24.圆周角(二)

合集下载

人教版数学九年级上册24.1.4圆周角(第2课时)优秀教学案例

人教版数学九年级上册24.1.4圆周角(第2课时)优秀教学案例
3.小组合作:我将学生分成小组,让他们在团队合作中完成圆周角定理的证明和实际问题的解决,这样不仅提高了他们的团队协作能力,还培养了他们的沟通能力。
4.反思与评价:我引导学生进行课堂反思,帮助他们发现自己的学习优点和不足,从而提高他们的自我认知和自我调整能力,为他们的持续进步提供了动力。
5.作业小结:我布置了一道具有挑战性的作业,让学生在课后运用所学知识解决实际问题,这样不仅巩固了他们的课堂所学,还提高了他们的解决问题能力。同时,我在下一节课的开始部分让学生分享他们的解题过程和心得,这样既为下一节课的教学做好了铺垫,又让他们从他人的经验中学习到了新的解题策略。
针对这一情况,我设计了本节课的教学案例,以帮助学生更好地理解和运用圆周角定理。在教学过程中,我注重启发学生思考,引导学生通过观察、操作、归纳等方法发现圆周角定理,并与实际问题相结合,让学生在解决实际问题的过程中体会圆周角定理的应用价值。同时,我还注重培养学生的团队协作能力和语言表达能力,使学生在互动交流中不断提高自己的数学素养。
二、教学目标
(一)知识与技能
1.理解圆周角定理,掌握圆周角定理的证明过程,能够运用圆周角定理解决实际问题。
2.学会使用圆规和直尺画圆周角,能够准确地找出圆周角所对的两条弧的圆心角。
3.掌握圆周角定理在圆的切割、镶嵌等实际问题中的应用,提高学生的解决问题的能力。
(二)过程与方法
1.观察与操作:通过观察实物和模型,引导学生发现圆周角定理,培养学生的观察能力和操作能力。
五、例亮点
1.情境创设:通过实物和模型展示,以及多媒体动画演示,我成功地激发了学生的学习兴趣,让他们在直观的情境中感受到圆周角定理的实际应用,从而提高了他们的学习积极性。
2.问题导向:我在教学中提出了具有针对性的问题,引导学生进行深入思考,使他们在解决问题的过程中理解和掌握圆周角定理,培养了他们的逻辑思维能力。

圆周角_第二课时- 课件

圆周角_第二课时- 课件

知识回顾 问题探究 课堂小结
探究二: 圆的内接多边形
重点、难点知识★▲
活动2 探索圆的内接四边形四个角之间的关系。
∠A和∠C是四边形ABCD的一组对角,也是⊙O的圆 周角,它们在⊙O中所对的分别是哪两条弧?
这两条弧有什么关系? 从而∠A和∠C具有怎样的数量关系? ∠B和∠D也具有这样的关系吗?
这两条弧的度数之和为360°,从而∠A和∠C之和等 于360°的一半,也就是180°,∠B和∠D之和也为180°。
1 2
OA,根据含30°的
直角三角形三边的关系得到∠OAD=30°,接着根据
三角形内角和定理可计算出∠AOB=120°,然后根据圆周
角定理计算∠APB的度数。
知识回顾 问题探究 课堂小结
探究三 例题分析
活动2 提升型例题
【解题过程】 解:作半径OC⊥AB于D,连结OA、OB,如图, ∵将⊙O沿弦AB折叠,圆弧恰好经过圆心O,
1 ∴∠AOB=90°,∴∠ADB= 2 ∠AOB=45°, ∴∠AEB=180°﹣∠ADB=135°。 ∴此弦所对的圆周角等于45°或135°。
知识回顾 问题探究 课堂小结
探究三 例题分析
活动3 探究型例题
例5.已知弦AB、CD相交于E,»AC 的度数为90°,B»D 的度数为30°,则∠AEC=_6__0_°___。
∴弦AB所对的圆周角的度数为: 1 ∠AOB=20°或180°﹣20°=160°。 2
【思路点拨】由⊙O的弦AB所对的圆心角为40°,根据 圆周角定理与圆的内接四边形的性质,即可求得弦AB 所对的圆周角的度数。
知识回顾 问题探究 课堂小结
探究三 例题分析
活动2 提升型例题
练习4:在⊙O中,若弦AB长2 2 cm,弦心距为 2 cm,则此弦所对的圆周角等于______。

圆周角二-圆内接四边形

圆周角二-圆内接四边形
通过圆内接四边形的性质,可以确定四边形的形 状。
计算四边形的面积
利用圆内接四边形的面积公式,可以计算出四边 形的面积。
3
判断四边形的对角线性质
通过圆内接四边形的对角线性质,可以判断四边 形的对角线性质。
圆周角与圆内接四边形在几何图形中的综合应用
利用圆周角和圆内接四边形的关系,可以解决一些复杂的几何问题。 通过综合应用圆周角和圆内接四边形的性质,可以推导出一些重要的几何定理。
边与角的关系
在一个圆内接四边形中, 相对的两边之和大于另外 两边之和,且相对的两边 之差小于另外两边之差。
圆周角与圆内接四边形性质的关联
圆周角与圆心角的关系
在一个圆内接四边形中,相对的两条 边所对的圆周角等于其相对的两条边 所对的圆心角的一半。
圆周角与外角的关系
在一个圆内接四边形中,相对的两条 边所对的圆周角等于其相对的外角的 补角。
边形。
圆内接四边形的性质
02
其对角互补,即两个对角和为180度。
圆内接四边形的证明方法
03
通过构造辅助线,利用三角形全等或相似性质,以及圆的性质
进行证明。
圆周角与圆内接四边形证明的关联
关联点
在证明过程中,常常需要利用圆 周角和圆内接四边形的性质进行 相互转化,以简化证明过程。
应用场景
在解决一些涉及圆和四边形的几 何问题时,利用圆周角和圆内接 四边形的性质可以提供有效的解 题思路和方法。
04
圆周角二与圆内接四边形 的应用
圆周角在几何图形中的应用
确定圆的位置
通过圆周角的大小和位置 关系,可以确定圆的位置。
计算圆心角
利用圆周角和圆心角的关 系,可以计算出圆心角的 大小。
ቤተ መጻሕፍቲ ባይዱ

数学人教九年级上册(2014年新编)24-1-4 圆周角(第二课时)(教学设计)

