34生活中的优化问题举例
3.4生活中的优化问题举例
变式训练
2.某地建一座桥,两端的桥墩已建好,这两墩相距m米,余下工程 只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用 为256万元,距离为x米的相邻两墩之间的桥面工程费用为
万元,(2假设桥x)墩x等距离分布,所有桥墩都视为点,且不考虑其他因
素,记余下工程的费用为y万元. (1)试写出y关于x的函数关系式; (2)当m=640米时,需新建多少个桥墩才能使y最小?
费用最省、用料最少问题
例2.已知A、B两地相距200千米,一只船从A地逆水而行到B地,水 速为8千米/小时,船在静水中的速度为v千米/小时(8<v≤v0).若船每小时 的燃料费与其在静水中的速度的平方成正比.当v=12千米/小时时,每 小时的燃料费为720元,为了使全程燃料费最省,船在静水中的速 度为多少?
第十三页,编辑于星期一:十四点 十二分。
第十四页,编辑于星期一:十四点 十二分。
第十二页,编辑于星期一:十四点 十二分。
(1)审题:阅读理解文字表达的题意,分清条件和结论,找出问 题的主要关系; (2)建模;将文字语言转化成数学语言,利用数学知识,建立相应 的数学模型; (3)解模:把数学问题化归为常规问题,选择合适的数学方法 求解; (4)对结果进行验证评估,定性定量分析,作出正确的判断,确定 其答案. 注:在将实际问题转化成数学问题时,要注意所设变量的取值 范围.
第九页,编辑于星期一:十四点 十二分。
变式训练
3.某集团为了获得更大的收益,每年要投入一定的资金用于广告促销, 经调查,每年投入广告费t(百万元),可增加销售额约为-t2+5t(百万 元)(0≤t≤3). (1)若该公司将当年的广告费控制在300万元之内,则应投入多少广告
3-4 生活中的优化问题举例
基础巩固强化一、选择题1.三次函数当x =1时,有极大值4;当x =3时,有极小值0,且函数过原点,则此函数是( )A .y =x 3+6x 2+9xB .y =x 3-6x 2+9xC .y =x 3-6x 2-9xD .y =x 3+6x 2-9x [答案] B[解析] 设函数f (x )=ax 3+bx 2+cx +d (a ≠0), ∵函数图象过原点,∴d =0.f ′(x )=3ax 2+2bx +c , 由题意得,⎩⎪⎨⎪⎧f ′(1)=0f ′(3)=0f (1)=4,即⎩⎪⎨⎪⎧3a +2b +c =027a +6b +c =0a +b +c =4,解得⎩⎪⎨⎪⎧a =1b =-6c =9,∴f (x )=x 3-6x 2+9x ,故应选B.2.将数8拆分为两个非负数之和,使其立方之和为最小,则分法为( )A .2和6B .4和4C .3和5D .以上都不对[答案] B[解析] 设一个数为x ,则另一个数为8-x ,则y =x 3+(8-x)3,0≤x≤8,y′=3x2-3(8-x)2,令y′=0,即3x2-3(8-x)2=0,解得x=4.当0≤x<4时,y′<0,函数单调递减;当4<x≤8时,y′>0,函数单调递增,所以x=4时,y最小.3.某产品的销售收入y1(万元)是产量x(千台)的函数:y1=17x2(x>0);生产成本y2(万元)是产量x(千台)的函数:y2=2x3-x2(x>0),为使利润最大,则应生产()A.6千台B.7千台C.8千台D.9千台[答案] A[解析]设利润为y(万元),则y=y1-y2=17x2-2x3+x2=18x2-2x3(x>0),y′=36x-6x2,令y′>0,得0<x<6,令y′<0,得x>6,∴当x=6时,y取最大值,故为使利润最大,则应生产6千台.4.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s看作时间t的函数,其图象可能是()[答案] A[解析]加速过程,路程对时间的导数逐渐变大,图象下凸;减速过程,路程对时间的导数逐渐变小,图象上凸,故选A.5.内接于半径为R 的球且体积最大的圆锥的高为( ) A .R B .2R C.43R D.34R[答案] C[解析] 设圆锥高为h ,底面半径为r , 则R 2=(R -h )2+r 2,∴r 2=2Rh -h 2, ∴V =13πr 2h =π3h (2Rh -h 2)=23πRh 2-π3h 3, ∴V ′=43πRh -πh 2,令V ′=0得h =43R , 当0<h <43R 时,V ′>0;当43R <h <2R 时,V ′<0. 