法探究此命题的真假情况,下列说法正确的是()A .不能用数学归纳法判断此命题的真假B .此命题一定为真命题C .此命题加上条件9n >后才是真命题,否则为假命题D .存在一个无限大的常数m ,当n m >时,此命题为假命题二、多项选择题(共2小题)7.用数学归纳法证明不等式11111312324++++>++++ n n n n n 的过程中,下列说法正确的是()A .使不等式成立的第一个自然数01n =B .使不等式成立的第一个自然数02n =C .n k =推导1n k =+时,不等式的左边增加的式子是()()12122k k ++D .n k =推导1n k =+时,不等式的左边增加的式子是()()12223k k ++8.用数学归纳法证明不等式11111312324++++>++++ n n n n n 的过程中,下列说法正确的是()A .使不等式成立的第一个自然数01n =B .使不等式成立的第一个自然数02n =C .n k =推导1n k =+时,不等式的左边增加的式子是()()12122k k ++D .n k =推导1n k =+时,不等式的左边增加的式子是()()12223k k ++三、填空题(共2小题)9.在运用数学归纳法证明()121*(1)(2)n n x x n +-+++∈N 能被233x x ++整除时,则当1n k =+时,除了n k =时必须有归纳假设的代数式121(1)(2)k k x x +-+++相关的表达式外,还必须有与之相加的代数式为________.10.用数学归纳法证明:()()122342n n n -+++++= (n 为正整数,且2n )时,第一步取n =________验证.四、解答题(共2小题)11.用数学归纳法证明:()*11111231n n n n +++>∈+++N .12.数学归纳法是一种数学证明方法,通常被用于证明某个给定命题在整个(或者局部)自然数范围内成立.证明分为下面两个步骤:①证明当0n n =(0n ∈N )时命题成立;②假设n k =(k ∈N ,且0k n ≥)时命题成立,推导出在1n k =+时命题也成立.用模取余运算:mod a b c =表示“整数a 除以整数b ,所得余数为整数c ”.用带余除法可表示为:被除数=除数×商+余数,即a b r c =⨯+,整数r 是商.举一个例子7321=⨯+,则7mod31=;再举一个例子3703=⨯+,则3mod 73=.当mod 0a b =时,则称b 整除a .从序号分别为0a ,1a ,2a ,3a ,…,na 的1n +个人中选出一名幸运者,为了增加趣味性,特制定一个遴选规则:大家按序号围成一个圆环,然后依次报数,每报到m (2m ≥)时,此人退出圆环;直到最后剩1个人停止,此人即为幸运者,该幸运者的序号下标记为()1,f n m +.如()1,0f m =表示当只有1个人时幸运者就是0a ;()6,24f =表示当有6个人而2m =时幸运者是4a ;()6,30f =表示当有6个人而3m =时幸运者是0a .(1)求10mod3;(2)当1n ≥时,()()()()1,,mod 1f n m f n m m n +=++,求()5,3f ;当n m ≥时,解释上述递推关系式的实际意义;(3)由(2)推测当1212k k n +≤+<(k ∈N )时,()1,2f n +的结果,并用数学归纳法证明.。

高考数学复习题型及答案

高考数学复习题型及答案

高考数学复习题型及答案一、选择题1. 函数f(x)=x^2+2x+1的图像是:A. 一条直线B. 一个开口向上的抛物线C. 一个开口向下的抛物线D. 一个圆答案:B2. 已知等差数列{an}的首项a1=2,公差d=3,则其第10项a10的值为:A. 29B. 32C. 35D. 41答案:A二、填空题3. 若复数z=1+i,则|z|=________。

答案:√24. 已知函数f(x)=x^3-3x^2+2,求f'(x)=________。

答案:3x^2-6x三、解答题5. 求证:对于任意实数x,不等式x^2+x+1>0恒成立。

证明:要证明x^2+x+1>0恒成立,只需证明其判别式Δ<0。

计算判别式Δ=1^2-4×1×1=-3<0,因此原不等式恒成立。

6. 已知数列{an}满足a1=1,an+1=2an+1,求数列{an}的通项公式。

解:由递推关系an+1=2an+1,可得an+1+1=2(an+1),即数列{an+1}是首项为2,公比为2的等比数列。

因此,an+1=2^n,进而得到an=2^(n-1)-1。

四、计算题7. 计算定积分∫₀^₁x^2dx。

解:∫₀^₁x^2dx=(1/3)x^3|₀^₁=1/3。

8. 计算二重积分∬D(x^2+y^2)dσ,其中D是由x^2+y^2≤1所围成的圆盘。

解:∬D(x^2+y^2)dσ=∫₀^π∫₀^1(r^2cos^2θ+r^2sin^2θ)rdrdθ=∫₀^π∫₀^1r^3 dθ dr=(π/2)∫₀^1r^3dr=(π/2)(1/4)=π/8。

以上题型涵盖了高考数学中常见的选择题、填空题、解答题和计算题,通过这些题型的练习,可以有效地复习和巩固数学知识,为高考做好充分的准备。

2023届全国高考数学复习:专题(导数的运算)重点讲解与练习(附答案)

2023届全国高考数学复习:专题(导数的运算)重点讲解与练习(附答案)

2023届全国高考数学复习:专题(导数的运算)重点讲解与练习1.基本初等函数的导数公式2.导数的运算法则若f ′(x ),g ′(x )存在,则有[cf (x )]′=cf ′(x );[f (x )±g (x )]′=f ′(x )±g ′(x );[f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x );⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0); 3.复合函数的定义及其导数(1)一般地,对于两个函数y =f (u )和u =g (x ),如果通过中间变量u ,y 可以表示成x 的函数,那么称这个函数为函数y =f (u )与u =g (x )的复合函数,记作y =f (g (x )).(2)复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y ′x =y ′u ꞏu ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.【方法总结】导数运算的原则和方法基本原则:先化简、再求导; 具体方法:(1)连乘积形式:先展开化为多项式的形式,再求导;(2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导; (3)对数形式:先化为和、差的形式,再求导; (4)根式形式:先化为分数指数幂的形式,再求导;(5)三角形式:先利用三角函数公式转化为和或差的形式,再求导; (6)复合函数:由外向内,层层求导. 【例题选讲】[例1] 求下列函数的导数: (1)y =x 2sin x ;(2)y =cos x e x ;(3)y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2; (4)y =ln(2x -5).[例2] (1) (2020ꞏ全国Ⅲ)设函数f (x )=e x x +a .若f ′(1)=e4,则a =________.(2)已知函数f (x )的导函数为f ′(x ),f (x )=2x 2-3xf ′(1)+ln x ,则f (1)= .(3)已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2 022(x )等于( )A .-sin x -cos xB .sin x -cos xC .-sin x +cos xD .sin x +cos x (4)(多选)给出定义:若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″(x )=(f ′(x ))′,若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在⎝⎛⎭⎫0,π2上是凸函数的是( ) A .f (x )=sin x +cos x B .f (x )=ln x -2x C .f (x )=x 3+2x -1 D .f (x )=x e x(5)已知f (x )的导函数为f ′(x ),若满足xf ′(x )-f (x )=x 2+x ,且f (1)≥1,则f (x )的解析式可能是( ) A .x 2-x ln x +x B .x 2-x ln x -x C .x 2+x ln x +x D .x 2+2x ln x +x 【对点训练】1.下列求导运算正确的是( )A .⎝⎛⎭⎫x +1x ′=1+1x 2B .(log 2x )′=1x ln 2C .(5x )′=5x log 5xD .(x 2cos x )′=-2x sin x 2.函数y =x cos x -sin x 的导数为( )A .x sin xB .-x sin xC .x cos xD .-x cos x 3.(多选)下列求导运算正确的是( )A .(sin a )′=cos a (a 为常数)B .(sin 2x )′=2cos 2xC .(x )′=12xD .(e x -ln x +2x 2)′=e x -1x +4x4.已知函数f (x )=sin x cos x +1x 2,则f ′(x )= .5.已知函数f (x )的导函数为f ′(x ),记f 1(x )=f ′(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x )(n ∈N *),若f (x )=x sin x ,则f 2 019(x )+f 2 021(x )=( )A .-2cos xB .-2sin xC .2cos xD .2sin x 6.f (x )=x (2 021+ln x ),若f ′(x 0)=2 022,则x 0等于( )A .e 2B .1C .ln 2D .e7.已知函数f (x )=1ax -1+e x cos x ,若f ′(0)=-1,则a = .8.已知函数f (x )=ln(2x -3)+ax e -x ,若f ′(2)=1,则a = .9.已知函数f (x )的导函数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f ′(2)的值等于( )A .-2B .2C .-94D .94 10.已知f (x )=x 2+2xf ′(1),则f ′(0)=________.11.设函数f (x )在(0,+∞)内可导,其导函数为f ′(x ),且f (ln x )=x +ln x ,则f ′(1)= . 12.已知f ′(x )是函数f (x )的导数,f (x )=f ′(1)ꞏ2x +x 2,则f ′(2)=( )A .12-8ln 21-2ln 2B .21-2ln 2C .41-2ln 2 D .-213.(多选)若函数f (x )的导函数f ′(x )的图象关于y 轴对称,则f (x )的解析式可能为( )A .f (x )=3cos xB .f (x )=x 3+xC .f (x )=x +1x D .f (x )=e x +x 14.f (x )=3e x+1+x 3,其导函数为f ′(x ),则f (2020)+f (-2020)+f ′(2019)-f ′(-2019)的值为( ) A .1 B .2 C .3 D .4 15.已知f (x )=ax 4+b cos x +7x -2.若f ′(2 020)=6,则f ′(-2 020)=______. 16.分别求下列函数的导数:(1)y =e xln x ;(2)y =x ⎝⎛⎭⎫x 2+1x +1x 3;(3)y =x -sin x 2cos x2;(4)y =ln 1+2x .(5)f (x )=x 3+2x -x 2ln x -1x 2.参考答案【例题选讲】[例1] 求下列函数的导数: (1)y =x 2sin x ; (2)y =cos x e x ;(3)y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2; (4)y =ln(2x -5).解析 (1)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x .(2)y ′=⎝⎛⎭⎫cos x e x ′=(cos x )′e x -cos x (e x )′(e x )2=-sin x +cos x e x . (3)∵y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2=12x sin(4x +π)=-12sin4x , ∴y ′=-12sin 4x -12x ꞏ4cos 4x =-12sin 4x -2x cos 4x . (4)令u =2x -5,y =ln u .则y ′=(ln u )′u ′=12x -5ꞏ2=22x -5,即y ′=22x -5. [例2] (1) (2020ꞏ全国Ⅲ)设函数f (x )=e xx +a.若f ′(1)=e 4,则a =________. 答案 1 解析 f ′(x )=e x (x +a )-e x (x +a )2=e x (x +a -1)(x +a )2,则f ′(1)=a e (a +1)2=e 4,整理可得a 2-2a +1=0,解得a =1.(2)已知函数f (x )的导函数为f ′(x ),f (x )=2x 2-3xf ′(1)+ln x ,则f (1)= .答案 -74 解析 ∵f (x )=2x 2-3xf ′(1)+ln x ,∴f ′(x )=4x -3f ′(1)+1x x =1代入,得f ′(1)=4-3f ′(1)+1,得f ′(1)=54.∴f (x )=2x 2-154x +ln x ,∴f (1)=2-154=-74.(3)已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2 022(x )等于( )A .-sin x -cos xB .sin x -cos xC .-sin x +cos xD .sin x +cos x 答案 C 解析 ∵f 1(x )=sin x +cos x ,∴f 2(x )=f 1′(x )=cos x -sin x ,f 3(x )=f 2′(x )=-sin x -cos x ,f 4(x )=f 3′(x )=-cos x +sin x ,f 5(x )=f 4′(x )=sin x +cos x ,∴f n (x )的解析式以4为周期重复出现,∵2 022=4×505+2,∴f 2 022(x )=f 2(x )=cos x -sin x .故选C .(4)(多选)给出定义:若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″(x )=(f ′(x ))′,若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在⎝⎛⎭⎫0,π2上是凸函数的是( )A .f (x )=sin x +cos xB .f (x )=ln x -2xC .f (x )=x 3+2x -1D .f (x )=x e x答案 AB 解析 对于A :f ′(x )=cos x -sin x ,f ″(x )=-sin x -cos x ,∵x ∈⎝⎛⎭⎫0,π2,∴f ″(x )<0,f (x )在⎝⎛⎭⎫0,π2上是凸函数,故A 正确.对于B :f ′(x )=1x -2,f ″(x )=-1x 2<0,故f (x )在⎝⎛⎭⎫0,π2上是凸函数,故B 正确;对于C :f ′(x )=3x 2+2,f ″(x )=6x >0,故f (x )在⎝⎛⎭⎫0,π2上不是凸函数,故C 错误;对于D :f ′(x )=(x +1)e x ,f ″(x )=(x +2)e x >0,故f (x )在⎝⎛⎭⎫0,π2上不是凸函数,故D 错误.故选AB . (5)已知f (x )的导函数为f ′(x ),若满足xf ′(x )-f (x )=x 2+x ,且f (1)≥1,则f (x )的解析式可能是( ) A .x 2-x ln x +x B .x 2-x ln x -x C .x 2+x ln x +x D .x 2+2x ln x +x 答案 C 解析 由选项知f (x )的定义域为(0,+∞),由题意得xf ′(x )-f (x )x 2=1+1x ,即⎣⎡⎦⎤f (x )x ′=1+1x ,故f (x )x =x +ln x +c (c 为待定常数),即f (x )=x 2+(ln x +c )x .又f (1)≥1,则c ≥0,故选C .【对点训练】1.下列求导运算正确的是( )A .⎝⎛⎭⎫x +1x ′=1+1x 2B .(log 2x )′=1x ln 2C .(5x )′=5x log 5xD .(x 2cos x )′=-2x sin x 1.答案 B 解析 (log 2x )′=1x ln 2,故B 正确. 2.函数y =x cos x -sin x 的导数为( )A .x sin xB .-x sin xC .x cos xD .-x cos x 2.答案 B 解析 y ′=x ′cos x +x (cos x )′-(sin x )′=cos x -x sin x -cos x =-x sin x . 3.(多选)下列求导运算正确的是( )A .(sin a )′=cos a (a 为常数)B .(sin 2x )′=2cos 2xC .(x )′=12xD .(e x -ln x +2x 2)′=e x -1x +4x3.答案 BCD 解析 ∵a 为常数,∴sin a 为常数,∴(sin a )′=0,故A 错误.由导数公式及运算法则知B ,C ,D 正确,故选BCD .4.已知函数f (x )=sin x cos x +1x 2,则f ′(x )= .4.答案 1cos 2x -2x 3 解析 f ′(x )=(sin x )′ꞏcos x -sin x ꞏ(cos x )′cos 2x+(x -2)′=cos 2x +sin 2x cos 2x +(-2)x -3=1cos 2x -2x 3. 5.已知函数f (x )的导函数为f ′(x ),记f 1(x )=f ′(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x )(n ∈N *),若f (x )=x sin x ,则f 2 019(x )+f 2 021(x )=( )A .-2cos xB .-2sin xC .2cos xD .2sin x5.答案 D 解析 由题意,f (x )=x sin x ,f 1(x )=f ′(x )=sin x +x cos x ,f 2(x )=f ′1(x )=cos x +cos x -x sin x =2cos x -x sin x ,f 3(x )=f ′2(x )=-3sin x -x cos x ,f 4(x )=f ′3(x )=-4cos x +x sin x ,f 5(x )=f ′4(x )=5sin x +x cos x ,…,据此可知f 2 019(x )=-2 019sin x -x cos x ,f 2 021(x )=2 021sin x +x cos x ,所以f 2019(x )+f 2 021(x )=2sin x ,故选D .6.f (x )=x (2 021+ln x ),若f ′(x 0)=2 022,则x 0等于( )A .e 2B .1C .ln 2D .e6.答案 B 解析 f ′(x )=2 021+ln x +x ×1x =2 022+ln x ,又f ′(x 0)=2 022,得2 022+ln x 0=2 022,则ln x 0 =0,解得x 0=1.7.已知函数f (x )=1ax -1+e x cos x ,若f ′(0)=-1,则a = .7.答案 2 解析 f ′(x )=-(ax -1)′(ax -1)2e x cos x -e x sin x =-a (ax -1)2+e x cos x -e xsin x ,∴f ′(0)=-a +1=-1, 则a =2.8.已知函数f (x )=ln(2x -3)+ax e -x ,若f ′(2)=1,则a = .8.答案 e 2解析 f ′(x )=12x -3ꞏ(2x -3)′+a e -x +ax ꞏ(e -x )′=22x -3+a e -x -ax e -x ,∴f ′(2)=2+a e -2-2a e -2=2-a e -2=1,则a =e 2.9.已知函数f (x )的导函数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f ′(2)的值等于( )A .-2B .2C .-94D .949.答案 C 解析 因为f (x )=x 2+3xf ′(2)+ln x ,所以f ′(x )=2x +3f ′(2)+1x 所以f ′(2)=2×2+3f ′(2)+12,解得f ′(2)=-94.10.已知f (x )=x 2+2xf ′(1),则f ′(0)=________.10.答案 -4 解析 ∵f ′(x )=2x +2f ′(1),∴f ′(1)=2+2f ′(1),∴f ′(1)=-2,∴f ′(0)=2f ′(1)=2×(-2)=-4. 11.设函数f (x )在(0,+∞)内可导,其导函数为f ′(x ),且f (ln x )=x +ln x ,则f ′(1)= .11.答案 1+e 解析 因为f (ln x )=x +ln x ,所以f (x )=x +e x ,所以f ′(x )=1+e x ,所以f ′(1)=1+e 1=1+e .12.已知f ′(x )是函数f (x )的导数,f (x )=f ′(1)ꞏ2x +x 2,则f ′(2)=( )A .12-8ln 21-2ln 2B .21-2ln 2C .41-2ln 2 D .-212.答案 C 解析 因为f ′(x )=f ′(1)ꞏ2x ln 2+2x ,所以f ′(1)=f ′(1)ꞏ2ln 2+2,解得f ′(1)=21-2ln 2,所以f ′(x )=21-2ln 2ꞏ2x ln 2+2x ,所以f ′(2)=21-2ln 2×22ln 2+2×2=41-2ln 2. 13.(多选)若函数f (x )的导函数f ′(x )的图象关于y 轴对称,则f (x )的解析式可能为( )A .f (x )=3cos xB .f (x )=x 3+xC .f (x )=x +1x D .f (x )=e x +x13.答案 BC 解析 对于A ,f (x )=3cos x ,其导数f ′(x )=-3sin x ,其导函数为奇函数,图象不关于y轴对称,不符合题意;对于B ,f (x )=x 3+x ,其导数f ′(x )=3x 2+1,其导函数为偶函数,图象关于y 轴对称,符合题意;对于C ,f (x )=x +1x ,其导数f ′(x )=1-1x 2,其导函数为偶函数,图象关于y 轴对称,符合题意;对于D ,f (x )=e x +x ,其导数f ′(x )=e x +1,其导函数不是偶函数,图象不关于y 轴对称,不符合题意. 14.f (x )=3e x+1+x 3,其导函数为f ′(x ),则f (2020)+f (-2020)+f ′(2019)-f ′(-2019)的值为( ) A .1 B .2 C .3 D .414.答案 C 解析 f ′(x )=-3e x (e x +1)2+3x 2,f ′(-x )=-3e x (e x +1)2+3x 2,所以f ′(x )为偶函数,f ′(2019)-f ′(-2019) =0,因为f (x )+f (-x )=31+e x+x 3+31+e -x -x 3=31+e x +3e x 1+e x =3,所以f (2020)+f (-2020)+f ′(2019)-f ′(-2019)=3.故选C .15.已知f (x )=ax 4+b cos x +7x -2.若f ′(2 020)=6,则f ′(-2 020)=______.15.答案 8 解析 因为f ′(x )=4ax 3-b sin x +7,所以f ′(-x )=4a (-x )3-b sin(-x )+7=-4ax 3+b sin x +7.所以f ′(x )+f ′(-x )=14.又f ′(2 020)=6,所以f ′(-2 020)=14-6=8. 16.分别求下列函数的导数:(1)y =e xln x ;(2)y =x ⎝⎛⎭⎫x 2+1x +1x 3;(3)y =x -sin x 2cos x2;(4)y =ln 1+2x .(5)f (x )=x 3+2x -x 2ln x -1x 2. 16.解析 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x ꞏ1x =⎝⎛⎭⎫ln x +1x e x . (2)∵y =x 3+1+1x 2,∴y ′=3x 2-2x 3. (3)∵y =x -12sin x ,∴y ′=1-12cos x .(4)∵y =ln 1+2x =12ln(1+2x ),∴y ′=12ꞏ11+2x ꞏ(1+2x )′=11+2x.(5)由已知f (x )=x -ln x +2x -1x 2.所以f ′(x )=1-1x -2x 2+2x 3=x 3-x 2-2x +2x 3.。

高考数学-三角函数专题复习

高考数学-三角函数专题复习

高考数学-三角函数专题复习三角函数专题考点例题解析】考点1.求值1、求sin330°、tan690°、sin585°的值。

解:利用三角函数的周期性和对称性,可得:sin330°=sin(360°-30°)=sin30°=1/2tan690°=tan(720°-30°)=tan30°=1/√3sin585°=sin(540°+45°)=sin45°=√2/22、已知角α为第三象限角,求sin(α+π/2)的值。

解:由于α为第三象限角,所以sinα<0,cosα<0.又因为sin(α+π/2)=cosα,所以sin(α+π/2)<0.3、已知sinθ+cosθ=5/3,cosθ-sinθ=2,求sin2θ的值。

解:将sinθ+cosθ和cosθ-sinθ相加,可得cosθ+cosθ=5/3+2=11/3,即cosθ=11/6.将cosθ-sinθ和sinθ+cosθ相减,可得2sinθ=-1/6,即sinθ=-1/12.代入sin2θ=2sinθcosθ的公式,可得sin2θ=-11/72.4、已知si n(π/4-α)=2/√5,求cosα的值。

解:sin(π/4-α)=sinπ/4cosα-cosπ/4sinα=2/√5,代入cosπ/4=√2/2和sinπ/4=√2/2,可得cosα=1/√10.5、已知f(cosx)=cos3x,求f(sin30°)的值。

解:将x=π/6代入f(cosx)=cos3x,可得f(cosπ/6)=cos(3π/6)=cosπ=-1.又因为sin30°=cosπ/6,所以f(sin30°)=-1.6、已知tanα=15π/22,求cos(π/2-α)的值。

解:tanα=15π/22,所以α为第三象限角,cos(π/2-α)=sinα>0.由tanα=sinα/cosα,可得cosα=15/√466,代入sin^2α+cos^2α=1,可得sinα=7/√466,最终可得cos(π/2-α)=7/15.7、已知tan(π/4+x)=2tan(π/4-x),求cos2x的值。

2023届全国高考数学复习:专题(含参函数的极值、最值讨论)重点讲解与练习(附答案)

2023届全国高考数学复习:专题(含参函数的极值、最值讨论)重点讲解与练习(附答案)

