计量经济学重点笔记第四讲

合集下载

古扎拉蒂《计量经济学基础》(第5版)笔记和课后习题详解

古扎拉蒂《计量经济学基础》(第5版)笔记和课后习题详解
3.经济统计学的问题,主要是收集、加工并通过图表的形式来展现经济数据。但是,经济统计学家不考虑怎样利用所收集来的数据去检验经济理论。
三、计量经济学方法论
大致说来,传统的计量经济学方法论按如下路线进行:
1.理论或假说的陈述;
2.理论的数学模型设定;
3.统计或计量经济模型设定;
4.获取数据;
5.计量经济模型的参数估计;
理论计量经济学是要找出适当的方法,去测度由计量经济模型设定的经济关系。为此,计量经济学家非常依赖于数理统计。
在应用计量经济学中,利用理论计量经济学工具去研究经济学或管理学中的某些特殊领域。
0.2
本章没有课后习题。本章是全书的一个引言,对计量经济学这门学科作一个简要介绍。对于本章内容,学员简单了解即可。
(3)在问卷调查中,无应答的问题也可能相当严重。
(4)获取数据的抽样方法可能变化很大,要比较不同样本得来的结果常常非常困难。
(5)通常获得的经济数据都是高度加总的。
(6)由于保密性质,某些数据只能以高度加总的形式公布。
研究结果不可能比数据的质量更好。所以,如果在一定情况下,研究者发现研究的结果“不能令人满意”的话,原因不一定是误用模型,而是数据的质量不好。
4.名义尺度
此类变量不具备比率尺度变量的任何一个特征。因此适合于比率尺度变量的计量经济方法可能不适合于名义尺度变量。
1.2
1.表1-1给出了7个工业化国家的消费者价格指数(CPI)数据,以1982~1984年为该指数的基期并令1982—1984=100。
1.经济理论所作的陈述或假说大多数是定性的。计量经济学家的工作就是要提供这一数值估计。换言之,计量经济学对大多数的经济理论赋予经验内容。
2.数理经济学的主要问题,是要用数学形式(方程式)来表述经济理论,而不管该理论是否可以量化或是否能够得到实证支持。计量经济学家常常使用数理经济学家所提供的数学方程式,但要把这些方程式改造成适合于经验检验的形式。这种从数学方程到计量经济方程的转换需要有许多的创造性和实际技巧。

计量经济学复习重点

计量经济学复习重点

计量经济学复习重点第一章1. 计量经济学的性质计量经济学是以经济理论和经济数据的事实为依据,运用数学和统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科。

研究的主体(出发点、归宿、核心):经济现象及数量变化规律研究的工具(手段):模型数学和统计方法方法手段要服从研究对象的本质特征(与数学不同),方法是为经济问题服务计量经济研究的三个方面理论:即说明所研究对象经济行为的经济理论(计量经济研究的基础)数据:对所研究对象经济行为观测所得到的信息(计量经济研究的原料或依据)方法:模型的方法与估计、检验、分析的方法(计量经济研究的工具与手段2. 计量经济学与相关学科的联系与区别联系:●计量经济学研究的主体—经济现象和经济系的数量规律●计量经济学必须以经济学提供的理论原则和经济运行规律为依据●经济计量分析的结果:对经济理论确定的原则加以验证、充实、完善区别:●经济理论重在定性分析,并不对经济关系提供数量上的具体度量●计量经济学对经济关系要作出定量的估计,对经济理论提出经验的内容3. 学习计量经济学的必要性4. 计量经济学研究的基本思路和步骤模型设定(选择变量和数学关系式)、估计参数(确定变量间的数量关系)、模型检验(检验所得结论的可靠性)、模型应用(作经济分析和经济预测)5. 模型的设定、参数估计、模型检验的要求模型设定要求●要有科学的理论依据●选择适当的数学形式(单一方程、联立方程线性形式、非线性形式)●模型要兼顾真实性和实用性●包含随机误差项●方程中的变量要具有可观测性参数估计要求参数的估计值:所估计参数的具体数值参数的估计式:估计参数数值的公式6. 模型中的变量及其类型从变量的因果关系区分:被解释变量(应变量)——要分析研究的变量解释变量(自变量)—说明应变量变动主要原因的变量(非主要原因归入随机误差项)从变量的性质区分内生变量—其数值由模型所决定的变量,是模型求解的结果外生变量—其数值由模型以外决定的变量(相关概念:前定内生变量、前定变量)注意:外生变量数值的变化能够影响内生变量的变化,内生变量却不能反过来影响外生变量7. 计量经济研究中数据的类型时间数列数据(同一空间、不同时间)、截面数据(同一时间、不同空间)、混合数据(面板数据 Panel Data)、虚拟变量数据8. 参数估计的方法类型单一方程模型最常用的是普通最小二乘法、极大似然估计法等联立方程模型常用二段最小二乘法和三段最小二乘法等9. 建立计量经济模型的依据第二章1、变量间的关系:函数关系——相关关系相关系数——对变量间线性相关程度的度量◆相关关系的类型●?从涉及的变量数量看简单相关、多重相关(复相关)●?从变量相关关系的表现形式看线性相关——散布图接近一条直线、非线性相关——散布图接近一条曲线●??从变量相关关系变化的方向看正相关——变量同方向变化,同增同减、负相关——变量反方向变化,一增一减不相关2、现代意义的回归:一个被解释变量对若干个解释变量依存关系的研究实质:由固定的解释变量去估计被解释变量的平均值3、总体回归函数(PRF):将总体被解释变量Y的条件均值表现为解释变量X 的某种函数样本回归函数(SRF):将被解释变量Y 的样本条件均值表示为解释变量X 的某种函数。