因此当h =43R 时,圆锥体积最大,故应选C.6.福建炼油厂某分厂将原油精炼为汽油,需对原油进行冷却和加热,如果第x h 时,原油温度(单位:℃)为f (x )=13x 3-x 2+8(0≤x ≤5),那么,原油温度的瞬时变化率的最小值是( )A .8 B.203 C .-1 D .-8 [答案] C[解析] 瞬时变化率即为f ′(x )=x 2-2x 为二次函数,且f ′(x )=(x -1)2-1,又x ∈[0,5],故x =1时,f ′(x )min =-1. 二、填空题7.把长为60cm 的铁丝围成矩形,长为________,宽为________时,矩形的面积最大.[答案] 15cm 15cm[解析] 设长为x cm ,则宽为(30-x )cm ,此时S =x ·(30-x )=30x -x 2,S ′=30-2x =0,所以x =15.所以长为15cm ,宽为15cm 时,矩形的面积最大.8.做一个无盖的圆柱形水桶,若要使其体积是27π,且用料最小,则圆柱的底面半径为________.[答案] 3[解析] 设圆柱的底面半径为R ,母线长为L ,则V =πR 2L =27π,∴L =27R 2,要使用料最省,只需使圆柱形表面积最小,∴S 表=πR 2+2πRL =πR 2+54πR ,∴S ′(R )=2πR -54πR 2=0,令S ′=0得R =3, ∴当R =3时,S 表最小.9.用长为18m 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2 1,该长方体的最大体积是________.[答案] 3m 3[解析] 设长方体的宽为x ,则长为2x ,高为92-3x (0<x <32),故体积为V =2x 2⎝ ⎛⎭⎪⎫92-3x =-6x 3+9x 2,V ′=-18x 2+18x ,令V ′=0得,x =0或1, ∵0<x <2,∴x =1.∴该长方体的长、宽、高各为2m 、1m 、1.5m 时,体积最大,最大体积V max =3m 3.三、解答题10.用边长为120cm的正方形铁皮做一个无盖水箱,先在四角分别截去一个小正方形,然后把四边翻转90°角,再焊接成水箱.问:水箱底边的长取多少时,水箱容积最大?最大容积是多少?[解析]设水箱底边长为x cm,则水箱高为h=60-x2(cm).水箱容积V=V(x)=60x2-x32(0<x<120)(cm3).V′(x)=120x-32x 2.令V′(x)=0得,x=0(舍)或x=80.当x在(0,120)内变化时,导数V′(x)的正负如下表:数V(x)的最大值.将x=80代入V(x),得最大容积V=802×60-8032=128 000(cm3).答:水箱底边长取80cm时,容积最大,最大容积为128 000cm3.。
生活中的优化举例
2023-10-27
目录
• 交通优化 • 购物优化 • 学习优化 • 健康优化
01
交通优化
交通方式选择
步行
选择步行作为出行方式,可锻炼身 体,提高心肺功能,同时减少交通 拥堵和碳排放。
自行车
骑自行车出行既环保又锻炼身体, 适合短途或交通拥堵时使用。
公共交通
乘坐公共交通工具如公交车、地铁 等,可减少个人车辆的使用,降低 交通拥堵和碳排放。
拼车
通过拼车平台或社交媒体寻找拼车 伙伴,共同分担出行成本,减少车 辆数量和碳排放。
路线规划
避开拥堵路段
通过导航软件或交通广播了解实时路况, 选择不拥堵的路线,缩短出行时间。
多路径选择
在出行前或出行中多选择几条备选路线, 以便应对突发路况和交通管制。
短途出行
尽量选择短途出行,减少长时间驾驶带来 的疲劳和拥堵。
筛选信息
在获取信息时,学会筛选和辨别信息的真实性和可靠性,以确保 学习的准确性。
04
健康优化
饮食优化
平衡饮食
保持饮食平衡,摄入足够的蔬菜、水果、 全谷类、蛋白质和健康脂肪。
适量控制
控制食物摄入量,避免过量食物摄入,以 维持健康的体重。
选择新鲜食物
尽可能选择新鲜、天然、无添加物的食物 ,避免加工食品和高糖食品。
购物时间优化
避开高峰期
01
尽量避免在购物高峰期(如周末、节假日等)进行购物,以减
少等待时间和拥挤的情况。
选择合适的时间
02
根据实际情况,选择合适的时间进行购物,如早晨或晚上,以
避免高峰期的拥挤。
考虑商店的营业时间
03
在购物前,了解商店的营业时间,并根据自己的时间安排进行
生活中的优化问题举例
练习3:某种圆柱形的饮料罐的容积一定时,如何确定它 的高为R.