2023届全国高考数学复习:专题(含参函数的极值、最值讨论)重点讲解与练习考点一 含参函数的极值【例题选讲】[例1] 设a >0,函数f (x )=12x 2-(a +1)x +a (1+ln x ).(1)若曲线y =f (x )在(2,f (2))处的切线与直线y =-x +1垂直,求切线方程.(2)求函数f (x )的极值.[例2] 已知函数f (x )=ln x -ax (a ∈R ).(1)当a =12f (x )的极值;(2)讨论函数f (x )在定义域内极值点的个数.[例3] 设f (x )=x ln x -32ax 2+(3a -1)x .(1)若g (x )=f ′(x )在[1,2]上单调,求a 的取值范围;(2)已知f (x )在x =1处取得极小值,求a 的取值范围.[例4] (2016ꞏ山东)设f (x )=x ln x -ax 2+(2a -1)x ,a ∈R .(1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围.[例5] 已知函数f (x )=⎝⎛⎭⎫x -1-a 6e x +1,其中e =2.718…为自然对数的底数,常数a >0. (1)求函数f (x )在区间(0,+∞)上的零点个数;(2)函数F (x )的导数F ′(x )=()e x-a f (x ),是否存在无数个a ∈(1,4),使得ln a 为函数F (x )的极大值点?请说明理由.【对点训练】1.已知函数f (x )=ln x -12ax 2+x ,a ∈R .(1)当a =0时,求曲线y =f (x )在(1,f (1))处的切线方程;(2)令g (x )=f (x )-(ax -1),求函数g (x )的极值.2.设函数f (x )=[ax 2-(4a +1)x +4a +3]e x .(1)若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ;(2)若f (x )在x =2处取得极小值,求a 的取值范围.3.已知函数f (x )=x 2-3x +a x .(1)若a =4,讨论f (x )的单调性;(2)若f (x )有3个极值点,求实数a 的取值范围.4.已知函数f(x)=ax-x2-ln x(a∈R).(1)求函数f(x)的单调区间;(2)若函数f(x)存在极值,且这些极值的和大于5+ln2,求实数a的取值范围.5.(2018ꞏ全国Ⅲ)已知函数f (x )=(2+x +ax 2)ꞏln(1+x )-2x .(1)若a =0,证明:当-1<x <0时,f (x )<0;当x >0时,f (x )>0.(2)若x =0是f (x )的极大值点,求a .考点二 含参函数的最值【例题选讲】[例1] 已知函数f (x )=ln x -ax (a ∈R ).(1)求函数f (x )的单调区间;(2)当a >0时,求函数f (x )在[1,2]上的最小值.[例2] 已知函数f (x )=ax 2+(1-2a )x -ln x .(1)当a >0时,求函数f (x )的单调递增区间;(2)当a <0时,求函数f (x )在⎣⎡⎦⎤12,1上的最小值.[例3] 已知函数f (x )=ln x x 1.(1)求函数f (x )的单调区间及极值;(2)设m >0,求函数f (x )在区间[m ,2m ]上的最大值.[例4] 已知函数f (x )=m ln x x +n ,g (x )=x 2⎣⎡⎦⎤f (x )-1x -a 2(m ,n ,a ∈R ),且曲线y =f (x )在点(1,f (1))处的切线方程为y =x -1.(1)求实数m ,n 的值及函数f (x )的最大值;(2)当a ∈⎝⎛⎭⎫-e ,1e 时,记函数g (x )的最小值为b ,求b 的取值范围.[例5] (2019ꞏ全国Ⅲ)已知函数f (x )=2x 3-ax 2+b .(1)讨论f (x )的单调性;(2)是否存在a ,b ,使得f (x )在区间[0,1]的最小值为-1且最大值为1?若存在,求出a ,b 的所有值;若不存在,说明理由.【对点训练】1.已知函数g (x )=a ln x +x 2-(a +2)x (a ∈R ).(1)若a =1,求g (x )在区间[1,e]上的最大值;(2)求g (x )在区间[1,e]上的最小值h (a ).2.已知函数f (x )=(x -a )e x (a ∈R ).(1)当a =2时,求函数f (x )的图象在x =0处的切线方程;(2)求函数f (x )在区间[1,2]上的最小值.3.已知函数f (x )=ax -ln x ,F (x )=e x +ax ,其中x >0,a <0.(1)若f (x )和F (x )在区间(0,ln 3)上具有相同的单调性,求实数a 的取值范围;(2)若a ∈⎝⎛⎦⎤-∞,-1e 2,且函数g (x )=x e ax -1-2ax +f (x )的最小值为M ,求M 的最小值.4.已知函数f (x )=ax +ln x ,其中a 为常数.(1)当a =-1时,求f (x )的最大值;(2)若f (x )在区间(0,e]上的最大值为-3,求a 的值.5.已知函数f (x )=ax 2-(a +2)x +ln x ,其中a ∈R .(1)当a =1时,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)当a >0时,若f (x )在区间[1,e]上的最小值为-2,求a 的取值范围.考点三 含参函数的极值与最值的综合问题【例题选讲】[例1] 已知函数f (x )=e x1+ax 2,其中a 为正实数,x =12是f (x )的一个极值点. (1)求a 的值;(2)当b >12时,求函数f (x )在[b ,+∞)上的最小值.[例2] 已知函数f (x )=a ln (x +b )-x .(1)若a =1,b =0,求f (x )的最大值;(2)当b >0时,讨论f (x )极值点的个数.[例3] 设函数f (x )=a x +e -x (a >1). (1)求证:f (x )有极值;(2)若x =x 0时f (x )取得极值,且对任意正整数a 都有x 0∈(m ,n ),其中m ,n ∈Z ,求n -m 的最小值.[例4] 已知函数f (x )=a ln x +1x (a >0).(1)求函数f (x )的单调区间和极值;(2)是否存在实数a ,使得函数f (x )在[1,e]上的最小值为0?若存在,求出a 的值;若不存在,请说明理由.[例5] 已知函数f (x )=(ax -1)ln x +x 22.(1)若a =2,求曲线y =f (x )在点(1,f (1))处的切线l 的方程;(2)设函数g (x )=f ′(x )有两个极值点x 1,x 2,其中x 1∈(0,e],求g (x 1)-g (x 2)的最小值.[例6] 已知函数g (x )=x 22+x +ln x .(1)若函数g ′(x )≥a 恒成立,求实数a 的取值范围;(2)函数f (x )=g (x )-mx ,若f (x )存在单调递减区间,求实数m 的取值范围;(3)设x 1,x 2(x 1<x 2)是函数f (x )的两个极值点,若m ≥72,求f (x 1)-f (x 2)的最小值.【对点训练】1.已知函数f (x )=x ln x .(1)求函数f (x )的极值点;(2)设函数g (x )=f (x )-a (x -1),其中a ∈R ,求函数g (x )在区间(0,e]上的最小值(其中e 为自然对数的底数).2.已知函数f (x )=⎩⎪⎨⎪⎧-x 3+x 2,x <1,a ln x ,x ≥1. (1)求f (x )在区间(-∞,1)上的极小值和极大值;(2)求f (x )在[-1,e](e 为自然对数的底数)上的最大值.(1)若x=3是f(x)的极值点,求f(x)的单调区间;(2)求g(x)=f(x)-2x在区间[1,e]上的最小值h(a).4.已知常数a≠0,f(x)=a ln x+2x.(1)当a=-4时,求f(x)的极值;(2)当f(x)的最小值不小于-a时,求实数a的取值范围.(1)若f (x )在⎝⎛⎭⎫0,π2上有极值点,求a 的取值范围; (2)若a =1,x ∈⎝⎛⎭⎫0,2π3时,f (x )≥bx cos x ,求b 的最大值.6.已知函数f (x )=ln x +12x 2-ax +a (a ∈R ).(1)若函数f (x )在(0,+∞)上为单调递增函数,求实数a 的取值范围;(2)若函数f (x )在x =x 1和x =x 2处取得极值,且x 2≥e x 1(e 为自然对数的底数),求f (x 2)-f (x 1)的最大值参考答案【例题选讲】[例1] 设a >0,函数f (x )=12x 2-(a +1)x +a (1+ln x ).(1)若曲线y =f (x )在(2,f (2))处的切线与直线y =-x +1垂直,求切线方程. (2)求函数f (x )的极值.解析 (1)由已知,得f ′(x )=x -(a +1)+ax (x >0),又由题意可知y =f (x )在(2,f (2))处切线的斜率为1, 所以f ′(2)=1,即2-(a +1)+a2=1,解得a =0,此时f (2)=2-2=0,故所求的切线方程为y =x -2.(2)f ′(x )=x -(a +1)+a x =x 2-(a +1)x +a x =(x -1)(x -a )x(x >0). ①当0<a <1时,若x ∈(0,a ),则f ′(x )>0,函数f (x )单调递增;若x ∈(a ,1),则f ′(x )<0,函数f (x )单调递减;若x ∈(1,+∞),则f ′(x )>0,函数f (x )单调递增.此时x =a 是f (x )的极大值点,x =1是f (x )的极小值点,函数f (x )的极大值是f (a )=-12a 2+a ln a ,极小值是f (1)=-12. ②当a =1时,f ′(x )=(x -1)2x ≥0,所以函数f (x )在定义域(0,+∞)内单调递增, 此时f (x )没有极值点,故无极值.③当a >1时,若x ∈(0,1),则f ′(x )>0,函数f (x )单调递增;若x ∈(1,a ),则f ′(x )<0,函数f (x )单调递减;若x ∈(a ,+∞),则f ′(x )>0,函数f (x )单调递增. 此时x =1是f (x )的极大值点,x =a 是f (x )的极小值点, 函数f (x )的极大值是f (1)=-12,极小值是f (a )=-12a 2+a ln a .综上,当0<a <1时,f (x )的极大值是-12a 2+a ln a ,极小值是-12;当a =1时,f (x )没有极值;当a >1时f (x )的极大值是-12,极小值是-12a 2+a ln a .[例2] 已知函数f (x )=ln x -ax (a ∈R ). (1)当a =12f (x )的极值;(2)讨论函数f (x )在定义域内极值点的个数.解析 (1)当a =12时,f (x )=ln x -12x ,函数的定义域为(0,+∞)且f ′(x )=1x -12=2-x2x , 令f ′(x )=0,得x =2,于是当x 变化时,f ′(x ),f (x )的变化情况如下表.x (0,2) 2 (2,+∞) f ′(x )+-f (x ) ln 2-1 故f (x )在定义域上的极大值为f (x )极大值=f (2)=ln 2-1,无极小值. (2)由(1)知,函数的定义域为(0,+∞),f ′(x )=1x -a =1-ax x . 当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,则函数在(0,+∞)上单调递增,此时函数在定义域上无极值点; 当a >0时,若x ∈⎝⎛0,1a ,则f ′(x )>0, 若x ∈⎝⎛⎭⎫1a ,+∞,则f ′(x )<0,故函数在x =1a 处有极大值. 综上可知,当a ≤0时,函数f (x )无极值点,当a >0时,函数y =f (x )有一个极大值点,且为x =1a . [例3] 设f (x )=x ln x -32ax 2+(3a -1)x .(1)若g (x )=f ′(x )在[1,2]上单调,求a 的取值范围; (2)已知f (x )在x =1处取得极小值,求a 的取值范围.解析 (1)由f ′(x )=ln x -3ax +3a ,即g (x )=ln x -3ax +3a ,x ∈(0,+∞),g ′(x )=1x -3a ,①g (x )在[1,2]上单调递增,∴1x -3a ≥0对x ∈[1,2]恒成立,即a ≤13x 对x ∈[1,2]恒成立,得a ≤16; ②g (x )在[1,2]上单调递减,∴1x -3a ≤0对x ∈[1,2]恒成立,即a ≥13x 对x ∈[1,2]恒成立,得a ≥13, 由①②可得a 的取值范围为⎝⎛⎦⎤-∞,16∪⎣⎡⎭⎫13,+∞.(2)由(1)知,①当a ≤0时,f ′(x )在(0,+∞)上单调递增,∴x ∈(0,1)时,f ′(x )<0,f (x )单调递减, x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增,∴f (x )在x =1处取得极小值,符合题意;②当0<a <13时,13a >1,又f ′(x )在⎝⎛⎭⎫0,13a 上单调递增,∴x ∈(0,1)时,f ′(x )<0,x ∈⎝⎛⎭⎫1,13a 时,f ′(x )>0, ∴f (x )在(0,1)上单调递减,在⎝⎛⎭⎫1,13a 上单调递增,f (x )在x =1处取得极小值,符合题意; ③当a =13时,13a =1,f ′(x )在(0,1)上单调递增,在(1,+∞)上单调递减, ∴x ∈(0,+∞)时,f ′(x )≤0,f (x )单调递减,不合题意;④当a >13时,0<13a <1,当x ∈⎝⎛⎭⎫13a ,1时,f ′(x )>0,f (x )单调递增,当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减,∴f (x )在x =1处取得极大值,不符合题意. 综上所述,可得a 的取值范围为⎝⎛⎭⎫-∞,13. [例4] (2016ꞏ山东)设f (x )=x ln x -ax 2+(2a -1)x ,a ∈R . (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围.解析 (1)由f ′(x )=ln x -2ax +2a ,可得g (x )=ln x -2ax +2a ,x ∈(0,+∞).所以g ′(x )=1x -2a =1-2ax x . 当a ≤0,x ∈(0,+∞)时,g ′(x )>0,函数g (x )单调递增;当a >0,x ∈⎝⎛⎭⎫0,12a 时,g ′(x )>0,函数g (x )单调递增,x ∈⎝⎛⎭⎫12a ,+∞时,g ′(x )<0,函数g (x )单调递减. 所以当a ≤0时,g (x )的单调增区间为(0,+∞);当a >0时,g (x )的单调增区间为⎝⎛⎭⎫0,12a ,单调减区间为⎝⎛⎭⎫12a ,+∞. (2)由(1)知,f ′(1)=0.①当a ≤0时,f ′(x )单调递增,所以当x ∈(0,1)时,f ′(x )<0,f (x )单调递减; 当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增.所以f (x )在x =1处取得极小值,不合题意. ②当0<a <12时,12a >1,由(1)知f ′(x )在⎝⎛⎭⎫0,12a 内单调递增, 可得当x ∈(0,1)时,f ′(x )<0,当x ∈⎝⎛⎭⎫1,12a 时,f ′(x )>0. 所以f (x )在(0,1)内单调递减,在⎝⎛⎭⎫1,12a 内单调递增,所以f (x )在x =1处取得极小值,不合题意. ③当a =12时,12a =1,f ′(x )在(0,1)内单调递增,在(1,+∞)内单调递减, 所以当x ∈(0,+∞)时,f ′(x )≤0,f (x )单调递减,不合题意.④当a >12时,0<12a 1,当x ∈⎝⎛⎭⎫12a ,1时,f ′(x )>0,f (x )单调递增,当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减.所以f (x )在x =1处取极大值,符合题意.综上可知,实数a 的取值范围为⎝⎛⎭⎫12,+∞. [例5] 已知函数f (x )=⎝⎛⎭⎫x -1-a6e x +1,其中e =2.718…为自然对数的底数,常数a >0. (1)求函数f (x )在区间(0,+∞)上的零点个数;(2)函数F (x )的导数F ′(x )=()e x-a f (x ),是否存在无数个a ∈(1,4),使得ln a 为函数F (x )的极大值点?请说明理由.解析 (1)f ′(x )=⎝⎛⎭⎫x -a 6e x ,当0<x <a 6时,f ′(x )<0,f (x )单调递减;当x >a6时,f ′(x )>0,f (x )单调递增, 所以当x ∈(0,+∞)时,f (x )min =f ⎝⎛⎭⎫a 6,因为f ⎝⎛⎭⎫a 6<f (0)=-a 6<0,f ⎝⎛⎭⎫1+a 6=1>0, 所以存在x 0∈⎝⎛⎭⎫a 6,1+a 6,使f (x 0)=0,且当0<x <x 0时,f (x )<0,当x >x 0时,f (x )>0. 故函数f (x )在(0,+∞)上有1个零点,即x 0.(2)方法一 当a >1时,ln a >0.因为当x ∈()0,ln a 时,e x -a <0;当x ∈()ln a ,+∞时,e x -a >0. 由(1)知,当x ∈(0,x 0)时,f (x )<0;当x ∈(x 0,+∞)时,f (x )>0.下面证:当a ∈()1,e 时,ln a <x 0,即证f ()ln a <0.f ()ln a =⎝⎛ln a -1-a 6a +1=a ln a -a -a 26+1,记g (x )=x ln x -x -x26+1,x ∈(1,e), g ′(x )=ln x -x3,x ∈(1,e),令h (x )=g ′(x ),则h ′(x )=3-x 3x >0,所以g ′(x )在()1,e 上单调递增, 由g ′(1)=-13<0,g ′(e)=1-e3>0,所以存在唯一零点t 0∈()1,e ,使得g ′()t 0=0, 且x ∈()1,t 0时,g ′(x )<0,g (x )单调递减,x ∈()t 0,e 时,g ′(x )>0,g (x )单调递增. 所以当x ∈()1,e 时,g (x )<max {}g (1),g (e).由g (1)=-16<0,g (e)=6-e 26<0, 得当x ∈()1,e 时,g (x )<0.故f ()ln a <0,0<ln a <x 0.当0<x <ln a 时,e x -a <0,f (x )<0, F ′(x )=()e x -a f (x )>0,F (x )单调递增;当ln a <x <x 0时,e x -a >0,f (x )<0,F ′(x )=()e x-a f (x )<0,F (x )单调递减.所以存在a ∈()1,e ⊆(1,4),使得ln a 为F (x )的极大值点. 方法二 因为当x ∈()0,ln a 时,e x -a <0;当x ∈()ln a ,+∞时,e x -a >0. 由(1)知,当x ∈(0,x 0)时,f (x )<0;当x ∈(x 0,+∞)时,f (x )>0. 所以存在无数个a ∈(1,4),使得ln a 为函数F (x )的极大值点, 即存在无数个a ∈(1,4),使得ln a <x 0成立,①由(1),问题①等价于存在无数个a ∈(1,4),使得f ()ln a <0成立,因为f ()ln a =⎝⎛⎭⎫ln a -1-a 6a +1=a ln a -a -a 26+1,记g (x )=x ln x -x -x26+1,x ∈(1,4), g ′(x )=ln x -x3,x ∈(1,4),设k (x )=g ′(x ),因为k ′(x )=3-x 3x ,当x ∈⎝⎛⎭⎫32,2时,k ′(x )>0,所以g ′(x )在⎝⎛⎭⎫32,2上单调递增,因为g ′⎝⎛⎭⎫32=ln 32-12<0,g ′(2)=ln 2-23>0, 所以存在唯一零点t 0∈⎝⎛⎭⎫32,2,使得g ′()t 0=0,且当x ∈⎝⎛⎭⎫32,t 0时,g ′(x )<0,g (x )单调递减;当x ∈()t 0,2时,g ′(x )>0,g (x )单调递增; 所以当x ∈⎣⎡⎦⎤32,2时,g (x )min=g ()t 0=t 0ln t 0-t 0-t206+1,② 由g ′()t 0=0,可得ln t 0=t 03,代入②式可得g (x )min =g ()t 0=t 206-t 0+1,当t 0∈⎝⎛⎭⎫32,2时,g ()t 0=t 206-t 0+1=()t 0-326-12<-18<0,所以必存在x ∈⎝⎛⎭⎫32,2,使得g (x )<0,即对任意a ∈⎝⎛⎭⎫32,2,f ()ln a <0有解, 所以对任意a ∈⎝⎛⎭⎫32,2⊆(1,4),函数F (x )存在极大值点为ln a . 【对点训练】1.已知函数f (x )=ln x -12ax 2+x ,a ∈R .(1)当a =0时,求曲线y =f (x )在(1,f (1))处的切线方程; (2)令g (x )=f (x )-(ax -1),求函数g (x )的极值.1.解析 (1)当a =0时,f (x )=ln x +x ,则f (1)=1,∴切点为(1,1),又f ′(x )=1x +1,∴切线斜率k =f ′(1)=2,故切线方程为y -1=2(x -1),即2x -y -1=0.(2)g (x )=f (x )-(ax -1)=ln x -12ax 2+(1-a )x +1,则g ′(x )=1x -ax +(1-a )=-ax 2+(1-a )x +1x , ①当a ≤0时,∵x >0,∴g ′(x )>0,∴g (x )在(0,+∞)上是增函数,函数g (x )无极值点.②当a >0时,g ′(x )=-ax 2+(1-a )x +1x=-a ⎝⎛⎭⎫x -1a (x +1)x ,令g ′(x )=0得x =1a . ∴当x ∈⎝⎛⎭⎫0,1a 时,g ′(x )>0;当x ∈⎝⎛⎭⎫1a ,+∞时,g ′(x )<0. 因此g (x )在⎝⎛⎭⎫0,1a 上是增函数,在⎝⎛⎭⎫1a ,+∞上是减函数. ∴x =1a 时,g (x )取极大值g ⎝⎛⎭⎫1a =ln 1a -a 2×1a 2+(1-a )×1a +1=12a -ln a . 由①②得,当a ≤0时,函数g (x )无极值;当a >0时,函数g (x )有极大值12a -ln a ,无极小值. 2.设函数f (x )=[ax 2-(4a +1)x +4a +3]e x .(1)若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ; (2)若f (x )在x =2处取得极小值,求a 的取值范围.2.解析 (1)因为f (x )=[ax 2-(4a +1)x +4a +3]e x ,所以f ′(x )=[ax 2-(2a +1)x +2]e x .f ′(1)=(1-a )e .由题设知f ′(1)=0,即(1-a )e =0,解得a =1.此时f (1)=3e≠0.所以a 的值为1. (2)f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x .若a >12x ∈⎝⎛⎭⎫1a ,2时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0.所以f (x )在x =2处取得极小值. 若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0,所以f ′(x )>0,所以2不是f (x )的极小值点. 综上可知,a 的取值范围是⎝⎛⎭⎫12,+∞. 3.已知函数f (x )=x 2-3x +ax .(1)若a =4,讨论f (x )的单调性;(2)若f (x )有3个极值点,求实数a 的取值范围. 3.解析 (1)因为a =4时,f (x )=x 2-3x +4x ,所以f ′(x )=2x -3-4x 2=2x 3-3x 2-4x 2=2x 3-4x 2+x 2-4x 2=(x -2)(2x 2+x +2)x 2(x ≠0), 令f ′(x )>0,得x >2;令f ′(x )<0,得x <0或0<x <2.所以f (x )在(-∞,0),(0,2)上单调递减,在(2,+∞)上单调递增.(2)由题意知,f ′(x )=2x -3-a x 2=2x 3-3x 2-a x2(x ≠0),设函数g (x )=2x 3-3x 2-a , 则原条件等价于g (x )在(-∞,0)∪(0,+∞)上有3个零点,且3个零点附近的左、右两侧的函数值异号,又g ′(x )=6x 2-6x =6x (x -1), 由g ′(x )>0,得x >1或x <0;由g ′(x )<0,得0<x <1.故g (x )在(-∞,0)上单调递增,在(0,1)上单调递减,在(1,+∞)上单调递增,故原条件等价于g (x )在(-∞,0),(0,1),(1,+∞)上各有一个零点,令g (0)=-a >0,得a <0, 当a <0时,--a <0,g (--a )=2(--a )3-3(-a )-a =2a (-a +1)<0, 故a <0时,g (x )在(-∞,0)上有唯一零点;令g (1)=-1-a <0,解得a >-1,故-1<a <0时,g (x )在(0,1)上有唯一零点; 又-1<a <0时,g (2)=4-a >0,所以g (x )在(1,+∞)上有唯一零点. 综上可知,实数a 的取值范围是(-1,0). 4.已知函数f (x )=ax -x 2-ln x (a ∈R ).(1)求函数f (x )的单调区间;(2)若函数f (x )存在极值,且这些极值的和大于5+ln2,求实数a 的取值范围.4.解析 (1)f (x )的定义域为(0,+∞).f ′(x )=a -2x -1x .∵2x +1x ≥22⎝⎛⎭⎫当且仅当x =2时等号成立,当a ≤22时,f ′(x )≤0,函数f (x )在(0,+∞)上单调递减. 当a >22时,f ′(x )=a -2x -1x =-2x 2-ax +1x. 由f ′(x )=0得x 1=a -a 2-84,x 2=a +a 2-84且x 2>x 1>0. 由f ′(x )>0得x 1<x <x 2,由f ′(x )<0得0<x <x 1,或x >x 2, ∴函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫a -a 2-84,a +a 2-84, 单调递减区间为⎝ ⎛⎭⎪⎫0,a -a 2-84,⎝ ⎛⎭⎪⎫a +a 2-84,+∞. 综上所述,当a ≤22时,函数f (x )的单调递减区间为(0,+∞),无单调递增区间; 当a >22时,函数f (x )的单调递减区间为⎝ ⎛⎭⎪⎫0,a -a 2-84,⎝ ⎛⎭⎪⎫a + a 2-8,+∞, 单调递增区间为⎝ ⎛⎭⎪⎫a -a 2-84,a +a 2-84.(2)由(1)知,当f (x )存在极值时,a >22.即方程2x 2-ax +1=0有两个不相等的正根x 1,x 2,∴⎩⎨⎧x 1+x 2=a2>0,x 1x 2=12>0.∴f (x 1)+f (x 2)=a (x 1+x 2)-(x 21+x 22)-(ln x 1+ln x 2)=a (x 1+x 2)-[](x 1+x 2)2-2x 1x 2-ln(x 1x 2)=a 22-a 241-ln 12=a 24+1-ln 12.依题意a 24+1-ln 12>5+ln 2,即a 2>16,∴a >4或a <-4. 又a >22.∴a >4,即实数a 的取值范围是(4,+∞). 5.(2018ꞏ全国Ⅲ)已知函数f (x )=(2+x +ax 2)ꞏln(1+x )-2x .(1)若a =0,证明:当-1<x <0时,f (x )<0;当x >0时,f (x )>0. (2)若x =0是f (x )的极大值点,求a .5.解析 (1)证明:当a =0时,f (x )=(2+x )ln(1+x )-2x ,f ′(x )=ln(1+x )-x1+x. 设函数g (x )=f ′(x )=ln (1+x )-x1+x,则g ′(x )=x (1+x )2.当-1<x <0时,g ′(x )<0;当x >0时,g ′(x )>0.故当x >-1时,g (x )≥g (0)=0, 且仅当x =0时,g (x )=0,从而f ′(x )≥0,且仅当x =0时,f ′(x )=0.所以f (x )在(-1,+∞)单调递增.又f (0)=0,故当-1<x <0时,f (x )<0;当x >0时,f (x )>0. (2)(ⅰ)若a ≥0,由(1)知,当x >0时,f (x )≥(2+x )ꞏln (1+x )-2x >0=f (0),这与x =0是f (x )的极大值点矛盾.(ⅱ)若a <0,设函数h (x )=f (x )2+x +ax 2=ln(1+x )-2x 2+x +ax 2. 由于当|x |<min{1,1|a |}时,2+x +ax 2>0,故h (x )与f (x )符号相同. 又h (0)=f (0)=0,故x =0是f (x )的极大值点当且仅当x =0是h (x )的极大值点. h ′(x )=11+x -2(2+x +ax 2)-2x (1+2ax )(2+x +ax 2)2=x 2(a 2x 2+4ax +6a +1)(x +1)(ax 2+x +2)2.如果6a +1>0,则当0<x <-6a +14a ,且|x |<min{1,1|a |}时,h ′(x )>0,故x =0不是h (x )的极大值点.如果6a +1<0,则a 2x 2+4ax +6a +1=0存在根x 1<0,故当x ∈(x 1,0),且|x |<min{1,1|a |}时,h ′(x )<0,所以x =0不是h (x )的极大值点. 