计量经济学复习知识点重点难点

计量经济学复习知识点重点难点

计量经济学复习知识点重点难点计量经济学知识点第一章导论1、计量经济学的研究步骤:模型设定、估计参数、模型检验、模型应用。

2、计量经济学是统计学、经济学和数学的结合。

3、计量经济学作为经济学的一门独立学科被正式确立的标志:1930年12月国际计量经济学会的成立。

4、计量经济学是经济学的一个分支学科。

第二章简单线性回归模型1、在总体回归函数中引进随机扰动项的原因:①作为未知影响因素的代表;②作为无法取得数据的已知因素的代表;③作为众多细小影响因素的综合代表;④模型的设定误差;⑤变量的观测误差;⑥经济现象的内在随机性。

2、简单线性回归模型的基本假定:①零均值假定;②同方差假定;③随机扰动项和解释变量不相关假定;④无自相关假定;⑤正态性假定。

3、OLS回归线的性质:①样本回归线通过样本均值;②估计值的均值等于实际值的均值;③剩余项ei的均值为零;④被解释变量的估计值与剩余项不相关;⑤解释变量与剩余项不相关。

4、参数估计量的评价标准:无偏性、有效性、一致性。

5、OLS估计量的统计特征:线性特性、无偏性、有效性。

6、可决系数R2的特点:①可决系数是非负的统计量;②可决系数的取值范围为[0,1];③可决系数是样本观测值的函数,可决系数是随抽样而变动的随机变量。

第三章多元线性回归模型1、多元线性回归模型的古典假定:①零均值假定;②同方差和无自相关假定;③随机扰动项和解释变量不相关假定;④无多重共线性假定;⑤正态性假定。

2、估计多元线性回归模型参数的方法:最小二乘估计、极大似然估计、矩估计、广义矩估计。

3、参数最小二乘估计的性质:线性性质、无偏性、有效性。

4、可决系数必定非负,但是根据公式计算的修正的可决系数可能为负值,这时规定为0。

5、可决系数只是对模型拟合优度的度量,可决系数越大,只是说明列入模型中的解释变量对被解释变量的联合影响程度越大,并非说明模型中各个解释变量对被解释变量的影响程度也大。

6、当R2=0时,F=0;当R2越大时,F值也越大;当R2=1时,F→∞。

伍德里奇《计量经济学导论》(第4版)笔记和课后习题详解-第1~4章【圣才出品】

伍德里奇《计量经济学导论》(第4版)笔记和课后习题详解-第1~4章【圣才出品】
二、经验经济分析的步骤 经验分析就是利用数据来检验某个理论或估计某种关系。 1.对所关心问题的详细阐述 在某些情形下,特别是涉及到对经济理论的检验时,就要构造一个规范的经济模型。经 济模型总是由描述各种关系的数理方程构成。 2.经济模型变成计量模型 先了解一下计量模型和经济模型有何关系。与经济分析不同,在进行计量经济分析之前, 必须明确函数的形式。 通过设定一个特定的计量经济模型,就解决了经济模型中内在的不确定性。
Байду номын сангаас
2.假设让你进行一项研究,以确定较小的班级规模是否会提高四年级学生的成绩。
4 / 119
圣才电子书 十万种考研考证电子书、题库视频学习平台