数学人教九年级上册(2014年新编)24-1-4 圆周角(第二课时)(教学设计)

24.1.4 圆周角(第二课时)教授新课师:在同圆或等圆中,同弧所对应的圆周角有什么关系?[多媒体展示]【探索与思考】∠BAC与∠BDC同BC,∠BAC与∠BDC有什么关系?尝试给出证明过程?生:根据圆周角定理可知,∠BAC=12∠BOC, ∠BDC=12∠BOC∴∠BAC=∠BDC师:由此可知:同弧所对的圆周角相等。

师:在同圆或等圆中,两条弧相等,则他们所对应的圆周角有什么关系?[多媒体展示]【探索与思考】弧BC=弧CE,∠BDC与∠CAE有什么关系?尝试给出证明过程?生:连接BO、CO、OE根据圆周角定理可知,∠BDC=12∠BOC,∠CAE=12∠COE 又由弧BC=弧CE可知,∠BOC=∠COE.师:由此可知:等弧所对的圆周角相等。

师:推论1:同弧或等弧所对的圆周角相等。

师:尝试运用圆周角推论进行计算。

[多媒体展示]典例1 如图,⊙O中,弦AB、CD相交于点P,若∠A=20°,∠APD=70°,则∠B等于()A.30° B.35° C.40° D.50°变式1-1 如图,⊙O中,OA⊥BC,∠AOC=50°,则∠ADB的度数为()A.15° B.25° C.30° D.50°变式1-2 如图,A,B,C,D是⊙O上的四个点,弧AB=弧BC,若∠AOB=58°,则∠BDC=____度让学生经历猜想-探究-证明的过程,从而掌握圆周角定理推论的内容。

通过配套例题,举一反三,进而消化本节课所学内容。

【师生互动】鼓励学生积极发言,教师通过引导纠正,最后给出解题过程和答案。

师:根据所学知识回答下面问题。

[多媒体展示]【问题一】如图1,AB为⊙O的直径,它所对的圆周角是多少?【问题二】如图2 ,AB为⊙O的直径,改变C点的位置,它所对的圆周角度数会改变吗?【问题三】如图1,圆周角∠C=90°,连接AB,弦AB经过圆心吗?为什么?生1:90°生2:不变生3:∵∠ACB=90°∴∠AOB=180°∴弦AB过圆心。

2.4圆周角(第2课时)(同步课件)-九年级数学上册同步精品课堂(苏科版)

2.4圆周角(第2课时)(同步课件)-九年级数学上册同步精品课堂(苏科版)

෽ ,BE分别交AD

(2)若=
、 AC于点F、G,判断△FAB的形状.
解:(2)△FAB是等腰三角形,理由是:

෽ ,
∵ =
∴∠ABE=∠ACB (等弧所对的圆周角相等).
由(1)得∠ACB=∠BAD,
∴∠ABE=∠BAD,
∴AF=BF,
∴△FAB是等腰三角形.
A
E
F
B

D O
G
=180°-90°-50°
=40°.
例题讲解
例2
如图,AB是⊙O的直径,弦CD与AB相交于点E.
(1) 已知∠ADC=50°,求∠CAB的度数.
解法2:连结BD.
C
∵AB是⊙O的直径,
∴∠ADB=90°(直径所对的圆周角是直角).
A
O E
B
∵∠ADC=50°,
∴∠CDB=∠ADB-∠ ADC=90°-50°=40°.
则∠ =( B )
A.°
B.°
C.°
D.°
当堂检测
基础过关
3.(2024·安徽宿州·三模)如图,⊙ 是△ 的外接圆, ⊥ .
若 = ,∠ = °,则⊙ 的半径为(
A.4
B.
C.
D.8
A)
当堂检测
基础过关
4.(2024·北京门头沟·一模)如图所示,为了验证某个机械零件的截
面是个半圆,某同学用三角板放在了如下位置,通过实际操作可以
得出结论,该机械零件的截面是半圆,其中蕴含的数学道理是
90°的圆周角所对的弦是直径
___________________________.
当堂检测
基础过关
5.如图,AB是⊙O的直径,D是⊙O上的任意一点(不与点A、

圆周角第二课时

圆周角第二课时

DC
或△ACE∽ △ADB E
题后思:1、证明题的思路寻找方法; 2、等积式的证明方法; 3、辅助线的思考方法。
练是习CO:如的图中,点圆,OD中E ,/A/ ABB是, 直径,半径CO AB,D
求证:EC=2EA.
C
ED
A
O
B
1 如图,以⊙O的半径OA为直径作⊙O1, ⊙O的弦AD交⊙O1于C,则OC与AD的 位置关系是________。
圆周角定理
驶向胜利 的彼岸
圆周角定理 一条弧所对的圆周角等于它所对的圆心角的一半.
即 ∠ABC = 1∠AOC.
2
A
A
A
C
C
C
●O
●O
●O
B
B B
老师提示:圆周角定理是承上启下的知识点,要予以重视.
课前测验
1、100º的弧所对的圆心角等于__1_0_0_º__,所对的圆周角等于 ___5_0_º__。
C
同理,∵∠BAC和∠CPB都是B⌒C所对的圆周角, ∴∠BAC=∠CPB=60°。
∴△ABC等边三角形。
例题精解
例2、如图,AD是△ABC的高,AE是△ABC的外接圆
直径。求证:AB ·AC = AE ·AD
分析:要证AB ·AC = AE ·AD
A
AC AD AE AB
O
△ADC∽ △ABE B
九年级数学(下)第三章 圆
3. 圆周角和圆心角的关系(2)圆周角定理的推论
一、旧知回放:
1、圆周角定义: 顶点在圆上,
并且两边都和圆相交的角 A 叫圆周角.
特征:
① 角的顶点在圆上.
② 角的两边都与圆相交.
4
一、旧知回放:

2022年精品 《圆周角2》名师优秀教案

2022年精品 《圆周角2》名师优秀教案

圆周角〔第二课时〕〔张丹丹〕一、教学目标〔一〕学习目标1探索同圆或等圆中,相等的圆周角所对的弧和弦的关系2探索同弦所对圆周角的关系3记住圆周角定理的推论并能运用其解决实际问题4知道圆内接多边形及多边形的外接圆的概念,掌握圆的内接四边形的性质〔二〕学习重点1探索同圆或等圆中,相等的圆周角所对的弧的关系2知道圆内接多边形及多边形的外接圆的概念,掌握圆的内接四边形的性质〔三〕学习难点1探索同弦所对圆周角的关系2圆的内接四边形中对角的关系二、教学设计〔一〕课前设计1预习任务〔1〕在同圆或等圆中,同弧或等弧所对的圆周角相等,相等的圆周角所对的弧和弦也相等.〔2〕在同圆或等圆中,同弦所对的圆周角相等或互补.〔3〕圆内接四边形的对角互补.2预习自测〔1〕如图,A,B,C是⊙O上三点,∠ACB=25°,那么∠BAO的度数是〔〕A.55°B.60°C.65°D.70°【知识点】圆周角定理.【数学思想】数形结合【解题过程】解:连接OB,∵∠ACB=25°,∴∠AOB=2×25°=50°,由OA=OB,∴∠BAO=∠ABO,∴∠BAO=〔180°﹣50°〕=65°.应选C.【思路点拨】连接OB,要求∠BAO的度数,只要在等腰三角形OAB中求得一个角的度数即可得到答案,利用同弧所对的圆周角是圆心角的一半可得∠AOB=50°,然后根据等腰三角形两底角相等和三角形内角和定理即可求得.【答案】C.〔2〕如图,AB是⊙O的直径,BC是⊙O的弦.假设∠OBC=60°,那么∠BAC的度数是〔〕A.75°B.60°C.45°D.30°【知识点】圆周角定理.【数学思想】数形结合【解题过程】解:∵AB是⊙O的直径,∴∠ACB=90°,又∵∠OBC=60°,∴∠BAC=180°﹣∠ACB﹣∠ABC=30°.应选D.【思路点拨】根据AB是⊙O的直径可得出∠ACB=90°,再根据三角形内角和为180°以及∠OBC=60°,即可求出∠BAC的度数.【答案】D.〔3〕如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,那么∠OAD∠OCD=度.【知识点】圆周角定理;平行四边形的性质【数学思想】数形结合【解题过程】解:连接OB∵四边形OABC为平行四边形∴AB=OC=OB=OA=BC∴△OAB和△OBC都为等边三角形∴∠OAB=∠OCB=60°∵四边形ABCD为圆的内接四边形∴∠DAB∠DCB=180°∴∠OAD∠OCD=180°﹣60°﹣60°=60°【思路点拨】由四边形OABC为平行四边形,根据平行四边形对角相等,即可得∠B=∠AOC,由圆周角定理,可得∠AOC=2∠ADC,又由内接四边形的性质,可得∠B∠ADC=180°,即可求得∠B=∠AOC=12021∠ADC=60°,然后由三角形外角的性质,即可求得∠OAD∠OCD的度数.【答案】60°〔4〕如图,AB为⊙O的直径,AB=AC,AC交于⊙O点E,∠BAC=45°.假设AE=1,那么BC=.【知识点】圆周角定理;等腰直角三角形【数学思想】数形结合【解题过程】解:∵AB是圆的直径,∴∠AEB=90°,又∵∠BAC=45°,∴△ABE是等腰直角三角形,那么AB=,BE=AE=1,那么EC=AC﹣AE=AB﹣AE=﹣1,在直角△BCE中,BC=.故答案是:.【思路点拨】首先利用圆周角定理证明△ABE是等腰直角三角形,那么求得AB、BE的长度,那么EC即可求得,然后再在直角△BCE中,利用勾股定理即可求解.【答案】二课堂设计1知识回忆〔1〕把顶点在圆上,并且两边都与圆相交的角叫做圆周角。

圆周角2

圆周角2

又∵∠OAC+∠OBC+∠ACB=180°
∴∠ACB=∠OCA+∠OCB=180°÷2=90°
半圆或直径所对的圆周角都相等,都等于90°
90°的圆周角所对的弦是圆的直径
探索2:
画一个圆心角,然后再画同弧所对的圆周角. 1.同一条弧你能画多少个圆周角?多少个圆
心角?用量角器量一量这些
圆周角你有何发现?
(2x+100)°和(5x-30)°,则x=_20°_;
1.AB、AC为⊙O的两条弦,延长CA到D,使 AD=AB,如果∠ADB=35° ,
求∠BOC的度数。 ∠BOC =140° 2、如图,在⊙O中,B⌒C=2D⌒E, ∠BOC=84°, 求∠ A的度数。 ∠A=21°
小结:
1.圆周角定义:顶点在圆上,并且两边都和圆相 交的角叫圆周角.
欢,蚰蜒蝎子赶上山!这句俗语寓意着,三月三是一个万象更新的好日子!这一日的到来,预示着整整一个严冬已经过 去,新的一年从此开始了!那一日,故乡的天空湛蓝湛蓝的,不时有成群的鸽子飞过。金色的阳光暖暖地普照着大地。 大路边上一排排的杨树和柳树,已经冒出了碧绿的新芽,漂亮的大喜鹊成双成对地雀跃在枝头上欢唱着。远处的几棵杏 子树,已经穿上了淡粉色的盛装;更远处的一大片桃树,似乎都在含苞待放了……随着阵阵微风轻柔地拂面而来,让人 能够闻得到漫山遍野上飘逸着的那复苏泥土沁人心肺的清香。路旁田埂上齐刷刷新出土的小草在微风中轻轻地摆动着, 一丛丛一片片迎春的二月兰已经绽放开了她们那淡紫色的笑脸,黄澄澄的蒲公英花儿安逸地点缀在绿茸茸的草地间…… 这一切,曾经是耿正兄妹三人最喜欢的乡野风景啊!但今天,他们却无心欣赏……日头即将到半上午时,骡车终于慢慢 悠悠地走到了右转弯路口。只要转过这个路口,就走上五道庙前的那条西行大道了!“喔—”耿正轻抖缰绳吆喝一声, 大白骡驾着骡车转上宽阔的东西向大道,依然还是慢慢地向东走去……骡车走得太慢了,徒步跟在车后的一高一中一矮 三个中年男人只能慢慢地走着才不至于超过去。事实上,今儿一早耿正兄妹三人乘坐大骡车离开客栈之后仅走了几十步 远时,这三个人就从后面左侧的岔道上追上来了。不过,要说“追”也并不恰当,只是他们三个人走路的速度比大白骡 还要快很多,所以,他们与骡车之间相隔的距离就越来越近了而已。到相隔仅有十多步远的时候,其中的那个矮个子说: “真晦气,怎么是挂送灵车。咱们快些走,超过去!”说着,就甩膀子迈大步要快走的样子。那个高个子赶快伸手拉住 他,并且低声说:“嘘,小声点儿说话!你们看,这挂车看上去不轻,后面还装了两袋草料,还有那把铁锹,看起来是 赶远路的呢!”矮个子也放低了声音说:“管他是赶近路的还是赶远路的,反正是一挂晦气的送灵车……”不等他继续 说下去,高个子就皱起眉头有些不耐烦地瞪了他一眼,低声说:“你怎么就不用脑子想一想啊,这天气已经热起来了, 拉个死人,还不早臭了!”听他这么说,一直没有开口说话的那个中个子男人就伸长脖子张大鼻孔用劲吸了几下,然后 放低嗓音对高个子说:“是啊,大哥,怎么一点儿味儿也没有啊?”矮个子也赶快用劲吸几下,恍然大悟一般悄声说: “真是没有臭味儿,难道说他们拉的不是死人!”高个子摇摇手不让他们继续说下去,小声说:“咱们就跟在后面,看 他们去哪里。等晚上住进了客栈以后,咱再想办法看个究竟。依我看,说不准儿是一桩大买卖呢!”三个家伙会心地相 互眨眨眼轻轻地窃笑了一下,就放慢脚步跟在骡车的后面,看似很轻松地溜