h
则表面积为 S(R)=2πRh+2πR2.
又V=πR2h(定值),
则h
V
R 2
.
R
S
(R)
2R
V
R 2
2R2
2V R
2R2.
当r (2,6) 时, f '(r) 0.
解: 由于瓶子的半径为r,所以每瓶饮料的利
润为: y
4r 3
f (r) 0.2
0.8r 2
(0 r 6)
3
令 f '(r) 0.8 (r 2 2r) 0
当r 2时, f '(r) 0. 当r (0,2)时, f '(r) 0;
3.4 生活中的优化问题举例
生活中经常遇到求利润最大、用 料最省、效率最高等问题,这些问题 通常称为优化问题,通过前面的学习, 知道,导数是求函数最大(小)值的 有力工具,本节我们运用导数,解决 一些生活中的优化问题。
问题1:海报版面尺寸的设计
学校或班级举行活动,通常需要张贴海报 进行宣传,现让你设计一张如图所示的竖向张 贴的海报,要求版心面积为128dm2,上下边各 空2dm,左右空1dm,如何设计海报的尺寸,才 能使四周空白面积最小? 解:设版心的高为xdm,则宽为 128 dm
(1)瓶子半径多大时,能使每瓶饮料的利润最大? (2)瓶子半径多大时,每瓶饮料的利润最小?
解: 由于瓶子的半径为r,所以每瓶饮料的利
润为:y f (r) 0.2 4r 3
令
3
f '(r) 0.8 (r 2
生活中的优化问题举例
生活中的优化问题举例引言生活中,我们经常面临各种各样的问题和挑战。
为了提高效率、提升生活质量,我们需要不断寻找解决问题的方法和策略。
在这篇文章中,我们将探讨生活中的优化问题,并给出一些实际的例子来说明如何应对这些问题。
什么是优化问题?优化问题是指在给定的限制条件下,寻找一个最优解的问题。
通过优化,我们可以最大限度地提高效率、降低成本、提升满意度等。
在生活中,我们可以将优化问题应用于各个领域,如时间管理、健康管理、金融规划等。
生活中的优化问题举例1. 时间管理时间管理是一个常见的生活优化问题。
我们每天都面临着有限的时间资源,如何合理分配时间成为了一个重要的课题。
以下是一些可以帮助我们优化时间管理的方法和技巧:1.制定优先级:将任务按照重要性和紧急性进行排序,优先处理重要且紧急的任务,避免因琐碎的事务耗费过多时间。
2.打破大目标:学会将大目标分解成小目标,逐步推进。
这样可以减少任务的压力,并更好地管理时间。
3.制定时间表:制定一个明确的时间表,为每项任务规定固定的时间段。
这样可以提高效率,并避免时间的浪费。
4.利用时间碎片:充分利用日常生活中的碎片化时间,比如排队等待、交通工具上的时间,可以用来读书、听课等。
2. 健康管理健康是幸福生活的基石,因此健康管理也成为了一个重要的优化问题。
以下是一些可以帮助我们优化健康管理的方法和策略:1.合理饮食:均衡饮食是健康的基础。
合理控制饮食,摄入适量的营养物质,避免过量或偏食,有助于维持身体的健康状态。
2.积极运动:适量的运动可以帮助我们保持身体健康和心理平衡。
根据个人情况选择合适的运动方式和时间,如慢跑、游泳、瑜伽等。
3.规律作息:良好的作息习惯对于身体和心理健康至关重要。
合理安排睡眠时间,确保充足的休息,有助于保持精力充沛和情绪稳定。
4.健康检查:定期进行身体检查,及时发现和处理潜在的健康问题,有助于预防和治疗疾病。
3. 金融规划金融规划是一个经济优化的问题。
生活中的优化举例
05
工作办公优化
任务管理优化
总结词
高效、条理、计划
详细描述
通过制定明确的任务目标和计划,将工作任务分解为可执行的小任务,并按 优先级进行排序,可以帮助我们更高效地完成任务,同时避免任务遗漏或任 务完成不及时。
时间
详细描述
