2011年高考理科数学试题及答案-全国卷2

合集下载

2011年高考全国2卷理科数学(精编WORD版)有标准答案

2011年高考全国2卷理科数学(精编WORD版)有标准答案

20XX 年普通高等学校招生全国统一考试全国Ⅱ卷理科数学(必修+选修II)一、选择题:(每小题5分,共60分)1.复数1z i =+,z 为z 的共轭复数,则1zz z --=( )A.2i - B.i - C .i D.2i2.函数y =0x ≥)的反函数为( )A .24x y =(x R ∈) B.24x y =(0x ≥) C .24y x =(x R ∈) D .24y x =(0x ≥)3.下面四个条件中,使a b >成立的充分而不必要条件是( )A.1a b >+ B.1a b >- C .22a b >D .33a b >4.设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k =( )A.8 B.7 C.6D.55.设函数()cos f x x ω=(0ω>),将()y f x =的图象向右平移3π个单位长度后,所的图象与原图象重合,则ω的最小值等于( )A.13B.3 C.6 D.96.已知直二面角l αβ--,点A α∈,AC l ⊥,C 为垂足,B β∈,BD l ⊥,D 为垂足,若2,1AB AC BD ===,则D 到平面ABC 的距离等于( )A.3B . C. D .1 7.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有( )A.4种 B .10种 C.18种D .20种8.曲线21x y e -=+在点()0,2处的切线与直线0y =和y x =围成的三角形的面积为( )A.13 B.12 C .23 D.19.设()f x 是周期为2的奇函数,当01x ≤≤时,()()21f x x x =-,则5()2f -=( )A.12- B.14- C.14 D .1210.已知抛物线2:4C y x =的焦点为F ,直线24y x =-与C 交于,A B 两点,则cos AFB ∠=( )A .45 B .35 C .35- D.45- 11.已知平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为( )A .7πB .9π C.11πD.13π12.设向量,,a b c 满足011,,,602a b a b a c b c ==⋅=---=,则c 的最大值等于( )A .2B .C .。

2011年高考新课标全国卷理科数学试题(附答案)

2011年高考新课标全国卷理科数学试题(附答案)

2011年普通高等学校招生全国统一考试(新课标全国卷)理科数学第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)复数212ii +=- (A )35i - (B )35i (C )i - (D )i (2)下列函数中,既是偶函数又在(0,)+∞单调递增的函数是(A )3y x = (B )||1y x =+ (C )21y x =-+ (D )||2x y -= (3)执行右面的程序框图,如果输入的N 是6,那么输出的p 是(A )120 (B ) 720 (C ) 1440 (D ) 5040 (4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 (A )13 (B ) 12 (C )23 (D )34(5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ= (A ) 45-(B )35- (C ) 35 (D )45(6)在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为俯视图正视图DCB A(7)已知直线l 过双曲线C 的一个焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,||AB 为C 的实轴长的2倍,C 的离心率为(A (B (C ) 2 (D ) 3(8)51()(2)ax x x x+-的展开式中各项系数的和为2,则该展开式中常数项为(A )—40 (B )—20 (C )20 (D )40(9)曲线y =,直线2y x =-及y 轴所围成的图形的面积为(A )103 (B )4 (C ) 163(D ) 6 (10)已知a ,b 均为单位向量,其夹角为θ,有下列四个命题1:||1p +>a b ⇔2[0,)3πθ∈ 2:p ||+a b 1>⇔θ∈2(,]3ππ 3:||1p ->a b ⇔θ∈[0,)3π 4:||1p ->a b ⇔θ∈(,]3ππ其中真命题是(A ) 14,p p (B ) 13,p p (C ) 23,p p (D ) 24,p p (11)设函数()sin()cos()f x x x ωϕωϕ=+++(0,||)2πωϕ><的最小正周期为π,且()()f x f x -=则 (A )()y f x =在(0,)2π单调递减 (B )()y f x =在3(,)44ππ单调递减 (C )()y f x =在(0,)2π单调递增 (D )()y f x =在3(,)44ππ单调递增 (12)函数11y x=-的图象与函数2sin (24)y x x π=-剟的图象所有交点的橫坐标之和等于(A )2 (B )4 (C )6 (D )8第Ⅱ卷本卷包括必考题和选考题两部分.第13题-第21题为必考题,每个试题考生都必须做答.第22题-第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.(13)若变量x ,y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值是_________.(14)在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,离心率为.过点1F 的直线l 交C 于A ,B 两点,且2ABF ∆的周长为16,那么C 的方程为_________.(15)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且AB =6,BC =锥O ABCD -的体积为_____________.(16)ABC ∆中,60,B AC =︒=,则AB +2BC 的最大值为_________. 三、解答题:解答应写文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知等比数列{}n a 的各项均为正数,且212326231,9a a a a a +==. (I )求数列{}n a 的通项公式.(II )设31323log log log n n b a a a =+++ ,求数列1{}nb 的前n 项和.(18)(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=︒,2AB AD =,PD ⊥底面ABCD(I )证明:PA BD ⊥;(II )若PD AD =,求二面角A PB C --的余弦值.(19)(本小题满分12分)某种产品的质量以其质量指标值衡量,质量指标越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每产品的质量指标值,得到时下面试验结果:A 配方的频数分布表B 配方的频数分布表(II )已知用B 配方生产的一种产品利润y (单位:元)与其质量指标值t 的关系式为2,942,941024,102t y t t -<⎧⎪=≤<⎨⎪≥⎩从用B 配方生产的产品中任取一件,其利润记为X (单位:元).求X 的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率).(20)(本小题满分12分)在平面直角坐标系xOy 中, 已知点(0,1)A -,B 点在直线3y =-上,M 点满足//MB OA ,MA AB MB BA =,M 点的轨迹为曲线C .(I )求C 的方程;(II )P 为C 上动点,l 为C 在点P 处的切线,求O 点到l 距离的最小值.(21)(本小题满分12分)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为 230x y +-=.(I )求,a b 的值;(II )如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围.请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题记分.做答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑. (22)(本小题满分10分)选修4-1:几何证明选讲如图,D ,E 分别为ABC ∆的边AB ,AC 上的点,且不与ABC ∆的顶点重合.已知AE 的长为m ,AC 的长为n ,AD ,AB 的长是关于x 的方程2140x x mn -+=的两个根.(I )证明:,,,C B D E 四点共圆;(II )若90A ∠=︒,且4,6,m n ==求,,,C B D E 所在圆的半径.(23)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为2cos (22sin x y ααα=⎧⎨=+⎩为参数),M 为1C 上的动点,P 点满足2OP OM =,点P 的轨迹为曲线2C .(I )求2C 的方程;(II )在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,求||AB .(24)(本小题满分10分)选修4-5:不等式选讲设函数()||3f x x a x =-+,其中0a >.(I )当1a =时,求不等式()32f x x ≥+的解集. (II )若不等式()0f x ≤的解集为{x|1}x ≤-,求a 的值.2011年普通高等学校招生全国统一考试(新课标全国卷)理科数学答案(1)C 【解析】212i i+-=(2)(12),5i i i ++=共轭复数为C . (2)B 【解析】3y x =为奇函数,21y x =-+在(0,)+∞上为减函数,||2x y -=在(0,)+∞上为减函数,故选B .(3)B 【解析】框图表示1n n a n a -=⋅,且11a =所求6a =720,选B .(4)A 【解析】每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为P =3193=,选A . (5)B 【解析】由题知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++,选B .(6)D 【解析】条件对应的几何体是由底面棱长为r 的正四棱锥沿底面对角线截出的部分与底面为半径为r 的圆锥沿对称轴截出的部分构成的。