最新人教版九年级上册数学同步作业课件第二十四章圆第37课时圆周角(二)

最新人教版九年级上册数学同步作业课件第二十四章圆第37课时圆周角(二)
∵四边形ABCD内接于⊙O,
∴∠CDE=∠ABC=60°.
又∵∠ACB=∠ADB=∠EDF=60°,
∴△ABC是等边三角形.
(2)解:DA+DC=DB. 理由如下. 如答图KH24-37-1,连接OA.
∵∠ADO=60°,OA=OD,∴△AOD是等边三角形.
∴AD=AO=OD,∠AOD=60°.∴∠AOB=120°.
7. 如图KH24-37-5,已知四边形ABCD内接于⊙O,AB=AC,
∠ADC=120°,求证:△ABC是等边三角形.
证明:∵四边形ABCD内接于⊙O,
∴∠ABC+∠ADC=180°.
∴∠ABC=180°-∠ADC=180°-120°=60°.

∴AB=AC.
又∵∠ABC=60°,
∴△ABC是等边三角形.
第二十四章
第37课时

圆周角(二)
【A组】
1. 如图KH24-37-1,四边形ABCD内接于⊙O,若∠A=
110°,则∠C的度数为
A. 70°
B. 100°
C. 110°
D. 120°
(
A )
2. 如图KH24-37-2,点A,B,C,D在⊙O上,∠AOC=112°,
点B是弧AC的中点,则∠D的度数是
100°
线上一点,若∠B=100°,则∠ADE=____________.
5. 圆内接四边形ABCD中,∠A∶∠B∶∠C=2∶3∶7,则
∠D=________.
120°
6. 在⊙O中,若半径为10,弦AB与半径相等,则弦AB所
对的圆周角是_________________.
30°或150°
【B组】
∵OB=OA,∠ABO=15°,

初中数学人教版九年级上册《24142圆周角(2)》教案

初中数学人教版九年级上册《24142圆周角(2)》教案

人教版数学九年级上24.1.4.2圆周角(2)教学设计一、复习旧知1、还记得圆周角的定义吗?2、请你说出圆周角定理及推论。

圆周角定理:一条弧所对的圆周角等于它所对圆心角的一半.推论1:同弧或等弧所对的圆周角相等.推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.二、探究新知活动1,抢答:1.你能用三角尺画出下面这个圆的圆心吗?2.填空:如图,∠BAC=55°,∠CAD=45°,则∠DBC=_____°,∠BDC=_____°,∠BCD=______°3.如图,BD是⊙O的直径,∠ABC=130°则∠ADC=______°活动2:讨论请看我们做的抢答习题第2、3题,同学们有没有发现什么规律,请大家以小组为单位讨论后发言。

学生小组1回答:这个四边形的四个顶点,点A,点B,点C,点D都在⊙O上。

学生小组2回答:这个四边形的对角和是180°。

学生小组3回答:……学生小组4回答:……教师总结:同学们真是火眼金睛,找到的特点很多。

这个四边形有一个特点,四边形的四个顶点,点A,点B,点C,点D都在⊙O上,我们把这个四边形叫做圆内接四边形(板书:⊙O叫做四边形ABCD的外接圆)师:出示圆内接三角形图片,并指出:这是一个三角形,这个三角形的所有顶点都在这个圆上,我们把这个三角形叫做圆内接三角形,把这个圆叫做这个三角形的外接圆.师:出示圆内接五边形图片,并指出:这是五边形,这个五边形的所有顶点都在这个圆上,我们把这个五边形叫做圆内接五边形,把这个圆叫做这个五边形的外接圆.师:(出示圆内接六边形图片)归纳总结:现在,同学们能总结出“圆内接多边形”的定义了吗?一般地说,如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.刚才有同学说习题中的四边形的对角和是180°,我们再来看圆内接四边形有什么性质。

人教版数学九年级上册24.1.4圆周角(第2课时)教学设计

人教版数学九年级上册24.1.4圆周角(第2课时)教学设计
四、教学内容与过程
(一)导入新课
1.教学活动设计:
-利用多媒体展示生活中含有圆周角的物体,如时钟、风扇、自行车轮等,引导学生观察并思考这些物体上的圆周角特点。
-提问学生:“你们知道什么是圆周角吗?圆周角有哪些特点?”激发学生对圆周角的兴趣。
2.教学目的:
-通过生活中的实例,让学生感知圆周角的存在,为新课的学习做好铺垫。
2.自主探究,构建概念:
-让学生通过画圆、量角等活动,直观感受圆周角的特点。
-引导学生通过小组合作,探讨圆周角的定义,推导圆周角定理及推论。
-教师适时给予提示和引导,帮助学生理解圆周角的性质和定理。
3.实践应用,巩固知识:
-设计具有挑战性的练习题,让学生独立完成,巩固圆周角的知识。
-通过实际案例,如园林设计、道路规划等,让学生运用圆周角知识解决实际问题。
-对本节课学习的圆周角的定义、定理、推论进行梳理和归纳。
-总结圆周角知识在实际生活中的应用。
2.教学方法:
-学生分享学习体会,总结圆周角知识的关键点。
-教师点评学生的发言,强调重点知识,并对本节课进行总结。
五、作业布置
为了巩固学生对圆周角知识的掌握,提高学生的应用能力和思维能力,特布置以下作业:
1.基础知识巩固:
-激发学生的好奇心,引导学生积极思考,为新知的探究奠定基础。
(二)讲授新知
1.教学内容:
-圆周角的定义:从圆上任意两点分别向圆内引两条不重合的射线,所形成的角叫做圆周角。
-圆周角定理:ห้องสมุดไป่ตู้周角的度数等于它所对圆弧的度数的一半。
-圆周角推论:圆内接四边形的对角互补。
2.教学方法:
-采用讲解、演示、举例等教学方法,让学生理解圆周角的定义及性质。