合理规划时间,将时间分配到不同的任务和活动中,可以最大限度地减少时间浪 费和提高工作效率。同时,学会合理调整工作节奏和时间安排,能够更好地适应 高强度的工作压力。
01
运用大数据技术,智能调度共享单车,提高单车可用性和效率
。
共享汽车服务
02
提供便捷的共享汽车服务,满足短途出行需求,减少汽车使用
频率。
电动汽车推广
03
鼓励使用电动汽车等环保出行方式,降低排放,改善空气质量
。
02
日常生活优化
购物优化
计划性购物:列出需要购买的物 品清单,尽量避免在无计划的情 况下进行购物,减少不必要
比较购物:在购买之前,通过线 上或线下的方式比较不同商家的 价格和质量,以便选择最合适
批量购买:一次性购买大量的日 用品,可以降低单位价格,同时 减少购物次数,提高购物效率。
的支出。
的商品。
饮食优化
均衡饮食:合理搭配 蛋白质、碳水化合物 、脂肪、维生素、矿 物质等营养素,以满 足身体
的基本需求。
简单化烹饪:减少烹 饪的复杂程度,使用 简单的烹饪技巧和食 材,可以降低食物中 脂肪和糖
游戏娱乐优化
流畅体验
通过优化游戏算法、降低游戏内延迟等技术手段,提高游戏的流畅度和稳定 性。
个性化设置
为玩家提供多种个性化设置,如自定义角色、场景等,让玩家更具自由度和 沉浸感。
生活中的优化举例
可以节省时间和交通费用,方便快捷地购买商品,还可以享受 送货上门的服务。
线上购物的注意事项
需要注意商品的质量和真实性,以及商家的信誉度和售后服务 ,避免遇到假货或欺诈行为。
03
健康优化
饮食优化
平衡饮食
保持饮食平衡,摄入足够的蔬菜、水果、全谷类和蛋白质来源 ,减少过度摄入高热量、高脂肪和高糖分的食物。
主动思考
不仅仅被动地接受知识,而是要主动思考和解决 问题,培养批判性思维。
复习与巩固
定期回顾和复习所学内容,加强记忆和理解,形 成长期记忆。
学习资源选择优化
精选资源
选择高质量、权威的学习资源,如教材、参考书、在线课程等。
适应资源
根据个人学习风格和需求,选择适合自己的学习资源,如视觉型 、听觉型、动手实践型学习者分别选择图表、讲解或实践操作等 资源。
3
适度强度
在运动过程中保持适度的强度和节奏,避免过 度疲劳和受伤。
睡眠优化
规律作息
保持规律的作息习惯,每天尽量在同一时间入睡和起床,以维持 正常的生物钟。
创造良好的睡眠环境
创造安静、黑暗和舒适的睡眠环境,避免使用电子设备如手机和 电视等在睡前一小时内。
控制睡眠时间
合理控制睡眠时间,成年人每晚通常需要7-9小时的睡眠,以保持精 力充沛和高效工作。
拓展资源
寻找与学习主题相关的其他资源,如相关论文、研究报告、案例工作流程优化
确定工作优先级
将任务按照优先级排序 ,先完成重要且紧急的 任务,再处理次要的任 务。
避免任务拖延
及时开始并完成每一项 任务,避免任务积压和 拖延。
建立工作流程图
制定详细的工作流程图 ,以便更好地了解任务 之间的依赖关系和执行 顺序。
生活中的优化问题举例
生活中的优化问题举例
以下是一些生活中常见的优化问题举例:
1. 路线规划:对于一次旅行或者日常通勤,如何选择最短或最快的路线,以节省时间和资源。
2. 日程安排:如何合理分配时间,使得工作效率最大化,同时留出时间进行休息和娱乐。
3. 购物决策:在购买商品时,如何选择最佳的品牌、型号或价格,以满足需求并节约开支。
4. 饮食计划:如何合理安排饮食,以保证营养均衡,同时避免浪费和过量摄入。
5. 能源使用:如何优化能源的使用,例如合理设置空调温度、减少电器待机时间等,以节约能源成本并保护环境。
6. 个人理财:如何合理规划个人财务,包括投资、储蓄和债务,以实现财务增长并达到目标。
7. 旅游安排:在进行旅游计划时,如何选择最佳的目的地、交通方式、住宿和活动,以满足旅行的需求。
8. 学习方法:如何优化学习方法,例如选择适合个人的学习时间、学习环境和学习资源,以提高学习效率。