2011年高考全国2卷数学理科详细解析

2011年高考全国2卷数学理科详细解析

2011年普通高等学校招生全国统一考试全国Ⅱ卷理科数学(必修+选修II)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题共60分)注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效...........3.第Ⅰ卷共l2小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.一、选择题:(每小题5分,共60分)1.复数1z i =+,z 为z 的共轭复数,则1zz z --=( )A .2i -B .i -C .iD .2i 【详细解析】1(1)(1)(1)1211zz z i i i i i --=+--+-=---=-【考点定位】复数与共轭复数的概念及复数的四则运算法则,考查复数的运算,属于简单题。

2.函数y =0x ≥)的反函数为( )A .24x y =(x R ∈)B .24x y =(0x ≥)C .24y x =(x R ∈) D .24y x =(0x ≥)【详细解析】由y =0x ≥),得20,2y y x ≥=,故反函数为2(0)4x y x =≥ 【考点定位】考查反函数的求法。

属于简单题。

3.下面四个条件中,使a b >成立的充分而不必要条件是( )A .1a b >+B .1a b >-C .22a b >D .33a b >【详细解析】由a b >,可得1a b >+,反之不成立,故选A 【考点定位】考查不等式的性质与充要条件问题。

属于简单题。

4.设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k =( ) A .8 B .7 C .6 D .5 【详细解析】()222221,244245n n k k a n S n S S k k k k +=-=-=+-=+=∴=【考点定位】考查等差数列的前n 项和公式及计算,属于简单题。

2011年全国高考理科数学试卷(第二卷)

2011年全国高考理科数学试卷(第二卷)

2011年高考题全国卷II数学试题·理科全解全析莘县实验高中赵常举邮编:252400 科目:数学试卷名称2011年普通高等学校招生全国统一考试·全国卷II(理科)知识点检索号新课标题目及解析54 (1)复数1z i=+,z为z的共轭复数,则1zz z--=(A)2i-(B)i-(C)i(D)2i【思路点拨】先求出的z共轭复数,然后利用复数的运算法则计算即可。

【精讲精析】选B.1,1(1)(1)(1)1z i zz z i i i i=---=+----=-.4 (2)函数0)y x=≥的反函数为(A)2()4xy x R=∈(B)2(0)4xy x=≥(C)24y x=()xR∈(D)24(0)y x x=≥【思路点拨】先反解用y表示x,注意要求出y的取值范围,它是反函数的定义域。

【精讲精析】选B.在函数0)y x=≥中,0y≥且反解x得24yx=,所以0)y x=≥的反函数为2(0)4xy x=≥.24 (3)下面四个条件中,使a b>成立的充分而不必要的条件是(A)1a b+>(B)1a b->(C)22a b>(D)33a b>【思路点拨】本题要把充要条件的概念搞清,注意寻找的是通过选项能推出a>b,而由a>b推不出选项的选项.【精讲精析】选A.即寻找命题P使P,a b a b⇒>>推不出P,逐项验证可选A。

11 (4)设nS为等差数列{}n a的前n项和,若11a=,公差2d=,224k kS S+-=,则k=(A)8 (B)7 (C)6 (D)5【思路点拨】思路一:直接利用前n 项和公式建立关于k 的方程解之即可。