圆周角教案-2

圆周角教案-2

圆周角教案【精华】圆周角教案4篇圆周角教案篇1教材依据圆周角是新课标人教版九年级数学上册第二十四章第一节圆的有关性质的重要内容,本节内容依据新人教版九年级《课程标准》和《教师教学用书》及《初中数学新教材详解》。

设计思想本节课是在学习了圆心角的定义、性质定理和推论的基础上,由生活实例引出圆周角,类比圆心角认识圆周角,类比圆心角的性质探究圆周角定理,精选例题及习题对本节内容进行迁移应用。

在教学过程中本着“以人为本,让课堂变为学堂,把时间和空间更多地留给学生”为原则,注重学生的实践活动,通过让学生作图、度量、分析、猜想、验证得出结论,教学过程中充分利用学生已有的认知水平,由浅入深、逐层递进,并能适时地应用直观教具引导学生运用分类讨论及转化的数学思想对圆周角定理进行证明,化解本节课的难点。

这样学生易于接受新知识,也能很快地理解并掌握圆周角定理的内容,同时给学生自主探索留有很大空间,让学生在实践探究、合作交流活动中,亲身体验应用数学的乐趣和成功的喜悦,发展学生的思维,培养学生的多种学习能力。

教学目标1.知识与技能(1)理解圆周角的概念,掌握圆周角定理,并运用它进行简单的论证和计算。

(2)经历圆周角定理的证明,使学生初步学会运用分类讨论的数学思想和转化的数学思想解决问题。

2.过程与方法采用“活动与探究”的学习方法,由感性到理性、由简单到复杂、由特殊到一般的思维过程研究新知识,引导学生理解知识的发生发展过程,并使学生能应用所学知识解决简单的实际问题。

3.情感、态度与价值观通过学生探索圆周角定理,自主学习、合作交流的学习过程,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习数学的自信心。

教学重点圆周角的概念、圆周角定理及应用。

教学难点圆周角定理的探究过程及定理的应用。

教学准备学生:圆规、量角器、尺子教师:多媒体课件、活动教具教学过程一、创设情景,引入新课大屏幕显示学生熟悉的画面(足球射门游戏)足球场有句顺口溜:“冲向球门跑,越近就越好;歪着球门跑,射点要选好。

24.2圆的确定(2)--反证法

24.2圆的确定(2)--反证法
25.3圆的确定
——反证法
一、复习引入 1,经过一点能作几个圆? 2,经过两个点能作几个圆? 3,经过三个点能作几个圆? 4,什么叫三角形的外接圆? 5,什么叫外心? 6,什么叫做圆内接三角形? 7,外心是什么线的交点?有什么性质? 8,经过四点一定可以确定一个圆吗? 9,经过同一直线上的三个点能确定一个圆吗?
直接证法 证明真命题 的方法 间接证法 反证法
延伸拓展 你能用反证法证明以下命题吗?
如图,在△ABC中,若∠C是直角, 那么∠B一定是锐角. 直角 或______. 钝角 证明:假设结论不成立,则∠B是_____ 直角 时,则∠ 当∠B是_____ _____________ B+ ∠C= 180° 当∠B是_____ 钝角 时,则∠ ______________ B+ ∠C>180° 综上所述,假设不成立. ∴∠B一定是锐角.
三角形的三个内角和等于180° 矛盾; 这与____________________________
三角形的三个内角和等于180°矛盾; 这与____________________________
小结
发生在身边的例子:
妈妈:小华,听说邻居小芳全家这几天在外地旅游.
小华:不可能,我上午还在学校碰到了她和她妈妈 呢!
P l1 l2
反证法的一般步骤:
假设命题结 论反面成立 什么时候运用反证法呢? 所证命题 成立 与已知条 件矛盾
假设
假设命题结 论不成立
推理得出 的结论
与定理,定义, 公理矛盾
假设不 成立
试一试
已知:如图,直线a,b被直线c所截, ∠1 ≠ ∠2
c
1
a b
求证:a∥b
2
证明:假设结论不成立,则a∥b

人教版数学九年级上册24.1.4《圆周角》教学设计2

人教版数学九年级上册24.1.4《圆周角》教学设计2

人教版数学九年级上册24.1.4《圆周角》教学设计2一. 教材分析《圆周角》是人教版数学九年级上册第24章的一部分,主要讲述了圆周角定理及其应用。

通过学习本节内容,学生能够理解圆周角定理,掌握圆周角与圆心角的关系,并能运用圆周角定理解决一些几何问题。

二. 学情分析学生在学习本节内容前,已经掌握了相似三角形的性质、圆的性质等知识。

但部分学生对于圆周角定理的理解和应用仍有困难,需要通过实例和练习来进一步巩固。

三. 教学目标1.知识与技能:理解圆周角定理,掌握圆周角与圆心角的关系。

2.过程与方法:通过观察、思考、讨论,培养学生的逻辑思维能力和解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神。

四. 教学重难点1.重点:圆周角定理的理解和应用。

2.难点:圆周角定理在解决复杂几何问题时的运用。

五. 教学方法1.引导法:通过问题引导学生思考,激发学生的学习兴趣。

2.讨论法:分组讨论,培养学生的团队合作精神。

3.实例分析法:通过具体的例子,让学生更好地理解圆周角定理。

六. 教学准备1.准备相关的几何模型和图片,用于直观展示圆周角定理。

2.设计一些具有代表性的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)通过一个简单的几何问题引导学生思考,例如:在圆上任意取一点,连接圆心,求该角的度数。