9. 生活习惯:如何培养健康的生活习惯,例如规律作息、科学饮食和适度运动,以改善身体健康。
10. 时间管理:如何合理分配时间,设置优先级和避免拖延,以提高工作和生活的效率。
生活中的优化问题举例
解析:设将这批货物全部运到最快需 t 小时,依题意 t =4v00+16·2vv02=4v00+1460v0≥8.当且仅当4v00=1460v0,即 v= 100 km/h 时,最快需 8 小时,故选 B.
答案:B
4.一房地产公司有 50 套公寓要出租,当月租金定为 1000 元时,公寓会全部租出去,当月租金每增加 50 元,就会多 一套租不出去,而租出去的公寓每月需花费 100 元维修费, 则房租定为________元时可获得最大收入.
因此乙方取得最大利润的年产量 t=(10s00)2(吨).
(2)设甲方净收入为 v 元,则 v=st-0.002t2.
将 t=(10s00)2 代入上式,得到甲方净收入 v 与赔付价格 s 之间的函 数关系式 v=10s002-2×1s40003.
又 v′=-10s0202+8×1s50003=10002×s85000-s3,令 v′=0, 得 s=20. 当 s<20 时,v′>0;当 s>20 时,v′<0,所以 s=20 时,v 取得 最大值.
(3)MP(x)=-30x2+60x+3275=-30(x-1)2+3305.所 以,当 x≥1 时,MP(x)单调递减,所以单调减区间为[1,19], 且 x∈N*,单调递减的实际意义是:随着产量的增加,每艘 船的利润与前一艘比较,利润在减少.
费用最省问题 例 2 某单位用木料制作如图所示的框架,框架的下部 是边长分别为 x、y(单位:m)的矩形,上部是等腰直角三角 形,要求框架围成的总面积为 8 m2,问 x、y 分别为多少时 用料最省(精确到 0.001 m)?
因此甲方向乙方要求赔付价格 s=20(元/吨)时,获最大净收入.
生活中的优化问题举例课件
跨部门协作
加强部门间的沟通和协作 ,打破信息孤岛,提高整 体工作效率。
合理分配工作任务
任务分配原则
根据员工的能力、经验和专长, 合理分配工作任务,确保工作量
均衡和高效。
优先级排序
根据任务的重要性和紧急性,指导 员工对工作任务进行优先级排序, 确保高优先级任务得到优先处理。
激励与考核机制
建立有效的激励和考核机制,鼓励 员工积极承担工作任务,提高工作 积极性和满意度。
在此添加您的文本16字
优先处理重要和紧急的任务,避免拖延和浪费时间。
在此添加您的文本16字
学习一些时间管理技巧,如番茄工作法等。
在此添加您的文本16字
避免多任务处理,尽量专注于单一任务,以提高工作效率 。
04
工作中的优化问题
பைடு நூலகம்
提高工作效率
制定合理的工作计划
减少干扰因素
根据工作优先级和任务量,制定每日 、每周和每月的工作计划,确保工作 有序进行。
生活中的优化问题举例课件
• 购物中的优化问题 • 旅行中的优化问题 • 日常生活中的优化问题 • 工作中的优化问题 • 学习中的优化问题
01
购物中的优化问题
寻找最优惠的价格
01
在购物时,消费者通常会寻找最 优惠的价格,以节省开支。
02
比较不同商家的价格,考虑商品 的质量、品牌、售后服务等因素 ,权衡性价比,选择最优惠的价 格。
02
旅行中的优化问题
选择最佳的旅行路线
总结词
选择最佳的旅行路线是旅行中的重要优化问题,可以减少时间和金钱的浪费。
详细描述
在旅行前,我们需要根据目的地、交通工具、时间等因素,选择一条最佳的旅行 路线。这需要考虑路线的长度、所需时间、交通工具的舒适度、费用等因素,以 便在有限的时间内尽可能多地游览景点,并减少不必要的花费。
3-4 生活中的优化问题举例