思路二: 利用221k k k k S S a a +++-=+直接利用通项公式即可求解,运算稍简。

【精讲精析】选D .22112(21)2(21)224 5.k k k k S S a a a k d k k +++-=+=++=++⨯=⇒=19(5)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于 (A )13(B )3 (C )6 (D )9 【思路点拨】此题理解好三角函数周期的概念至关重要,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,说明了3π是此函数周期的整数倍。

2011年全国高考理科数学试题及答案-全国

2011年全国高考理科数学试题及答案-全国

2011年高考题全国卷II数学试题·理科全解全析莘县实验高中赵常举邮编:252400 科目:数学试卷名称2011年普通高等学校招生全国统一考试·全国卷II(理科)知识点检索号新课标题目及解析5 4 (1)复数1z i=+,z为z的共轭复数,则1zz z--=(A)2i-(B)i-(C)i(D)2i【思路点拨】先求出的z共轭复数,然后利用复数的运算法则计算即可。

【精讲精析】选B.1,1(1)(1)(1)1z i zz z i i i i=---=+----=-.4 (2)函数0)y x=≥的反函数为(A)2()4xy x R=∈(B)2(0)4xy x=≥(C)24y x=()xR∈(D)24(0)y x x=≥【思路点拨】先反解用y表示x,注意要求出y的取值范围,它是反函数的定义域。

【精讲精析】选B.在函数0)y x=≥中,0y≥且反解x得24yx=,所以0)y x=≥的反函数为2(0)4xy x=≥.2 4 (3)下面四个条件中,使a b>成立的充分而不必要的条件是(A)1a b+>(B)1a b->(C)22a b>(D)33a b>【思路点拨】本题要把充要条件的概念搞清,注意寻找的是通过选项能推出a>b,而由a>b推不出选项的选项.【精讲精析】选A .即寻找命题P 使P ,a b a b ⇒>>推不出P ,逐项验证可选A 。

11(4)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k =(A )8 (B )7 (C )6 (D )5【思路点拨】思路一:直接利用前n 项和公式建立关于k 的方程解之即可。

思路二: 利用221k k k k S S a a +++-=+直接利用通项公式即可求解,运算稍简。

【精讲精析】选D .22112(21)2(21)224 5.k k k k S S a a a k d k k +++-=+=++=++⨯=⇒=19(5)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于 (A )13(B )3 (C )6 (D )9 【思路点拨】此题理解好三角函数周期的概念至关重要,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,说明了3π是此函数周期的整数倍。

2011年全国高考2卷理科数学试题及答案

2011年全国高考2卷理科数学试题及答案

2011年全国高考2卷理科数学试题及答案2011年普通高等学校招生全国统一考试(全国卷II)数学本试卷共4页,共三大题21小题,总分150分,考试时间120分钟。

考生答题前需在试题卷和答题卡上填写姓名和准考证号,并将准考证号条形码粘贴在答题卡上的指定位置。

选择题需用2B铅笔将答案标号涂黑,如需更改,需用橡皮擦干净后重新涂写。

填空题和解答题需使用0.5毫米黑色墨水签字笔在答题卡上的对应区域内回答,试题卷上的回答无效。

考试结束时,请一并上交试题卷和答题卡。

一、选择题本大题共12小题,每小题5分,共60分。

在每小题的四个选项中,只有一项是符合题目要求的。

1.已知复数z=1+i,z为其共轭复数,则zz-z-1=A)-2i(B)-i(C)i(D)2i2.函数y=2x(x≥0)的反函数为A)y=(x∈R)B)y=(x≥0)C)y=4x2(x∈R)D)y=4x2(x≥0)3.以下四个条件中,使a>b成立的充分必要条件是A)a>b+1B)a>b-1C)a>bD)以上条件都是4.设Sn为等差数列{an}的前n项和,若a1=1,公差d=2,且Sk+2-Sk=24,则k=A)8(B)7(C)6(D)55.已知函数f(x)=cosωx(ω>0),将y=f(x)的图像向右平移2π/3个单位长度后,所得的图像与原图像重合,则ω的最小值等于A)1/3B)3C)6D)96.已知直二面角α-ℓ-β,点A∈α,AC⊥ℓ,C为垂足,B∈β,BD⊥ℓ,D为垂足,且AB=2,AC=BD=1,则D到平面ABC的距离等于A)2√3/3B)√2C)1D)2√3/37.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有A)4种B)10种C)18种D)20种8.曲线y=e2x+1在点(0,2)处的切线与直线y=-x和y=x围成的三角形的面积为A)1/12B)1/2C)1/3D)1/329.设f(x)是周期为2的奇函数,当-1≤x≤1时,f(x)=2x(1-x),则f(-5/4)=A)-11/16B)-1/4C)1/4D)11/16210.已知抛物线C:y=4x的焦点为F,直线y=2x-4与C交于A、B两点,则cos∠AFB=(A)解析:首先,求出抛物线C的准线方程为y=-4x,焦点为F(0,1)。

2011年全国卷高考数学答案(理科)

2011年全国卷高考数学答案(理科)