如果6a +1=0,则h ′(x )=x 3(x -24)(x +1)(x 2-6x -12)2, 则当x ∈(-1,0)时,h ′(x )>0;当x ∈(0,1)时,h ′(x )<0.所以x =0是h (x )的极大值点,从而x =0是f (x )的极大值点. 综上,a =-16.考点二 含参函数的最值 【例题选讲】[例1] 已知函数f (x )=ln x -ax (a ∈R ). (1)求函数f (x )的单调区间;(2)当a >0时,求函数f (x )在[1,2]上的最小值. 解析 (1)f ′(x )=1x a (x >0),①当a ≤0时,f ′(x )=1x -a >0,即函数f (x )的单调递增区间为(0,+∞). ②当a >0时,令f ′(x )=1x -a =0,可得x =1a ,当0<x <1a 时,f ′(x )=1-ax x >0;当x >1a 时,f ′(x )=1-ax x <0, 故函数f (x )的单调递增区间为⎝⎛0,1a ,单调递减区间为⎝⎛⎭⎫1a ,+∞. 综上可知,当a ≤0时,函数f (x )的单调递增区间为(0,+∞);当a >0时,函数f (x )的单调递增区间为⎝⎛⎭⎫0,1a ,单调递减区间为⎝⎛⎭⎫1a ,+∞. (2)①当0<1a ≤1,即a ≥1时,函数f (x )在区间[1,2]上是减函数,所以f (x )的最小值是f (2)=ln 2-2a . ②当1a ≥2,即0<a ≤12时,函数f (x )在区间[1,2]上是增函数,所以f (x )的最小值是f (1)=-a . ③当1<1a <2,即12<a <1时,函数f (x )在⎣⎡⎦⎤1,1a 上是增函数,在⎣⎡⎦⎤1a ,2上是减函数. 又f (2)-f (1)=ln 2-a ,所以当12<a <ln 2时,最小值是f (1)=-a ; 当ln 2≤a <1时,最小值为f (2)=ln 2-2a .综上可知,当0<a <ln2时,函数f (x )的最小值是f (1)=-a ;当a ≥ln2时,函数f (x )的最小值是f (2)=ln2-2a .[例2] 已知函数f (x )=ax 2+(1-2a )x -ln x . (1)当a >0时,求函数f (x )的单调递增区间; (2)当a <0时,求函数f (x )在⎣⎡⎦⎤12,1上的最小值.解析 (1)因为f (x )=ax 2+(1-2a )x -ln x ,所以f ′(x )=2ax +1-2a -1x =(2ax +1)(x -1)x . 因为a >0,x >0,所以2ax +1>0,令f ′(x )>0,得x >1,所以f (x )的单调递增区间为(1,+∞).(2)当a <0时,令f ′(x )=0,得x 1=-12a ,x 2=1,当-12a >1,即-12<a <0时,f (x )在(0,1]上是减函数,所以f (x )在⎣⎡⎦⎤12,1上的最小值为f (1)=1-a . 当12≤-12a ≤1,即-1≤a ≤-12时,f (x )在⎣⎡⎦⎤12,-12a 上是减函数,在⎣⎡⎦⎤-12a ,1上是增函数, 所以f (x )在⎣⎡⎦⎤12,1上的最小值为f ⎝⎛⎭⎫-12a =1-14a +ln(-2a ). 当-12a <12,即a <-1时,f (x )在⎣⎡⎦⎤12,1上是增函数,所以f (x )在⎣⎡⎦⎤12,1上的最小值为f ⎝⎛⎭⎫12=12-34a +ln 2. 综上,函数f (x )在区间⎣⎡⎦⎤12,1上的最小值为f (x )min=⎩⎪⎨⎪⎧12-34a +ln 2,a <-1,1-14a +ln(-2a ),-1≤a ≤-12,1-a ,-12<a <0.[例3] 已知函数f (x )=ln xx 1. (1)求函数f (x )的单调区间及极值;(2)设m >0,求函数f (x )在区间[m ,2m ]上的最大值.解析 (1)因为函数f (x )的定义域为(0,+∞),且f ′(x )=1-ln xx 2,由⎩⎪⎨⎪⎧f ′(x )>0,x >0,得0<x <e ; 由⎩⎪⎨⎪⎧f ′(x )<0,x >0,得x >e .所以函数f (x )的单调递增区间为(0,e),单调递减区间为(e ,+∞), 且f (x )极大值=f (e)=1e -1,无极小值.(2)①当⎩⎪⎨⎪⎧2m ≤e ,m >0,即0<m ≤e 2时,函数f (x )在区间[m ,2m ]上单调递增,所以f (x )max =f (2m )=ln 2m2m -1; ②当m <e<2m ,即e2<m <e 时,函数f (x )在区间(m ,e)上单调递增,在(e ,2m )上单调递减, 所以f (x )max =f (e)=ln e e -1=1e -1;③当m ≥e 时,函数f (x )在区间[m ,2m ]上单调递减,所以f (x )max =f (m )=ln mm -1.综上所述,当0<m ≤e 2时,f (x )max =ln 2m 2m -1;当e 2<m <e 时,f (x )max =1e -1;当m ≥e 时,f (x )max =ln mm -1. [例4] 已知函数f (x )=m ln xx +n ,g (x )=x 2⎣⎡⎦⎤f (x )-1x -a 2(m ,n ,a ∈R ),且曲线y =f (x )在点(1,f (1))处的切线方程为y =x -1.(1)求实数m ,n 的值及函数f (x )的最大值;(2)当a ∈⎝⎛⎭⎫-e ,1e 时,记函数g (x )的最小值为b ,求b 的取值范围. 解析 (1)函数f (x )的定义域为(0,+∞),f ′(x )=m (1-ln x )x 2, 因为f (x )的图象在点(1,f (1))处的切线方程为y =x -1,所以⎩⎪⎨⎪⎧f ′(1)=m =1,f (1)=m ln 11+n =0,解得⎩⎪⎨⎪⎧m =1,n =0. 所以f (x )=ln xx ,f ′(x )=1-ln x x 2,令f ′(x )=0,得x =e ,当0<x <e 时,f ′(x )>0,f (x )单调递增;当x >e 时,f ′(x )<0,f (x )单调递减. 所以当x =e 时,f (x )取得最大值,最大值为f (e)=1e .(2)因为g (x )=x 2⎣⎡⎦⎤f (x )-1x -a 2=x ln x -ax22-x ,所以g ′(x )=ln x -ax =x ⎝⎛⎭⎫ln x x -a . ①当a ∈⎝⎛⎭⎫0,1e 时,x →+∞时,g (x )→-∞,g (x )无最小值. ②当a =0时,g ′(x )=ln x ,由g ′(x )>0得x >1,由g ′(x )<0得0<x <1,所以g (x )在(0,1)上单调递减,在(1,+∞)上单调递增,g (x )的最小值b =g (1)=-1. ③当a ∈(-e ,0)时,由(1)知方程ln xx -a =0有唯一实根,又f ⎝⎛⎭⎫1e =-e ,f (1)=0,f (x )在⎝⎛⎭⎫1e ,1上单调递增,所以存在t ∈⎝⎛⎭⎫1e ,1,使得g ′(t )=0,即ln t =at . 当x ∈(0,t )时,g ′(x )<0;当x ∈(t ,+∞)时,g ′(x )>0, 所以g (x )在(0,t )上单调递减,在(t ,+∞)上单调递增,g (x )的最小值b =g (t )=t ln t -a 2t 2-t =t ln t 2-t ,令h (t )=t ln t2-t ,t ∈⎝⎛⎭⎫1e ,1, 则h ′(t )=ln t -12<0,所以h (t )在⎝⎛⎭⎫1e ,1上单调递减,从而b =h (t )∈⎝⎛⎭⎫-1,-32e . 综上所述,当a ∈(-e ,0]时,b ∈⎣⎡⎭⎫-1,-32e ;当a ∈⎝⎛⎭⎫0,1e 时,b 不存在. [例5] (2019ꞏ全国Ⅲ)已知函数f (x )=2x 3-ax 2+b . (1)讨论f (x )的单调性;(2)是否存在a ,b ,使得f (x )在区间[0,1]的最小值为-1且最大值为1?若存在,求出a ,b 的所有值;若不存在,说明理由.解析 (1)f ′(x )=6x 2-2ax =2x (3x -a ). 令f ′(x )=0,得x =0或x =a3.若a >0,则当x ∈(-∞,0)∪⎝⎛⎭⎫a 3,+∞时,f ′(x )>0;当x ∈⎝⎛⎭⎫0,a 3时,f ′(x )<0.故f (x )在(-∞,0),⎝⎛⎭⎫a 3,+∞单调递增,在⎝⎛0,a 3单调递减. 若a =0,f (x )在(-∞,+∞)单调递增.若a <0,则当x ∈⎝⎛⎭⎫-∞,a 3∪(0,+∞)时,f ′(x )>0; 当x ∈⎝⎛⎭⎫a 3,0时,f ′(x )<0.故f (x )在⎝⎛⎭⎫-∞,a 3,(0,+∞)单调递增,在⎝⎛⎭⎫a 3,0单调递减. (2)满足题设条件的a ,b 存在.①当a ≤0时,由(1)知,f (x )在[0,1]单调递增,所以f (x )在区间[0,1]的最小值为f (0)=b ,最大值为f (1)=2-a +b .此时a ,b 满足题设条件当且仅当b =-1,2-a +b =1,即a =0,b =-1.②当a ≥3时,由(1)知,f (x )在[0,1]单调递减,所以f (x )在区间[0,1]的最大值为f (0)=b ,最小值为f (1)=2-a +b .此时a ,b 满足题设条件当且仅当2-a +b =-1,b =1,即a =4,b =1.③当0<a <3时,由(1)知,f (x )在[0,1]的最小值为f ⎝⎛⎭⎫a 3=-a 327+b ,最大值为b 或2-a +b . 若-a 327+b =-1,b =1,则a =332,与0<a <3矛盾.若-a 327+b =-1,2-a +b =1,则a =33或a =-33或a =0,与0<a <3矛盾.综上,当且仅当a =0,b =-1或a =4,b =1时,f (x )在[0,1]的最小值为-1,最大值为1.【对点训练】1.已知函数g (x )=a ln x +x 2-(a +2)x (a ∈R ).(1)若a =1,求g (x )在区间[1,e]上的最大值;(2)求g (x )在区间[1,e]上的最小值h (a ).1.解析 (1)∵a =1,∴g (x )=ln x +x 2-3x ,∴g ′(x )=1x +2x -3=(2x -1)(x -1)x, ∵x ∈[1,e],∴g ′(x )≥0,∴g (x )在[1,e]上单调递增,∴g (x )max =g (e)=e 2-3e +1.(2)g (x )的定义域为(0,+∞),g ′(x )=a x +2x -(a +2)=2x 2-(a +2)x +a x =(2x -a )(x -1)x. ①当a 2≤1,即a ≤2时,g (x )在[1,e]上单调递增,h (a )=g (1)=-a -1;②当1<a 2<e ,即2<a <2e 时,g (x )在⎣⎡⎭⎫1,a 2上单调递减,在⎝⎛⎦⎤a 2,e 上单调递增, h (a )=g ⎝⎛⎭⎫a 2=a ln a 2-14a 2-a ; ③当a 2≥e ,即a ≥2e 时,g (x )在[1,e]上单调递减,h (a )=g (e)=(1-e)a +e 2-2e .从而p (x )在(0,e 2)上单调递减,在(e 2,+∞)上单调递增,p (x )min =p (e 2)=-1e 2,当a ≤-1e 2时,a ≤1-ln x x ,即e ax -1-1x ≤0,当x ∈⎝⎛⎭⎫0,-1a 时,ax +1>0,g ′(x )≤0,g (x )单调递减, 当x ∈⎝⎛⎭⎫-1a ,+∞时,ax +1<0,g ′(x )≥0,g (x )单调递增,∴g (x )min =g ⎝⎛⎭⎫-1a =M , 设t =-1a ∈(0,e 2],M =h (t )=t e 2-ln t +1(0<t ≤e 2),则h ′(t )=1e 2-1t ≤0,h (t )在(0,e 2]上单调递减,∴h (t )≥h (e 2)=0,即M ≥0,∴M 的最小值为0.4.已知函数f (x )=ax +ln x ,其中a 为常数.(1)当a =-1时,求f (x )的最大值;(2)若f (x )在区间(0,e]上的最大值为-3,求a 的值.4.解析 (1)易知f (x )的定义域为(0,+∞),当a =-1时,f (x )=-x +ln x ,f ′(x )=-1+1x =1-x x ,令f ′(x )=0,得x =1.当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0.∴f (x )在(0,1)上单调递增,在(1,+∞)上单调递减.∴f (x )max =f (1)=-1.∴当a =-1时,函数f (x )在(0,+∞)上的最大值为-1.(2)f ′(x )=a +1x ,x ∈(0,e],1x ∈⎣⎡⎭⎫1e ,+∞. ①若a ≥-1e ,则f ′(x )≥0,从而f (x )在(0,e]上单调递增,∴f (x )max =f (e)=a e +1≥0,不符合题意.②若a <-1e ,令f ′(x )>0得a +1x >0,结合x ∈(0,e],解得0<x <-1a ;令f ′(x )<0得a +1x <0,结合x ∈(0,e],解得-1a <x ≤e .从而f (x )在⎝⎛⎭⎫0,-1a 上单调递增,在⎝⎛⎦⎤-1a ,e 上单调递减, ∴f (x )max =f ⎝⎛⎭⎫-1a =-1+ln ⎝⎛⎭⎫-1a .令-1+ln ⎝⎛⎭⎫-1a =-3,得ln ⎝⎛⎭⎫-1a =-2,即a =-e 2. ∵-e 2<-1e ,∴a =-e 2为所求.故实数a 的值为-e 2.5.已知函数f (x )=ax 2-(a +2)x +ln x ,其中a ∈R .(1)当a =1时,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)当a >0时,若f (x )在区间[1,e]上的最小值为-2,求a 的取值范围.5.解析 (1)当a =1时,f (x )=x 2-3x +ln x (x >0),所以f ′(x )=2x -3+1x =2x 2-3x +1x , 所以f (1)=-2,f ′(1)=0.所以切线方程为y +2=0.(2)函数f (x )=ax 2-(a +2)x +ln x 的定义域为(0,+∞),当12<b <32时,f (x )在[b ,32)上单调递减,在⎝⎛⎭⎫32,+∞上单调递增. 所以f (x )在[b ,+∞)上的最小值为f ⎝⎛⎭⎫32=e e 4;当b ≥32时,f (x )在[b ,+∞)上单调递增,所以f (x )在[b ,+∞)上的最小值为f (b )=e b 1+ab 2=3e b3+4b 2. [例2] 已知函数f (x )=a ln (x +b )-x .(1)若a =1,b =0,求f (x )的最大值;(2)当b >0时,讨论f (x )极值点的个数.解析 (1)当a =1,b =0时,f (x )=ln x -x ,此时,f (x )的定义域是(0,+∞),f ′(x )=1x -12x =2-x 2x ,由f ′(x )>0,解得0<x <4,由f ′(x )<0,解得x >4, 故f (x )在(0,4)上单调递增,在(4,+∞)上单调递减,故f (x )max =f (4)=2ln 2-2.(2)当b >0时,函数的定义域是[0,+∞),f ′(x )=a x +b -12x =-x +2a x -b 2x x +b , ①当a ≤0时,f ′(x )<0对任意x ∈(0,+∞)恒成立,故此时f (x )的极值点的个数为0;②当a >0时,设h (x )=-x +2a x -b ,(ⅰ)当4a 2-4b ≤0即0<a ≤ b 时,f ′(x )≤0对任意x ∈(0,+∞)恒成立,即f ′(x )在(0,+∞)上无变号零点, 故此时f (x )的极值点个数是0;(ⅱ)当4a 2-4b >0即a >b 时,记方程h (x )=0的两根分别为x 1,x 2,由于x 1+x 2=2a >0,x 1x 2=b >0,故x 1,x 2都大于0,即f ′(x )在(0,+∞)上有2个变号零点, 故此时f (x )的极值点的个数是2.综上,a ≤b 时,f (x )极值点的个数是0;a >b 时,f (x )极值点的个数是2.[例3] 设函数f (x )=a x +e -x (a >1). (1)求证:f (x )有极值;(2)若x =x 0时f (x )取得极值,且对任意正整数a 都有x 0∈(m ,n ),其中m ,n ∈Z ,求n -m 的最小值. 解析 (1)由题意得f ′(x )=a x ln a -e -x ,令h (x )=f ′(x )=a x ln a -e -x , 则h ′(x )=a x (ln a )2+e -x >0,所以函数h (x ),即f ′(x )在R 上单调递增. 由f ′(x )=0,得a x e x ln a =1,因为a >1,所以a x e x =1ln a >0,得x =log a e 1ln a ,当x >log a e 1ln a 时,f ′(x )>0;当x <log a e 1ln a 时,f ′(x )<0. 所以函数f (x )在⎝⎛⎭⎫-∞,log a e 1ln a 上单调递减,在⎝⎛⎭⎫log a e 1ln a ,+∞上单调递增,因此,当x =log a e 1ln a 时函数f (x )取极值.(2)由(1)知,函数f (x )的极值点x 0(即函数f ′(x )的零点)唯一.由f ′(-1)=ln a a -e ,令g (a )=ln a a ,则g ′(a )=1-ln a a 2,由g ′(a )=0,得a =e ,当a >e 时,g ′(a )<0;当0<a <e 时,g ′(a )>0.所以g (a )在(0,e)上单调递增,在(e ,+∞)上单调递减,所以g (a )≤g (e)=1e ,所以f ′(-1)=ln a a -e <0.当a 为大于1的正整数时,f ′(0)=ln a -1的值有正有负.f ′(1)=a ln a -1e ,因为a 为正整数且a >1,所以a ln a ≥2ln 2>1e ,所以f ′(1)>0.所以x 0∈(-1,1)恒成立,所以n -m 的最小值为2.[例4] 已知函数f (x )=a ln x +1x (a >0).(1)求函数f (x )的单调区间和极值;(2)是否存在实数a ,使得函数f (x )在[1,e]上的最小值为0?若存在,求出a 的值;若不存在,请说明理由.解析 由题意,知函数的定义域为{x |x >0},f ′(x )=a x -1x 2(a >0).(1)由f ′(x )>0解得x >1a ,所以函数f (x )的单调递增区间是⎝⎛⎭⎫1a ,+∞; 由f ′(x )<0解得x <1a ,所以函数f (x )的单调递减区间是⎝⎛⎭⎫0,1a . 所以当x =1a 时,函数f (x )有极小值f ⎝⎛⎭⎫1a =a ln 1a +a =a -a ln a ,无极大值. (2)不存在.理由如下:由(1)可知,当x ∈⎝⎛⎭⎫0,1a 时,函数f (x )单调递减;当x ∈⎝⎛⎭⎫1a ,+∞时,函数f (x )单调递增. ①若0<1a ≤1,即a ≥1时,函数f (x )在[1,e]上为增函数,故函数f (x )的最小值为f (1)=a ln 1+1=1,显然1≠0,故不满足条件.②若1<1a ≤e ,即1e ≤a <1时,函数f (x )在⎣⎡⎭⎫1,1a 上为减函数,在⎣⎡⎦⎤1a ,e 上为增函数, 故函数f (x )的最小值为f (x )的极小值f ⎝⎛⎭⎫1a =a ln 1a +a =a -a ln a =a (1-ln a )=0,即ln a =1, 解得a =e ,而1e ≤a <1,故不满足条件.③若1a >e ,即0<a <1e 时,函数f (x )在[1,e]上为减函数,故函数f (x )的最小值为f (e)=a +1e =0,解得a =-1e ,而0<a <1e ,故不满足条件.综上所述,这样的a 不存在.[例5] 已知函数f (x )=(ax -1)ln x +x 22.(1)若a =2,求曲线y =f (x )在点(1,f (1))处的切线l 的方程;(2)设函数g (x )=f ′(x )有两个极值点x 1,x 2,其中x 1∈(0,e],求g (x 1)-g (x 2)的最小值.解析 (1)当a =2时,f (x )=(2x -1)ln x +x 22,则f ′(x )=2ln x +x -1x +2,f ′(1)=2,f (1)=12,∴切线l 的方程为y -12=2(x -1),即4x -2y -3=0.(2)函数g (x )=a ln x +x -1x +a ,定义域为(0,+∞),则g ′(x )=1+a x +1x 2=x 2+ax +1x 2, 令g ′(x )=0,得x 2+ax +1=0,其两根为x 1,x 2,且x 1+x 2=-a ,x 1x 2=1,故x 2=1x 1,a =-⎝⎛⎭⎫x 1+1x 1. g (x 1)-g (x 2)=g (x 1)-g ⎝⎛⎭⎫1x 1=a ln x 1+x 1-1x 1+a -⎝⎛⎭⎫a ln 1x 1+1x 1-x 1+a =2⎝⎛⎭⎫x 1-1x 1+2a ln x 1=2⎝⎛⎭⎫x 1-1x 1-2⎝⎛⎭⎫x 1+1x 1ln x 1, 令h (x )=2⎝⎛⎭⎫x -1x -2⎝⎛⎭⎫x +1x ln x .则[g (x 1)-g (x 2)]min =h (x )min , 又h ′(x )=2(1+x )(1-x )ln x x 2,当x ∈(0,1]时,h ′(x )≤0,当x ∈(1,e]时,h ′(x )<0, 即当x ∈(0,e]时,h (x )单调递减,∴h (x )min =h (e)=-4e ,故[g (x 1)-g (x 2)]min =-4e[例6] 已知函数g (x )=x 22+x +ln x .(1)若函数g ′(x )≥a 恒成立,求实数a 的取值范围;(2)函数f (x )=g (x )-mx ,若f (x )存在单调递减区间,求实数m 的取值范围;(3)设x 1,x 2(x 1<x 2)是函数f (x )的两个极值点,若m ≥72,求f (x 1)-f (x 2)的最小值.解析 (1)∵g ′(x )=x +1x +1,g ′(x )=x +1x +1≥2x ꞏ1x +1=3,g ′(x )≥a ,∴a ≤3.(2)∴f ′(x )=x +1-m +1x =x 2+(1-m )x +1x,又∵f ′(x )<0在(0,+∞)上有解, 令h (x )=x 2+(1-m )x +1,则h (0)=1>0,只需⎩⎪⎨⎪⎧ m -12>0,(m -1)2-4>0,解得⎩⎪⎨⎪⎧m >1,m >0或m <-1,即m >3 (3)∵f ′(x )=x 2+(1-m )x +1x,令f ′(x )=0,即x 2+(1-m )x +1=0,两根分别为x 1,x 2,则⎩⎪⎨⎪⎧x 1+x 2=m -1,x 1x 2=1, 又∵f (x 1)-f (x 2)=12(x 21-x 22)+(1-m )(x 1-x 2)+ln x 1x 2=12(x 21-x 22)-(x 21-x 22)+ln x 1x 2, =ln x 1x 2-12(x 21-x 22)=ln x 1x 2-12⎝⎛⎭⎫x 1x 2-x 2x 1. 令t =x 1x 2,由于x 1<x 2,∴0<t <1. 又∵m ≥72,(x 1+x 2)2=(m -1)2≥254,即(x 1+x 2)2x 1x 2=x 1x 2+2+x 2x 1,即t +2+1t ≥254 ∴4t 2-17t +4≥0,解得t ≥4或t ≤14,即0<t ≤14.令h (t )=ln t -12⎝⎛⎭⎫t -1t (0<t ≤14),h ′(t )=1t -12⎝⎛⎭⎫1+1t 2=-(t -1)22t 2<0,∴h (t )在(0,14]上单调递减,h (t )min =h (14)=-2ln2+158.∴f (x 1)-f (x 2)的最小值为-2ln2+158.【对点训练】1.已知函数f (x )=x ln x .(1)求函数f (x )的极值点;(2)设函数g (x )=f (x )-a (x -1),其中a ∈R ,求函数g (x )在区间(0,e]上的最小值(其中e 为自然对数的底数).1.解析 (1)f ′(x )=ln x +1,x >0,由f ′(x )=0,得x =1e .当x ∈⎝⎛⎭⎫0,1e 时,f ′(x )<0,当x ∈⎝⎛⎭⎫1e ,+∞时,f ′(x )>0, 所以f (x )在区间⎝⎛⎭⎫0,1e 上单调递减,在区间⎝⎛⎭⎫1e ,+∞上单调递增. 所以x =1e 是函数f (x )的极小值点,极大值点不存在.(2)g (x )=x ln x -a (x -1),则g ′(x )=ln x +1-a ,由g ′(x )=0,得x =e a -1. 所以在区间(0,e a -1)上,g (x )单调递减,在区间(e a -1,+∞)上,g (x )单调递增. 当e a -1≥e ,即a ≥2时,g (x )在(0,e]上单调递减,∴g (x )min =g (e)=a +e -a e , 当e a -1<e 即a <2时,g (x )在(0,e a -1)上单调递减,在(e a -1,e]上单调递增, ∴g (x )min =g (e a -1)=a -e a -1,令g (x )的最小值为h (a ), 综上有h (a )=⎩⎪⎨⎪⎧a -e a -1,a <2,a +e -a e ,a ≥2.2.已知函数f (x )=⎩⎪⎨⎪⎧-x 3+x 2,x <1,a ln x ,x ≥1. (1)求f (x )在区间(-∞,1)上的极小值和极大值;(2)求f (x )在[-1,e](e 为自然对数的底数)上的最大值.2.解析 (1)当x <1时,f ′(x )=-3x 2+2x =-x (3x -2),令f ′(x )=0,解得x =0或x =23.当x 变化时,f ′(x ),f (x )的变化情况如下表:故当x =0当x =23时,函数f (x )取到极大值,极大值为f ⎝⎛⎭⎫23=427.(2)①当-1≤x <1时,根据(1)知,函数f (x )在[-1,0)和⎝⎛⎭⎫23,1上单调递减,在⎣⎡⎦⎤0,23上单调递增. 因为f (-1)=2,f ⎝⎛⎭⎫23=427,f (0)=0,所以f (x )在[-1,1)上的最大值为2.②当1≤x ≤e 时,f (x )=a ln x ,当a ≤0时,f (x )≤0;当a >0时,f (x )在[1,e]上单调递增.则f (x )在[1,e]上的最大值为f (e)=a . 故当a ≥2时,f (x )在[-1,e]上的最大值为a ;当a <2时,f (x )在[-1,e]上的最大值为2.3.已知函数f (x )=a ln x +x 2-ax (a ∈R ). (1)若x =3是f (x )的极值点,求f (x )的单调区间;(2)求g (x )=f (x )-2x 在区间[1,e]上的最小值h (a ).3.解析 (1)f (x )的定义域为(0,+∞),f ′(x )=a x +2x -a =2x 2-ax +a x, 因为x =3是f (x )的极值点,所以f ′(3)=18-3a +a 3=0, 解得a =9,所以f ′(x )=2x 2-9x +9x =(2x -3)(x -3)x, 所以当0<x <32或x >3时,f ′(x )>0,当32<x <3时,f ′(x )<0,即x =3是f (x )的极小值点,所以f (x )的单调递增区间为⎝⎛⎭⎫0,32,(3,+∞),单调递减区间为⎝⎛⎭⎫32,3.(2)g ′(x )=2x 2-ax +a x -2=(2x -a )(x -1)x,令g ′(x )=0,得x 1=a 2,x 2=1. ①当a 2≤1,即a ≤2时,g (x )在[1,e]上为增函数,h (a )=g (1)=-a -1;②当1<a 2<e ,即2<a <2e 时,g (x )在⎣⎡⎭⎫1,a 2上为减函数,在⎝⎛⎦⎤a 2,e 上为增函数, h (a )=g ⎝⎛⎭⎫a 2=a ln a 2-14a 2-a ; ③当a 2≥e ,即a ≥2e 时,g (x )在[1,e]上为减函数,h (a )=g (e)=(1-e)a +e 2-2e.综上,h (a )=⎩⎪⎨⎪⎧ -a -1,a ≤2,a ln a 2-14a 2-a ,2<a <2e , 1-e a +e 2-2e ,a ≥2e.4.已知常数a ≠0,f (x )=a ln x +2x .(1)当a =-4时,求f (x )的极值;(2)当f (x )的最小值不小于-a 时,求实数a 的取值范围.4.解析 (1)由已知得f (x )的定义域为(0,+∞),f ′(x )=a x +2=a +2x x .当a =-4时,f ′(x )=2x -4x .所以当0<x <2时,f ′(x )<0,即f (x )在(0,2)上单调递减;当x >2时,f ′(x )>0,即f (x )在(2,+∞)上单调递增.所以f (x )只有极小值,且当x =2时,f (x )取得极小值f (2)=4-4ln 2. 所以当a =-4时,f (x )只有极小值4-4ln 2,无极大值.(2)因为f ′(x )=a +2x x a >0,x ∈(0,+∞)时,f ′(x )>0,即f (x )在(0,+∞)上单调递增,没有最小值.当a <0时,由f ′(x )>0,得x >-a 2,所以f (x )在⎝⎛⎭⎫-a 2,+∞上单调递增; 由f ′(x )<0,得x <-a 2,所以f (x )在⎝⎛⎭⎫0,-a 2上单调递减. 所以当a <0时,f (x )的最小值为f ⎝⎛⎭⎫-a 2=a ln ⎝⎛⎭⎫-a 2+2⎝⎛⎭⎫-a 2. 根据题意,知f ⎝⎛⎭⎫-a 2=a ln ⎝⎛⎭⎫-a 2+2⎝⎛⎭⎫-a 2≥-a ,即a [ln (-a )-ln 2]≥0. 因为a <0,所以ln (-a )-ln 2≤0,解得a ≥-2,所以实数a 的取值范围是[-2,0).5.已知函数f (x )=a sin x +sin2x ,a ∈R .。