1.做一个圆柱形锅炉,容积为V ,两个底面的材料每单位面积的价格为a 元,侧面的材料每单位面积的价格为b 元,当造价最低时,锅炉的底面直径与高的比为( )A.ab B.a 2b C.b a D.b 2a[答案] C [解析]如图,设圆柱的底面半径为R ,高为h ,则V =πR 2h .设造价为y ,则y =2πR 2a +2πRhb =2πaR 2+2πRb ·V πR2=2πaR 2+2bV R ,∴y ′=4πaR -2bVR 2.令y ′=0并将V =πR 2h 代入解得,2R h =ba .2.以长为10的线段AB 为直径画半圆,则它的内接矩形面积的最大值为( )A .10B .15C .25D .50[答案] C[解析] 如图,设∠NOB =θ,则矩形面积S =5sin θ·2·5cos θ=50sin θ·cos θ=25sin2θ,故S max =25.3.某商品一件的成本为30元,在某段时间内若以每件x 元出售,可卖出(200-x )件,要使利润最大每件定价为________元.[答案] 85[解析] 设每件商品定价x 元,依题意可得利润为L =x (200-x )-30x =-x 2+170x (0<x <200). L ′=-2x +170,令-2x +170=0,解得x =1702=85.因为在(0,200)内L 只有一个极值,所以以每件85元出售时利润最大.4.已知某商品生产成本C 与产量q 的函数关系式为C =100+4q ,价格p 与产量q 的函数关系式为p =25-18q ,求产量q 为何值时,利润L 最大?[分析] 利润L 等于收入R 减去成本C ,而收入R 等于产量乘价格,由此可得出利润L 与产量q 的函数关系式,再用导数求最大利润.[解析] 收入R =q ·p =q (25-18q )=25q -18q 2.利润L =R -C =(25q -18q 2)-(100+4q )=-18q 2+21q -100(0<q <200),所以L ′=-14q +21.令L ′=0, 即-14q +21=0,解得q =84. 因为当0<q <84时,L ′>0; 当84<q <200时,L ′<0,所以当q =84时,L 取得最大值,最大值为782. 答:当产量为84时,利润取得最大值782.5.某厂生产某种产品的固定成本(固定投入)为2 500元,已知每生产x 件这样的产品需要再增加可变成本C (x )=200x +136x 3(元),若生产出的产品都能以每件500元售出,要使利润最大,该厂应生产多少件这种产品?最大利润是多少?[解析] 设该厂生产x 件这种产品利润为L (x ) 则L (x )=500x -2 500-C (x ) =500x -2 500-⎝⎛⎭⎪⎫200x +136x 3=300x -136x 3-2 500(x ∈N )令L ′(x )=300-112x 2=0,得x =60(件) 又当0≤x <60时,L ′(x )>0 x >60时,L ′(x )<0所以x =60是L (x )的极大值点,也是最大值点. 所以当x =60时,L (x )=9 500元.答:要使利润最大,该厂应生产60件这种产品,最大利润为9 500元.。
生活中最优化问题案例
生活中最优化问题案例在我们的日常生活中,最优化问题无处不在。
从如何规划购物以节省开支,到安排工作任务以提高效率,再到选择出行方式以节省时间和费用,这些都是最优化问题的体现。
下面,让我们通过一些具体的案例来深入了解生活中的最优化问题。
案例一:购物省钱策略假设你要为家庭购买一周的生活用品,附近有两家超市 A 和 B。
超市 A 正在进行满 100 减 20 的活动,而超市 B 则对部分商品进行打折销售。