(A) 8
( B)7
( C) 6
( D)5
(5)设函数 f ( x) cos x( >0) ,将 y f (x) 的图像向右平移 个单位
3
长度后,所得的图像与原图像重合,则 的最小值等于
(A) 1
3
(B) 3
(C) 6 (D) 9
(6) 已知直二面角α - ι - β,点 A∈α, AC⊥ι, C 为垂足, B
(D) y 4x2 ( x≥0)
-1-
(3)下面四个条件中,使 a> b 成立的充分而不必要的条件是 ( A) a> b 1 (B) a> b 1 ( C) a2> b2 ( D) a3> b3
( 4 ) 设 Sn 为 等 差数列 an 的 前 n 项 和 ,若 a1 1 , 公 差 d 2 ,
SA 2 Sn 24 ,则 k
个选项中,只有一项是符合题目要求的。
一、选择题
( 1)复数 z 1 i , z 为 z 的共轭复数,则 zz z 1
( A) 2i
(B) i
(C) i
( D) 2i
( 2)函数 y 2 x (x≥0) 的反函数为
(A) y
x2 (x
R)
4
(B) y
x2 ( x≥ 0)
4
( C) y 4x2 ( x R)
(Ⅰ)求 an 的通项公式;
(Ⅱk , 证明: Sn 1.
k1
(21)已知 O 为坐标原点, F 为椭圆 C : x2 y2 1 在 y 轴正半轴上的焦
二、填空题:本大题共 4 小题,每小题 5 分,共 20 分把答案填在题中
横线上 ( 注意:在.试.卷.上.作.答.无.效. )
(13)(1- x ) 20 的 二 项 展 开 式 中 , x 的 系 数 与 x9 的 系 数 之 差

2011年普通高等学校招生全国统一考试数学卷(全国Ⅱ.理)含详解

2011年普通高等学校招生全国统一考试数学卷(全国Ⅱ.理)含详解

(9)设 f ( x ) 是周期 (致) -
5 2
1 2
1 4
(C)
1 4
(D)
1 2
答案 致 命题意 解 析 本题 要考查利用函数的周期性和奇偶性求函数值的方法.
f ( x) 是 周 期 若 的 奇 函 数 , 利 用 周 期 性 和 奇 偶 性 得 : 5 5 1 1 1 1 1 f (− ) = f (− + 2) = f (− ) = − f ( ) = −2 × × (1 − ) = − . 2 2 2 2 2 2 2 2 C 交于 A , B 点.则 (令代) 知抛物线 C y = 4 x 的焦点 F ,直线 y = 2 x − 4 cos ∠AFB = 4 3 3 4 (致) (B) (C) − (D) − 5 5 5 5
(k + 2)(k + 1) k (k − 1) × 2] − [k ×1 + × 2] = 4k + 4 = 24 ,解得 2 2
(5)设函数 f ( x) = cos ω x (ω > 0) ,将 y = f ( x) 的 原 致 重合,则 ω 的最小值等于
向右 移
π
3
个单 长度 ,所得的
1 3 2π
解析 致 C 答案 B 命题意 解析 本题 要考查 原函数 解得 x = 函数的求法.
x2 ( x ∈ R) 4 y = 4 x2 ( x ∈ R) y=
B D
y=
x2 ( x ≥ 0) 4 y = 4 x 2 ( x ≥ 0)
y2 ,又原函数的值域 4
y ≥ 0 ,所 函数 y = 2 x ( x ≥ 0) 的
a1 = 1 ,公差 d = 2 , Sk + 2 − Sk = 24 ,则 k =

2011高考全国2卷数学理科试题及答案详解

2011高考全国2卷数学理科试题及答案详解

2011年普通高等学校招生全国统一考试 全国卷2理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动, 用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。

.......... 3.第Ⅰ卷共l2小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

一、选择题(1)复数1z i =+,z 为z 的共轭复数,则1zz z --= (A )2i - (B )i - (C )i (D )2i(2)函数0)y x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥ (C )24y x =()x R ∈ (D )24(0)y x x =≥(3)下面四个条件中,使a b >成立的充分而不必要的条件是 (A )1a b +> (B )1a b -> (C )22a b > (D )33a b >(4)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224A n S S +-=,则k = (A )8 (B )7 (C )6 (D )5(5)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于 (A )13(B )3 (C )6 (D )9(6)已知直二面角α− ι−β,点A ∈α,AC ⊥ι,C 为垂足,B ∈β,BD ⊥ι,D 为垂[来源:Z§xx§]足.若AB=2,AC=BD=1,则D 到平面ABC 的距离等于(A)3 (B)3 (C)3(D) 1(7)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友 每位朋友1本,则不同的赠送方法共有(A)4种 (B)10种 (C)18种 (D)20种[来源:学科网](8)曲线y=2x e -+1在点(0,2)处的切线与直线y=0和y=x 围成的三角形的面积为 (A)13 (B)12 (C)23(D)1(9)设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5()2f -= (A) -12 (B)1 4- (C)14 (D)12(10)已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A ,B 两点.则cos AFB ∠= (A)45 (B)35 (C)35- (D)45-(11)已知平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N.若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为 (A)7π (B)9π (C)11π (D)13π(12)设向量a ,b ,c 满足a =b =1,a b =12-,,a c b c --=060,则c 的最大值等于 (A)2 (B)3 (c)2 (D)1第Ⅱ卷 注意事项:1答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。

2011年高考数学(理科)试卷(及答案)_全国卷

2011年高考数学(理科)试卷(及答案)_全国卷

2011年高考全国卷 数学(理工)本试卷共4页,三大题21小题。

满分150分,考试时间120分钟。

★祝考试顺利★注意事项:1. 答题前,考生务必将自己的姓名、准考证号填在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置。