全国高考数学复习:专题(含参函数的单调性讨论)重点讲解与练习(附答案)

全国高考数学复习:专题(含参函数的单调性讨论)重点讲解与练习(附答案)

全国高考数学复习:专题(含参函数的单调性讨论)重点讲解与练习【方法总结】分类讨论思想研究函数的单调性讨论含参函数的单调性,其本质就是讨论导函数符号的变化情况,所以讨论的关键是抓住导函数解析式中的符号变化部分,即导数的主要部分,简称导主.讨论时要考虑参数所在的位置及参数取值对导函数符号的影响,一般来说需要进行四个层次的分类:(1)最高次幂的系数是否为0,即“是不是”;(2)导函数是否有变号零点,即“有没有”;(3)导函数的变号零点是否在函数定义域或指定区间内,即“在不在”;(4)导函数的变号零点之间的大小关系,即“大不大”.牢记:十二字方针“是不是,有没有,在不在,大不大”.考点一 导主一次型【例题选讲】[例1]已知函数f(x)=x-a ln x(a∈R),讨论函数f(x)的单调性.【对点训练】1.已知函数f(x)=a ln x-ax-3(a∈R).讨论函数f(x)的单调性.2.已知函数f(x)=ln x-ax(a∈R),讨论函数f(x)的单调性.考点二 导主二次型【方法总结】此类问题中,导数的解析式通过化简变形后,通常可以转化为一个二次函数的含参问题.对于二次三项式含参问题,有如下处理思路:(1)首先需要考虑二次项系数是否含有参数.如果二次项系数有参数,就按二次项系数为零、为正、为负进行讨论;(2)其次考虑二次三项式能否因式分解,如果二次三项式能因式分解,这表明存在零点,只需讨论零点是否在定义域内,如果x1,x2都在定义域内,则讨论个零点x1,x2的大小;如果二次三项式不能因式分解,这表明不一定存在零点,需讨论判别式Δ≤0和Δ>0分类讨论;【例题选讲】命题点1是不是+有没有+在不在[例2](2021ꞏ全国乙节选)已知函数f(x)=x3-x2+ax+1.讨论f(x)的单调性.[例3](2018ꞏ全国Ⅰ节选)已知函数f(x)=1x-x+a ln x,讨论f(x)的单调性.[例4]设函数f(x)=a ln x+x-1x+1,其中a为常数.讨论函数f(x)的单调性.【对点训练】3.(2020ꞏ全国Ⅲ节选)已知函数f(x)=x3-kx+k2.讨论f(x)的单调性.4.已知函数f (x )=x -2x +1-a ln x ,a >0.讨论f (x )的单调性.5.已知函数f (x )=(1+ax 2)e x -1,当a ≥0时,讨论函数f (x )的单调性.命题点2 是不是+在不在+大不大[例5] 已知函数f (x )=ln x +ax 2-(2a +1)x .若a >0,试讨论函数f (x )的单调性.[例6] 已知函数f (x )=x 2e -ax-1(a 是常数),求函数y =f (x )的单调区间.[例7] 已知函数f (x )=(a +1)ln x +1x -ax +2(a ∈R ).讨论f (x )的单调性.[例8] 已知函数f (x )=a ln(x +1)-ax -x 2,讨论f (x )在定义域上的单调性.[例9] (2016ꞏ山东)已知f (x )=a (x -ln x )+2x -1x 2,a ∈R .讨论f (x )的单调性.【对点训练】6.已知函数f (x )=122-(a +1)x +ln x ,a >0,试讨论函数y =f (x )的单调性.7.已知函数f (x )=x 2e ax +1+1-a (a ∈R ),求函数f (x )的单调区间.8.已知函数f (x )=(a -1)ln x +ax 2+1,讨论函数f (x )的单调性.9.已知函数f (x )=⎝⎛⎭⎫k +4k ln x +4-x 2x ,其中常数k >0,讨论f (x )在(0,2)上的单调性.10.已知函数f (x )=ln(x +1)-ax 2+x(x +1)2,且1<a <2,试讨论函数f (x )的单调性.考点三 导主指对型 【例题选讲】[例10] 已知函数f (x )=e x (e x -a )-a 2x ,讨论函数f (x )的单调性.[例11] 已知f (x )=(x 2-ax )ln x -32x 2+2ax ,求f (x )的单调递减区间.【对点训练】11.已知函数f (x )=e x -ax -1的定义域为(0,+∞),讨论函数f (x )的单调性.12.已知函数f (x )=(x 2-2ax )ln x -122+2ax (a ∈R ).(1)若a =0,求f (x )的最小值; (2)求函数f (x )的单调区间.考点四 导主正余型【例题选讲】[例12](2017山东理)已知函数f(x)=x2+2cos x,g(x)=e xꞏ(cos x-sin x+2x-2),其中e是自然对数的底数.(1)求函数g(x)的单调区间;(2)讨论函数h(x)=g(x)-af (x)(a∈R)的单调性.【对点训练】13.(2017ꞏ山东)已知函数f(x)=13x 3-12ax2,其中参数a∈R.(1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程;(2)设函数g(x)=f(x)+(x-a)cos x-sin x,讨论g(x)的单调性参考答案【例题选讲】[例1] 已知函数f (x )=x -a ln x (a ∈R ),讨论函数f (x )的单调性.解析 f (x )的定义域为(0,+∞),f ′(x )=1-a x =x -ax ,令f ′(x )=0,得x =a , ①当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,∴f (x )在(0,+∞)上单调递增, ②当a >0时,x ∈(0,a )时,f ′(x )<0,x ∈(a ,+∞)时,f ′(x )>0,综上,当a ≤0时,f (x )在(0,+∞)上单调递增,当a >0时,f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增.【对点训练】1.已知函数f (x )=a ln x -ax -3(a ∈R ).讨论函数f (x )的单调性. 1.解析 函数f (x )的定义域为(0,+∞),且f ′(x )=a (1-x )x ,令f ′(x )=0,得x =1,当a >0时,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减; 当a <0时,f (x )在(1,+∞)上单调递增,在(0,1)上单调递减; 当a =0时,f (x )为常函数.2.已知函数f (x )=ln x -ax (a ∈R ),讨论函数f (x )的单调性. 2.解析 f (x )的定义域为(0,+∞),f ′(x )=1x -a =1-ax x (x >0),①当a ≤0时,f ′(x )=1x -a >0,即函数f (x )在(0,+∞)上单调递增. ②当a >0时,令f ′(x )=1x -a =1-ax x =0,可得x =1a , 当0<x <1a 时,f ′(x )=1-ax x >0;当x >1a 时,f ′(x )=1-ax x <0, 故函数f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减. 综上,当a ≤0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减. 考点二 导主二次型 【方法总结】此类问题中,导数的解析式通过化简变形后,通常可以转化为一个二次函数的含参问题.对于二次三项式含参问题,有如下处理思路:(1)首先需要考虑二次项系数是否含有参数.如果二次项系数有参数,就按二次项系数为零、为正、为负进行讨论;(2)其次考虑二次三项式能否因式分解,如果二次三项式能因式分解,这表明存在零点,只需讨论零点是否在定义域内,如果x 1,x 2都在定义域内,则讨论个零点x 1,x 2的大小;如果二次三项式不能因式分解,这表明不一定存在零点,需讨论判别式Δ≤0和Δ>0分类讨论;【例题选讲】命题点1 是不是+有没有+在不在[例2] (2021ꞏ全国乙节选)已知函数f (x )=x 3-x 2+ax +1.讨论f (x )的单调性.解析 由题意知f (x )的定义域为R ,f ′(x )=3x 2-2x +a ,对于f ′(x )=0,Δ=(-2)2-4×3a =4(1-3a ). ①当a ≥13时,f ′(x )≥0,f (x )在R 上单调递增;②当a <13时,令f ′(x )=0,即3x 2-2x +a =0,解得x 1=1-1-3a 3,x 2=1+1-3a 3, 令f ′(x )>0,则x <x 1或x >x 2;令f ′(x )<0,则x 1<x <x 2.所以f (x )在(-∞,x 1)上单调递增,在(x 1,x 2)上单调递减,在(x 2,+∞)上单调递增.综上,当a ≥13时,f (x )在R 上单调递增;当a <13时,f (x )在⎝ ⎛⎭⎪⎫-∞,1-1-3a 3上单调递增,在⎝ ⎛⎪⎫1-1-3a 3,1+1-3a 上单调递减,在⎝ ⎛⎭⎪⎫1+1-3a 3,+∞上单调递增.[例3] (2018ꞏ全国Ⅰ节选)已知函数f (x )=1x -x +a ln x ,讨论f (x )的单调性. 解析 f (x )的定义域为(0,+∞),f ′(x )=-1x 2-1+a x =-x 2-ax +1x 2. ①当a ≤2时,则f ′(x )≤0,当且仅当a =2,x =1时,f ′(x )=0,所以f (x )在(0,+∞)上单调递减.②当a >2时,令f ′(x )=0,得x =a -a 2-42或x =a +a 2-42. 当x ∈⎝ ⎛⎪⎫0,a -a 2-4∪⎝ ⎛⎭⎪⎫a +a 2-42,+∞时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42时,f ′(x )>0. 所以f (x )在⎝ ⎛⎪⎫0,a -a 2-4,⎝ ⎛⎭⎪⎫a +a 2-42,+∞上单调递减,在⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42上单调递增. 综合①②可知,当a ≤2时,f (x )在(0,+∞)上单调递减;当a >2时,f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-42,⎝ ⎛⎭⎪⎫a +a 2-42,+∞上单调递减,在⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42上单调递增.[例4] 设函数f (x )=a ln x +x -1x +1,其中a 为常数.讨论函数f (x )的单调性. 解析 函数f (x )的定义域为(0,+∞).f ′(x )=a x +2(x +1)2=ax 2+(2a +2)x +a x (x +1)2.当a ≥0时,f ′(x )>0,函数f (x )在(0,+∞)上单调递增.当a <0时,令g (x )=ax 2+(2a +2)x +a ,由于Δ=(2a +2)2-4a 2=4(2a +1).(1)当a =-12时,Δ=0,f ′(x )=-12(x -1)2x (x +1)2≤0,函数f (x )在(0,+∞)上单调递减.(2)当a <-12时,Δ<0,g (x )<0,f ′(x )<0,函数f (x )在(0,+∞)上单调递减. (3)当-12<a <0时,Δ>0.设x 1,x 2(x 1<x 2)是函数g (x )的两个零点, 则x 1=-(a +1)+2a +1a ,x 2=-(a +1)-2a +1a. 由x 1=a +1-2a +1-a =a 2+2a +1-2a +1-a >0,所以x ∈(0,x 1)时,g (x )<0,f ′(x )<0,函数f (x )单调递减; x ∈(x 1,x 2)时,g (x )>0,f ′(x )>0,函数f (x )单调递增; x ∈(x 2,+∞)时,g (x )<0,f ′(x )<0,函数f (x )单调递减.综上可得:当a ≥0时,函数f (x )在(0,+∞)上单调递增;当a ≤-12时,函数f (x )在(0,+∞)上单调递减; 当-12<a <0时,f (x )在⎝ ⎛⎭⎪⎫0,-(a +1)+2a +1a ,⎝ ⎛⎭⎪⎫-(a +1)-2a +1a ,+∞上单调递减,在⎝ ⎛⎭⎪⎫-(a +1)+2a +1a ,-(a +1)-2a +1a 上单调递增. 【对点训练】3.(2020ꞏ全国Ⅲ节选)已知函数f (x )=x 3-kx +k 2.讨论f (x )的单调性. 3.解析 由题意,得f ′(x )=3x 2-k ,当k ≤0时,f ′(x )≥0恒成立,所以f (x )在(-∞,+∞)上单调递增; 当k >0时,令f ′(x )=0,得x =±k 3,令f ′(x )<0,得-k3<x <k3,令f ′(x )>0,得x <-k3或x >k 3,所以f (x )在⎝⎛⎭⎫-k 3,k 3上单调递减,在⎝⎛⎭⎫-∞,-k 3,⎝⎛⎭⎫k 3,+∞上单调递增. 4.已知函数f (x )=x -2x +1-a ln x ,a >0.讨论f (x )的单调性.4.解析 由题意知,f (x )的定义域是(0,+∞),导函数f ′(x )=1+2x 2-a x =x 2-ax +2x 2. 设g (x )=x 2-ax +2,二次方程g (x )=0的判别式Δ=a 2-8.①当Δ<0,即0<a <22时,对一切x >0都有f ′(x )>0.此时f (x )是(0,+∞)上的单调递增函数. ②当Δ=0,即a =2 2 时,仅对x =2有f ′(x )=0,对其余的x >0都有f ′(x )>0. 此时f (x )是(0,+∞)上的单调递增函数.③当Δ>0,即a >22时,方程g (x )=0有两个不同的实根x 1=a -a 2-82,x 2=a +a 2-82,0<x 1<x 2, x ∈(0,x 1)时,f ′(x )>0,函数f (x )单调递增; x ∈(x 1,x 2)时,f ′(x )<0,函数f (x )单调递减; x ∈(x 2,+∞)时,f ′(x )>0,函数f (x )单调递增.此时f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-82上单调递增,在(a -a 2-82,a +a 2-82)上单调递减,在⎝ ⎛⎭⎪⎫a +a 2-82,+∞上单调递增.5.已知函数f (x )=(1+ax 2)e x -1,当a ≥0时,讨论函数f (x )的单调性. 5.解析 由题易得f ′(x )=(ax 2+2ax +1)e x ,当a =0时,f ′(x )=e x >0,此时f (x )在R 上单调递增. 当a >0时,方程ax 2+2ax +1=0的判别式Δ=4a 2-4a .①当0<a ≤1时,Δ≤0,ax 2+2ax +1≥0恒成立,所以f ′(x )≥0,此时f (x )在R 上单调递增; ②当a >1时,令f ′(x )=0,解得x 1=-1-1-1a ,x 2=-1+1-1a .x ∈(-∞,x 1)时,f ′(x )>0,函数f (x )单调递增; x ∈(x 1,x 2)时,f ′(x )<0,函数f (x )单调递减; x ∈(x 2,+∞)时,f ′(x )>0,函数f (x )单调递增. 所以f (x )在⎝⎛⎭⎫-∞,-1-1-1a 和⎝⎛⎭⎫-1+1-1a ,+∞上单调递增,在⎝⎛⎭⎫-1-1-1a ,-1+1-1a 上单调递减.综上,当0≤a ≤1时,f (x )在R 上单调递增;当a >1时,f (x )在⎝⎛⎭⎫-∞,-1-1-1a 和⎝⎛⎭⎫-1+1-1a ,+∞上单调递增,在⎝⎛⎭⎫-1-1-1a ,-1+1-1a 上单调递减.命题点2 是不是+在不在+大不大[例5] 已知函数f (x )=ln x +ax 2-(2a +1)x .若a >0,试讨论函数f (x )的单调性. 解析 因为f (x )=ln x +ax 2-(2a +1)x ,所以f ′(x )=2ax 2-(2a +1)x +1x =(2ax -1)(x -1)x. 由题意知函数f (x )的定义域为(0,+∞),令f ′(x )=0得x =1或x =12a , 若12a <1,即a >12,由f ′(x )>0得x >1或0<x <12a ,由f ′(x )<0得12a <x <1, 即函数f (x )在⎝⎛⎭⎫0,12a ,(1,+∞)上单调递增,在⎝⎛⎭⎫12a ,1上单调递减;若12a >1,即0<a <12,由f ′(x )>0得x >12a 或0<x <1,由f ′(x )<0得1<x <12a ,即函数f (x )在(0,1),⎝⎛⎭⎫12a ,+∞上单调递增,在⎝⎛⎭⎫1,12a 上单调递减; 若12a =1,即a =12,则在(0,+∞)上恒有f ′(x )≥0,即函数f (x )在(0,+∞)上单调递增.综上可得,当0<a <12时,函数f (x )在(0,1)上单调递增,在⎝⎛⎭⎫1,12a 上单调递减,在⎝⎛⎭⎫12a ,+∞上单调递增;当a =12时,函数f (x )在(0,+∞)上单调递增;当a >12时,函数f (x )在⎝⎛⎭⎫0,12a 上单调递增,在⎝⎛⎭⎫12a ,1上单调递减,在(1,+∞)上单调递增.[例6] 已知函数f (x )=x 2e -ax -1(a 是常数),求函数y =f (x )的单调区间.解析 根据题意可得,当a =0时,f (x )=x 2-1,函数在(0,+∞)上单调递增,在(-∞,0)上单调递减. 当a ≠0时,f ′(x )=2x e-ax +x 2(-a )e -ax =e -ax (-ax 2+2x ). 因为e -ax >0,所以令g (x )=-ax 2+2x =0,解得x =0或x =2a(1)当a >0时,函数g (x )=-ax 2+2x 在(-∞,0)和⎝⎛⎭⎫2a ,+∞上有g (x )<0,即f ′(x )<0,函数y =f (x )单调递减;函数g (x )=-ax 2+2x 在⎣⎡⎦⎤0,2a 上有g (x )≥0,即f ′(x )≥0,函数y =f (x )单调递增. (2)当a <0时,函数g (x )=-ax 2+2x 在⎝⎛⎭⎫-∞,2a 和(0,+∞)上有g (x )>0,即f ′(x )>0,函数y =f (x )单调递增;函数g (x )=-ax 2+2x 在⎣⎡⎦⎤2a ,0上有g (x )≤0,即f ′(x )≤0,函数y =f (x )单调递减. 综上所述,当a =0时,函数y =f (x )的单调递增区间为(0,+∞),单调递减区间为(-∞,0);当a >0时,函数y =f (x )的单调递减区间为(-∞,0),⎝⎛⎭⎫2a ,+∞,单调递增区间为⎣⎡⎦⎤0,2a ; 当a <0时,函数y =f (x )的单调递增区间为⎝⎛⎭⎫-∞,2a ,(0,+∞),单调递减区间为⎣⎡⎦⎤2a ,0. [例7] 已知函数f (x )=(a +1)ln x +1x -ax +2(a ∈R ).讨论f (x )的单调性.解析 f (x )的定义域为(0,+∞),且f ′(x )=-(x -1)(ax -1)x 2.令f ′(x )=0,得x =1或x =1a . 当a ≤0时,ax -1<0,f (x )在(0,1)上单调递减,在(1,+∞)上单调递增;当0<a <1时,f (x )在(0,1)上单调递减,在⎝⎛⎭⎫1,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减; 当a =1时,f (x )在(0,+∞)上单调递减;当a >1时,f (x )在⎝⎛⎭⎫0,1a 上单调递减,在⎝⎛⎭⎫1a ,1上单调递增,在(1,+∞)上单调递减. [例8] 已知函数f (x )=a ln(x +1)-ax -x 2,讨论f (x )在定义域上的单调性.解析 f ′(x )=a x +1-a -2x =-2x ⎝⎛⎭⎫x +2+a 2x +1, 令f ′(x )=0,得x =0或x =-a +22,又f (x )的定义域为(-1,+∞),①当-a +22≤-1,即当a ≥0时,若x ∈(-1,0),f ′(x )>0,则f (x )单调递增;若x ∈(0,+∞),f ′(x )<0,则f (x )单调递减.②当-1<-a +22<0,即-2<a <0时,若x ∈⎝⎛⎭⎫-1,-a +22,f ′(x )<0,则f (x )单调递减;若x ∈⎝⎛⎭⎫-a +22,0,f ′(x )>0,则f (x )单调递增; 若x ∈(0,+∞),f ′(x )<0,则f (x )单调递减.③当-a +22=0,即a =-2时,f ′(x )≤0,f (x )在(-1,+∞)上单调递减.④当-a +22>0,即a <-2时,若x ∈(-1,0),f ′(x )<0,则f (x )单调递减;若x ∈⎝⎛⎭⎫0,-a +22,f ′(x )>0,则f (x )单调递增;若x ∈⎝⎛⎭⎫-a +22,+∞,f ′(x )<0,则f (x )单调递减. 综上,当a ≥0时,f (x )在(-1,0)上单调递增,在(0,+∞)上单调递减;当-2<a <0时,f (x )在⎝⎛⎭⎫-1,-a +22上单调递减,在⎝⎛⎭⎫-a +22,0上单调递增,在(0,+∞)上单调递减;当a =-2时,f (x )在(-1,+∞)上单调递减;当a <-2时,f (x )在(-1,0)上单调递减,在⎝⎛⎭⎫0,-a +22上单调递增,在⎝⎛⎭⎫-a +22,+∞上单调递减.[例9] (2016ꞏ山东)已知f (x )=a (x -ln x )+2x -1x 2,a ∈R .讨论f (x )的单调性.解析 f (x )的定义域为(0,+∞),f ′(x )=a -a x -2x 2+2x 3=(ax 2-2)(x -1)x 3. 当a ≤0,x ∈(0,1)时,f ′(x )>0,f (x )单调递增;x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减.当a >0时,f ′(x )=a (x -1)x 3⎝⎛⎭⎫x -2a ⎝⎛⎭⎫x +2a . ①若0<a <2,则2a >1,当x ∈(0,1)或x ∈⎝⎛⎭⎫2a ,+∞时,f ′(x )>0,f (x )单调递增;当x ∈⎝⎛⎭⎫1,2a 时,f ′(x )<0,f (x )单调递减.②若a =2,则2a =1,在x ∈(0,+∞)内,f ′(x )≥0,f (x )单调递增.③若a >2,则0<2a <1,当x ∈⎝⎛⎭⎫0,2a 或x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增;当x ∈⎝⎛⎭⎫2a ,1时,f ′(x )<0,f (x )单调递减.综上所述,当a ≤0时,f (x )在(0,1)内单调递增,在(1,+∞)内单调递减;当0<a <2时,f (x )在(0,1)内单调递增,在⎝⎛⎭⎫1,2a 内单调递减,在⎝⎛⎭⎫2a ,+∞内单调递增;当a =2时,f (x )在(0,+∞)内单调递增;当a >2时,f (x )在⎝⎛⎭⎫0,2a 内单调递增,在⎝⎛⎭⎫2a ,1内单调递减,在(1,+∞)内单调递增. 【对点训练】6.已知函数f (x )=122-(a +1)x +ln x ,a >0,试讨论函数y =f (x )的单调性.6.解析 函数的定义域为(0,+∞),f ′(x )=ax -(a +1)+1x =ax 2-(a +1)x +1x =(ax -1)(x -1)x. ①当0<a <1时,1a >1,∴x ∈(0,1)和⎝⎛⎭⎫1a ,+∞时,f ′(x )>0;x ∈⎝⎛⎭⎫1,1a 时,f ′(x )<0, ∴函数f (x )在(0,1)和⎝⎛⎭⎫1a ,+∞上单调递增,在⎝⎛⎭⎫1,1a 上单调递减; ②当a =1时,1a =1,∴f ′(x )≥0在(0,+∞)上恒成立,∴函数f (x )在(0,+∞)上单调递增; ③当a >1时,0<1a <1,∴x ∈⎝⎛⎭⎫0,1a 和(1,+∞)时,f ′(x )>0;x ∈⎝⎛⎭⎫1a ,1时,f ′(x )<0, ∴函数f (x )在⎝⎛⎭⎫0,1a 和(1,+∞)上单调递增,在⎝⎛⎭⎫1a ,1上单调递减. 综上,当0<a <1时,函数f (x )在(0,1)和⎝⎛⎭⎫1a ,+∞上单调递增,在⎝⎛⎭⎫1,1a 上单调递减; 当a =1时,函数f (x )在(0,+∞)上单调递增;当a >1时,函数f (x )在⎝⎛⎭⎫0,1a 和(1,+∞)上单调递增,在⎝⎛⎭⎫1a ,1上单调递减. 7.已知函数f (x )=x 2e ax +1+1-a (a ∈R ),求函数f (x )的单调区间. 7.解析 f (x )=x 2e ax +1+1-a (a ∈R )的定义域为(-∞,+∞),f ′(x )=x (ax +2)e ax +1 . ①当a =0时,x >0,f ′(x )>0;x <0,f ′(x )<0,所以函数f (x )的单调递增区间为(0,+∞),单调递减区间为(-∞,0).②当a >0时,x ∈⎝⎛⎭⎫-∞,-2a ,f ′(x )>0;x ∈⎝⎛⎭⎫-2a ,0,f ′(x )<0;x ∈(0,+∞),f ′(x )>0, 所以函数f (x )的单调递增区间为⎝⎛⎭⎫-∞,-2a ,(0,+∞),单调递减区间为⎝⎛⎭⎫-2a ,0. ③当a <0时,x ∈(-∞,0),f ′(x )<0;x ∈⎝⎛⎭⎫0,-2a ,f ′(x )>0;x ∈⎝⎛⎭⎫-2a ,+∞,f ′(x )<0, 所以函数f (x )的单调递减区间为(-∞,0),⎝⎛⎭⎫-2a ,+∞,单调递增区间为⎝⎛⎭⎫0,-2a . 8.已知函数f (x )=(a -1)ln x +ax 2+1,讨论函数f (x )的单调性.8.解析 f (x )的定义域为(0,+∞),f ′(x )=a -1x +2ax =2ax 2+a -1x. (1)当a ≥1时,f ′(x )>0,故f (x )在(0,+∞)上单调递增;(2)当a ≤0时,f ′(x )<0,故f (x )在(0,+∞)上单调递减;(3)当0<a <1时,令f ′(x )=0,解得x =1-a 2a , 则当x ∈⎝ ⎛⎭⎪⎫0,1-a 2a 时,f ′(x )<0;当x ∈(1-a 2a ,+∞)时,f ′(x )>0, 故f (x )在⎝ ⎛⎭⎪⎫0,1-a 2a 上单调递减,在(1-a 2a ,+∞)上单调递增. 9.已知函数f (x )=⎝⎛⎭⎫k +4k ln x +4-x 2x ,其中常数k >0,讨论f (x )在(0,2)上的单调性. 9.解 因为f ′(x )=k +4k x -4x 2-1=⎝⎛⎭⎫k +4k x -4-x 2x 2=-(x -k )⎝⎛⎭⎫x -4k x 2(x >0,k >0). ①当0<k <2时,4k k >0,且4k >2,所以当x ∈(0,k )时,f ′(x )<0,当x ∈(k ,2)时,f ′(x )>0,所以函数f (x )在(0,k )上是减函数,在(k ,2)上是增函数;②当k =2时,4k =k =2,f ′(x )<0在(0,2)上恒成立,所以f (x )在(0,2)上是减函数;③当k >2时,0<4k <2,k >4k ,所以当x ∈⎝⎛⎭⎫0,4k 时,f ′(x )<0;当x ∈⎝⎛⎭⎫4k ,2时,f ′(x )>0, 所以函数f (x )在⎝⎛⎭⎫0,4k 上是减函数,在⎝⎛⎭⎫4k ,2上是增函数.综上可知,当0<k <2时,f (x )在(0,k )上是减函数,在(k ,2)上是增函数;当k =2时,f (x )在(0,2)上是减函数;当k >2时,f (x )在⎝⎛⎭⎫0,4k 上是减函数,在⎝⎛⎭⎫4k ,2上是增函数. 10.已知函数f (x )=ln(x +1)-ax 2+x (x +1)2,且1<a <2,试讨论函数f (x )的单调性. 10.解析 函数f (x )的定义域为(-1,+∞),f ′(x )=x (x -2a +3)(x +1)3,x >-1. ①当-1<2a -3<0,即1<a <32时,当-1<x <2a -3或x >0时,f ′(x )>0,f (x )单调递增,当2a -3<x <0时,f ′(x )<0,f (x )单调递减.②当2a -3=0,即a =32时,f ′(x )≥0,则f (x )在(-1,+∞)上单调递增.③当2a -3>0,即32<a <2时,当-1<x <0或x >2a -3时,f ′(x )>0,则f (x )在(-1,0),(2a -3,+∞)上单调递增.当0<x <2a -3时,f ′(x )<0,则f (x )在(0,2a -3)上单调递减.综上,当1<a <32时,f (x )在(-1,2a -3),(0,+∞)上单调递增,在(2a -3,0)上单调递减;当a =32时,f (x )在(-1,+∞)上单调递增;当32<a <2时,f (x )在(-1,0),(2a -3,+∞)上单调递增,在(0,2a -3)上单调递减.考点三 导主指对型【例题选讲】[例10] 已知函数f (x )=e x (e x -a )-a 2x ,讨论函数f (x )的单调性.解析 函数f (x )的定义域为(-∞,+∞),f ′(x )=2e 2x -a e x -a 2=(2e x +a )(e x -a ).①若a =0,则f (x )=e 2x 在(-∞,+∞)上单调递增.②若a >0,则由f ′(x )=0,得x =ln a .当x ∈(-∞,ln a )时,f ′(x )<0;当x ∈(ln a ,+∞)时,f ′(x )>0. 故f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增.③若a <0,则由f ′(x )=0,得x =ln ⎝⎛⎭⎫-a 2.当x ∈⎝⎛⎭⎫-∞,ln ⎝⎛⎭⎫-a 2时,f ′(x )<0;当x ∈⎝⎛⎭⎫ln ⎝⎛⎭⎫-a 2,+∞时,f ′(x )>0;故f (x )在⎝⎛⎭⎫-∞,ln ⎝⎛⎭⎫-a 2上单调递减,在⎝⎛⎭⎫ln ⎝⎛⎭⎫-a 2,+∞上单调递增. [例11] 已知f (x )=(x 2-ax )ln x -32x 2+2ax ,求f (x )的单调递减区间.解析 易得f (x )的定义域为(0,+∞),f ′(x )=(2x -a )ln x +x -a -3x +2a =(2x -a )ln x -(2x -a )=(2x -a )(ln x -1),令f ′(x )=0得x =a 2或x =e .当a ≤0时,因为x >0,所以2x -a >0,令f ′(x )<0得x <e ,所以f (x )的单调递减区间为(0,e).当a >0时,①若a 2<e ,即0<a <2e ,当x ∈⎝⎛⎭⎫0,a 2时,f ′(x )>0,当x ∈⎝⎛⎭⎫a 2,e 时,f ′(x )<0,当x ∈(e ,+∞)时,f ′(x )>0, 所以f (x )的单调递减区间为⎝⎛⎭⎫a 2,e ;②若a 2=e ,即a =2e ,当x ∈(0,+∞)时,f ′(x )≥0恒成立,f (x )没有单调递减区间;③若a 2>e ,即a >2e ,当x ∈(0,e)时,f ′(x )>0,当x ∈⎝⎛⎭⎫e ,a 2时,f ′(x )<0,当x ∈⎝⎛⎭⎫a 2,+∞时,f ′(x )>0, 所以f (x )的单调递减区间为⎝⎛⎭⎫e ,a 2. 综上所述,当a ≤0时,f (x )的单调递减区间为(0,e);当0<a <2e 时,f (x )的单调递减区间为⎝⎛⎭⎫a 2,e ;当a =2e 时,f (x )无单调递减区间;当a >2e 时,f (x )的单调递减区间为⎝⎛⎭⎫e ,a 2. 【对点训练】11.已知函数f (x )=e x -ax -1的定义域为(0,+∞),讨论函数f (x )的单调性.11.解析 ∵f (x )=e x -ax -1,∴f ′(x )=e x -a .易知f ′(x )=e x -a 在(0,+∞)上单调递增.∴当a ≤1时,f ′(x )>0,故f (x )在(0,+∞)上单调递增;当a >1时,由f ′(x )=e x -a =0,得x =ln a ,∴当0<x <ln a 时,f ′(x )<0,当x >ln a 时,f ′(x )>0, ∴f (x )在(0,ln a )上单调递减,在(ln a ,+∞)上单调递增.综上,当a ≤1时,f (x )在(0,+∞)上单调递增;当a >1时,f (x )在(0,ln a )上单调递减,在(ln a ,+∞)上单调递增.12.已知函数f (x )=(x 2-2ax )ln x -122+2ax (a ∈R ).(1)若a =0,求f (x )的最小值;(2)求函数f (x )的单调区间.12.解析 (1)若a =0,f (x )=x 2ln x -12x 2,定义域为(0,+∞),f ′(x )=2x ln x +x 2×1x -x =2x ln x ,由f ′(x )>0可得x >1,由f ′(x )<0可得0<x <1,所以f (x )在(0,1)单调递减,在(1,+∞)单调递增,所以f (x )的最小值为f (1)=-12.(2)f ′(x )=(2x -2a )ln x +(x 2-2ax )ꞏ1x -x +2a =(2x -2a )ln x ,①当a ≤0时,2x -2a >0,由f ′(x )>0可得x >1,由f ′(x )<0可得0<x <1,此时f (x )的单调递减区间为(0,1),单调递增区间为(1,+∞);②当0<a <1时,由f ′(x )>0可得0<x <a 或x >1,由f ′(x )<0可得a <x <1,此时f (x )的单调递减区间为(a ,1),单调递增区间为(0,a )和(1,+∞);③当a =1时,f ′(x )≥0恒成立,此时f (x )的单调递增区间为(0,+∞);④当a >1时,由f ′(x )>0可得0<x <1或x >a ,由f ′(x )<0可得1<x <a ,此时f (x )的单调递减区间为(1,a ),单调递增区间为(0,1)和(a ,+∞).综上所述:当a ≤0时,f (x )的单调递减区间为(0,1),单调递增区间为(1,+∞);当0<a <1时,f (x )的单调递减区间为(a ,1),单调递增区间为(0,a )和(1,+∞);当a =1时,f (x )的单调递增区间为(0,+∞),无单调递减区间;当a >1时,f (x )的单调递减区间为(1,a ),单调递增区间为(0,1)和(a ,+∞).考点四 导主正余型【例题选讲】[例12] (2017山东理)已知函数f (x )=x 2+2cos x ,g (x )=e x ꞏ(cos x -sin x +2x -2),其中e 是自然对数的底数.(1)求函数g(x)的单调区间;(2)讨论函数h(x)=g(x)-af (x)(a∈R)的单调性.解析 (1)g′(x)=(e x)′ꞏ(cos x-sin x+2x-2)+e x(cos x-sin x+2x-2)′=e x(cos x-sin x+2x-2-sin x-cos x+2)=2e x(x-sin x).记p(x)=x-sin x,则p′(x)=1-cos x.因为cos x∈[-1,1],所以p′(x)=1-cos x≥0,所以函数p(x)在R上单调递增.而p(0)=0-sin 0=0,所以当x<0时,p(x)<0,g′(x)<0,函数g(x)单调递减;当x>0时,p(x)>0,g′(x)>0,函数g(x)单调递增.综上,函数g(x)的单调递减区间为(-∞,0),单调递增区间为(0,+∞).(2)因为h(x)=g(x)-af (x)=e x(cos x-sin x+2x-2)-a(x2+2cos x),所以h′(x)=2e x(x-sin x)-a(2x-2sin x)=2(x-sin x)(e x-a).由(1)知,当x>0时,p(x)=x-sin x>0;当x<0时,p(x)=x-sin x<0.当a≤0时,e x-a>0,所以x>0时,h′(x)>0,函数h(x)单调递增;x<0时,h′(x)<0,函数h(x)单调递减.当a>0时,令h′(x)=2(x-sin x)(e x-a)=0,解得x1=ln a,x2=0.①若0<a<1,则ln a<0,所以x∈(-∞,ln a)时,e x-a<0,h′(x)>0,函数h(x)单调递增;x∈(ln a,0)时,e x-a>0,h′(x)<0,函数h(x)单调递减;x∈(0,+∞)时,e x-a>0,h′(x)>0,函数h(x)单调递增.②若a=1,则ln a=0,所以x∈R时,h′(x)≥0,函数h(x)在R上单调递增.③若a>1,则ln a>0,所以x∈(-∞,0)时,e x-a<0,h′(x)>0,函数h(x)单调递增;x∈(0,ln a)时,e x-a<0,h′(x)<0,函数h(x)单调递减;x∈(ln a,+∞)时,e x -a>0,h′(x)>0,函数h(x)单调递增.综上所述,当a≤0时,函数h(x)在(0,+∞)上单调递增,在(-∞,0)上单调递减;当0<a<1时,函数h(x)在(-∞,ln a),(0,+∞)上单调递增,在(ln a,0)上单调递减;当a=1时,函数h(x)在R上单调递增;当a>1时,函数h(x)在(-∞,0),(ln a,+∞)上单调递增,在(0,ln a)上单调递减.【对点训练】13.(2017ꞏ山东)已知函数f(x)=13x 3-12ax2,其中参数a∈R.(1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程;(2)设函数g(x)=f(x)+(x-a)cos x-sin x,讨论g(x)的单调性.13.解析 (1)由题意得f′(x)=x2-ax,所以当a=2时,f(3)=0,f′(x)=x2-2x,所以f′(3)=3,因此曲线y=f(x)在点(3,f(3))处的切线方程是y=3(x-3),即3x-y-9=0.(2)因为g(x)=f(x)+(x-a)cos x-sin x,所以g′(x)=f′(x)+cos x-(x-a)sin x-cos x=x(x-a)-(x-a)sin x=(x-a)(x-sin x).令h(x)=x-sin x,则h′(x)=1-cos x≥0,所以h(x)在R上单调递增.因为h(0)=0,所以当x>0时,h(x)>0;当x<0时,h(x)<0.①当a<0时,g′(x)=(x-a)(x-sin x),当x∈(-∞,a)时,x-a<0,g′(x)>0,g(x)单调递增;当x∈(a,0)时,x-a>0,g′(x)<0,g(x)单调递减;当x∈(0,+∞)时,x-a>0,g′(x)>0,g(x)单调递增.②当a=0时,g′(x)=x(x-sin x),当x∈(-∞,+∞)时,g′(x)≥0,所以g(x)在(-∞,+∞)上单调递增.③当a>0时,g′(x)=(x-a)(x-sin x),当x∈(-∞,0)时,x-a<0,g′(x)>0,g(x)单调递增;当x∈(0,a)时,x-a<0,g′(x)<0,g(x)单调递减;当x∈(a,+∞)时,x-a>0,g′(x)>0,g(x)单调递增.综上所述,当a<0时,函数g(x)在(-∞,a)和(0,+∞)上单调递增,在(a,0)上单调递减;当a=0时,函数g(x)在(-∞,+∞)上单调递增;当a>0时,函数g(x)在(-∞,0)和(a,+∞)上单调递增,在(0,a)上单调递减.。

高考数学专题复习 (12)

高考数学专题复习 (12)
• 导数的应用(二)
1.函数的极值与导数
(1)判断 f(x0)是极大值,还是极小值的方法 一般地,当 f′(x0)=0 时, ①如果在 x0 附近的左侧 f′(x)>0,右侧 f′(x)<0,那么 f(x0)是极 大值;
②如果在 x0 附近的左侧____________,右侧____________,那
3.(1)时间 (2)长度 (3)时间 (4)时间
(6)产量
4.< > = =
(5)时间
设函数 f(x)=2x+lnx,则( )
A.x=12为 f(x)的极大值点 C.x=2 为 f(x)的极大值点
B.x=12为 f(x)的极小值点 D.x=2 为 f(x)的极小值点
解:f(x)=2x+lnx(x>0),f′(x)=-x22+1x=x-x2 2,令 f′(x) =0,得 x=2.当 x>2 时,f′(x)>0,这时 f(x)为增函数;当 0<x<2 时,f′(x)<0,这时 f(x)为减函数,据此知 x=2 为 f(x)
令 f′(x)=0,解得 x=0 或 x=23. 当 x 变化时,f′(x),f(x)的变化情况如下表:
x
(-∞, 0
0)
0,23
2 3
23,+∞
f′(x) - 0

0



f(x) ↘ 小





故函数 f(x)的极大值点为23;当 x=0 时,函数 f(x)取得极小值 f(0) =0.
点 拨:
的极小值点.故选 D.
设 f′(x)是函数 f(x)的导函数,y=f′(x)的图象如图所示, 则 y=f(x)的图象最有可能是 ( )