为了实现购物最优化,即花费最少的钱买到所需的商品,你需要对两家超市的商品价格和优惠政策进行详细比较。
首先,列出家庭一周所需的生活用品清单,包括食品、清洁用品等。
然后,分别到两家超市查看这些商品的价格。
对于超市 A,计算在满足满减条件后的实际支付金额。
对于超市 B,计算打折商品的折后价格。
在比较价格时,还需要考虑商品的质量、保质期等因素。
如果某些商品在两家超市的价格差异不大,但超市 A 的商品质量更好或保质期更长,那么即使在价格上稍微高一些,也可能是更优的选择。
此外,还需要考虑购物的便利性,比如超市的距离、交通状况等。
如果为了去一家稍微便宜但距离较远的超市而花费过多的时间和交通费用,可能并不划算。
通过综合考虑价格、质量、便利性等因素,最终做出最优化的购物决策,以达到省钱的目的。
案例二:工作任务安排假设你是一个项目负责人,手头上有多个任务需要在规定的时间内完成,并且每个任务都有不同的优先级和所需时间。
为了确保项目按时完成并提高工作效率,需要对任务进行合理的安排。
首先,对所有任务进行优先级排序。
将那些紧急且重要的任务排在前面,优先处理。
然后,根据每个任务所需的时间和团队成员的能力,合理分配任务。
在分配任务时,要考虑团队成员的专长和工作负荷。
避免将过多的任务分配给某一个成员,导致其压力过大而影响工作质量和效率。
同时,也要给一些相对复杂的任务预留足够的时间,以保证能够高质量地完成。
此外,要合理安排任务的执行顺序。
生活中最优化问题案例
生活中最优化问题案例最优化问题是在生活中非常常见的一种问题类型。
它涉及了我们如何在给定的条件下,找到最佳的解决方案,以最大化或最小化某个目标函数。
在本文中,我将介绍一些生活中的最优化问题案例,并探讨它们的解决方法和应用。
1. 旅行路径规划:在我们的日常生活中,我们经常需要规划旅行路径,以使我们能够在最短的时间内到达目的地。
这是一个典型的最优化问题。
通过考虑交通状况、路况、距离和其他因素,我们可以使用最优化算法,如迪杰斯特拉算法或A*搜索算法来找到最佳路径。
这样,我们可以避免交通拥堵和浪费时间。
2. 资源分配问题:在许多组织和企业中,资源分配是一个重要的问题。
如何有效地分配有限的资源以达到最佳效果,是一个最优化问题。
一个公司可能需要决定如何分配有限的预算、人力和设备资源,以最大化利润或满足特定的目标要求。
通过使用线性规划等最优化方法,可以找到最佳的资源分配方案。
3. 股票组合优化:对于投资者来说,构建一个良好的股票组合是非常重要的。
在股票组合优化中,我们需要考虑投资目标、风险承受能力、预期收益率和相关性等因素,以找到一个最佳的投资组合。
通过使用现代投资组合理论和数学优化方法,如马科维茨均值-方差模型,可以帮助投资者构建一个高效的股票组合,以最大化收益并控制风险。
4. 生产计划优化:在制造业中,如何优化生产计划以最大化生产效率是一个关键问题。
通过考虑生产设备的利用率、库存管理、生产工序和交货期等因素,可以使用线性规划、模拟和其他最优化技术来制定最佳的生产计划。
这将帮助制造商提高生产效率,降低成本,并实现更好的交货能力。
5. 能源系统优化:在能源领域,如何优化能源系统以实现可持续发展是一个重要的问题。
通过综合考虑能源供应、需求、成本、环境影响和可再生能源利用等因素,可以使用最优化技术来设计和优化能源系统。
使用混合整数线性规划、动态规划和优化算法,可以找到最佳的电力系统规划,以最大限度地提高能源利用效率和减少碳排放。
3.4生活中的优化问题举例课件人教新课标3
从图中,你 还能看出什
么吗?
y
f
(r)
0.8
r3 (
r2)
3
2
o
3
r
从图中可以看出: 1、当半径为2cm时,利润最小,这时f(2)<0, 2、当半径为6cm时,利润最大.