2. 选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷上无效。

3. 填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内,答在试题卷上无效。

4. 考试结束,请将本试题卷和答题卡一并上交。

一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是满足题目要求的。

1.复数1z i =+,z 为z 的共轭复数,则1zz z --= (A) -2i (B) -i (C) i (D) 2i2. 函数()20y x x =≥的反函数为(A)()24x y x R =∈ (B) ()204x y x =≥(C)()24y xx R =∈ (D) ()240y x x =≥3.下面四个条件中,使a b >成立的充分而不必要的条件是 (A) 1a b >+ (B) 1a b >- (C)22a b > (D) 33a b >4.设n S 为等差数列{}n a 的前n 项和,若11a =,公差22,24k k d S S +=-=,则k= (A) 8 (B) 7 (C) 6 (D) 55.设函数()()cos 0f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于 (A)13(B) 3 (C) 6 (D) 9 6.已知直二面角l αβ--,点,,A AC l C α∈⊥为垂足,,,B BD l D β∈⊥为垂足,若2,1AB AC BD ===,则D 到平面ABC 的距离等于(A)22 (B) 33 (C) 63(D) 1 7.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4为朋友,每位朋友1本,则不同的赠送方法共有(A) 4种 (B) 10种 (C) 18种 (D) 20种8.曲线21x y e =+在点()0,2处的切线与直线0y =和y x =围成的三角形的面积为 (A)13 (B) 12 (C) 23(D) 1 9.设()f x 是周期为2的奇函数,当01x ≤≤时,()()21f x x x =-,则52f ⎛⎫-= ⎪⎝⎭(A) 12-(B) 14- (C) 14 (D) 1210.已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A 、B 两点,则cos AFB ∠= (A)45 (B) 35 (C) 35- (D) 45- 11.已知平面α截一球面得圆M ,过圆心M 且与α成60二面角的平面β截该球面得圆N ,若该球面的半径为4.圆M 的面积为4π,则圆N 的面积为(A) 7π (B) 9π (C) 11π (D) 13π12. 设向量,,a b c 满足11,,,602a b a b a c b c ===---=,则c 的最大值等于(A) 2 (B)3 (C) 2 (D) 1二、填空题:本大题共4小题,每小题5分,共20分.请将答案填在答题卡对应题号的位置上,一题两空的题,其答案按先后次序填写. 13. ()201x-的二项展开式中,x 的系数与9x 的系数之差为 .14. 已知,2παπ⎛⎫∈⎪⎝⎭,5sin 5α=,则tan 2α= . 15. 已知12F F 、分别为双曲线22:1927x y C -=的左、右焦点,点A C ∈,点M 的坐标为()2,0,AM 为12F AF ∠的角平分线,则 2AF = .16. 已知点E 、F 分别在正方体1111ABCD A B C D - 的棱11BB CC 、上,且12B E EB =,12CF FC =,则面AEF 与面ABC 所成的二面角的正切值等于 .三、解答题:本大题共6小题,共70分。

2011年高考试题——(全国卷理)解析版

2011年高考试题——(全国卷理)解析版

2011 年高考题全国卷II数学试题· 理科全解全析科目:数学试卷名称2011 年普通高等学校招生全国统一考试·全国卷II(理科)知识点检索号题目及解析新课标(1)复数z 1 i , z为 z 的共轭复数,则 zz z 1(A)2i( B)i( C)i( D)2i【思路点拨】先求出的z 共轭复数,然后利用复数的运算法则计算即可。

【精讲精析】选 B. z 1i, zz z 1 (1 i )(1 i) (1 i ) 1 i .(2)函数y 2 x (x≥0)的反函数为(A)y x2( x R)( B)4(C)y4x 2( x R)()Dyx2 ( x≥0) 4y 4x2 (x≥0)【思路点拨】先反解用y 表示 x, 注意要求出y 的取值范围,它是反函数的定义域。

【精讲精析】选 B. 在函数y2x (x≥0) 中, y0 且反解x 得x y2,所以4y 2 x ( x≥0)的反函数为 y x2( x 0) .4(3)下面四个条件中,使a> b 成立的充分而不必要的条件是(A)a>b 1( B)a>b 1( C)a2>b2( D)a3>b3【思路点拨】本题要把充要条件的概念搞清,注意寻找的是通过选项能推出a>b,而由 a>b 推不出选项的选项 .【精讲精析】选 A. 即寻找命题 P 使 P a b, a b 推不出P,逐项验证可选A。

(4)设S n为等差数列a n的前n项和,若a11,公差d 2 ,S k 2S k24 ,则k(A) 8(B)7(C) 6(D) 5【思路点拨】思路一:直接利用前n 项和公式建立关于k 的方程解之即可。

思路二:利用 S k 2 S k a k 2 a k 1 直接利用通项公式即可求解,运算稍简。

【精讲精析】选 D.Sk 2S kak 2ak 12a 1 (2k 1)d 2 (2k 1)2 24 k 5.(5)设函数 f ( x)cos x( >0) ,将 yf (x) 的图像向右平移个单位长度后,3所得的图像与原图像重合,则 的最小值等于(A )1(B ) 3(C ) 6(D ) 93【思路点拨】此题理解好三角函数周期的概念至关重要,将 y f ( x) 的图像向右平移个单位长度后,所得的图像与原图像重合,说明了是此函数周期的整数倍。