2023届全国高考数学复习:专题(函数的极值)重点讲解与练习(附答案)

2023届全国高考数学复习:专题(函数的极值)重点讲解与练习(附答案)

2023届全国高考数学复习:专题(函数的极值)重点讲解与练习 1.函数的极小值:函数y=f(x)在点x=x0的函数值f(x0)比它在点x=x0附近其他点的函数值都小,f′(x0)=0;而且在点x=x0附近的左侧f′(x)<0,右侧f′(x)>0.则x0叫做函数y=f(x)的极小值点,f(x0)叫做函数y=f(x)的极小值.如图1.图1图22.函数的极大值:函数y=f(x)在点x=x0的函数值f(x0)比它在点x=x0附近其他点的函数值都大,f′(x0)=0;而且在点x=x0附近的左侧f′(x)>0,右侧f′(x)<0.则x0叫做函数y=f(x)的极大值点,f(x0)叫做函数y=f(x)的极大值.如图2.3.极小值点、极大值点统称为极值点,极小值和极大值统称为极值.对极值的深层理解:(1)极值点不是点;(2)极值是函数的局部性质;(2)按定义,极值点x i是区间[a,b]内部的点(如图),不会是端点a,b;(3)若f(x)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在区间上单调的函数没有极值.(4)根据函数的极值可知函数的极大值f(x0)比在点x0附近的点的函数值都大,在函数的图象上表现为极大值对应的点是局部的“高峰”;函数的极小值f(x0)比在点x0附近的点的函数值都小,在函数的图象上表现为极小值对应的点是局部的“低谷”.一个函数在其定义域内可以有许多极小值和极大值,在某一点处的极小值也可能大于另一个点处的极大值,极大值与极小值没有必然的联系,即极小值不一定比极大值小,极大值不一定比极小值大;(5)使f′(x)=0的点称为函数f(x)的驻点,可导函数的极值点一定是它的驻点.驻点可能是极值点,也可能不是极值点.例如f(x)=x3的导数f′(x)=3x2在点x=0处有f′(0)=0,即x=0是f(x)=x3的驻点,但从f(x)在(-∞,+∞)上为增函数可知,x=0不是f(x)的极值点.因此若f′(x0)=0,则x0不一定是极值点,即f′(x0)=0是f(x)在x=x0处取到极值的必要不充分条件,函数y=f′(x)的变号零点,才是函数的极值点;(6)函数f(x)在[a,b]上有极值,极值也不一定不唯一.它的极值点的分布是有规律的,如上图,相邻两个极大值点之间必有一个极小值点,同样相邻两个极小值点之间必有一个极大值点.一般地,当函数f(x)在[a,b]上连续且有有限个极值点时,函数f(x)在[a,b]内的极大值点、极小值点是交替出现的.考点一 根据函数图象判断极值【方法总结】(4)已知e 为自然对数的底数,设函数f (x )=(e x -1)ꞏ(x -1)k (k =1,2),则( )A .当k =1时,f (x )在x =1处取到极小值B .当k =1时,f (x )在x =1处取到极大值C .当k =2时,f (x )在x =1处取到极小值D .当k =2时,f (x )在x =1处取到极大值(5)若x =-2是函数f (x )=(x 2+ax -1)e x-1的极值点,则f (x )的极小值为( ) A .-1 B .-2e -3 C .5e -3 D .1(6)设f ′(x )为函数f (x )的导函数,已知x 2f ′(x )+xf (x )=ln x ,f (1)=12,则下列结论不正确的是( )A .xf (x )在(0,+∞)上单调递增B .xf (x )在(0,+∞)上单调递减C .xf (x )在(0,+∞)上有极大值12D .xf (x )在(0,+∞)上有极小值12[例2] 给出定义:设f ′(x )是函数y =f (x )的导函数,f ″(x )是函数f ′(x )的导函数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的拐点.已知f (x )=ax +3sin x -cos x .(1)求证:函数y =f (x )的拐点M (x 0,f (x 0))在直线y =ax 上;(2)x ∈(0,2π)时,讨论f (x )的极值点的个数.[例3] (2021ꞏ天津高考节选)已知a >0,函数f (x )=ax -x ꞏe x .(1)求函数y =f (x )在点(0,f (0))处的切点的方程;(2)证明f (x )存在唯一极值点.【对点训练】1.函数f (x )=2x -x ln x 的极值是( )A .1eB .2eC .eD .e 22.函数f (x )=(x 2-1)2+2的极值点是( )A .x =1B .x =-1C .x =1或-1或0D .x =03.函数f (x )=12x 2+ln x -2x 的极值点的个数是( )A .0B .1C .2D .无数4.函数f (x )=(x 2-x -1)e x (其e =2.718…是自然对数的底数)的极值点是 ;极大值为 .5.已知函数f (x )=ax 3-bx +2的极大值和极小值分别为M ,m ,则M +m =( )A .0B .1C .2D .46.若x =-2是函数f (x )=13x 3-ax 2-2x +1的一个极值点,则函数f (x )的极小值为( )A .-113B .-16C .16D .1737.已知函数f (x )=2ln x +ax 2-3x 在x =2处取得极小值,则f (x )的极大值为( )A .2B .-52C .3+ln 2D .-2+2ln 28.已知函数f (x )=x ln x ,则( )A .f (x )的单调递增区间为(e ,+∞)B .f (x )在⎝⎛⎭⎫0,1e 上是减函数 C .当x ∈(0,1]时,f (x )有最小值-1e D .f (x )在定义域内无极值9.(多选)已知函数f (x )=x 2+x -1e x ,则下列结论正确的是( )A .函数f (x )存在两个不同的零点B .函数f (x )既存在极大值又存在极小值C .当-e<k ≤0时,方程f (x )=k 有且只有两个实根D .若x ∈[t ,+∞)时,f (x )max =5e 2,则t 的最小值为210.若函数f (x )=(1-x )(x 2+ax +b )的图象关于点(-2,0)对称,x 1,x 2分别是f (x )的极大值点与极小值点,则x 2-x 1=________.11.已知函数f (x )=e x (x -1)-12e a x 2,a <0.(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)求函数f (x )的极小值.12.已知函数f (x )=e x +2x .(1)求函数f (x )的图象在(1,f (1))处的切线方程;(2)证明:函数f (x )仅有唯一的极小值点.考点三 已知函数的极值(点)求参数的值(范围)【方法总结】由函数极值求参数的值或范围讨论极值点有无(个数)问题,转化为讨论f ′(x )=0根的有无(个数).然后由已知条件列出方程或不等式求出参数的值或范围,特别注意:极值点处的导数为0,而导数为0的点不一定是极值点,要检验导数为0的点两侧导数是否异号.【例题选讲】[例1](1)若函数f (x )=x (x -m )2在x =1处取得极小值,则m =________.(2)已知f (x )=x 3+3ax 2+bx +a 2在x =-1处有极值0,则a +b =________.(3)若函数f (x )的导数f ′(x )=⎝⎛⎭⎫x -52(x -k )k (k ≥1,k ∈Z ),已知x =k 是函数f (x )的极大值点,则k = . (4)设函数f (x )=ln x -12ax 2-bx ,若x =1是f (x )的极大值点,则a 的取值范围为________.(5)若函数f (x )=ax 22-(1+2a )x +2ln x (a >0)在区间⎝⎛⎭⎫12,1内有极大值,则a 的取值范围是( ) A .⎝⎛⎭⎫1e ,+∞ B .(1,+∞) C .(1,2) D .(2,+∞)(6)若函数f (x )=x 2-x +a ln x 在[1,+∞)上有极值点,则实数a 的取值范围为 ;(7)已知函数f (x )=x (ln x -ax )有两个极值点,则实数a 的取值范围是________.(8) (2021ꞏ全国乙)设a ≠0,若x =a 为函数f (x )=a (x -a )2(x -b )的极大值点,则( )A .a <bB .a >bC .ab <a 2D .ab >a 2[例2] 已知曲线f (x )=x e x -23ax 3-ax 2,a ∈R .(1)当a =0时,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)若函数y =f (x )有三个极值点,求实数a 的取值范围.【对点训练】1.若函数f (x )=(x +a )e x 的极值点为1,则a =( )A .-2B .-1C .0D .12.已知函数f (x )=x (x -c )2在x =2处有极小值,则实数c 的值为( )A .6B .2C .2或6D .03.已知函数f (x )=ax 3+bx 2+cx -17(a ,b ,c ∈R )的导函数为f ′(x ),f ′(x )≤0的解集为{x |-2≤x ≤3},若f (x )的极小值等于-98,则a 的值是( )A .-8122B .13C .2D .54.若函数f (x )=x 3-2cx 2+x 有极值点,则实数c 的取值范围为 .5.设a ∈R ,若函数y =e x +ax ,x ∈R 有大于零的极值点,则实数a 的取值范围是________.6.若函数f (x )=(2-a )⎣⎡⎦⎤(x -2)e x -12ax 2+ax 在⎝⎛⎭⎫12,1上有极大值,则实数a 的取值范围为( )A .(e ,e)B .(e ,2)C .(2,e)D .(e ,+∞)7.已知函数f (x )=x ln x -ax 在(1,+∞)上有极值,则实数a 的取值范围为( )A .⎝⎛⎦⎤-∞,14B .⎝⎛⎭⎫-∞,14C .⎝⎛⎦⎤0,14 D .0,14 8.若函数f (x )=x 2-x +a ln x 有极值,则实数a 的取值范围是________.9.若函数f (x )=12x 2+(a -1)x -a ln x 存在唯一的极值,且此极值不小于1,则实数a 的取值范围为________.10.已知函数f (x )=x ln x +m e x (e 为自然对数的底数)有两个极值点,则实数m 的取值范围是__________.11.已知函数f (x )=x ln x -12ax 2-2x 有两个极值点,则实数a 的取值范围是________.12.已知函数f (x )=x e x -a .若f (x )有两个零点,则实数a 的取值范围是( )A .[0,1)B .(0,1)C .⎝⎛⎭⎫0,1eD .⎣⎡⎭⎫0,1e[例1](1)函数f (x )=x 2e -x 的极大值为__________,极小值为________. 答案 4e -2 0 解析 f (x )的定义域为(-∞,+∞),f ′(x )=-e -x x (x -2).当x ∈(-∞,0)或x ∈(2,+∞)时,f ′(x )<0;当x ∈(0,2)时,f ′(x )>0.所以f (x )在(-∞,0),(2,+∞)上单调递减,在(0,2)上单调递增.故当x =0时,f (x )取得极小值,极小值为f (0)=0;当x =2时,f (x )取得极大值,极大值为f (2)=4e -2. (2)设函数f (x )=2x +ln x ,则( )A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点答案 D 解析 f ′(x )=-2x 2+1x =x -2x 2(x >0),当0<x <2时,f ′(x )<0,当x >2时,f ′(x )>0,所以x =2为f (x )的极小值点.(3)已知函数f (x )=2e f ′(e)ln x -x e ,则f (x )的极大值点为( )A .1eB .1C .eD .2e答案 D 解析 f ′(x )=2e f ′(e)x -1e ,故f ′(e)=1e ,故f (x )=2ln x -x e ,令f ′(x )=2x -1e >0,解得0<x <2e ,令f ′(x )<0,解得x >2e ,故f (x )在(0,2e)上递增,在(2e ,+∞)上递减,∴x =2e 时,f (x )取得极大值2ln 2,则f (x )的极大值点为2e .(4)已知e 为自然对数的底数,设函数f (x )=(e x -1)ꞏ(x -1)k (k =1,2),则( )A .当k =1时,f (x )在x =1处取到极小值B .当k =1时,f (x )在x =1处取到极大值C .当k =2时,f (x )在x =1处取到极小值D .当k =2时,f (x )在x =1处取到极大值答案 C 解析 因为f ′(x )=(x -1)k -1[e x (x -1+k )-k ],当k =1时,f ′(1)>0,故1不是函数f (x )的极值点.当k =2时,当x 0<x <1(x 0为f (x )的极大值点)时,f ′(x )<0,函数f (x )单调递减;当x >1时,f ′(x )>0,函数f (x )单调递增.故f (x )在x =1处取到极小值.故选C .(5)若x =-2是函数f (x )=(x 2+ax -1)e x-1的极值点,则f (x )的极小值为( ) A .-1 B .-2e -3 C .5e -3 D .1答案 A 解析 f ′(x )=(2x +a )e x -1+(x 2+ax -1)e x -1=[x 2+(a +2)x +a -1]e x -1.∵x =-2是f (x )的极值点,∴f ′(-2)=0,即(4-2a -4+a -1)e -3=0,得a =-1.∴f (x )=(x 2-x -1)e x -1,f ′(x )=(x 2+x -2)e x -1.由f ′(x )>0,得x <-2或x >1;由f ′(x )<0,得-2<x <1.∴f (x )在(-∞,-2)上单调递增,在(-2,1)上单调递减,在(1,+∞)上单调递增,∴f (x )的极小值点为1,∴f (x )的极小值为f (1)=-1.(6)设f ′(x )为函数f (x )的导函数,已知x 2f ′(x )+xf (x )=ln x ,f (1)=12,则下列结论不正确的是( )A .xf (x )在(0,+∞)上单调递增B .xf (x )在(0,+∞)上单调递减C .xf (x )在(0,+∞)上有极大值12D .xf (x )在(0,+∞)上有极小值126.若x =-2是函数f (x )=13x 3-ax 2-2x +1的一个极值点,则函数f (x )的极小值为( )A .-113B .-16C .16D .1736.答案 B 解析 由题意,得f ′(x )=x 2-2ax -2.又x =-2是函数f (x )的一个极值点,所以f ′(-2)=2+4a =0,解得a =-12.所以f (x )=13x 3+12x 2-2x +1,所以f ′(x )=x 2+x -2=(x +2)(x -1).当x <-2或x>1时,f ′(x )>0;当-2<x <1时,f ′(x )<0.所以函数y =f (x )的单调递增区间为(-∞,-2),(1,+∞),单调递减区间为(-2,1).当x =1时,函数y =f (x )取得极小值,为f (1)=13+12-2+1=-16.故选B .7.已知函数f (x )=2ln x +ax 2-3x 在x =2处取得极小值,则f (x )的极大值为( )A .2B .-52C .3+ln 2D .-2+2ln 27.答案 B 解析 由题意得,f ′(x )=2x 2ax -3,∵f (x )在x =2处取得极小值,∴f ′(2)=4a -2=0,解得a =12,∴f (x )=2ln x +12x 2-3x ,f ′(x )=2x +x -3=(x -1)(x -2)x,∴f (x )在(0,1),(2,+∞)上单调递增,在(1,2)上单调递减,∴f (x )的极大值为f (1)=12-3=-52.8.已知函数f (x )=x ln x ,则( )A .f (x )的单调递增区间为(e ,+∞)B .f (x )在⎝⎛⎭⎫0,1e 上是减函数 C .当x ∈(0,1]时,f (x )有最小值-1e D .f (x )在定义域内无极值8.答案 BC 解析 因为f ′(x )=ln x +1(x >0),令f ′(x )=0,所以x =1e ,当x ∈⎝⎛⎭⎫0,1e 时,f ′(x )<0,当x ∈⎝⎛⎭⎫1e ,+∞时,f ′(x )>0,所以f (x )在⎝⎛⎭⎫0,1e 上单调递减,在⎝⎛⎭⎫1e ,+∞上单调递增,x =1e 是极小值点,所以A 错误,B 正确;当x ∈(0,1]时,根据单调性可知,f (x )min =f ⎝⎛⎭⎫1e =-1e ,故C 正确;显然f (x )有极小值f ⎝⎛⎭⎫1e ,故D 错误.故选BC .9.(多选)已知函数f (x )=x 2+x -1e x ,则下列结论正确的是( )A .函数f (x )存在两个不同的零点B .函数f (x )既存在极大值又存在极小值C .当-e<k ≤0时,方程f (x )=k 有且只有两个实根D .若x ∈[t ,+∞)时,f (x )max =5e 2,则t 的最小值为29.答案 ABC 解析 由f (x )=0,得x 2+x -1=0,∴x =-1±52,故A 正确.f ′(x )=-x 2-x -2e x =(2)证明:令h (x )=e x (x -1)-2,则h ′(x )=e x ꞏx ,所以x ∈(-∞,0)时,h ′(x )<0,x ∈(0,+∞)时,h ′(x )>0.当x ∈(-∞,0)时,易知h (x )<0,所以f ′(x )<0,f (x )在(-∞,0)上没有极值点.当x ∈(0,+∞)时,因为h (1)=-2<0,h (2)=e 2-2>0,所以f ′(1)<0,f ′(2)>0,f (x )在(1,2)上有极小值点.又因为h (x )在(0,+∞)上单调递增,所以函数f (x )仅有唯一的极小值点.考点三 已知函数的极值(点)求参数的值(范围)【方法总结】由函数极值求参数的值或范围讨论极值点有无(个数)问题,转化为讨论f ′(x )=0根的有无(个数).然后由已知条件列出方程或不等式求出参数的值或范围,特别注意:极值点处的导数为0,而导数为0的点不一定是极值点,要检验导数为0的点两侧导数是否异号.【例题选讲】[例1](1)若函数f (x )=x (x -m )2在x =1处取得极小值,则m =________.答案 1 解析 由f ′(1)=0可得m =1或m =3.当m =3时,f ′(x )=3(x -1)(x -3),当1<x <3时,f ′(x )<0;当x <1或x >3时,f ′(x )>0,此时f (x )在x =1处取得极大值,不合题意,当m =1时,f ′(x )=(x -1)(3x-1).当13<x <1时,f ′(x )<0;当x <13x >1时,f ′(x )>0,此时f (x )在x =1处取得极小值,符合题意,所以m=1.(2)已知f (x )=x 3+3ax 2+bx +a 2在x =-1处有极值0,则a +b =________.答案 11 解析 f ′(x )=3x 2+6ax +b ,由题意得⎩⎪⎨⎪⎧ f ′(-1)=0,f (-1)=0,解得⎩⎪⎨⎪⎧ a =1,b =3或⎩⎪⎨⎪⎧a =2,b =9,当a =1,b =3时,f ′(x )=3x 2+6x +3=3(x +1)2≥0,∴f (x )在R 上单调递增,∴f (x )无极值,所以a =1,b =3不符合题意,当a =2,b =9时,经检验满足题意.∴a +b =11.(3)若函数f (x )的导数f ′(x )=⎝⎛⎭⎫x -52(x -k )k (k ≥1,k ∈Z ),已知x =k 是函数f (x )的极大值点,则k = . 答案 1 解析 因为函数的导数为f ′(x )=⎝⎛⎭⎫x -52(x -k )k ,k ≥1,k ∈Z ,所以若k 是偶数,则x =k ,不是极值点,则k 是奇数,若k <52,由f ′(x )>0,解得x >52或x <k ;由f ′(x )<0,解得k <x <52,即当x =k 时,函数f (x )取得极大值.因为k ∈Z ,所以k =1.若k >52,由f ′(x )>0,解得x >k 或x <52;由f ′(x )<0,解得52<x <k ,即当x=k 时,函数f (x )取得极小值,不满足条件.(4)设函数f (x )=ln x -12ax 2-bx ,若x =1是f (x )的极大值点,则a 的取值范围为________.答案 a >-1 解析 f (x )的定义域为(0,+∞),f ′(x )=1x -ax -b ,由f ′(1)=0,得b =1-a ,所以f ′(x )=1x-ax +a -1=-ax 2+1+ax -x x =-(ax +1)(x -1)x.①若a ≥0,当0<x <1时,f ′(x )>0,f (x )单调递增;当x >1时,f ′(x )<0,f (x )单调递减,所以x =1是f (x )的极大值点.②若a <0,由f ′(x )=0,得x =1或x =-1a .因为x =1是f (x )的极大值点,所以-1a >1,解得-1<a <0.综合①②得a 的取值范围是a >-1.(5)若函数f (x )=ax 22-(1+2a )x +2ln x (a >0)在区间⎝⎛⎭⎫12,1内有极大值,则a 的取值范围是( )A .⎝⎛⎭⎫1e ,+∞ B .(1,+∞) C .(1,2) D .(2,+∞) 答案 C 解析 f ′(x )=ax -(1+2a )+2x =ax 2-(2a +1)x +2x (a >0,x >0),若f (x )在区间⎝⎛⎭⎫12,1内有极大值,即f ′(x )=0在⎝⎛⎭⎫12,1内有解,且f ′(x )在区间⎝⎛⎭⎫12,1内先大于0,后小于0,则⎩⎪⎨⎪⎧f ′⎝⎛⎭⎫12>0,f ′(1)<0,即⎩⎪⎨⎪⎧14a -12(2a +1)+212>0,a -(2a +1)+2<0,解得1<a <2,故选C .(6)若函数f (x )=x 2-x +a ln x 在[1,+∞)上有极值点,则实数a 的取值范围为 ;答案 (-∞,-1] 解析 函数f (x )的定义域为(0,+∞),f ′(x )=2x -1+a x =2x 2-x +a x,由题意知2x 2-x +a =0在R 上有两个不同的实数解,且在[1,+∞)上有解,所以Δ=1-8a >0,且2×12-1+a ≤0,所以a ∈(-∞,-1].(7)已知函数f (x )=x (ln x -ax )有两个极值点,则实数a 的取值范围是________.答案 ⎝⎛⎭⎫0,12 解析 f (x )=x (ln x -ax ),定义域为(0,+∞),f ′(x )=1+ln x -2ax .由题意知,当x >0时,1+ln x -2ax =0有两个不相等的实数根,即2a =1+ln x x有两个不相等的实数根,令φ(x )=1+ln x x (x >0),∴φ′(x )=-ln x x 2.当0<x <1时,φ′(x )>0;当x >1时,φ′(x )<0,∴φ(x )在(0,1)上单调递增,在(1,+∞)上单调递减,且φ(1)=1,当x →0时,φ(x )→-∞,当x →+∞时,φ(x )→0,则0<2a <1,即0<a <12.(8) (2021ꞏ全国乙)设a ≠0,若x =a 为函数f (x )=a (x -a )2(x -b )的极大值点,则( )A .a <bB .a >bC .ab <a 2D .ab >a 2答案 D 解析 法一 (特殊值法)当a =1,b =2时,函数f (x )=(x -1)2(x -2),画出该函数的图象如图1所示,可知x =1为函数f (x )的极大值点,满足题意.从而,根据a =1,b =2可判断选项B ,C 错误;当a =-1,b =-2时,函数f (x )=-(x +1)2(x +2),画出该函数的图象如图2所示,可知x =-1为函数f (x )的极大值点,满足题意.从而,根据a =-1,b =-2可判断选项A 错误.所以当a >e 2时,在x ∈(-∞,-1)时,f ′(x )<0,f (x )单调递减,在x ∈(-1,x 1)时,f ′(x )>0,f (x )单调递增,在x ∈(x 1,x 2)时,f ′(x )<0,f (x )单调递减,在x ∈(x 2,+∞)时,f ′(x )>0,f (x )单调递增.故实数a 的取值范围是⎝⎛⎭⎫e 2,+∞. 【对点训练】1.若函数f (x )=(x +a )e x 的极值点为1,则a =( )A .-2B .-1C .0D .11.答案 A 解析 f ′(x )=e x +(x +a )e x =(x +a +1)e x .由题意知f ′(1)=e(2+a )=0,∴a =-2.故选A .2.已知函数f (x )=x (x -c )2在x =2处有极小值,则实数c 的值为( )A .6B .2C .2或6D .02.答案 B 解析 由f ′(2)=0可得c =2或6.当c =2时,结合图象(图略)可知函数先增后减再增,在x=2处取得极小值;当c =6时,结合图象(图略)可知,函数在x =2处取得极大值.故选B .3.已知函数f (x )=ax 3+bx 2+cx -17(a ,b ,c ∈R )的导函数为f ′(x ),f ′(x )≤0的解集为{x |-2≤x ≤3},若f (x )的极小值等于-98,则a 的值是( )A .-8122B .13C .2D .53.答案 C 解析 由题意,f ′(x )=3ax 2+2bx +c ,因为f ′(x )≤0的解集为{x |-2≤x ≤3},所以a >0,且-2+3=-2b 3a ,-2×3=c 3a ,则3a =-2b ,c =-18a ,f (x )的极小值为f (3)=27a +9b +3c -17=-98,解得a =2,b =-3,c =-36,故选C .4.若函数f (x )=x 3-2cx 2+x 有极值点,则实数c 的取值范围为 .4.答案 ⎝⎛⎭⎫-∞,-32∪⎝⎛⎭⎫32,+∞ 解析 若函数f (x )=x 3-2cx 2+x 有极值点,则f ′(x )=3x 2-4cx +1 =0有两个不等实根,故Δ=(-4c )2-12>0,解得c >32或c <-32c 的取值范围为⎝⎛⎭⎫-∞,-32∪⎝⎛⎭⎫32,+∞. 5.设a ∈R ,若函数y =e x +ax ,x ∈R 有大于零的极值点,则实数a 的取值范围是________.5.答案 (-∞,-1) 解析 由y ′=e x +a =0得x =ln (-a )(a <0),显然x =ln (-a )为函数的极小值点,又ln (-a )>0,∴-a >1,即a <-1.6.若函数f (x )=(2-a )⎣⎡⎦⎤(x -2)e x -12ax 2+ax 在⎝⎛⎭⎫12,1上有极大值,则实数a 的取值范围为( ) A .(e ,e) B .(e ,2) C .(2,e) D .(e ,+∞)6.答案 B 解析 令f ′(x )=(2-a )(x -1)(e x -a )=0,得x =ln a ∈⎝⎛⎭⎫12,1,解得a ∈(e ,e),由题意知,当x ∈⎝⎛⎭⎫12,ln a 时,f ′(x )>0,当x ∈(ln a ,1)时,f ′(x )<0,所以2-a >0,得a <2.综上,a ∈(e ,2).故选11.已知函数f (x )=x ln x -12ax 2-2x 有两个极值点,则实数a 的取值范围是________.11.答案 ⎝⎛⎭⎫0,1e 2 解析 f (x )的定义域为(0,+∞),且f ′(x )=ln x -ax -1.根据题意可得f ′(x )在(0,+∞) 上有两个不同的零点,则ln x -ax -1=0有两个不同的正根,从而转化为a =ln x -1x 有两个不同的正根,所以y =a 与y =ln x -1x的图象有两个不同的交点,令h (x )=ln x -1x ,则h ′(x )=2-ln x x 2,令h ′(x )>0得0<x <e 2,令h ′(x )<0得x >e 2,所以函数h (x )在(0,e 2)为增函数,在(e 2,+∞)为减函数,又h (e 2)=1e 2,x →0时,h (x )→-∞,x →+∞时,h (x )→0,所以0<a <1e 2.12.已知函数f (x )=x e x -a .若f (x )有两个零点,则实数a 的取值范围是( )A .[0,1)B .(0,1)C .⎝⎛⎭⎫0,1eD .⎣⎡⎭⎫0,1e 12.答案 C 解析 f ′(x )=1-x e x ,所以f ′(x ),f (x )的变化如下表: x(-∞,1) 1 (1,+∞) f ′(x )+ 0 - f (x ) 极大值 若a =0,x >0时,f (x )>0,f (x )最多只有一个零点,所以a ≠0.若f (x )有两个零点,则1e -a >0,即a <1e ,结合a =0时f (x )的符号知0<a <1e C .。

2023届新高考数学复习:专项(等高线问题)经典题提分练习(附答案)

2023届新高考数学复习:专项(等高线问题)经典题提分练习(附答案)