优化问题
优化问题 的答案
用函数表示的 数学问题
用导数解决 数学问题
练习1、一条长为l的铁丝截成两段,分别 弯成两个正方形,要使两个正方形 的面积和最小,两段铁丝的长度分 别是多少?
因此,当x=1时,y取最大值, 得y最大=-2+2.2+1.6=1.8, 这时容器的高为3.2-2x=1.2.
ቤተ መጻሕፍቲ ባይዱ优化问题
优化问题 的答案
用函数表示的 数学问题
用导数解决 数学问题
9
练习3、用总长14.8m的钢条制作一个长方 体容器的框架,如果所制作容器的底面的 一边比另一边长0.5m,那么高为多少时容 器的容积最大?并求出它的最大容积.
解:设容器底面短边长为xm,则另一边长为 (x+0.5)m,容器的高为 [14.8-4x-4(x+0.5)]/4=3.2-2x.
由问题的实际意义,要求x>0,3.2-2x>0, 解得x的取值范围是0<x<1.6.
某制造商制造并出售球形瓶装的某种饮料, 瓶子的制造成本是0.8 r2分,其中r 是瓶 子的半径,单位是厘米,已知每出售1 ml 的饮料,制造商可获利0.2分,且制造商能 制作的瓶子的最大半径为6 cm.
问题:(1)瓶子半径多大时,能使每瓶饮料 的利润最大?
(2)瓶子半径多大时,每瓶饮料的利润最 小?
3.4 生活中的优化问题举例
生活中的优化问题举例(含过程)
▪ [思路分析] 代入数据求k的值,建造费用加上20年能源消耗综合得出总费用f(x),利用导数求 最值.
[解析] (1)设隔热层厚度 xcm,由题意建筑物每年的能源消耗费用为 C(x)= 3x+k 5(0≤x≤10),再由 C(0)=8 得 k=40,
上述解决优化问题的过程是一个典型的 数学建模 过程.
体积面积最值问题
例1 请你设计一个包装盒,如图所示, ABCD是边长为60 cm的正方形硬纸片, 切去阴影部分所示的四个全等的等腰 直角三角形,再沿虚线折起,使得A, B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒. 点E,F在边AB上,是被切去的一个等腰直角三角形斜边的两个端点.设AE =FB=x(cm). 某厂商要求包装盒的容积V(cm3)最大,试问x应取何值?并求出此时包装盒 的高与底面边长的比值.
自主练习巩固2
某工厂生产某种产品,已知该产品的月产量 x(吨)与每吨产品的价格 P(元/吨) 之间的关系为 P=24200-15x2,且生产 x 吨的成本为 R=50000+200x 元.问 每月生产多少吨该产品才能使利润达到最大?最大利润是多少?(利润=收 入-成本).
[思路分析] 根据题意,月收入=月产量×单价=Px,月利润=月收入-成本 =Px-(50000+200x)(x≥0),列出函数关系式建立数学模型后再利用导数求最大值.
自主练习巩固1
▪ 有一块边长为a的正方形铁板,现从铁板的四个角各截去一个相同 的小正方形,做成一个长方体形的无盖容器.为使其容积最大,截 下的小正方形边长应为多少?
▪ [思路分析] 设截下的小正方形边长为x,用x表示出长方体的边长, 根据题意列出关系式,然后利用导数求最值.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如何解决优化问题?
优化问题
用函数表示的数学问题
优化问题的答案
用导数解决数学问题
问题4:无盖方盒的最大容积问题
一边长为a的正方形铁片,铁片的 四角截去四个边长都是x的小正方形, 然后做成一个无盖方盒,x 多大时,方 盒的容积V最大?
dhanyavaad
达尼阿瓦德
问题3:饮料瓶大小对饮料公司利润有影响吗?
你是否注意过,市场上等量的小包装的物 品一般比大包装的要贵些?你想从数学上 知道它的道理吗?
是不是饮料瓶越大,饮料公司的利润越大?
例如:
某制造商制ห้องสมุดไป่ตู้并出售球形瓶装饮料.瓶子 制造成本是0.8πr2分.已知每出售1ml的饮 料,可获利0.2分,且瓶子的最大半径为6cm.