2011年(全国卷II)(含答案)高考理科数学

2011年(全国卷II)(含答案)高考理科数学

2011年普通高等学校招生全国统一考试(2全国卷)数学(理)试题一、选择题 ( 本大题 共 12 题, 共计 60 分)1.复数1z i =+,z 为z 的共轭复数,则1zz z --=( )A .2i -B .i -C .iD .2i2.函数2(0)y x x =≥的反函数为( ) A .2()4x y x R =∈ B .2(0)4x y x =≥C .24y x =()x R ∈D .24(0)y x x =≥3.下面四个条件中,使a b >成立的充分而不必要的条件是( )A .1a b +>B .1a b ->C .22a b >D .33a b >4.设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k =( )A .8B .7C .6D .55.设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于( )A .13B .3C .6D .96.已知直二面角α− ι−β,点A∈α,AC⊥ι,C 为垂足,B∈β,BD⊥ι,D为垂足.若AB=2,AC=BD=1,则D 到平面ABC 的距离等于( )A .23B .33C .63D .17.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友每位朋友1本,则不同的赠送方法共有( )A .4种B .10种C .18种D .20种8.曲线y=2x e -+1在点(0,2)处的切线与直线y=0和y=x 围成的三角形的面积为( )A .13B .12C .23D .19.设()f x 是周期为2的奇函数,当0≤x≤1时,()f x =2(1)x x -,则5()2f -=( )A .-12B .14-C .14D .1210.已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A ,B 两点.则cos AFB ∠=( )A .45 B .35C .35-D .45-11.已知平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为( )A .7πB .9πC .11πD .13π12.设向量a ,b ,c 满足a=b=1,a b =12-,,a c b c--=060,则c 的最大值等于( )A .2B .3C .2D .1二、填空题:本大题共4小题,每小题5分,共20分把答案填在题中横线上 (注意:在试卷上作答无效........) 13.(1-x )20的二项展开式中,x 的系数与x 9的系数之差为: .2y 2 14.已知a ∈(2π,π),sinα=55,则tan2α= 15.已知F 1、F 2分别为双曲线C : 29x - 227y =1的左、右焦点,点A ∈C ,点M 的坐标为(2,0),AM 为∠F 1AF 2∠的平分线.则|AF 2| = .16.己知点E 、F 分别在正方体ABCD -A 1B 2C 3D 4的棱BB 1 、CC 1上,且B 1E =2EB,CF=2FC 1,则面AEF 与面ABC 所成的二面角的正切值等于 .三、解答题:本大题共6小题,共70分解答应写出文字说明,证明过程或演算步骤17.(本小题满分l0分)(注意:在试题卷上作答无效.........)△ABC的内角A、B、C的对边分别为a、b、c.己知A—C=90°,a+c=2b,求C.18.(本小题满分12分)(注意:在试题卷上作答无效.........)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立(I)求该地1位车主至少购买甲、乙两种保险中的l种的概率;(Ⅱ)X表示该地的l00位车主中,甲、乙两种保险都不购买的车主数。

2011年全国高考理科数学试题及答案(含解析)-全国2

2011年全国高考理科数学试题及答案(含解析)-全国2

绝密★启用前 2011年6月7日15:00~17:002011年普通高等学校招生全国统一考试理科数学(必修+选修II)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。

第I 卷1至2页。

第Ⅱ卷3 至4页。

考试结束后,将本试卷和答题卡一并交回............。

第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。

3.第I 卷选择题在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么 球的表面积公式如果事件A 、B 相互独立,那么 其中R 表示球的半径()()()B P A P B A P ∙=∙ 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 334V R π=n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 一.选择题:本大题共12小题,每小题5分,共60分。

(注意:在试题卷上作答无效.........) (1)复数z =1+i ,z 为z 的共轭复数,则z z -z -1=(A )-2i (B )-i (C )i (D )2i (2)函数y =2x (x ≥0)的反函数为(A )y =24x (x ∈R ) (B )y =24x(x ≥0)(C )y =24x (x ∈R ) (D )y =24x (x ≥0) (3)下面四个条件中,使a >b 成立的充分而不必要的条件是(A )a >b +1 (B )a >b -1 (C )2a >2b (D )3a >3b(4)设n S 为等差数列{}n a 的前n 项和,若11a =,公差d = 2,224k k S S +-=,则k = (A ) 8 (B ) 7 (C ) 6 (D ) 5(5) 设函数()()cos 0f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13(B )3 (C )6 (D )9 (6)已知直二面角βα--l , 点,α∈A ,l AC ⊥ C 为垂足,,β∈B l BD ⊥,D 为垂足,若2=AB ,1==BD AC ,则D 到平面ABC 的距离等于( )(A )23(B )33 (C ) 63 (D ) 1(7)某中学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有( )(A )4种 (B ) 10种 (C ) 18种 (D )20种 (8)曲线12+=-xey 在点(0,2)处的切线与直线0=y 和x y =围成的三角形的面积为(A )31 (B )21 (C )32(D )1 (9) 设)(x f 是周期为2的奇函数,当10≤≤x 时,)1(2)(x x x f -=,则=-)25(f(A ) 21-(B )41- (C )41 (D )21(10)已知抛物线C: x y 42=的焦点为F ,直线42-=x y 与C 交于A 、B 两点,则=∠AFB COS ( ) (A)54 (B) 53 (C) 53- (D) 54- (11) 已知平面α截一球面得圆M,过圆心M 且与α成 二面角的平面β截该球面得N 。