2023届新高考数学复习:专项(等高线问题)经典题提分练习一、单选题1.(2023ꞏ全国ꞏ高三专题练习)设函数()22,0ln ,0x x x f x x x ⎧--≤⎪=⎨>⎪⎩①若方程()f x a =有四个不同的实根1x ,2x ,3x ,4x ,则1234x x x x ⋅⋅⋅的取值范围是()0,1②若方程()f x a =有四个不同的实根1x ,2x ,3x ,4x ,则1234x x x x +++的取值范围是()0,∞+③若方程()f x ax =有四个不同的实根,则a 的取值范围是10,e ⎛⎫⎪⎝⎭④方程()()2110f x a f x a ⎛⎫-++= ⎪⎝⎭的不同实根的个数只能是1,2,3,6四个结论中,正确的结论个数为( )A .1B .2C .3D .42.(2023ꞏ全国ꞏ高三专题练习)已知函数()()221,0log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若方程()f x a =有四个不同的解1234,,,,x x x x 且1234x x x x <<<,则()3122341x x x x x ⋅++⋅的取值范围是( )A .(]1,1-B .[]1,1-C .[)1,1-D .()1,1-3.(2023秋ꞏ四川泸州ꞏ高一四川省泸县第四中学校考阶段练习)已知函数()32log ,031108,333x x f x x x x ⎧<≤⎪=⎨-+>⎪⎩,若方程()f x m =有四个不同的实根1x ,2x ,3x ,4x ,满足1234x x x x <<<,则()()341233x x x x --的取值范围是( )A .()0,3B .(]0,4C .(]3,4D .()1,34.(2023ꞏ全国ꞏ高三专题练习)已知函数f (x )=11,1211,12xx x x ⎧⎛⎫-⎪ ⎪⎪⎝⎭⎨⎪-+>⎪⎩…,若互不相等的实数x 1,x 2,x 3满足f (x 1)=f (x 2)=f (x 3),则123111222x x x⎛⎫⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭+⎭⎝的取值范围是( )A .(95,42)B .(1,4)C .4)D .(4,6)5.(2023ꞏ全国ꞏ高三专题练习)已知定义域为()0,6的函数()y f x =的图象关于3x =对称,当(]0,3x ∈时,()ln f x x =,若方程()f x t =有四个不等实根1x ,2x ,3x ,()41234x x x x x <<<时,都有()223412190k x x x x -++-≥成立,则实数k 的最小值为( )A .724 B .13C .12D .1136.(2023ꞏ全国ꞏ高三专题练习)已知函数()22,0,()2,0xx x f x g x x x e x >⎧==-+⎨≤⎩(其中e 是自然对数的底数),若关于x 的方程(())0g f x m -=恰有三个不等实根123,,x x x ,且123x x x <<,则21322x x x --的最小值为( ) A .ln 33-B .3ln 22-C .ln 23-D .1-7.(2023ꞏ吉林长春ꞏ东北师大附中校考模拟预测)已知函数3e ,0()3,0x x f x x x ⎧≤=⎨>⎩,()22g x x x=-+(其中e 是自然对数的底数),若关于x 的方程()(())F x g f x m =-恰有三个不同的零点123,,x x x ,且123x x x <<,则12333x x x -+的最大值为( )A .31ln 4+B .41ln 3+C .3ln 3-D .3ln 3+8.(2023ꞏ全国ꞏ高三专题练习)已知函数()22322,,log ,,x mx m x m f x x x m ⎧-++≤⎪=⎨>⎪⎩,其中01m <<,若存在实数a ,使得关于x 的方程()f x a =恰有三个互异的实数解,则实数m 的取值范围是( ) A .1,14⎛⎫⎪⎝⎭B .1,19⎛⎫ ⎪⎝⎭C .10,4⎛⎫ ⎪⎝⎭D .10,9⎛⎫ ⎪⎝⎭9.(2023ꞏ全国ꞏ高三专题练习)已知函数lg ,0()lg(),0x x g x x x ⎧>⎪=⎨--<⎪⎩,若关于x 的方程()()5222g x g x -+=有四个不等根1234,,,x x x x ,则()()()()12341234x x x x g x g x g x g x +++++++的值是( )A .0B .2C .4D .810.(2023秋ꞏ宁夏ꞏ高三宁夏大学附属中学校考阶段练习)已知函数22,0(){|log |,0x x f x x x +≤=>,若关于x 的方程()()f x a a R =∈有四个不同实数解1234,,,x x x x ,且1234x x x x <<<,则1234x x x x +++的取值范围为 ( ) A .1(2,4-B .1[2,]4-C .[2,)-+∞D .(2,)-+∞11.(2023秋ꞏ湖北武汉ꞏ高一期末)已知函数()()2242,1,log 1,1,x x x f x x x ⎧++≤⎪=⎨->⎪⎩,若关于x 的方程()f x t =有四个不同的实数解1x ,2x ,3x ,4x ,且1234x x x x <<<,则)1234122x x x x ++的最小值为( ) A .72B .8C .92D .1212.(2023秋ꞏ河南郑州ꞏ高一新密市第一高级中学校考阶段练习)已知函数()()22log 1,131255,322x x f x x x x ⎧+-<≤⎪=⎨-+>⎪⎩,若关于x 的方程()f x m =有四个不同的实数解1234,,,x x x x ,且满足1234x x x x <<<,则下列结论正确的是( )A .121x x =-B .[]3421,25x x ∈C .3422x x +=D .12111x x +=- 13.(2023秋ꞏ江西上饶ꞏ高一统考期末)已知函数()()221,0log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若方程()f x a =有四个不同的实数解1x ,2x ,3x ,4x 且1234x x x x <<<,则()3122342x x x x x -+的取值范围是( ) A .()4,5 B .(]4,5C .()4,+∞D .[)4,+∞14.(2023春ꞏ全国ꞏ高三校联考专题练习)已知函数11()||||f x x a x b xa x=++-+--有五个不同的零点,且所有零点之和为52,则实数b 的值为( )A .1B .3C .5D .7二、多选题15.(2023秋ꞏ云南昆明ꞏ高一统考期末)已知函数ln(2),(2,0]()(2),(0,2]x x f x f x x ⎧+∈-=⎨-∈⎩,函数()y f x m =-有四个不同的零点,且从小到大依次为1x ,2x ,3x ,4x ,则下列结论正确的是( )A .121=x xB .1201≤<x xC .341x x =D .2410-<≤x x16.(2023ꞏ全国ꞏ高三专题练习)已知函数()e ,0,lg ,010,11,10,x x x f x x x x x ⎧⋅≤⎪=<<⎨⎪-+≥⎩,若22()3()()2g x f x mf x m =--有6个不同的零点分别为123456,,,,,x x x x x x ,且()()()123456345,x x x x x x f x f x f x <<<<<==,则下列说法正确的是( )A .当0x ≤时,()10ef x -≤≤B .34x x +的取值范围为1012,10⎛⎫⎪⎝⎭C .当0m <时,()()()()1234563f x f x f x x x f x +++的取值范围为1,0e ⎛⎫- ⎪⎝⎭D .当0m >时,()()()()1234563f x f x f x x x f x +++的取值范围为20,3e ⎛⎫⎪⎝⎭17.(2023ꞏ全国ꞏ高三专题练习)设函数22,0()ln ,0x x x f x x x ⎧--⎪=⎨>⎪⎩…,则下列命题中正确的是( )A .若方程()f x a =有四个不同的实根1x ,2x ,3x ,4x ,则1234x x x x ⋅⋅⋅的取值范围是(0,1)B .若方程()f x a =有四个不同的实根1x ,2x ,3x ,4x ,则1234x x x x +++的取值范围是(0,)+∞C .若方程()f x ax =有四个不同的实根,则a 的取值范围是10,e ⎛⎫⎪⎝⎭D .方程21()()()10f x a f x a-++=的不同实根的个数只能是1,2,3,618.(2023秋ꞏ辽宁大连ꞏ高一育明高中校考期末)已知函数()()22log 2,241617,42x x f x x x x ⎧-<≤⎪=⎨-+>⎪⎩,若方程()f x m =有四个不同的实根1234,,,x x x x ,满足1234x x x x <<<,则下列说法正确的是( )A .()121242x x x x +=+B .3412x x +=C .()3432,34x x ∈D .函数()()()()21g x f x m f x m =+--的零点为12346,,,,x x x x19.(2023秋ꞏ山西太原ꞏ高一古交市第一中学校校考阶段练习)已知函数22log ,02()813,2x x f x x x x ⎧<<=⎨-+≥⎩,若f (x )=a 有四个不同的实数解x 1,x 2,x 3,x 4,且满足x 1<x 2<x 3<x 4,则下列命题正确的是( ) A .0<a <1B.12922x x ⎡⎫+∈⎪⎢⎣⎭C .12342110,2x x x x ⎛⎫+++∈ ⎪⎝⎭D.)122x x ⎡+∈⎣20.(2023秋ꞏ重庆铜梁ꞏ高一校考期中)已知奇函数()f x 的定义域为R ,()3f x +为偶函数,且()f x 在[]0,3上单调递减.若关于x 的方程()f x a =在区间[]12,12-上有4个不同的根1234,,,x x x x ,则( ) A .()()6f x f x =+B .()f x 的图象关于直线3x =对称C .1234x x x x +++的值可能为12-D .1234x x x x +++的值可能为1221.(2023ꞏ全国ꞏ高三专题练习)设函数()2101,0lg ,0x x x f x x x ⎧++≤⎪=⎨>⎪⎩,若关于x 的方程()()f x a a R =∈有四个实数解1234,,,x x x x ,且1234x x x x <<<,则()()1234x x x x +-的值可能是( ) A .0B .1C .99D .100三、填空题22.(2023秋ꞏ石河子一中校考阶段练习)已知函数()2e ,0ln ,>0x x x f x x x ⎧-≤⎪=⎨⎪⎩,若函数()y f x b=-有四个不同的零点1x 、2x 、3x 、4x ,且1234x x x x <<<,则以下结论正确的是_____.①22342x x +>;②20eb <<; ③122x x +=-; ④()13422x x x x +<-.23.(2023ꞏ贵州贵阳ꞏ校联考模拟预测)已知函数()()22log 1,13,1910,3,22x x f x x x x ⎧-<≤⎪=⎨-+>⎪⎩若方程()f x m =有四个不同的实根1234,,,x x x x ,满足1234x x x x <<<,则()()()()34121111x x x x ----的取值范围是______.24.(2023秋ꞏ河南郑州ꞏ高一郑州市第七中学校考期末)已知函数()()2121xx f x f x x ⎧≤⎪=⎨->⎪⎩,,,若方程()f x a =有四个不相等的实数根1x ,2x ,3x ,4x ,则22222341x x x x +++的取值范围为__________.25.(2023春ꞏ广东揭阳ꞏ高一校考阶段练习)已知函数()()ln ,036,36x x f x f x x ⎧<≤⎪=⎨-<<⎪⎩,若当方程()f x m =有四个不等实根()12341234,,,x x x x x x x x <<<时,不等式22341230kx x x x k ++≤+恒成立,则实数k 的最大值为____________.26.(2023秋ꞏ江西宜春ꞏ高一江西省丰城中学校考阶段练习)设()()ln ,024,24x x f x f x x ⎧<≤⎪=⎨-<<⎪⎩若方程()f x m =有四个不相等的实根()1,2,3,4i x i =,且1234x x x x <<<,则()2221234x x x x +++的取值范围为___________.27.(2023秋ꞏ湖北ꞏ高一赤壁一中校联考阶段练习)()22log ,0269,2x x f x x x x ⎧<<=⎨-+≥⎩,若关于x 的方程()()()()222100f x t f x t t t -+++=≤有且仅有四个不相等的实数根1x 、2x 、3x 、()41234x x x x x <<<,则1234x x x x t +++的取值范围为__________.28.(2023ꞏ江苏ꞏ高一期末)已知函数22122,0()2log ,0x x x f x x x ⎧++≤⎪=⎨⎪>⎩,若关于x 的方程 f (x ) =a 有四个不同的解1234,,,x x x x ,且1234x x x x <<<,则212344x x x x x ++的取值范围是 _________ 29.(2023秋ꞏ河南濮阳ꞏ高三濮阳南乐一高校考阶段练习)已知函数()()()333322f x x a x b x a x =++-+--有五个不同的零点,且所有零点之和为52,则实数b 的值为______.30.(2023秋ꞏ福建福州ꞏ高一福州四中校考期末)已知函数22sin (10)()44(01)log (1)x x f x x x x x x π-<⎧⎪=-<⎨⎪-⎩………,若()()h x f x a =-有5个零点,则这五个零点之和的取值范围是____________. 四、双空题31.(2023秋ꞏ江西抚州ꞏ高二校联考阶段练习)已知函数ln ,02()(4),24x x f x f x x ⎧<≤=⎨-<<⎩,若当方程()f x m =有四个不等实根1x 、2x 、3x 、4x ,(1x <2x <3x <4x ) 时,不等式22341211kx x x x k ⋅++≥+恒成立,则x 1ꞏx 2=________,实数k 的最小值为___________.32.(2023秋ꞏ天津和平ꞏ高三耀华中学校考阶段练习)设()()ln ,024,24x x f x f x x ⎧<≤⎪=⎨-<<⎪⎩,若方程() f x m =恰有三个不相等的实根,则这三个根之和为________;若方程() f x m =有四个不相等的实根()1,2,3,4i x i =,则()2221234x x x x +++的取值范围为______. 33.(2023ꞏ全国ꞏ高三专题练习)已知函数()12,011,04x e x f x x x x -⎧>⎪=⎨--+≤⎪⎩ ,若函数3()()2g x f x =-有4个零点1x ,2x ,3x ,4x ,则1234x x x x +++=____________;若关于x 的方程25()()02f x f x a -+= ()a R ∈有8个不相等的实数根,则a 的取值范围是____________. 34.(2023秋ꞏ广东汕头ꞏ高一统考期末)设函数()22122,02log ,0x x x f x x x ⎧++≤⎪=⎨⎪>⎩,若关于x 的方程()f x m =有四个不同的解,1x ,2x ,3x ,4x ,且1234x x x x <<<,则m 的取值范围是_____,1234244x x x x x ++的取值范围是__________.参考答案一、单选题1.(2023·全国·高三专题练习)设函数()22,0ln ,0x x x f x x x ⎧--≤⎪=⎨>⎪⎩①若方程()f x a =有四个不同的实根1x ,2x ,3x ,4x ,则1234x x x x ⋅⋅⋅的取值范围是()0,1②若方程()f x a =有四个不同的实根1x ,2x ,3x ,4x ,则1234x x x x +++的取值范围是()0,∞+ ③若方程()f x ax =有四个不同的实根,则a 的取值范围是10,e ⎛⎫⎪⎝⎭④方程()()2110f x a f x a ⎛⎫-++= ⎪⎝⎭的不同实根的个数只能是1,2,3,6四个结论中,正确的结论个数为( ) A .1 B .2C .3D .4【答案】B【过程解析】对于①:作出()f x 的图像如下:若方程()f x a =有四个不同的实根1x ,2x ,3x ,4x ,则01a <<,不妨设1234x x x x <<<, 则1x ,2x 是方程220x x a ---=的两个不等的实数根,3x ,4x 是方程|ln |x a =的两个不等的实数根,所以12x x a =,34ln ln x x -=,所以43ln ln 0x x +=,所以341x x =, 所以1234(0,1)x x x x a =∈,故①正确;对于②:由上可知,122x x +=-,34ln ln x x a -==,且01a <<, 所以341x x =,所以31,1ex ⎛⎫∈ ⎪⎝⎭,4e (1,)x ∈,所以344411(2,e ex x x x +=+∈+, 所以12341(0,e e2)x x x x +++∈+-,故②错误;对于③:方程()f x ax =的实数根的个数,即为函数()y f x =与y ax =的交点个数,因为y ax =恒过坐标原点,当0a =时,有3个交点,当a<0时最多2个交点,所以0a >, 当y ax =与ln (1)y x x =>相切时,设切点为()00,ln x x , 即1y x '=,所以0000ln 1|x x x y x x ='==,解得0e x =,所以0e 1|x x y ='=,所以1ea =,所以当y ax =与ln (1)y x x =>相切时, 即1ea =时,此时有4个交点,若()f x ax =有4个实数根,即有4个交点,当1e>a 时由图可知只有3个交点,当10e a <<时,令()ln g x x ax =-,()1,x ∈+∞,则()11ax g x a x x-'=-=,则当11x a <<时()0g x '>,即()g x 单调递增,当1x a>时()0g x '<,即()g x 单调递减, 所以当1x a =时,函数取得极大值即最大值,()max 1ln 10g x g a a ⎛⎫==--> ⎪⎝⎭, 又()10g a =-<及对数函数与一次函数的增长趋势可知,当x 无限大时()0g x <,即()g x 在11,a ⎛⎫ ⎪⎝⎭和1,a ⎛⎫+∞ ⎪⎝⎭内各有一个零点,即()f x ax =有5个实数根,故③错误; 对于④:21()(()10f x a f x a -++=,所以1[()][()]0f x a f x a--=, 所以()f x a =或1()f x a =, 由图可知,当1m >时,()f x m =的交点个数为2, 当1m =,0时,()f x m =的交点个数为3, 当01m <<时,()f x m =的交点个数为4, 当0m <时,()f x m =的交点个数为1,所以若1a >时,则1(0,1)a∈,交点的个数为246+=个, 若1a =时,则11a=,交点的个数为3个,若01a <<,则11a>,交点有426+=个, 若a<0且1a ≠-时,则10a<且1a a ≠,交点有112+=个,若11a a=-=,交点有1个,综上所述,交点可能有1,2,3,6个,即方程不同实数根1,2,3,6,故④正确; 故选:B .2.(2023·全国·高三专题练习)已知函数()()221,0log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若方程()f x a =有四个不同的解1234,,,,x x x x 且1234x x x x <<<,则()3122341x x x x x ⋅++⋅的取值范围是( ) A .(]1,1- B .[]1,1-C .[)1,1-D .()1,1-【答案】A【过程解析】21log 12x x =-⇒=. 先作()f x 图象,由图象可得12343121,1.2x x x x x ⎡⎫+=-=∈⎪⎢⎣⎭,,因此()31232343112x x x x x x x ⋅++=-+⋅为1,12⎡⎫⎪⎢⎣⎭单调递减函数, 11121,2111212-⨯+=-⨯+=-, 从而()(]31223411,1x x x x x ⋅++∈-⋅. 故选:A3.(2023秋·四川泸州·高一四川省泸县第四中学校考阶段练习)已知函数()32log ,031108,333x x f x x x x ⎧<≤⎪=⎨-+>⎪⎩,若方程()f x m =有四个不同的实根1x ,2x ,3x ,4x ,满足1234x x x x <<<,则()()341233x x x x --的取值范围是( )A .()0,3B .(]0,4C .(]3,4D .()1,3【答案】A【过程解析】作出函数()32log ,031108,333x x f x x x x ⎧<≤⎪=⎨-+>⎪⎩的图象,如图所示:方程()f x m =有四个不同的实根1x ,2x ,3x ,4x ,满足1234x x x x <<<, 则01m <<,()33,4x ∈3log x m =即:3231log ,log x m x m ==-,所以3231log log 0x x +=, 321log 0x x =,所以211x x =,根据二次函数的对称性可得:3410x x +=,()()()()341212343423333391*********x x x x x x xx x x x x x x --==-+--=-+-+,()33,4x ∈考虑函数()21021,3,4y x x x =-+-∈单调递增,3,0x y ==,4,3x y ==所以()33,4x ∈时2331021x x -+-的取值范围为()0,3.故选:A4.(2023·全国·高三专题练习)已知函数f (x )=11,1211,12xx x x ⎧⎛⎫-⎪ ⎪⎪⎝⎭⎨⎪-+>⎪⎩…,若互不相等的实数x 1,x 2,x 3满足f (x 1)=f (x 2)=f (x 3),则123111222x x x⎛⎫⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭+⎭⎝的取值范围是( )A .(95,42)B .(1,4)C .4)D .(4,6)【答案】A【过程解析】画出分段函数f (x )=11,1211,12xx x x ⎧⎛⎫-⎪ ⎪⎪⎝⎭⎨⎪-+>⎪⎩…的图像如图:令互不相等的实数x 1,x 2,x 3满足f (x 1)=f (x 2)=f (x 3)=t ,t ∈(0,12), 则x 1∈22(log ,0)3,x 2∈(0,1),x 3∈(1,2), 则123111222xxx⎛⎫⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭+⎭⎝=1+t +1﹣t +22t ﹣2=2+22t ﹣2, 又t ∈(0,12),∴123111222x x x⎛⎫⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭+⎭⎝∈(95,42).故选:A .5.(2023·全国·高三专题练习)已知定义域为()0,6的函数()y f x =的图象关于3x =对称,当(]0,3x ∈时,()ln f x x =,若方程()f x t =有四个不等实根1x ,2x ,3x ,()41234x x x x x <<<时,都有()223412190k x x x x -++-≥成立,则实数k 的最小值为( )A .724 B .13C .12D .113【答案】A【过程解析】作出函数()f x 的图象,如图,作直线y t =,它与()f x 图象的四个交点的横坐标依次为1x ,2x ,3x ,()41234x x x x x <<<,因为函数()y f x =的图象关于3x =对称,所以32416,6x x x x =-=-,12ln ln x x -=,即121=x x ,且213x <<,显然341x x >,不等式()223412190k x x x x -++-≥变形为2212349()1x x k x x -+≥-,3421121212(6)(6)366()376()x x x x x x x x x x =--=-++=-+,222212121212()2()2x x x x x x x x +=+-=+-,所以222121234129()11()1366()x x x x x x x x -+-+=--+,由勾形函数性质知12221x x x x +=+在2(1,3)x ∈时是增函数,所以12221102,3x x x x ⎛⎫+=+∈ ⎪⎝⎭, 令12t x x =+,则102,3t ⎛⎫∈ ⎪⎝⎭,211()6(6)t g t t -=-2116(6)t t -=-,22(6)25()6(6)t g t t --'=-,当102,3t ⎛⎫∈ ⎪⎝⎭时,()0g t '<,()g t 单调递减,所以7()(2)24g t g <=,所以724k ≥,即k 的最小值是724. 故选:A .6.(2023·全国·高三专题练习)已知函数()22,0,()2,0xx x f x g x x x e x >⎧==-+⎨≤⎩(其中e 是自然对数的底数),若关于x 的方程(())0g f x m -=恰有三个不等实根123,,x x x ,且123x x x <<,则21322x x x --的最小值为( )A .ln 33-B .3ln 22-C .ln 23-D .1-【答案】A【过程解析】由题意设()f x t =,根据方程(())0g f x m -=恰有三个不等实根, 即2()20g t t t m =-+-=必有两个不相等的实根12,t t ,不妨设12t t <122t t ∴+=,则212t t =-,作出()f x 的图象,函数y t =与()f x 三个不等实根123,,x x x ,且123x x x <<,那么1221xx e t ==,可得312x t =-,101t <≤,所以21311223ln 4x x x t t --=--,构造新函数1()3ln 4(01),()3h t t t t h t t'=--<≤=-当()0h t '<时,10,,()3t h t ⎛⎫∈∴ ⎪⎝⎭在10,3⎛⎫⎪⎝⎭单调递减;当()0h t '>时,1,1,()3t h t ⎛⎫∈∴ ⎪⎝⎭在1,13⎛⎫ ⎪⎝⎭单调递增;∴当13t =时,(t)h 取得最小值为ln 33-,即21322x x x --的最小值为ln 33-; 故选:A7.(2023·吉林长春·东北师大附中校考模拟预测)已知函数3e ,0()3,0x x f x x x ⎧≤=⎨>⎩,()22g x x x =-+(其中e 是自然对数的底数),若关于x 的方程()(())F x g f x m =-恰有三个不同的零点123,,x x x ,且123x x x <<,则12333x x x -+的最大值为( )A .31ln 4+B .41ln 3+C .3ln 3-D .3ln 3+【答案】A【过程解析】由()f x 过程解析式,在(,0]-∞上()f x 单调递增且值域为(0,1],在(0,)+∞上()f x 单调递增且值域为(0,)+∞, 函数()f x 图象如下:所以,()f x 的值域在(0,1]上任意函数值都有两个x 值与之对应,值域在(1,)+∞上任意函数值都有一个x 值与之对应,要使()(())F x g f x m =-恰有三个不同的零点123,,x x x ,则()g x 与y m =的交点横坐标一个在(0,1]上,另一个在(1,)+∞上,由2()2g x x x =-+开口向下且对称轴为1x =,由上图知:01m <<,此时12()()g t g t m ==且12012t t <<<<,122t t +=,结合()f x 图象及123x x x <<有1321e 3xx t ==,323x t =,则112123ln ,,333t t tx x x ===, 所以11123121433ln ln 233t tx x x t t t -+=-+=-+,且101t <<, 令4()ln 23h x x x =-+且01x <<,则1434()33xh x x x -=='-,当3(0,4x ∈时()0h x '>,()h x 递增;当3(,1)4x ∈时()0h x '<,()h x 递减;所以max 33()()ln 144h x h ==+,故12333x x x -+最大值为3ln 14+.故选:A8.(2023·全国·高三专题练习)已知函数()22322,,log ,,x mx m x m f x x x m ⎧-++≤⎪=⎨>⎪⎩,其中01m <<,若存在实数a ,使得关于x 的方程()f x a =恰有三个互异的实数解,则实数m 的取值范围是( ) A .1,14⎛⎫⎪⎝⎭B .1,19⎛⎫ ⎪⎝⎭C .10,4⎛⎫ ⎪⎝⎭D .10,9⎛⎫ ⎪⎝⎭【答案】D【过程解析】因为01m <<, 所以()f x 的大致图象,如图所示:当x m ≤时,()()222f x x m =-+≥,因为存在实数a ,使得关于x 的方程()f x a =恰有三个互异的实数解, 所以3log 2m >,又01m <<, 解得109m <<, 故选:D9.(2023·全国·高三专题练习)已知函数lg ,0()lg(),0x x g x x x ⎧>⎪=⎨--<⎪⎩,若关于x 的方程()()5222g x g x -+=有四个不等根1234,,,x x x x ,则()()()()12341234x x x x g x g x g x g x +++++++的值是( )A .0B .2C .4D .8【答案】A【过程解析】由方程()()5222g x g x -+=可得()1g x =±, 因为函数lg ,0()lg(),0x x g x x x ⎧>⎪=⎨--<⎪⎩, 设0x >,则0x -<,则()()|lg |(|lg ()|)|lg ||lg |0g x g x x x x x +-=+---=-=, 所以()g x 为奇函数且1x ,2x ,3x ,4x 是()1g x =±的根, 所以12340x x x x +++=,不妨有12()()1g x g x ==-,34()()1g x g x ==, 所以1234()()()()0g x g x g x g x +++=.故12341234()()()()x x x x g x g x g x g x +++++++的值是0. 故选:A .10.(2023秋·宁夏·高三宁夏大学附属中学校考阶段练习)已知函数22,0(){|log |,0x x f x x x +≤=>,若关于x 的方程()()f x a a R =∈有四个不同实数解1234,,,x x x x ,且1234x x x x <<<,则1234x x x x +++的取值范围为 ( ) A .1(2,4-B .1[2,]4-C .[2,)-+∞D .(2,)-+∞【答案】A【过程解析】作出函数()f x 的图象,如图,作直线y a =,当02a <≤时,直线y a =与函数()f x 图象有四个交点,由图象知124x x +=-,2324log log x x -=,即341x x =,(0)2f =, 2log 2x -=,14x =,所以3114x ≤<, 所以12343314x x x x x x +++=-++,由对勾函数性质知函数3314y x x =-++在31,14x ⎡⎫∈⎪⎢⎣⎭上是减函数,所以31,14x ⎡⎫∈⎪⎢⎣⎭时,331142,4y x x ⎛⎤=-++∈- ⎥⎝⎦.故选:A .11.(2023秋·湖北武汉·高一期末)已知函数()()2242,1,log 1,1,x x x f x x x ⎧++≤⎪=⎨->⎪⎩,若关于x 的方程()f x t =有四个不同的实数解1x ,2x ,3x ,4x ,且1234x x x x <<<,则)1234122x x x x ++的最小值为( ) A .72B .8C .92D .12【答案】D【过程解析】函数图像如图所示,()17f =,(]0,7t ∈,1234212x x x x <-<≤<<<,124x x +=-,由()()()()()()333433434log 1log 1log 110111x x x x x x --=-⇒--=⇒--=,∴()()34342112122251x x x x =-+++-5922≥=, 当且仅当343,32x x ==时,等号成立,此时1t =;)()2212121212422x x x x x x x x ⎛⎫+⎛⎫-=-≥-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭,当且仅当1222x x =-=-+1t =.所以)1234122x x x x ++的最小值为91422-=. 故选:D12.(2023秋·河南郑州·高一新密市第一高级中学校考阶段练习)已知函数()()22log 1,131255,322x x f x x x x ⎧+-<≤⎪=⎨-+>⎪⎩,若关于x 的方程()f x m =有四个不同的实数解1234,,,x x x x ,且满足1234x x x x <<<,则下列结论正确的是( )A .121x x =-B .[]3421,25x x ∈C .3422x x +=D .12111x x +=- 【答案】D【过程解析】作函数()y f x =和y m =的图象,如图所示:当1m =时,()()2122log 1log 1x x +=+,即()()2122log 11,log 11x x +=-+=,解得121,12x x =-=,此时1212x x =-,故A 错误;结合图象知,02m <<,当3x >时,可知34,x x 是方程()2125522f x x x m =-+=,即2102520x x m -+-=的二根,故3410x x +=,()3425221,25x x m =-∈,端点取不到,故BC错误;当13x -<≤时,()()2122log 1log 1x x +=+,即()()2122log 1log 1x x -+=+, 故()2221log log 111x x =++,即21111x x =++,所以()()21111x x ++=, 故1212x x x x +=-,即12121x x x x +=-,所以12111x x +=-,故D 正确. 故选:D.13.(2023秋·江西上饶·高一统考期末)已知函数()()221,0log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若方程()f x a=有四个不同的实数解1x ,2x ,3x ,4x 且1234x x x x <<<,则()3122342x x x x x -+的取值范围是( )A .()4,5B .(]4,5C .()4,+∞D .[)4,+∞【答案】B【过程解析】作出函数()221,0()log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩的图象如下:因为方程()f x a =有四个不同的解1x ,2x ,3x ,4x ,且1234x x x x <<<, 所以有122x x +=-,341x x =, 故3123234322()2x x x x x x x -+=+, 再由2log 1x =可得2x =或12x =,即3112x <≤, 令2()2g x x x =+,(112x ≤<), 任取12112x x ≤<<,则120x x -<,12110x x ->, 所以()12121212122211()()2222g x g x x x x x x x x x ⎛⎫⎛⎫⎛⎫-=+-+=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()12121210x x x x ⎛⎫=--< ⎪⎝⎭,即12()()<g x g x , 所以函数2()2g x x x =+在1,12⎡⎫⎪⎢⎣⎭上单调递减, 又152g ⎛⎫= ⎪⎝⎭,4(1)g =,所以()(4,5]g x ∈.即3122342()x x x x x -+的取值范围是(4,5]. 故选:B.14.(2023春·全国·高三校联考专题练习)已知函数11()||||f x x a x b x a x=++-+--有五个不同的零点,且所有零点之和为52,则实数b 的值为( ) A .1 B .3 C .5 D .7【答案】C【过程解析】因为11()||||f x x a x b x a x =++-+--,11()||||()f a x a x x b f x a x x-=-+++-=-,所以函数()f x 的图象关于直线2ax =对称, 设五个零点分别为12345,,,,x x x x x ,且12345x x x x x <<<<, 则15243,,2a x x a x x a x +=+==, 所以1234555222a a x x x x x a a ++++=++==,所以1a =, 则312x =,由3333311()|||1|01f x x x b x x =++-+-=-,可得11|2||12|22b ++-+=,则5b =.故选:C. 二、多选题15.(2023秋·云南昆明·高一统考期末)已知函数ln(2),(2,0]()(2),(0,2]x x f x f x x ⎧+∈-=⎨-∈⎩,函数()y f x m =-有四个不同的零点,且从小到大依次为1x ,2x ,3x ,4x ,则下列结论正确的是( )A .121=x xB .1201≤<x xC .341x x =D .2410-<≤x x【答案】BCD【过程解析】因为ln(2),(2,0]()(2),(0,2]x x f x f x x ⎧+∈-=⎨-∈⎩,所以当(2,0]x ∈-时,()ln(2)f x x =+, 当2(]0,x ∈时,()(2)f x f x =-,所以2(2,0]x -∈-时,(2)ln(22)ln f x x x -=-+=, 所以ln(2),(2,0]()ln ,(0,2]x x f x x x ⎧+∈-⎪=⎨∈⎪⎩, 作出()f x 的图象如图所示,若()f x m =有4个解,则()y f x =与y m =的图象有4个交点,如图(0,ln 2]m ∈,所以1113,1,()ln(2)2x f x x ⎡⎫∈--=-+⎪⎢⎣⎭,(]2221,0,()ln(2)x f x x ∈-=+,由12()()f x f x =,得12ln(2)ln(2)x x -+=+, 即12ln(2)ln(2)0x x +++=,所以12ln[(2)(2)]0x x ++=,所以12(2)(2)1x x ++=, 所以12122()30x x x x +++=,当20x =时,120x x =; 当20x <时,由基本不等式可得12x x +<-所以1230x x ->,解得01<<3>(舍); 所以12[0,1)x x ∈, 所以A 错误,B 正确,对于C ,3331,1,()ln 2x f x x ⎡⎫∈=-⎪⎢⎣⎭,(]4441,2,()ln x f x x ∈=,因为34()()f x f x =,所以34ln ln x x -=,所以34ln ln 0x x +=,即()34ln 0x x =, 所以341x x =,所以C 正确,对于D ,因为2424(1,0],(1,2],2x x x x ∈-∈+=,所以()()224222211(1,0]x x x x x =+=+-∈-,所以D 正确. 故选:BCD16.(2023·全国·高三专题练习)已知函数()e ,0,lg ,010,11,10,x x x f x x x x x ⎧⋅≤⎪=<<⎨⎪-+≥⎩,若22()3()()2g x f x mf x m =--有6个不同的零点分别为123456,,,,,x x x x x x ,且()()()123456345,x x x x x x f x f x f x <<<<<==,则下列说法正确的是( )A .当0x ≤时,()10ef x -≤≤B .34x x +的取值范围为1012,10⎛⎫⎪⎝⎭C .当0m <时,()()()()1234563f x f x f x x x f x +++的取值范围为1,0e ⎛⎫- ⎪⎝⎭D .当0m >时,()()()()1234563f x f x f x x x f x +++的取值范围为20,3e ⎛⎫⎪⎝⎭【答案】AC【过程解析】当0x ≤时,()e x f x x =⋅,此时()(1)e x f x x '=+⋅,令()0f x '>,解得10-<≤x ,令()0f x '<,解得1x <-,可得()f x 在(,1)-∞-上单调递减,在(1,0)-上单调递增,且1(1),(0)0ef f -=-=,∴当0x ≤时,1()0ef x -≤≤,故A 正确; 作出如图所示图像:由22()3()()2g x f x mf x m =--有6个不同的零点, 等价于223()()20f x mf x m --=有6个不同的实数根, 解得()f x m =或2()3m f x =-, ∵341x x ⋅=,∴若343311012,10x x x x ⎛⎫+=+∈ ⎪⎝⎭,可得31110x <<,而当0m >时,120e 3m -<-<,可得302e m <<,而3112e 10f ⎛⎫<= ⎪⎝⎭;当0m <时,10e m -<<,可得22033e m <-<而2113e 10f ⎛⎫<= ⎪⎝⎭, 故3x 的范围为1,110⎛⎫ ⎪⎝⎭的子集,34x x +的取值范围不可能为1012,10⎛⎫⎪⎝⎭,故B 选项错误;该方程有6个根,且()()()345f x f x f x ==,知341x x ⋅=且()()()126f x f x f x ==,当0m <时,()()()1261,0e f x f x f x m ⎛⎫===∈- ⎪⎝⎭,()()()3452(0,1)3m f x f x f x ===-∈,联立解得1,0e m ⎛⎫∈- ⎪⎝⎭, ()()()()()()12345615133332,0e f x f x f x x x f x f x f x m m m ⎛⎫+++=+=-=∈- ⎪⎝⎭,故C 正确;当0m >时,()()()12621,03e m f x f x f x ⎛⎫===-∈- ⎪⎝⎭, ()()()345(0,1)f x f x f x m ===∈,联立解得30,2e m ⎛⎫∈ ⎪⎝⎭,()()()()()()123456153333230,2e f x f x f x x x f x f x f x m m m ⎛⎫+++=+=-+=∈ ⎪⎝⎭.故D 错误.故选:AC.17.(2023·全国·高三专题练习)设函数22,0()ln ,0x x x f x x x ⎧--⎪=⎨>⎪⎩…,则下列命题中正确的是( )A .若方程()f x a =有四个不同的实根1x ,2x ,3x ,4x ,则1234x x x x ⋅⋅⋅的取值范围是(0,1)B .若方程()f x a =有四个不同的实根1x ,2x ,3x ,4x ,则1234x x x x +++的取值范围是(0,)+∞C .若方程()f x ax =有四个不同的实根,则a 的取值范围是10,e ⎛⎫⎪⎝⎭D .方程21()()()10f x a f x a -++=的不同实根的个数只能是1,2,3,6【答案】AD【过程解析】对于A :作出()f x 的图像如下:若方程()f x a =有四个不同的实根1x ,2x ,3x ,4x ,则01a <<,不妨设1234x x x x <<<, 则1x ,2x 是方程220x x a ---=的两个不等的实数根,3x ,4x 是方程|ln |x a =的两个不等的实数根,所以12x x a =,34ln ln x x -=,所以43ln ln 0x x +=,所以341x x =, 所以1234(0,1)x x x x a =∈,故A 正确;对于B :由上可知,122x x +=-,34ln ln x x a -==,且01a <<, 所以341x x =,所以31,1ex ⎛⎫∈ ⎪⎝⎭,4e (1,)x ∈,所以344411(2,1)e x x x x +=+∈+,所以12341(0,1)ex x x x +++∈+,故B 错误;对于C :方程()f x ax =的实数根的个数,即可函数()y f x =与y ax =的交点个数,因为y ax =恒过坐标原点,当0a =时,有3个交点,当a<0时最多2个交点,所以0a >, 当y ax =与ln (1)y x x =>相切时,设切点为()00,ln x x , 即1y x '=,所以0000ln 1|x x x y x x ='==,解得0e x =,所以0e 1|x x y ='=,所以1ea =,所以当y ax =与ln (1)y x x =>相切时, 即1ea =时,此时有4个交点,若()f x ax =有4个实数根,即有4个交点,当1e>a 时由图可知只有3个交点,当10e a <<时,令()ln g x x ax =-,()1,x ∈+∞,则()11ax g x a x x-'=-=,则当11x a <<时()0g x '>,即()g x 单调递增,当1x a >时()0g x '<,即()g x 单调递减,所以当1x a =时,函数取得极大值即最大值,()max 1ln 10g x g a a ⎛⎫==--> ⎪⎝⎭,又()10g a =-<及对数函数与一次函数的增长趋势可知,当x 无限大时()0g x <,即()g x 在11,a ⎛⎫ ⎪⎝⎭和1,a ⎛⎫+∞ ⎪⎝⎭内各有一个零点,即()f x ax =有5个实数根,故C 错误; 对于D :21()()()10f x a f x a -++=,所以1[()][()]0f x a f x a--=,所以()f x a =或1()f x a=, 由图可知,当1m >时,()f x m =的交点个数为2, 当1m =,0时,()f x m =的交点个数为3, 当01m <<时,()f x m =的交点个数为4, 当0m <时,()f x m =的交点个数为1,所以若1a >时,则1(0,1)a∈,交点的个数为246+=个, 若1a =时,则11a=,交点的个数为3个, 若01a <<,则11a>,交点有426+=个, 若a<0且1a ≠-时,则10a<且1a a ≠,交点有112+=个,若11a a=-=,交点有1个,综上所述,交点可能由1,2,3,6个,即方程不同实数根1,2,3,6,故D 正确; 故选:AD .18.(2023秋·辽宁大连·高一育明高中校考期末)已知函数()()22log 2,241617,42x x f x x x x ⎧-<≤⎪=⎨-+>⎪⎩,若方程()f x m =有四个不同的实根1234,,,x x x x ,满足1234x x x x <<<,则下列说法正确的是( )A .()121242x x x x +=+B .3412x x +=C .()3432,34x x ∈D .函数()()()()21g x f x m f x m =+--的零点为12346,,,,x x x x【答案】BCD【过程解析】由过程解析式可得()f x 图象如下图所示:若()f x m =有四个不同的实数根,则()f x 与y m =有四个不同的交点, 由图象可知:123423468x x x x <<<<<<<<,01m <<; 对于A ,()()12f x f x = ,即()()2122log 2log 2x x -=-,()()2122log 2log 2x x ∴--=-,()22211log log 22x x ∴=--,()()12221x x ∴--=, 整理可得:()1212412x x x x +=++,A 错误;对于B ,()()34f x f x = ,3x ∴与4x 关于直线6x =对称,3412x x ∴+=,B 正确; 对于C ,3x 与4x 是方程()2161702x m f m x x -+-==-的两根, ()34217342x x m m ∴=-=-,又01m <<,()3432,34x x ∴∈,C 正确;对于D ,()()()()()()211g x f x m f x m f x m f x =+--=-+⎡⎤⎡⎤⎣⎦⎣⎦,由()0g x =得:()f x m =或()1f x =-,()f x m =的根为1234,,,x x x x ;()1f x =-的根为6,()g x ∴的零点为12346,,,,x x x x ,D 正确.故选:BCD.19.(2023秋·山西太原·高一古交市第一中学校校考阶段练习)已知函数22log ,02()813,2x x f x x x x ⎧<<=⎨-+≥⎩,若f (x )=a 有四个不同的实数解x 1,x 2,x 3,x 4,且满足x 1<x 2<x 3<x 4,则下列命题正确的是( )A .0<a <1B.12922x x ⎡⎫+∈⎪⎢⎣⎭C .12342110,2x x x x ⎛⎫+++∈ ⎪⎝⎭D.)122x x ⎡+∈⎣【答案】ACD 【过程解析】函数()f x 的图象如上所示,方程()f x a =的解可以转化为函数()f x 与y a =图象交点的横坐标,由图可知01a <<,故A 正确;由题意可知2122log log x x -=,即212log 0x x =,解得121=x x ,由图可知212x <<,所以1222122x x x x +=+,令2212=+y x x ,则函数2212=+y x x 在()1,2上单调递增,当21x =时,3y =,22x =时,92y =,所以122xx +的范围为93,2⎛⎫⎪⎝⎭,故B 错;函数2813y x x =-+的对称轴为4x =,所以348x x +=,又121=x x ,所以12342218x x x x x x +++=++,函数()22218g x x x =++在()1,2上单调递增,()110g =,()2122g =,所以12342110,2x x x x ⎛⎫+++∈ ⎪⎝⎭,故C 正确;122222x x x x +=+,函数()2222h x x x =+在(上单调递减,)2上单调递增,h=,()13h =,()23h =,所以)122x x ⎡+∈⎣,故D 正确.故选:ACD.20.(2023秋·重庆铜梁·高一校考期中)已知奇函数()f x 的定义域为R ,()3f x +为偶函数,且()f x 在[]0,3上单调递减.若关于x 的方程()f x a =在区间[]12,12-上有4个不同的根1234,,,x x x x ,则( )A .()()6f x f x =+B .()f x 的图象关于直线3x =对称C .1234x x x x +++的值可能为12-D .1234x x x x +++的值可能为12【答案】BCD【过程解析】()()()()()12939366f x f x f x f x f x +=++=--+=--=-+()()()()3333f x f x f x f x =-++=---+=--=.所以()()12f x f x =+,A 错误.因为()()33f x f x +=-+,所以()f x 的图象关于直线3x =对称,B 正确. 画出()f x 的一种可能图象,如图所示,不妨假设1234x x x x <<<.根据对称性有: 当()03a f <<-时,126x x +=-,3418x x +=,123412x x x x +++=,C 正确. 当()30f a <<时,1218x x +=-,346x x +=,123412x x x x +++=-,D 正确. 故选:BCD21.(2023·全国·高三专题练习)设函数()2101,0lg ,0x x x f x x x ⎧++≤⎪=⎨>⎪⎩,若关于x 的方程()()f x a a R =∈有四个实数解1234,,,x x x x ,且1234x x x x <<<,则()()1234x x x x +-的值可能是( )A .0B .1C .99D .100【答案】BC【过程解析】如图所示:因为关于x 的方程()()f x a a R =∈有四个实数解1234,,,x x x x ,且1234x x x x <<<,所以01a <≤.2101y x x =++的对称轴为5x =-,所以1210x x +=-. 因为34lg lg x x =,所以34lg lg 0x x +=,即341x x =,431x x =. 因为3lg 1x ≤,所以31110x ≤<. 所以()()123433110x x x x x x ⎛⎫+-=-- ⎪⎝⎭, 因为110y x x ⎛⎫=-- ⎪⎝⎭,1110x ≤<为减函数,所以()()(]1234330110,99x x x x x x ⎛⎫∈ ⎪⎭-⎝+-=-.故选:BC 三、填空题22.(2023秋·石河子一中校考阶段练习)已知函数()2e ,0ln ,>0xx x f x x x ⎧-≤⎪=⎨⎪⎩,若函数()y f x b=-有四个不同的零点1x 、2x 、3x 、4x ,且1234x x x x <<<,则以下结论正确的是_____.①22342x x +>;②20eb <<; ③122x x +=-; ④()13422x x x x +<-. 【答案】①②④【过程解析】设()2e xg x x =-,其中x ∈R ,则()()21e xg x x '=-+,当1x <-时,()0g x ¢>,此时函数()g x 单调递增, 当1x >-时,()0g x ¢<,此时函数()g x 单调递减, 所以,函数()g x 的极大值为()21eg -=,且当0x <时,()0g x >, 作出函数()f x 、y b =的图象如下图所示:。