让学生感受到圆周角与圆心角之间的关系。

2.呈现(10分钟)介绍圆周角定理的内容,并用几何模型和图片进行展示,让学生直观地理解圆周角定理。

同时,解释圆周角定理的意义和应用。

3.操练(10分钟)让学生分组讨论,每组设计一个符合圆周角定理的例子,并展示给其他同学。

通过实例分析,让学生更好地理解圆周角定理。

4.巩固(10分钟)设计一些具有代表性的练习题,让学生独立完成。

题目难度可以适当递增,以检验学生对圆周角定理的掌握程度。

5.拓展(10分钟)引导学生思考:圆周角定理在其他几何问题中的应用。

可以让学生举例说明,也可以教师提供一些实际问题,让学生尝试解决。

最新版初中数学教案《圆周角 2》精品教案(2022年创作)

最新版初中数学教案《圆周角 2》精品教案(2022年创作)

圆周角一、新课导入1.导入课题:情景:如图,把圆心角∠AOB的顶点O拉到圆上,得到∠ACB.问题1:∠ACB有什么特点?它与∠AOB有何异同?问题2:你能仿照圆心角的定义给∠ACB取一个名字并下个定义吗?由此导入课题.〔板书课题〕2.学习目标:(1)知道什么是圆周角,并能从图形中准确识别它.(2)探究并掌握圆周角定理及其推论.(3)体会“由特殊到一般〞“分类〞“化归〞等数学思想.3.学习重、难点:重点:圆周角定理及其推论.难点:圆周角定理的证明与运用.二、分层学习1.自学指导:〔1〕自学内容:教材第85页到第86页倒数第6行之前的内容. 〔2〕自学时间:10分钟.〔3〕自学方法:完成探究提纲.〔4〕探究提纲:1〕圆周角的概念①顶点在圆上,并且两边都与圆相交的角叫做圆周角.②判别以下各图中的角是不是圆周角,并说明理由.②猜一猜:一条弧所对的圆周角与圆心角有何数量关系?②量一量:用量角器量一量圆心角∠AOB和圆周角∠ACB.a.如图,∠ACB=12∠AOB.b.你可以画多少个AB所对的圆周角?这些圆周角与∠AOB之间有什么数量关系?∠AOB的一半.③想一想:在⊙O中任画一个圆周角∠BAC,圆心O与∠BAC可能会有几种位置关系?有3种位置关系.③证一证:∠BAC的一条边上时(如图1〕:∠BAC的内部时(如图2〕:作直径AD,同a,得.∠BAC的外部时(如图3〕.作直径AD,同a,得⑤归纳:一条弧所对的圆周角等于它所对的圆心角的一半.2.自学:学生可根据自学指导自主学习,相互交流.3.助学:〔1〕师助生:①明了学情:关注学生能否探究、归纳和证明圆周角定理.②差异指导:根据学情进行个别指导或分类指导.〔2〕生助生:小组内交流、研讨.4.强化:〔1〕圆周角定理的内容.〔2〕证明圆周角定理所表达的数学思想.〔3〕练习:如图,OA,OB,OC都是⊙O的半径,∠AOB=2∠BOC.求证:∠ACB=2∠BAC.证明:∵∠ACB=12∠AOB,∠BAC=12∠BOC,∠AOB=2∠BOC,∴∠ACB=2∠BAC.1.自学指导:〔1〕自学内容:教材第86页最后5行至第87页例4.〔2〕自学时间:10分钟.〔3〕自学方法:完成探究提纲.〔4〕探究提纲:①探究图中∠ACB ,∠ADB 和∠AEB 的数量关系.a.如图1,∵∠ACB=12∠AOB,∠ADB=12∠AOB,∠AEB=12∠AOB ,∴∠ACB = ∠ADB = ∠AEB.即同弧所对的圆周角 相等 .b.如图2,AB=AE,∵AB=AE,∴∠AOB = ∠AOE.∵∠ACB=12∠AOB, ∠ADE=12∠AOE, ∴∠ACB = ∠ADE. 即等弧所对的圆周角 相等 .c.由此可得,同弧或等弧所对的圆周角 相等 .d.练习:如图,点A 、B 、C 、D 在同一个圆上,四边形ABCD 的对角线把四个内角分成8个角,这些角中哪些是相等的角?∠1=∠4,∠2=∠7,∠3=∠6,∠5=∠8②半圆(或直径)所对的圆周角是 直角 ;90°的圆周角所对的弦是 直径 .为什么?因为半圆〔或直径〕所对的圆心角是180°,所以它所对的圆周角是90°,即直角.90°的圆周角所对的圆心角是180°,所以它所对的弦是直径.④ 如图,用直角曲尺检查半圆形的工件,哪个是合格的?为什么?第二个工件是合格的.因为半圆所对的圆周角为直角.④如图, ⊙O 的直径AB 为10cm,弦AC 为6cm, ∠ACB 的平分线交⊙O 于D,求BC ,BD 的长.∵AB 是直径,∴∠ACB=90°,∴在ACB Rt 中,()BC AB AC cm =-=-=22221068. 同理∠ADB=90°,又CD 是∠ACB 的平分线,∴∠DCA=∠DCB=12∠ACB=45°, ∴∠DBA=∠DAB=45°,∴AD=BD.在ADB Rt 中,AD 2+BD 2=AB 2,∴BD AB cm ==21522. ⑤ 如图,你能设法确定一个圆形片的圆心吗?你有多少种方法?能,方法很多,例如:利用三角尺的直角可以找出两条直径〔90°的圆周角所对的弦是直径〕,两直径交点就是圆心.2.自学:学生可在自学指导的指引下自主学习,相互交流.3.助学:〔1〕师助生:①明了学情:关注学生是否会完成任务.②差异指导:根据学情进行个别指导或分类指导.〔2〕生助生:小组内交流、研讨.4.强化:〔1〕常规辅助线:遇直径,想直角.〔2〕点一名学生口答探究提纲中的问题②,点两名学生板演问题④,并点评.1.自学指导:〔1〕自学内容:教材第87页“思考〞到第88页“练习〞之前的内容.〔2〕自学时间:7分钟.〔3〕自学方法:阅读课文,完成自学参考提纲.〔4〕自学参考提纲:①什么叫圆内接多边形和多边形的外接圆?如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.②在图中标出BAD 和BCD 所对的圆心角,这两个圆心角有什么关系?∠BAD+∠BCD = 180 度,同理可得:∠ABC+∠ADC = 180 度.③圆内接四边形的性质:圆内接四边形的对角互补.④练习:a.如图,四边形ABCD为⊙O的内接四边形,∠BOD=100°,那么∠BAD=50°,∠BCD=130° .b.如图,四边形ABCD内接于⊙∠B=110°,求∠ADE的度数.∵四边形ABCD内接于⊙O,∴∠B+∠ADC=180°,又∠ADC+∠ADE=180°,∴∠ADE=∠B=110°.c.求证:圆内接平行四边形是矩形.∵圆内接四边形对角互补,而平行四边形对角相等,∴圆内接平行四边形四个角都是直角.∴圆内接平行四边形是矩形.d.:如图,两个等圆⊙O1和⊙O2都经过A,B两点,经过点A的直线与两圆分别交于点C,D,经过点B的直线与两圆分别交于点E,F.假设CD∥EF,求证:四边形EFDC 是平行四边形.连接AB.∵四边形ABEC是⊙O1的内接四边形,∴∠C+∠ABE=180°.又∵四边形ABFD是⊙O2的内接四边形.∴∠D+∠ABF=180°.又∵∠ABE+∠ABF=180°.∴∠C+∠D=180°.∴CE∥DF.又∵CD∥EF,∴四边形EFDC是平行四边形.2.