2011年高考理科数学试题及答案-全国卷2-精选.pdf

2011年高考理科数学试题及答案-全国卷2-精选.pdf

A. 8
B.5
C. 3
D. 2
1
7.设 sin( + )= ,则 sin 2
4
3
7
A.
9
1
B.
9
பைடு நூலகம்
1
C.
9
8.如图,四棱锥 S— ABCD的底面为正方形, SD 底面 ABCD,
则下列结论中不正.确..的是
A. AC⊥ SB
B. AB∥平面 SCD
C. SA 与平面 SBD所成的角等于 SC与平面 SBD所成的角
x cos
在平面直角坐标系 xOy 中,曲线 C1 的参数方程为
( 为参数),曲线 C2 的参数方程为
y sin
x a cos ( a b 0 , 为参数),在以 O 为极点, x 轴的正半轴为极轴的极坐标系中,
y b sin
射线 l:θ=
与 C1, C2 各有一个交点.当 =0 时,这两个交点间的距离为 ( I)分别说明 C1, C2 是什么曲线,并求出 a 与 b 的值;
a
a
a
( III)若函数 y f (x) 的图像与 x 轴交于 A,B 两点,线段 AB 中点的横坐标为 x0,证明: f (x0)< 0.
请考生在第 22、 23、24 三题中任选一题做答,如果多做,则按所做的第一题计分.做答是用 在答题卡上把所选题目对应题号下方的方框涂黑. 22.(本小题满分 10 分)选修 4-1:几何证明选讲
a2 a1 2
an an 1 an
2n 1
2n
11 1(
24
1 2n
2n 1
2n )
1 2n 1 (1 2n 1 ) 2n
n 2n . 所以 Sn