高考数学复习专题 基本不等式

高考数学复习专题 基本不等式

高考数学复习专题基本不等式全国名校高考数学复优质学案、专题汇编(附详解)高考数学复专题:基本不等式一、基本不等式1.基本不等式:对于任意非负实数 $a$ 和 $b$,有 $a+b \geq 2\sqrt{ab}$,等号成立当且仅当 $a=b$。

2.算术平均数与几何平均数:设 $a>0$,$b>0$,则$a$ 和 $b$ 的算术平均数不小于它们的几何平均数。

3.利用基本不等式求最值问题:1)如果积 $xy$ 是定值 $P$,那么当且仅当 $x=y$ 时,$x+y$ 有最小值 $2\sqrt{P}$。

2)如果和 $x+y$ 是定值 $P$,那么当且仅当 $x=y$ 时,$xy$ 有最大值 $\frac{P}{4}$。

4.常用结论:1)$a+b \geq 2ab$($a$,$b$ 为任意实数)。

2)$\frac{b^2}{a}+\frac{a^2}{b} \geq 2(a+b)$($a$,$b$ 为同号实数)。

3)$ab \leq \frac{a^2+b^2}{2} \leq (\frac{a+b}{2})^2$($a$,$b$ 为任意实数)。

4)$\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} \geq\frac{3}{2}$($a$,$b$,$c$ 为正实数)。

5)$2(a+b) \geq \sqrt{2}(a+b)$($a$,$b$ 为任意实数)。

6)$\frac{a^2+b^2}{a+b} \geq \frac{a+b}{2}$($a$,$b$ 为任意实数)。

7)$a^2+b^2 \geq ab$($a>0$,$b>0$)。

二、基本不等式在实际中的应用1.问题的背景是人们关心的社会热点问题,如物价、销售、税收等。

题目往往较长,解题时需认真阅读,从中提炼出有用信息,建立数学模型,转化为数学问题求解。

2.经常建立的函数模型有正(反)比例函数、一次函数、二次函数、分段函数以及 $y=ax+b$($a>0$,$b>0$)等。

高考数学复习专题知识梳理—函数的概念与性质

高考数学复习专题知识梳理—函数的概念与性质

高考数学复习专题知识梳理—函数的概念与性质1.函数的概念定义一般地,设A ,B 是非空的实数集,如果对于集合A 中的任意一个数x按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数三要素对应关系y =f (x ),x ∈A 定义域自变量x 的取值范围值域与x 的值相对应的y 的函数值的集合{f (x )|x ∈A }思考1:(1)有人认为“y =f (x )”表示的是“y 等于f 与x 的乘积”,这种看法对吗?(2)f (x )与f (a )有何区别与联系?提示:(1)这种看法不对.符号y =f (x )是“y 是x 的函数”的数学表示,应理解为x 是自变量,它是关系所施加的对象;f 是对应关系,它可以是一个或几个解析式,可以是图象、表格,也可以是文字描述;y 是自变量的函数,当x 允许取某一具体值时,相应的y 值为与该自变量值对应的函数值.y =f (x )仅仅是函数符号,不表示“y 等于f 与x 的乘积”.在研究函数时,除用符号f (x )外,还常用g (x ),F (x ),G (x )等来表示函数.(2)f (x )与f (a )的区别与联系:f (a )表示当x =a 时,函数f (x )的值,是一个常量,而f (x )是自变量x 的函数,一般情况下,它是一个变量,f (a )是f (x )的一个特殊值,如一次函数f (x )=3x +4,当x =8时,f (8)=3×8+4=28是一个常数.2.区间及有关概念(1)一般区间的表示设a ,b ∈R ,且a <b ,规定如下:定义名称符号数轴表示{x |a ≤x ≤b }闭区间[a ,b ]{x |a <x <b }开区间(a ,b ){x |a ≤x <b }半开半闭区间[a ,b ){x |a <x ≤b }半开半闭区间(a ,b ](2)特殊区间的表示定义R{x |x ≥a }{x |x >a }{x |x ≤a }{x |x <a }符号(-∞,+∞)[a ,+∞)(a ,+∞)(-∞,a ](-∞,a )思考2:(1)区间是数集的另一种表示方法,那么任何数集都能用区间表示吗?(2)“∞”是数吗?如何正确使用“∞”?提示:(1)不是任何数集都能用区间表示,如集合{0}就不能用区间表示.(2)“∞”读作“无穷大”,是一个符号,不是数.以“-∞”或“+∞”作为区间一端时,这一端必须是小括号.3.函数的表示法思考:任何一个函数都可以用解析法、列表法、图表法三种形式表示吗?提示:不一定.并不是所有的函数都可以用解析式表示,不仅如此,图象法也不适用于所有函数,如D (x ),x ∈Q ,,x ∈∁R Q .列表法虽在理论上适用于所有函数,但对于自变量有无数个取值的情况,列表法只能表示函数的一个概况或片段.4.分段函数如果函数y =f (x ),x ∈A ,根据自变量x 在A 中不同的取值范围,有着不同的对应关系,则称这样的函数为分段函数.思考:分段函数是一个函数还是几个函数?提示:分段函数是一个函数,而不是几个函数.5.增函数与减函数的定义条件一般地,设函数f (x )的定义域为I ,区间D ⊆I :如果∀x 1,x 2∈D ,当x 1<x 2时都有f (x 1)<f (x 2)都有f (x 1)>f (x 2)结论那么就说函数f (x )在区间D 上是增函数那么就说函数f (x )在区间D 上是减函数图示思考1:增(减)函数定义中的x 1,x 2有什么特征?提示:定义中的x 1,x 2有以下3个特征:(1)任意性,即“任意取x 1,x 2”中“任意”二字绝不能去掉,证明时不能以特殊代替一般;(2)有大小,通常规定x 1<x 2;(3)属于同一个单调区间.2.函数的单调性与单调区间如果函数y =f (x )在区间D 上单调递增或单调递减,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间.思考2:函数y =1x在定义域上是减函数吗?提示:不是.y =1x 在(-∞,0)上递减,在(0,+∞)上也递减,但不能说y =1x 在(-∞,0)∪(0,+∞)上递减.6.函数最大值与最小值最大值最小值条件设函数y=f(x)的定义域为I,如果存在实数M满足:∀x∈I,都有f(x)≤M f(x)≥M∃x0∈I,使得f(x0)=M结论M是函数y=f(x)的最大值M是函数y=f(x)的最小值几何意义f(x)图象上最高点的纵坐标f(x)图象上最低点的纵坐标思考:若函数f(x)≤M,则M一定是函数的最大值吗?提示:不一定,只有定义域内存在一点x0,使f(x0)=M时,M才是函数的最大值,否则不是.7.函数的奇偶性奇偶性偶函数奇函数条件设函数f(x)的定义域为I,如果∀x∈I,都有-x∈I结论f(-x)=f(x)f(-x)=-f(x)图象特点关于y轴对称关于原点对称思考:具有奇偶性的函数,其定义域有何特点?提示:8.幂函数的概念一般地,函数y=xα叫做幂函数,其中x是自变量,α是常数.9.幂函数的图象在同一平面直角坐标系中,画出幂函数y=x,y=x2,y=x3,y=x 12,y=x-1的图象如图所示:10.幂函数的性质11.常见的几类函数模型<解题方法与技巧>1.判断对应关系是否为函数的2个条件(1)A,B必须是非空实数集.(2)A中任意一元素在B中有且只有一个元素与之对应.对应关系是“一对一”或“多对一”的是函数关系,“一对多”的不是函数关系.2.判断函数相等的方法(1)先看定义域,若定义域不同,则不相等;(2)若定义域相同,再化简函数的解析式,看对应关系是否相同.典例1:(1)下列各组函数是同一函数的是()①f(x)=-2x3与g(x)=x-2x;②f(x)=x与g(x)=x2;③f(x)=x0与g(x)=1x0;④f(x)=x2-2x-1与g(t)=t2-2t-1.A.①②B.①③C.③④D.①④(2)判断下列对应是不是从集合A到集合B的函数.①A=N,B=N*,对应法则f:对集合A中的元素取绝对值与B中元素对应;②A={-1,1,2,-2},B={1,4},对应法则f:x→y=x2,x∈A,y∈B;③A={-1,1,2,-2},B={1,2,4},对应法则f:x→y=x2,x∈A,y∈B;④A={三角形},B={x|x>0},对应法则f:对A中元素求面积与B中元素对应.(1)C[①f(x)=-2x3=|x|-2x与g(x)=x-2x的对应法则和值域不同,故不是同一函数.②g(x)=x2=|x|与f(x)=x的对应法则和值域不同,故不是同一函数.③f(x)=x0与g(x)=1x0都可化为y=1且定义域是{x|x≠0},故是同一函数.④f(x)=x2-2x-1与g(t)=t2-2t-1的定义域都是R,对应法则也相同,而与用什么字母表示无关,故是同一函数.由上可知是同一函数的是③④.故选C.](2)[解]①对于A中的元素0,在f的作用下得0,但0不属于B,即A中的元素0在B 中没有元素与之对应,所以不是函数.②对于A中的元素±1,在f的作用下与B中的1对应,A中的元素±2,在f的作用下与B中的4对应,所以满足A中的任一元素与B中唯一元素对应,是“多对一”的对应,故是函数.③对于A中的任一元素,在对应关系f的作用下,B中都有唯一的元素与之对应,如±1对应1,±2对应4,所以是函数.④集合A不是数集,故不是函数.]3.函数求值的方法(1)已知f(x)的表达式时,只需用a替换表达式中的x即得f(a)的值.(2)求f(g(a))的值应遵循由里往外的原则.典例2:设f(x)=2x2+2,g(x)=1x+2,(1)求f(2),f(a+3),g(a)+g(0)(a≠-2),g(f(2)).(2)求g(f(x)).[思路点拨](1)直接把变量的取值代入相应函数解析式,求值即可;(2)把f(x)直接代入g(x)中便可得到g(f(x)).[解](1)因为f(x)=2x2+2,所以f(2)=2×22+2=10,f(a+3)=2(a+3)2+2=2a2+12a+20.因为g(x)=1x+2,所以g(a)+g(0)=1a+2+10+2=1a+2+12(a≠-2).g(f(2))=g(10)=110+2=1 12 .(2)g(f(x))=1f(x)+2=12x2+2+2=12x2+4.4.求函数定义域的常用方法(1)若f(x)是分式,则应考虑使分母不为零.(2)若f(x)是偶次根式,则被开方数大于或等于零.(3)若f(x)是指数幂,则函数的定义域是使幂运算有意义的实数集合.(4)若f(x)是由几个式子构成的,则函数的定义域是几个部分定义域的交集.(5)若f(x)是实际问题的解析式,则应符合实际问题,使实际问题有意义.典例3:1.已知函数的解析式,求其定义域时,能否可以对其先化简再求定义域?提示:不可以.如f(x)=x+1x2-1.倘若先化简,则f(x)=1x-1,从而定义域与原函数不等价.2.若函数y=f(x+1)的定义域是[1,2],这里的“[1,2]”是指谁的取值范围?函数y=f(x)的定义域是什么?提示:[1,2]是自变量x的取值范围.函数y=f(x)的定义域是x+1的范围[2,3].5.分段函数求函数值的方法:(1)确定要求值的自变量属于哪一段区间.(2)代入该段的解析式求值,直到求出值为止.当出现f(f(x0))的形式时,应从内到外依次求值.6..已知函数值求字母取值的步骤:(1)先对字母的取值范围分类讨论.(2)然后代入不同的解析式中.(3)通过解方程求出字母的值.(4)检验所求的值是否在所讨论的区间内.提醒:求某条件下自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后相应求出自变量的值,切记代入检验.典例4:求下列函数的定义域:(1)f(x)=2+3x-2;(2)f(x)=(x-1)0+2x+1;(3)f(x)=3-x·x-1;(4)f(x)=(x+1)2x+1-1-x.[思路点拨]要求函数的定义域,只需分母不为0,偶次方根中被开方数大于等于0即可.[解](1)当且仅当x-2≠0,即x≠2时,函数f(x)=2+3x-2有意义,所以这个函数的定义域为{x|x≠2}.(2),,,解得x>-1且x≠1,所以这个函数的定义域为{x|x>-1且x≠1}.(3)-x≥0,-1≥0,解得1≤x≤3,所以这个函数的定义域为{x|1≤x≤3}.(4)要使函数有意义,自变量x+1≠0,-x≥0,解得x≤1且x≠-1,即函数定义域为{x|x≤1且x≠-1}.已知函数f(x)+1,x≤-2,2+2x,-2<x<2,x-1,x≥2.(1)求f (-5),f (-3),f (2)若f (a )=3,求实数a 的值.[解](1)由-5∈(-∞,-2],-3∈(-2,2),-52∈(-∞,-2],知f (-5)=-5+1=-4,f (-3)=(-3)2+2×(-3)=3-2 3.∵=-52+1=-32,而-2<-32<2,∴+=94-3=-34.(2)当a ≤-2时,a +1=3,即a =2>-2,不合题意,舍去.当-2<a <2时,a 2+2a =3,即a 2+2a -3=0.∴(a -1)(a +3)=0,解得a =1或a =-3.∵1∈(-2,2),-3∉(-2,2),∴a =1符合题意.当a ≥2时,2a -1=3,即a =2符合题意.综上可得,当f (a )=3时,a =1或a =2.7.利用定义证明函数单调性的步骤(1)取值:设x 1,x 2是该区间内的任意两个值,且x 1<x 2.(2)作差变形:作差f (x 1)-f (x 2),并通过因式分解、通分、配方、有理化等手段,转化为易判断正负的式子.(3)定号:确定f (x 1)-f (x 2)的符号.(4)结论:根据f (x 1)-f (x 2)的符号及定义判断单调性.提醒:作差变形是证明单调性的关键,且变形的结果是几个因式乘积的形式.典例5:证明函数f (x )=x +1x在(0,1)上是减函数.[思路点拨]设元0<x 1<x 2<1―→作差:f (x 1)-f (x 2)――→变形判号:f (x 1)>f (x 2)――→结论减函数[证明]设x 1,x 2是区间(0,1)上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)12(x 1-x 2)(x 1-x 2)+x 2-x 1x 1x 2(x 1-x 2=(x 1-x 2)(-1+x 1x 2)x 1x 2∵0<x 1<x 2<1,∴x 1-x 2<0,0<x 1x 2<1,则-1+x 1x 2<0,∴(x 1-x 2)(-1+x 1x 2)x 1x 2>0,即f (x 1)>f (x 2),∴f (x )=x +1x在(0,1)上是减函数.8.函数单调性的应用(1)函数单调性定义的“双向性”:利用定义可以判断、证明函数的单调性,反过来,若已知函数的单调性可以确定函数中参数的取值范围.(2)若一个函数在区间[a ,b ]上是单调的,则此函数在这一单调区间内的任意子集上也是单调的.典例6:(1)若函数f (x )=-x 2-2(a +1)x +3在区间(-∞,3]上是增函数,则实数a 的取值范围是________.(2)已知函数y =f (x )是(-∞,+∞)上的增函数,且f (2x -3)>f (5x -6),则实数x 的取值范围为________.[思路点拨](1)分析f (x )的对称轴与区间的关系――→数形结合建立关于a 的不等式――→求a 的范围(2)f (2x -3)>f (5x -6)――――――――――――――――→f (x )在(-∞,+∞)上是增函数建立关于x 的不等式――→求x 的范围(1)(-∞,-4](2)(-∞,1)[(1)∵f (x )=-x 2-2(a +1)x +3的开口向下,要使f (x )在(-∞,3]上是增函数,只需-(a +1)≥3,即a ≤-4.∴实数a 的取值范围为(-∞,-4].(2)∵f (x )在(-∞,+∞)上是增函数,且f (2x -3)>f (5x -6),∴2x -3>5x -6,即x <1.∴实数x 的取值范围为(-∞,1).]9.利用单调性求函数的最大(小)值的一般步骤(1)判断函数的单调性.(2)利用单调性求出最大(小)值.2.函数的最大(小)值与单调性的关系(1)若函数f (x )在区间[a ,b ]上是增(减)函数,则f (x )在区间[a ,b ]上的最小(大)值是f (a ),最大(小)值是f (b ).(2)若函数f (x )在区间[a ,b ]上是增(减)函数,在区间[b ,c ]上是减(增)函数,则f (x )在区间[a ,c ]上的最大(小)值是f (b ),最小(大)值是f (a )与f (c )中较小(大)的一个.提醒:(1)求最值勿忘求定义域.(2)闭区间上的最值,不判断单调性而直接将两端点值代入是最容易出现的错误,求解时一定注意.典例7:已知函数f (x )=2x +1x +1.(1)判断函数在区间(-1,+∞)上的单调性,并用定义证明你的结论;(2)求该函数在区间[2,4]上的最大值和最小值.[解](1)f (x )在(-1,+∞)上为增函数,证明如下:任取-1<x 1<x 2,则f (x 1)-f (x 2)=2x 1+1x 1+1-2x 2+1x 2+1=x 1-x 2(x 1+1)(x 2+1),因为-1<x 1<x 2⇒x 1+1>0,x 2+1>0,x 1-x 2<0,所以f (x 1)-f (x 2)<0⇒f (x 1)<f (x 2),所以f (x )在(-1,+∞)上为增函数.(2)由(1)知f (x )在[2,4]上单调递增,所以f (x )的最小值为f (2)=2×2+12+1=53,最大值f (4)=2×4+14+1=95.10.解实际应用题的四个步骤(1)审题:解读实际问题,找出已知条件、未知条件,确定自变量和因变量的条件关系.(2)建模:建立数学模型,列出函数关系式.(3)求解:分析函数性质,利用数学知识探究问题解法(一定注意自变量的取值范围).(4)回归:数学问题回归实际问题,写出答案.典例8:一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为x x N *)件.当x ≤20时,年销售总收入为(33x -x 2)万元;当x >20时,年销售总收入为260万元.记该工厂生产并销售这种产品所得的年利润为y 万元.(年利润=年销售总收入-年总投资)(1)求y (万元)与x (件)的函数关系式;(2)当该工厂的年产量为多少件时,所得年利润最大?最大年利润是多少?[解](1)当0<x ≤20时,y =(33x -x 2)-x -100=-x 2+32x -100;当x >20时,y =260-100-x =160-x .故y x 2+32x -100,0<x ≤20,-x ,x >20(x ∈N *).(2)当0<x ≤20时,y =-x 2+32x -100=-(x -16)2+156,x =16时,y max =156.而当x >20时,160-x <140,故x =16时取得最大年利润,最大年利润为156万元.即当该工厂年产量为16件时,取得最大年利润为156万元.11.巧用奇、偶函数的图象求解问题(1)依据:奇函数⇔图象关于原点对称,偶函数⇔图象关于y轴对称.(2)求解:根据奇、偶函数图象的对称性可以解决诸如求函数值或画出奇偶函数图象的问题.典例9:已知奇函数f(x)的定义域为[-5,5],且在区间[0,5]上的图象如图所示.(1)画出在区间[-5,0]上的图象;(2)写出使f(x)<0的x的取值集合.[解](1)因为函数f(x)是奇函数,所以y=f(x)在[-5,5]上的图象关于原点对称.由y=f(x)在[0,5]上的图象,可知它在[-5,0]上的图象,如图所示.(2)由图象知,使函数值y<0的x的取值集合为(-2,0)∪(2,5).12.比较大小的求解策略,看自变量是否在同一单调区间上.(1)在同一单调区间上,直接利用函数的单调性比较大小;(2)不在同一单调区间上,需利用函数的奇偶性把自变量转化到同一单调区间上,然后利用单调性比较大小.典例10:函数y=f(x)在[0,2]上单调递增,且函数f(x+2)是偶函数,则下列结论成立的是()A.f(1)<B.f(1)<C.f(1)D.f(1)<[思路点拨]y=f(x+2)是偶函数―→[0,2]上f(x)的图象关于x=2对称――→比较大小递增B[∵函数f(x+2)是偶函数,∴函数f(x)的图象关于直线x=2对称,∴又f(x)在[0,2]上单调递∴f(1)<f(1)<13.判断一个函数是否为幂函数的方法判断一个函数是否为幂函数的依据是该函数是否为y=xα(α为常数)的形式,即函数的解析式为一个幂的形式,且需满足:(1)指数为常数;(2)底数为自变量;(3)系数为1.典例11:(1)在函数y=1x2,y=2x2,y=x2+x,y=1中,幂函数的个数为() A.0B.1C.2D.3(2)若函数f(x)是幂函数,且满足f(4)=3f(2),则f________.(1)B(2)13[(1)∵y=1x2=x-2,∴是幂函数;y=2x2由于出现系数2,因此不是幂函数;y=x2+x是两项和的形式,不是幂函数;y=1=x0(x≠0),可以看出,常函数y=1的图象比幂函数y=x0的图象多了一个点(0,1),所以常函数y=1不是幂函数.(2)设f(x)=xα,∵f(4)=3f(2),∴4α=3×2α,解得α=log23,∴23=13.]14.解决幂函数图象问题应把握的两个原则(1)依据图象高低判断幂指数大小,相关结论为:在(0,1)上,指数越大,幂函数图象越靠近x轴(简记为指大图低);在(1,+∞)上,指数越大,幂函数图象越远离x轴(简记为指大图高).(2)依据图象确定幂指数α与0,1的大小关系,即根据幂函数在第一象限内的图象(类似于y=x-1或y=x 12或y=x3)来判断.典例12:点(2,2)2f(x),g(x)的图象上,问当x为何值时,(1)f(x)>g(x);(2)f(x)=g(x);(3)f(x)<g(x).[解]设f(x)=xα,g(x)=xβ.∵(2)α=2,(-2)β=-1 2,∴α=2,β=-1,∴f(x)=x2,g(x)=x-1.分别作出它们的图象,如图所示.由图象知,(1)当x∈(-∞,0)∪(1,+∞)时,f(x)>g(x);(2)当x=1时,f(x)=g(x);(3)当x∈(0,1)时,f(x)<g(x).。