自学:学生可结合自学指导自主学习.3.助学:〔1〕师助生:①明了学情:明了学生自学提纲的答题情况.②差异指导:根据学情进行个别指导或分类指导.〔2〕生助生:生生互动,交流研讨.4.强化:〔1〕圆内接四边形的性质.〔2〕让学生完成自学参考提纲中的第④题,并点评.〔3〕练习:圆内接四边形ABCD中,∠A、∠B、∠C的度数的比是2∶3∶6,求四边形ABCD各内角的度数.解:∵∠A∶∠C=2∶6,∠A+∠C=180°,∴∠A=45°,∠C=135°.又∠A∶∠B=2∶3,∴∠B=67.5°,∠D=180°-∠B=112.5°.三、评价1.学生的自我评价〔围绕三维目标〕:这节课你学到了哪些知识?在哪些方面还感到比较困难?2.教师对学生的评价:〔1〕表现性评价:点评学生学习的态度、积极性、小组探究协作情况以及存在的问题等.〔2〕纸笔评价:课堂评价检测.3.教师的自我评价〔教学反思〕:〔1〕这节课首先是类比圆心角得出圆周角的概念.在探究圆周角与圆心角关系过程中,要求学生学会使用分类讨论以及转化的数学思想解决问题,同时也培养了学生勇于探究的精神.其次,本节课还学习了圆内接四边形定义及圆内接四边形的性质,通过例题和习题训练,可以使学生在解答问题时灵活运用前面的一些根底知识,从中获取成功的经验,建立学习的自信心.〔2〕圆周角定理的证明分了三种情况探讨,这里蕴含着重要的数学思想——分类思想,教材中多处闪烁着分类思想的光环:三角形分类、方程的分类等,故教学过程中要整理相互交融的知识结构,加强分类思想的渗透.(时间:12分钟总分值:100分)一、根底稳固〔80分〕1.(10分)以下四个图中,∠x是圆周角的是〔C〕2.(10分)如图,⊙O 中,弦AB 、CD 相交于E 点,且∠A=40°,∠AED=75°,那么∠B=〔D 〕A.15°B.40°C.5°D.35°3.(10分)如图,⊙O 的直径AB 与弦CD 垂直,且∠BAC=40°,那么∠BOD= 80° . 4.(10分)如图,点B 、A 、C 都在⊙O 上,∠BOA =110°,那么∠BCA= 125° .5.(10分)如图,⊙O 中,弦AD 平行于弦BC ,∠AOC=78°,求∠DAB的度数.解:∵AD ∥BC ,∴∠DAB=∠B.又∵∠B=12∠AOC=39°. ∴∠DAB=39°.6.(10分)如图,⊙O 的半径为1,A,B,C 是⊙O 上的三个点,且∠ACB=45°,求弦AB 的长.解:连接OA 、OB.∵∠BCA=45°,∴∠BOA=2∠BCA=90°.又OA=OB,∴△AOB 是等腰直角三角形.∴AB OA OB OA OA =+===222222.7.(10分)如图,A,P,B,C 是⊙O 上的四点,∠APC=∠CPB=60°,判断△ABC 的形状并证明你的结论.解:△ABC 是等边三角形.证明如下:∵∠APC=∠ABC=60°,∠CPB=∠BAC=60°,∴∠ACB=180°-∠ABC-∠BAC=60°,∴△ABC 是等边三角形.8.(10分)如图,A ,B ,C ,D 是⊙O 上的四点,延长DC ,AB 相交于点E ,假设BC=BE .求证:△ADE 是等腰三角形.证明:∵∠A+∠BCD=180°,∠BCE+∠BCD=180°.∴∠A=∠BCE.∵BC=BE,∴∠E=∠BCE,∴∠A=∠E,∴AD=DE,∴△ADE是等腰三角形.二、综合应用〔10分〕9.(10分)如图,EF是⊙O的直径,把∠A为60°的直角三角板ABC的一条直角边BC 放在直线EF上,斜边AB与⊙O交于点P,点B与点O重合;将三角形ABC沿OE方向平移,使得点B与点E重合为止.设∠POF=x°,那么x的取值范围是30≤x≤60.三、拓展延伸〔10分〕10.(10分)如图,BC为半圆O的直径,点F是BC上一动点〔点F不与B、C重合〕,A是BF上的中点,设∠FBC=α,∠ACB=β.〔1〕当α=50°时,求β的度数;〔2〕猜想α与β之间的关系,并给予证明.解:〔1〕连接OA,交BF于点M.∵A是BF上的中点,∴OA垂直平分BF.∴∠BOM=90°-∠B=90°-α=40°.∴∠C=12∠AOB=12×40°=20°,即β=20°.〔2〕β=45°-1 2α.证明:由〔1〕知∠∠C=β=12∠AOB,∴β=12〔90°-α〕=45°-12α.三角形的稳定性【知识与技能】1.通知过观察、实践、想象、推理、交流等活动,让学生了解三角形具有稳定性,四边形没有稳定性,稳定性与没有稳定性在生产、生活中广泛应用.2.培养实事求是的学习作风和学习习惯.【过程与方法】1.通过提问、合作讨论以及小组交流方式探究三角形的稳定性.2.实物演示,激发学习兴趣,活泼课堂气氛.3.探究质疑,总结结果.和学生共同探究三角形稳定性的实例,答复课前提出的疑惑.【情感态度】1.引导学生通过实验探究三角形的稳定性,培养其独立思考的学习习惯和动手能力.2.通过合作交流,养成学生互助合作意识,提高数学交流表达能力.【教学重点】了解三角形稳定性在生产、生活中的实际应用.【教学难点】准确使用三角形稳定性于生产生活之中.一、情境导入,初步认识课前准备:木条〔用硬纸条代替〕假设干、小钉假设干、小黑板.问题1 工程建筑中经常采用三角形的结构,如屋顶钢架,钢架桥,其中道理是什么?问题 2 盖房子时,在窗框未安装好之前.木工师傅常常先在窗框上斜钉一根木条,为什么要这样做呢? 活动挂架为什么做成四边形?【教学说明】问题设立要让学生体会三角形在生产和生活中的应用,并引导思考为什么要在这些地方用三角形,另一些地方又要用到四边形.注意接纳学生其他不同的思路.教师讲课前,先让学生完成“自主预习〞.二、思考探究,获取新知老师演示P6探究内容,也可叫学生亲手实验,通过实际操作加深学生印象,完后请学生们交流讨论后答复得出了什么?教师根据学生们的答复进行简要归纳.【归纳结论】三角形木架形状不会改变,四边形木架形状会改变,这就是说,三角形具有稳定性,四边形没有稳定性.还可以发现,斜钉一根木条的四边形木架的形状不会改变.这是因为斜钉一根木条后,四边形变成了两个三角形,由于三角形有稳定性,窗框在未安装好之前也不会变形.三、运用新知,深化理解1.如图,一扇窗户翻开后,用窗钩BC可将其固定,这里所运用的几何原理是 .2.以下列图形中哪些具有稳定性?【教学说明】本节课的内容较少,题目比较简单,在学生独立完成后,要求学生说明理由.【答案】1.三角形具有稳定性.2.〔1〕〔4〕〔6〕中的图形具有稳定性.四、师生互动,课堂小结三角形具有稳定性,四边形没有稳定性.1.布置作业:从教材“习题”中选取.2.完成练习册中本课时的练习.本节课学习三角形稳定性,并板书课题.完成的教学目标是通过观察、实践、想象、推理、小组交流合作,使同学们了解三角形具有稳定性,四边形没有稳定性,稳定性与没有稳定性在生产、生活中广泛应用,培养同学们实事求是的学习作风和学习习惯,以及自主学习和独立思考的能力.。