2011年高考数学新课标全国卷2(理)试卷

2011年高考数学新课标全国卷2(理)试卷

1 的前项和. bn
(18)(本小题满分 12 分) 如图, 四棱锥 P—ABCD 中, 底面 ABCD 为平行四边形, ∠DAB=60°,AB=2AD,PD⊥底面 ABCD. (Ⅰ)证明:PA⊥BD; (Ⅱ)若 PD=AD,求二面角 A-PB-C 的余弦值。
(19) (本小题满分 12 分) 某种产品的质量以其质量指标值衡量, 质量指标值越大表明质量越好, 且质量指标值大于 或等于 102 的产品为优质品,现用两种新配方(分别称为 A 配方和 B 配方)做试验,各生产 了 100 件这种产品,并测试了每件产品的质量指标值,得到下面试验结果:
2011 年普通高等学校招生全国统一考试全国卷 II 数学 (理工农医类)
注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前,考生务必将自己的姓 名、准考证号填写在本试卷和答题卡相应位置上。 2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。 如需改动,用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。 3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。 4.考试结束后,将本试卷和答题卡一并交回。
1 3
(B)
1 2
(C)
2 3
1
(D)
3 4
(5)已知角 的顶点与原点重合,始边与 x 轴的正半轴重合,终边在直线 y 2 x 上,则 cos 2 = (A) (C)
4 5
(B) (D)
3 5
3 5
4 5
(6)在一个几何体的三视图中,正视图和俯视图 如右图所示,则相应的俯视图可以为
(D) f ( x) 在
3 , 4 4
1 的图像与函数 y 2sin x(2 x 4) 的图像所有焦点的横坐标之和等 x 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年普通高等学校招生全国统一考试(全国卷2)数学(理科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.为正实数,为虚数单位,,则A.2 B.C.D.12.已知M,N为集合I的非空真子集,且M,N不相等,若,则A.M B.N C.I D.3.已知F是抛物线y2=x的焦点,A,B是该抛物线上的两点,,则线段AB的中点到y轴的距离为A.B.1 C.D.4.△ABC的三个内角A,B,C所对的边分别为a,b,c,a sin A sin B+b cos2A=,则A.B.C.D.5.从1,2,3,4,5中任取2各不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B︱A)=A.B.C.D.6.执行右面的程序框图,如果输入的n是4,则输出的P是A.8B.5C.3D.27.设sin,则A.B.C.D.8.如图,四棱锥S—ABCD的底面为正方形,SD底面ABCD,则下列结论中不正确...的是A.AC⊥SBB.AB∥平面SCDC.SA与平面SBD所成的角等于SC与平面SBD所成的角D.AB与SC所成的角等于DC与SA所成的角9.设函数,则满足的x的取值范围是A.,2] B.[0,2] C.[1,+] D.[0,+]10.若,,均为单位向量,且,,则的最大值为A.B.1 C.D.211.函数的定义域为,,对任意,,则的解集为A.(,1)B.(,+)C.(,)D.(,+)12.已知球的直径SC=4,A,B是该球球面上的两点,AB=,,则棱锥S—ABC的体积为A.B.C.D.1第Ⅱ卷本卷包括必考题和选考题两部分.第13题-第21题为必考题,每个试题考生都必须做答.第22题-第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.已知点(2,3)在双曲线C:上,C的焦距为4,则它的离心率为.14.调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元),调查显示年收入x 与年饮食支出y具有线性相关关系,并由调查数据得到y对x的回归直线方程:.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加____________万元.15.一个正三棱柱的侧棱长和底面边长相等,体积为,它的三视图中的俯视图如右图所示,左视图是一个矩形,则这个矩形的面积是.16.已知函数=A tan(x+)(),y=的部分图像如下图,则.三、解答题:解答应写文字说明,证明过程或演算步骤.17.(本小题满分12分)已知等差数列{a n}满足a2=0,a6+a8=-10(I)求数列{a n}的通项公式;(II)求数列的前n项和.18.(本小题满分12分)如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=P D.(I)证明:平面PQC⊥平面DCQ;(II)求二面角Q—BP—C的余弦值.19.(本小题满分12分)某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种家和品种乙)进行田间试验.选取两大块地,每大块地分成n小块地,在总共2n小块地中,随机选n小块地种植品种甲,另外n小块地种植品种乙.(I)假设n=4,在第一大块地中,种植品种甲的小块地的数目记为X,求X的分布列和数学期望;(II)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm2)如下表:品种甲 4 388 400 412 406品种乙419 4 423 400 413 分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?附:样本数据的的样本方差,其中为样本平均数.20.(本小题满分12分)如图,已知椭圆C1的中心在原点O,长轴左、右端点M,N在x轴上,椭圆C2的短轴为MN,且C1,C2的离心率都为e,直线l⊥MN,l与C1交于两点,与C2交于两点,这四点按纵坐标从大到小依次为A,B,C,D.(I)设,求与的比值;(II)当e变化时,是否存在直线l,使得BO∥AN,并说明理由.21.(本小题满分12分)已知函数.(I)讨论的单调性;(II)设,证明:当时,;(III)若函数的图像与x轴交于A,B两点,线段AB中点的横坐标为x0,证明:(x0)<0.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题计分.做答是用2B铅笔在答题卡上把所选题目对应题号下方的方框涂黑.22.(本小题满分10分)选修4-1:几何证明选讲如图,A,B,C,D四点在同一圆上,AD的延长线与BC的延长线交于E点,且EC=ED.(I)证明:CD//AB;(II)延长CD到F,延长DC到G,使得EF=EG,证明:A,B,G,F四点共圆.23.(本小题满分10分)选修4-4:坐标系统与参数方程在平面直角坐标系xOy中,曲线C1的参数方程为(为参数),曲线C2的参数方程为(,为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:θ=与C1,C2各有一个交点.当=0时,这两个交点间的距离为2,当=时,这两个交点重合.(I)分别说明C1,C2是什么曲线,并求出a与b的值;(II)设当=时,l与C 1,C2的交点分别为A1,B1,当=时,l与C1,C2的交点为A2,B2,求四边形A1A2B2B1的面积.24.(本小题满分10分)选修4-5:不等式选讲已知函数=|x-2|x-5|.(I)证明:≤≤3;(II)求不等式≥x2x+15的解集.参考答案评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题不给中间分.一、选择题1—5 BACDB 6—10 CADDB 11—12 BC二、填空题13.214.0.25415.16.三、解答题17.解:(I)设等差数列的公差为d,由已知条件可得解得故数列的通项公式为………………5分(II)设数列,即,所以,当时,所以综上,数列………………12分18.解:如图,以D为坐标原点,线段DA的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系D—xyz.(I)依题意有Q(1,1,0),C(0,0,1),P(0,2,0).则所以即PQ⊥DQ,PQ⊥DC.故PQ⊥平面DCQ.又PQ平面PQC,所以平面PQC⊥平面DCQ. …………6分(II)依题意有B(1,0,1),设是平面PBC的法向量,则因此可取设m是平面PBQ的法向量,则可取故二面角Q—BP—C的余弦值为………………12分19.解:(I)X可能的取值为0,1,2,3,4,且即X的分布列为………………4分X的数学期望为………………6分(II)品种甲的每公顷产量的样本平均数和样本方差分别为:………………8分品种乙的每公顷产量的样本平均数和样本方差分别为:………………10分由以上结果可以看出,品种乙的样本平均数大于品种甲的样本平均数,且两品种的样本方差差异不大,故应该选择种植品种乙.20.解:(I)因为C1,C2的离心率相同,故依题意可设设直线,分别与C1,C2的方程联立,求得………………4分当表示A,B的纵坐标,可知………………6分(II)t=0时的l不符合题意.时,BO//AN当且仅当BO的斜率k BO与AN的斜率k AN相等,即解得因为所以当时,不存在直线l,使得BO//AN;当时,存在直线l使得BO//AN. ………………12分21.解:(I)(i)若单调增加.(ii)若且当所以单调增加,在单调减少. ………………4分(II)设函数则当.故当,………………8分(III)由(I)可得,当的图像与x轴至多有一个交点,故,从而的最大值为不妨设由(II)得从而由(I)知,………………12分22.解:(I)因为EC=ED,所以∠EDC=∠ECD.因为A,B,C,D四点在同一圆上,所以∠EDC=∠EBA.故∠ECD=∠EBA,所以CD//AB. …………5分(II)由(I)知,AE=BE,因为EF=FG,故∠EFD=∠EGC从而∠FED=∠GEC.连结AF,BG,则△EFA≌△EGB,故∠FAE=∠GBE,又CD//AB,∠EDC=∠ECD,所以∠FAB=∠GBA.所以∠AFG+∠GBA=180°.故A,B,G,F四点共圆…………10分23.解:(I)C1是圆,C2是椭圆.当时,射线l与C1,C2交点的直角坐标分别为(1,0),(a,0),因为这两点间的距离为2,所以a=3.当时,射线l与C1,C2交点的直角坐标分别为(0,1),(0,b),因为这两点重合,所以b=1.(II)C1,C2的普通方程分别为当时,射线l与C1交点A1的横坐标为,与C2交点B1的横坐标为当时,射线l与C1,C2的两个交点A2,B2分别与A1,B1关于x轴对称,因此,四边形A1A2B2B1为梯形.故四边形A1A2B2B1的面积为…………10分24.解:(I)当所以………………5分(II)由(I)可知,当的解集为空集;当;当.综上,不等式…………10分。

相关文档
最新文档