高考数学《函数》专题复习

高考数学《函数》专题复习

函数一、17届 一模一、填空、选择题1、(宝山区2017届高三上学期期末) 若点(8,4)在函数()1log a f x x =+图像上,则()f x 的反函数为2、(崇明县2017届高三第一次模拟)设函数2log ,0()4,0x x x f x x >⎧⎪=⎨⎪⎩≤,则((1))f f -= .3、(虹口区2017届高三一模)定义{}()f x x =(其中{}x 表示不小于x 的最小整数)为“取上整函数”,例如{}2.13=,{}44=.以下关于“取上整函数”性质的描述,正确的是( ).①(2)2()f x f x =; ②若12()()f x f x =,则121x x -<; ③任意12,x x R ∈,1212()()()f x x f x f x +≤+;④1()()(2)2f x f x f x ++=..A ①② .B ①③ .C ②③ .D ②④4、(黄浦区2017届高三上学期期终调研)已知函数()y f x =是奇函数,且当0x ≥时,2()log (1)f x x =+.若函数()y g x =是()y f x =的反函数,则(3)g -= .5、(静安区2017届向三上学期期质量检测)已知)(x g y =与)(x h y =都是定义在),0()0,(+∞-∞ 上的奇函数,且当0>x 时,⎩⎨⎧>-≤<=.1),1(,10,)(2x x g x x x g ,x k x h 2log )(=(0>x ),若)()(x h x g y -=恰有4个零点,则正实数k 的取值范围是 【 】A .]1,21[;B .]1,21(;C .]2log ,21(3;D .]2log ,21[3.6、(闵行区2017届高三上学期质量调研)函数()1f x =的反函数是_____________.7、(浦东新区2017届高三上学期教学质量检测)已知定义在*N 上的单调递增函数()y f x =,对于任意的*n N ∈,都有()*f n N ∈,且()()3f f n n =恒成立,则()()20171999f f -=____________.8、(普陀区2017届高三上学期质量调研)函数x x f 2log 1)(+=(1≥x )的反函数=-)(1x f .9、(青浦区2017届高三上学期期末质量调研)如图,有一直角墙角,两边的长度足够长,若P 处有一棵树与两墙的距离分别是4m 和(012)am a <<,不考虑树的粗细.现用16m 长的篱笆,借助墙角围成一个矩形花圃ABCD .设此矩形花圃的最大面积为u ,若将这棵树围在矩形花圃内,则函数()u f a =(单位2m )的图像大致是……………………( ).A .B .C .D .10、(松江区2017届高三上学期期末质量监控)已知函数()1xf x a =-的图像经过(1,1)点,则1(3)f -=▲ .11、(徐汇区2017届高三上学期学习能力诊断)若函数22,0(),0xx f x x m x ⎧≤⎪=⎨-+>⎪⎩的值域为(],1-∞,则实数m 的取值范围是____________12、(杨浦区2017届高三上学期期末等级考质量调研)若函数2()log 1x af x x -=+的反函数的图像过点(2,3)-,则a =________.13、(长宁、嘉定区2017届高三上学期期末质量调研)若函数a x x f ++=)1(log )(2的反函数的图像经过点)1,4(,则实数=a __________.14、(崇明县2017届高三第一次模拟)下列函数在其定义域内既是奇函数又是增函数的是A .tan y x =B .3xy =C .13y x =D .lg y x =15、(浦东新区2017届高三上学期教学质量检测)已知函数()y f x =的反函数为()1y f x -=,则函数()y f x =-与()1y f x -=-的图像( ). A .关于y 轴对称 B .关于原点对称C .关于直线0x y +=对称D .关于直线0x y -=对称16、(普陀区2017届高三上学期质量调研)设∈m R ,若函数()11)(32+++=mx x m x f 是偶函数,则)(x f 的单调递增区间是 .17、(普陀区2017届高三上学期质量调研)方程()()23log 259log 22-+=-x x 的解=x .18、(普陀区2017届高三上学期质量调研)已知定义域为R 的函数)(x f y =满足)()2(x f x f =+,且11<≤-x 时,21)(x x f -=;函数⎩⎨⎧=≠=.0,1,0,lg )(x x x x g ,若)()()(x g x f x F -=,则[]10,5-∈x ,函数)(x F 零点的个数是 .19、(奉贤区2017届高三上学期期末)方程1lg )3lg(=+-x x 的解=x ____________ 20、(金山区2017届高三上学期期末)函数()2xf x m =+的反函数为1()y fx -=,且1()y f x -=的图像过点(5,2)Q ,那么m =二、解答题1、(崇明县2017届高三第一次模拟)设12()2x x af x b+-+=+(,a b 为实常数).(1)当1a b ==时,证明:()f x 不是奇函数;(2)若()f x 是奇函数,求a 与b 的值;(3)当()f x 是奇函数时,研究是否存在这样的实数集的子集D ,对任何属于D 的x 、c ,都有2()33f x c c <-+成立?若存在试找出所有这样的D ;若不存在,请说明理由.2、(虹口区2017届高三一模)已知二次函数2()4f x ax x c =-+的值域为[)0,+∞.(1)判断此函数的奇偶性,并说明理由; (2)判断此函数在2,a⎡⎫+∞⎪⎢⎣⎭的单调性,并用单调性的定义证明你的结论;(3)求出()f x 在[1,)+∞上的最小值()g a ,并求()g a 的值域.3、(黄浦区2017届高三上学期期终调研)已知集合M 是满足下列性质的函数()f x 的全体:在定义域内存在实数t ,使得(2)f t +()(2)f t f =+.(1)判断()32f x x =+是否属于集合M ,并说明理由; (2)若2()lg2af x x =+属于集合M ,求实数a 的取值范围;(3)若2()2x f x bx =+,求证:对任意实数b ,都有()f x M ∈.4、(静安区2017届向三上学期期质量检测)设集合|)({x f M a =存在正实数a ,使得定义域内任意x 都有)}()(x f a x f >+.(1) 若22)(x x f x-=,试判断)(x f 是否为1M 中的元素,并说明理由;(2) 若341)(3+-=x x x g ,且a M x g ∈)(,求a 的取值范围; (3) 若),1[),(log )(3+∞∈+=x xkx x h (R ∈k ),且2)(M x h ∈,求)(x h 的最小值.5、(普陀区2017届高三上学期质量调研)已知∈a R ,函数||1)(x a x f += (1)当1=a 时,解不等式x x f 2)(≤;(2)若关于x 的方程02)(=-x x f 在区间[]1,2--上有解,求实数a 的取值范围.6、(青浦区2017届高三上学期期末质量调研)已知函数2()2(0)f x x ax a =->. (1)当2a =时,解关于x 的不等式3()5f x -<<;(2)对于给定的正数a ,有一个最大的正数()M a ,使得在整个区间[0 ()]M a ,上,不等式|()|5f x ≤恒成立. 求出()M a 的解析式;(3)函数()y f x =在[ 2]t t +,的最大值为0,最小值是4-,求实数a 和t 的值.7、(松江区2017届高三上学期期末质量监控)已知函数21()(21x xa f x a ⋅-=+为实数) . (1)根据a 的不同取值,讨论函数)(x f y =的奇偶性,并说明理由; (2)若对任意的1x ≥ ,都有1()3f x ≤≤,求a 的取值范围.8、(徐汇区2017届高三上学期学习能力诊断)某创业团队拟生产A 、B 两种产品,根据市场预测,A 产品的利润与投资额成正比(如图1),B 产品的利润与投资额的算术平方根成正比(如图2).(注:利润与投资额的单位均为万元)(1)分别将A 、B 两种产品的利润()f x 、()g x 表示为投资额x 的函数;(2)该团队已筹集到10万元资金,并打算全部投入A 、B 两种产品的生产,问:当B 产品的投资额为多少万元时,生产A 、B 两种产品能获得最大利润,最大利润为多少?参考答案:一、填空、选择题1、解析:1+log 8a =4,log 8a =3,化为指数:3a =8,所以,a =221log y x =+,即:12y x -=,所以反函数为12x y -=2、-23、C4、-75、C6、()()211(1)fx x x -=-≥ 7、548、【解析】∵x ≥1,∴y=1+2log x ≥1,由y=1+2log x ,解得x=2y ﹣1,故f ﹣1(x )=2x ﹣1(x ≥1).故答案为:2x ﹣1(x ≥1). 9、B 10、211、01m <≤ 12、2a =13、【解析】函数a x x f ++=)1(log )(2的反函数的图象经过点(4,1), 即函数a x x f ++=)1(log )(2的图象经过点(1,4), ∴4=log 2(1+1)+a ∴4=1+a , a=3.故答案为:3. 14、C 15、D16、【解析】由题意:函数()11)(32+++=mx x m x f 是偶函数,则mx=0,故得m=0, 那么:f (x )=23x +1,根据幂函数的性质可知:函数f (x )的单点增区间为(0,+∞). 故答案为:(0,+∞). 17、【解析】由题意可知:方程log 2(9x ﹣5)=2+log 2(3x ﹣2)化为:log 2(9x ﹣5)=log 24(3x ﹣2) 即9x ﹣5=4×3x ﹣8 解得x=0或x=1;x=0时方程无意义,所以方程的解为x=1. 故答案为1. 18、【解析】定义域为R 的函数y=f (x )满足f (x +2)=f (x ), 可得f (x )的周期为2, F (x )=f (x )﹣g (x ),则令F (x )=0,即f (x )=g (x ), 分别作出y=f (x )和y=g (x )的图象, 观察图象在[﹣5,10]的交点个数为14.x =0时,函数值均为1,则函数F (x )零点的个数是15. 故答案为:15.19、5 20、1二、解答题1、解:(1)证明:511212)1(2-=++-=f ,412121)1(=+-=-f ,所以)1()1(f f -≠-,所以)(x f 不是奇函数............................3分(2))(x f 是奇函数时,)()(x f x f -=-,即bab a x x x x ++--=++-++--112222对定义域内任意实数x 都成立即0)2(2)42(2)2(2=-+⋅-+⋅-b a ab b a x x ,对定义域内任意实数x 都成立...........................................5分所以⎩⎨⎧=-=-042,02ab b a 所以⎩⎨⎧-=-=21b a 或⎩⎨⎧==21b a .经检验都符合题意........................................8分(2)当⎩⎨⎧==21b a 时,121212212)(1++-=++-=+x x x x f ,因为02>x ,所以112>+x ,11210<+<x, 所以21)(21<<-x f .......................................10分 而4343)23(3322≥+-=+-c c c 对任何实数c 成立;所以可取D =R 对任何x 、c 属于D ,都有33)(2+-<c c x f 成立........12分当⎩⎨⎧-=-=21b a 时,)0211212212)(1≠-+-=---=+x x f xx x (, 所以当0>x 时,21)(-<x f ;当0<x 时,21)(>x f .............14分1)因此取),0(+∞=D ,对任何x 、c 属于D ,都有33)(2+-<c c x f 成立. 2)当0<c 时,3332>+-c c ,解不等式321121≤-+-x 得:75log 2≤x .所以取]75log ,(2-∞=D ,对任何属于D 的x 、c ,都有33)(2+-<c c x f 成立.....16分2、解:(1)由二次函数2()4f x ax x c =-+的值域为[)0,+∞,得0a >且41604ac a-=,解得4ac =.……………………2分(1)4f a c =+-,(1)4f a c -=++,0a >且0c >,从而(1)(1)f f -≠,(1)(1)f f -≠-,∴此函数是非奇非偶函数.……………………6分(2)函数的单调递增区间是2,a ⎡⎫+∞⎪⎢⎣⎭.设1x 、2x 是满足212x x a >≥的任意两个数,从而有21220x x a a->-≥,∴222122()()x x a a ->-.又0a >,∴222122()()a x a x a a ->-,从而22212424()()a x c a x c a a a a-+->-+-,即22221144ax x c ax x c -+>-+,从而21()()f x f x >,∴函数在2,a ⎡⎫+∞⎪⎢⎣⎭上是单调递增.……………………10分(3)2()4f x ax x c =-+,又0a >,02x a=,[)1,x ∈+∞ 当021x a =≥,即02a <≤时,最小值0()()0g a f x == 当021x a =<,即2a >时,最小值4()(1)44g a f a c a a==+-=+-综上,最小值002()442a g a a a a <≤⎧⎪=⎨+->⎪⎩……………………14分 当02a <≤时,最小值()0g a = 当2a >时,最小值4()4(0,)g a a a=+-∈+∞ 综上()y g a =的值域为[0,)+∞……………………16分3、解:(1)当()32f x x =+时,方程(2)()(2)38310f t f t f t t +=+⇔+=+ ……2分 此方程无解,所以不存在实数t ,使得(2)()(2)f t f t f +=+,故()32f x x =+不属于集合M . ……………………………4分(2)由2()lg2af x x =+属于集合M ,可得 方程22lg lg lg (2)226a a ax x =++++有实解22[(2)2]6(2)a x x ⇔++=+有实解2(6)46(2)0a x ax a ⇔-++-=有实解,………7分若6a =时,上述方程有实解;若6a ≠时,有21624(6)(2)0a a a ∆=---≥,解得1212a -≤+故所求a的取值范围是[1212-+. ……………………………10分 (3)当2()2x f x bx =+时,方程(2)()(2)f x f x f +=+⇔+2222(2)244x x b x bx b ++=+++⇔32440x bx ⨯+-=, ………………12分令()3244x g x bx =⨯+-,则()g x 在R 上的图像是连续的,当0b ≥时,(0)10g =-<,(1)240g b =+>,故()g x 在(0,1)内至少有一个零点;当0b <时,(0)10g =-<,11()320bg b =⨯>,故()g x 在1(,0)b内至少有一个零点;故对任意的实数b ,()g x 在R 上都有零点,即方程(2)()(2)f x f x f +=+总有解, 所以对任意实数b ,都有()f x M ∈. ………………………16分 4、解:(1)∵1)0()1(==f f , ∴1)(M x f ∉. ……………………………4分(2)由0413341)(41)()()(32233>-++=++--+=-+a a x a ax x a x x a x x g a x g …2分 ∴0)41(12934<--=∆a a a a , ……………………………3分 故 1>a . ……………………………1分(3)由0)(log ]2)2[(log )()2(33>+-+++=-+xkx x k x x h x h , ………………1分 即:)(log ]2)2[(log 33xkx x k x +>+++∴ 022>+>+++xkx x k x 对任意),1[+∞∈x 都成立∴ 3113)2(2<<-⇒⎩⎨⎧-><⇒⎩⎨⎧->+<k k k xk x x k ……………………………3分 当01≤<-k 时,)1(log )1()(3min k h x h +==; ……………………………1分 当10<<k 时,)1(log )1()(3min k h x h +==; ……………………………1分 当31<≤k 时,)2(log )()(3min k k h x h ==. ……………………………1分 综上:⎪⎩⎪⎨⎧<≤<<-+=.31),2(log ,11),1(log )(33min k k k k x h ……………………………1分5、【解】(1)当1=a 时,||11)(x x f +=,所以x x f 2)(≤x x 2||11≤+⇔……(*) ①若0>x ,则(*)变为,0)1)(12(≥-+x x x 021<≤-⇔x 或1≥x ,所以1≥x ;②若0<x ,则(*)变为,0122≥+-xx x 0>⇔x ,所以φ∈x 由①②可得,(*)的解集为[)+∞,1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009届新课标数学考点预测(8)三角恒等变换一、考点介绍经历用向量的数量积推导出两角差的余弦公式的过程,进一步体会向量方法的作用,由此出发,导出其他的三角恒等变换公式,并能运用这些公式进行简单的恒等变换,从而发展学生的推理能力和运算能力. 1.和与差的三角函数公式(1)向量的数量积推导出两角差的余弦公式.(2)用两角差的余弦公式导出两角差的正弦、正切公式.(3)用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系. 2.简单的三角恒等变换能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).二、高考真题1.(2007年宁夏、海南文9).若cos 2π2sin 4αα=-⎛⎫- ⎪⎝⎭,则cos sin αα+的值为( )A.2-B.12-C.12〖解析〗由22cos 2sin )2sin()422cso αααπα==+=--, ∴sin α+cos α=12. 〖答案〗C.2(2008年高考海南卷7).0203sin 702cos 10--=( C )A.12B.2C. 2D.2〖解析〗22223sin 703cos 203(2cos 201)22cos 102cos 102cos 10----===---. 〖答案〗C .3(2007年江苏卷11).若13cos(),cos()55αβαβ+=-=,则tan tan αβ=. 〖解析〗由条件得:1cos cos sin sin 5αβαβ-=,3cos cos sin sin 5αβαβ+=,所以1sin sin 5αβ=,2cos cos 5αβ=,所以tan tan αβ=12.〖答案〗12.4(2007浙江理12).已知1sin cos 5θθ+=,且324θππ≤≤,则cos2θ的值是.〖解析〗将1sin cos 5θθ+=两边平方得12sin cos 25θθ=-,所以249(sin cos )12sin cos 25θθθθ-=-=,则7sin cos 5θθ-=±,又324θππ≤≤,所以cos 0,sin 0θθ<>,所以7sin cos 5θθ-=, 故227cos 2cos sin (cos sin )(cos sin )25θθθθθθθ=-=+-=-.〖答案〗725-.5(2008年广东卷理12).已知函数()(sin cos )sin f x x x x =-,x ∈R ,则()f x 的最小正周期是.〖解析〗21cos 21()sin sin cos sin 222x f x x x x x -=-=-,此时可得函数的最小正周期22Tππ==.〖答案〗π.6(2008年江苏卷15).如图,在平面直角坐标系xoy 中,以ox 轴为始边做两个锐角α,β,它们的终边分别与单位圆相交于A,B 两点,已知A,B 的横坐标分别为105. (Ⅰ)求tan(αβ+)的值;(Ⅱ)求2αβ+的值.〖解析〗由条件的cos 10αβ==,因为α,β为锐角,所以sin αβ= 因此1tan 7,tan 2αβ== (Ⅰ)tan(αβ+)=tan tan 31tan tan αβαβ+=--(Ⅱ)22tan 4tan 21tan 3βββ==-,所以()tan tan 2tan 211tan tan 2αβαβαβ++==-- ∵,αβ为锐角,∴3022παβ<+<,∴2αβ+=34π。

7(2008年福建卷17)已知向量m =(sin A ,cos A ),n =1)-,m ·n =1,且A 为锐角.(Ⅰ)求角A 的大小;(Ⅱ)求函数()cos 24cos sin ()f x x A x x R =+∈的值域. 〖解析〗(Ⅰ)由题意得3sin cos 1,m n A A =-=12sin()1,sin().662A A ππ-=-=由A 为锐角得,.663A A πππ-==(Ⅱ)由(Ⅰ)知1cos ,2A =所以2213()cos 22sin 12sin 2sin 2(sin ).22f x x x x s x =+=-+=--+ 因为x ∈R ,所以[]sin 1,1x ∈-,因此,当1sin 2x =时,f (x )有最大值32.当sin x =-1时,f (x )有最小值-3,所以所求函数f (x )的值域是33,2⎡⎤-⎢⎥⎣⎦.三、名校试题1(天津汉沽一中2009届高三月考文8).2()(sin cos )1f x x x =--是() A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数D .最小正周期为π的奇函数〖解析〗∵2()(sin cos )112sin cos 1sin 2f x x x x x x =--=--=- ∴()sin 2()sin 2()f x x x f x -=--==-,22T ππ==. 〖答案〗D .2(2008~2009学年福建厦门质检四).已知3sin 2(2)52πααπ=<<,()1tan 2αβ-=,则()tan αβ+=( )A .2-B .1-C .112- D .112 〖解析〗由3sin 2(2)52πααπ=<<得3tan 24α=-, 又tan()tan(2())αβααβ+=--tan 2tan()21tan 2tan()ααβααβ--==-+-.〖答案〗A .3(2008~2009学年宁夏5).3cos(2)5cos 0αββ++=,由tan()tan αβα+的值为( ) A.±4 B.4 C.-4 D.1〖解析〗由3cos(2)5cos 0αββ++=得:3cos()5cos()0ααβαβα++++-=, 即3[cos cos()sin sin()]5[cos cos()sin sin()]0ααβααβααβααβ+-+++++= 所以8cos cos()2sin sin()0ααβααβ+++=,所以tan()tan 4αβα+=-. 〖答案〗C .4 (苏州市2009届高三教学调研测试13) .在锐角△ABC 中,b =2,B =π3,sin 2sin()sin 0A A C B +--=,则△ABC 的面积为_________.〖解析〗由条件得2sin 2sin(())03A A A π+--=,则22sin 2sin 2coscos2sin 33A A A ππ+-=,则1sin 22A A -=,sin(2)3A π-=又A 为锐角,所以3A π=,所以△ABC5(2008-2009学年度广东六校第三次联考理12).已知26cos sin =+αα)4,0(πα∈, 则)45sin(πα-=.〖解析〗由26cos sin =+αα)42πα+=,sin()42πα+=又)4,0(πα∈,所以12πα=,所以571sin()sin()462ππα-=-=. 〖答案〗21.6(山东省临沂市08—09学年度模拟试题17).已知函数21()sin cos cos 2222x x x f x =+-.(Ⅰ)若()4f α=,(0,)απ∈,求α的值;(Ⅱ)求函数()f x 在[,]4ππ-上最大值和最小值.〖解析〗(Ⅰ)11cos 1()sin 222x f x x +=+-1(sin cos )2x x =+)4x π=+由题意知:()sin()244f παα=+=1sin()42πα+=. ∵(0,)απ∈,即5(,)444πππα+∈, ∴546ππα+=,712πα=.(Ⅱ)∵4παπ-≤≤,即5044ππα≤+≤,∴max ()()4f x f π==,min 1()()2f x f π==-. 7(辽宁省部分重点中学协作体2008年高考模拟).已).cos ,(sin ),cos sin 2,cos sin 2(,0x x b x x x xm a ωωωωωωω=-+=>)(.)(x f b a x f ⋅=图像上相邻的两个对称轴的距离是.2π(1)求ω的值; (2)求函数]2,0[)(π在区间x f 上的最大值和最小值.〖解析〗x x x x x x b a x f ωωωωωωcos )cos sin 2(sin )cos sin 2()(-++=⋅=……(2分)x x x x ωωωω22cos cos sin 3sin 2-+=)2cos 1(212sin 232cos 1x x x ωωω+-+-=21)42sin(22321)2cos 2(sin 23+-=+-=πωωωx x x …………6分 (1)因为函数)(x f 的图象上相邻的两个对称轴间的距离是2π所以函数)(x f 的最小正周期T=π,则1=ω………………8分(2).21)42sin(223)(,1+-==πωx x f ]2,0[π∈∴x]43,4[42πππ-∈-∴x ,则当0442=-=-x x 即ππ时,)(x f 取得最小值-1; 当)(,83242x f x x 时即πππ==-取得最大值.2123+…………12分 8 (天津一中2008-2009月考理17).已知,,A B C 为锐角ABC ∆的三个内角,两向量(22sin ,cos sin )p A A A =-+,(sin cos ,q A A =-1sin )A +,若p 与q 是共线向量.(1)求A 的大小;(2)求函数232sin cos()2C By B -=+取最大值时,B 的大小. 〖解析〗(1)22// 2(1)(1+)- p q sinA sinA sin A cos A ∴-=22220 120cos A cos A cos A ∴+=∴+=1cos 2A 2∴=-0<2A<π,002A 120 A=60∴=∴(2)00A=60 B+C=120∴201y=2sin B+cos(602B)1cos 2B+cos 2B 2B 22-=-+12B cos 2B+1=sin(2B )126π--+ 2B B 623πππ-=当时,即=.9(2009连云港市高三年级第二次调研考试数学模拟试题15) .设向量(cos ,sin )m θθ=,(22sin ,cos )n θθ=+,),23(ππθ--∈,若1m n ⋅=,求:(1))4sin(πθ+的值;(2))7cos(πθ+的值.〖解析〗(1)依题意,cos sin )sin cos )m n θθθθ⋅=+cos )θθ=+4sin()4πθ=+,又1m n ⋅=41)4sin(=+πθ.(2)由于),23(ππθ--∈,则)43,45(4πππθ--∈+结合41)4sin(=+πθ,可得415)4cos(-=+πθ则7cos()12θπ+11cos[()]43θππ=++11(4242=-⨯-⨯8=-. 四、考点预测(一)考点预测高考对三角恒等式部分的考查仍会是中低档题,无论是小题还是大题中出现都是较容易的.主要有三种可能:(1)以小题形式直接考查:利用两角和与差以及二倍角公式求值、化简;(2)以小题形式与三角函数、向量、解三角形等知识相综合考查两角和与差以及二倍角等公式;(3)以解答题形式与三角函数、向量、解三角形、函数等知识相综合考查,对三角恒等变换的综合应用也可能与解三角形一起用于分析解决实际问题的应用问题,主要考查综合运用数学知识分析问题和解决问题的能力。

相关文档
最新文档