人教版九年级数学上册24.1.4 圆周角(二) 教案

人教版九年级数学上册24.1.4  圆周角(二) 教案

数学学科课时教学设计
课时
它是学生已经掌握圆周角的定理、圆周角的定理的推导及运用它们解题基础上,对圆内接四边形的性质进行探索,在圆的有关说理、作图、计算中有应用,是角度转换的重要方法。

学生已经掌握圆周角的定理、圆周角的定理的推导及运用它们解题
展知识应用、拓展迁移:投影展示,学生说出解
决问题方法、思路;拓展迁移:学生板书并讲

(教师不代讲、少干预,引导恰当,用短语激励
学生,对学生明显错误的地方可及时纠正)
各小组派代表发
言,组内补充。


他小组帮助解决
发言小组提出的
共同疑难,展示时
有补充、有纠错、
有质疑、有挑战。

评展示结束后,教师精讲。

1、强调圆内接四边形性质的几何语言描述。

2、圆内接四边形性质的应用。

全体学生认
真听讲,适时通过
红笔做好笔记,并
和老师一起思考
总结归纳

ppt投影出堂测两道题,教师留给学生足够的时
间进行思考,并简单加以点拨。

所有学生必做
堂测设计在⊙O中,点C为劣弧AB的中点,连接AC并延长至D,使CA=CD,连接DB 并延长交⊙O于点E,连接AE.
(1)求证:AE是⊙O的直径;
(2)求证:AE=DE
板书设计
教学反思
检查结果及修改意见:合格不合格
组长(签字):
检查日期:年月日。

2022九年级数学上册 第24章 圆 24.1圆的有关性 4圆周角第2课时 圆内接四边形习题课件 (

2022九年级数学上册 第24章 圆 24.1圆的有关性 4圆周角第2课时 圆内接四边形习题课件 (

12.(2021․盐城)如图,点A,B,C,D,E在⊙O上,且 那么∠E+∠C=_1_5_5_____°.
的度数为50°,
考查角度 利用圆内接四边形的性质求角度
13.如图,四边形ABCD是⊙O的内接四边形,DB平分∠ADC,连接OC, OC⊥BD. (1)求证:AB=CD; (2)假设∠A=66°,求∠ADB的度数.
第二十四章 圆
24.1 圆的有关性质 24.1.4 圆周角
第2课时 圆内接四边形
知识点 圆内接四边形的性质
1.(2021․兰州)如图,四边形ABCD内接于⊙O,假设∠A=40°,那么∠C等
于 D
( )
A.110°
B.120° C.135° D.140°
2.如图,点A,B,C,D在⊙O上,假设∠B=100°, C
=∠F+∠BCF,∴∠ADC=∠ABC.
(2) 解 : 由 (1) 知 ∠ADC = ∠ABC , ∵ 四 边 形 ABCD 内 接 于 ⊙O , ∴ ∠ ADC +
∠ABC = 180 ° , ∴ ∠ ADC = 90 ° . 在 Rt △ ADF 中 , ∠ A = 90 ° - ∠F = 90 ° -
5.(2021․镇江)如图,四边形ABCD是半圆的内接四边形,AB是直径,=.假 设∠C=110°,那么∠ABC的度数等于A ( ) A.55° B.60° C.65° D.70°
6.如图,四边形ABCD内接于⊙O,AD是直径,∠ABC=120°,CD=3, 那么弦AC=______.
7.如图,四边形ABCD内接于⊙O,∠B=50°,∠ACD=25°,∠BAD= 65°,求证:
那么∠ADE的度数是( ) A.30° B.50° C.100° D.130°
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档