(i)如果你能设定你想做的任何实验,你想做些什么?请具体说明。 (ii)更现实地,假设你能搜集到某个州几千名四年级学生的观测数据。你能得到他们 四年级班级规模和四年级末的标准化考试分数。你为什么预计班级规模与考试成绩存在负相 关关系? (iii)负相关关系一定意味着较小的班级规模会导致更好的成绩吗?请解释。 答:(i)假定能够随机的分配学生们去不同规模的班级,也就是说,在不考虑学生诸如 能力和家庭背景等特征的前提下,每个学生被随机的分配到不同的班级。因此可以看到班级 规模(在伦理考量和资源约束条件下的主体)的显著差异。 (ii)负相关关系意味着更大的班级规模与更差的考试成绩是有直接联系的,因此可以 发现班级规模越大,导致考试成绩越差。 通过数据可知,两者之间的负相关关系还有其他的原因。例如,富裕家庭的孩子在学校 可能更多的加入小班,而且他们的成绩优于平均水平。 另外一个可能性是:学校的原则是将成绩较好的学生分配到小班。或者部分父母可能坚 持让自己的孩子进入更小的班级,而同样这些父母也更多的参与子女的教育。 (iii)鉴于潜在的其他混杂因素(如 ii 所列举),负相关关系并不一定意味着较小的班 级规模会导致更好的成绩。控制混杂因素的方法是必要的,而这正是多重回归分析的主题。

计量经济学 第四章

计量经济学 第四章

100%
统计检验
利用统计量对模型参数进行假设 检验,判断参数是否显著。
80%
计量经济学检验
包括模型的异方差性、自相关性 、多重共线性等问题的检验。
模型的修正方法
增加解释变量
如果模型存在遗漏变量,可以通过增加解释变量来 修正模型。
删除解释变量
如果模型中某些解释变量不显著或存在多重共线性 ,可以考虑删除这些变量。
模型表达式
Y = β0 + β1X + ε
最小二乘法
通过最小化残差平方和来估计参数β0和β1
参数解释
β0为截距项,β1为斜率项,ε为随机误差项
模型的检验
包括拟合优度检验、显著性检验等
多元线性回归模型
01
02
03
04
模型表达式
参数解释
最小二乘法
Y = β0 + β1X1 + β2X2 + ... + βkXk + ε
最小二乘法估计量的性质
线性性
最小二乘法估计量是随机样本的线性组合。
无偏性
最小二乘法估计量的期望值等于总体参数的 真实值。
有效性
在所有无偏估计量中,最小二乘法估计量的 方差最小。
一致性
随着样本量的增加,最小二乘法估计量收敛 于总体参数的真实值。
最小二乘法的计算步骤
构造设计矩阵X和响应向量Y。 计算设计矩阵X的转置矩阵X'。 计算X'X和X'Y。
求解线性方程组X'Xβ=X'Y,得到回归系 数的最小二乘估计β^=(X'X)^(-1)X'Y。
根据β^计算因变量的拟合值Y^=Xβ^。
计算残差e=Y-Y^,以及残差平方和 RSS=e'e。

古扎拉蒂《计量经济学基础》(第5版)笔记和课后习题详解

古扎拉蒂《计量经济学基础》(第5版)笔记和课后习题详解
表1-3九国汇率:1985~2006
资料来源:EconomicReport ofthe President,2007,Table13-110,P.356.
答:a.把汇率的对数作为纵轴并把时间作为横轴进行描点,如图1-4所示,汇率的波动性很大。比如,在1985年,1美元只能兑换0.257比索,但到了2004年,它能兑换约11.29比索。
2.回归分析与相关分析的区别
回归分析中,对因变量和解释变量的处理方法存在着不对称性。因变量被当作是统计的、随机的,也就是它有一个概率分布。而解释变量则被看作是(在重复抽样中)取固定值的。
相关分析中,任何(两个)变量的处理方法都是对称的;因变量和解释变量之间不加区别;两个变量都被看作是随机的。
五、术语与符号
计量经济学可定义为实际经济现象的数量分析。这种分析基于理论与观测的并行发展,而理论与观测又通过适当的推断方法得以联系。
计量经济学可定义为这样的社会科学:它把经济理论、数学和统计推断作为工具,应用于经济现象的分析。
2.研究对象和研究方法
计量经济学研究经济定律的经验判定。计量经济学家的艺术,就在于找出一组足够具体且足够现实的假定,使他尽可能最好地利用他所获得的数据。
图1-3
b.如图1-3所示,这六个国家的通货膨胀率与美国的通货膨胀率正相关。
c.相关并不意味着因果关系。从逻辑上说,回归得到的统计关系式本身不可能意味着任何因果关系。肯德尔和斯图亚特认为,一个统计关系式永远不能确立因果方面的联系,对因果关系的理念,必须来自统计学以外的某种理论。
3.表1-3给出了9个工业化国家1985~2006年间的外汇汇率数据。除英国外,汇率都定义为一美元兑换外币的数量;而英国的汇率定义为一英镑兑换美元的数量。
资料来源:Economic Report of the President,2007,Table l08,P.354.

古扎拉蒂《计量经济学基础》复习笔记和课后习题详解(定性响应回归模型)【圣才出品】

古扎拉蒂《计量经济学基础》复习笔记和课后习题详解(定性响应回归模型)【圣才出品】

第15章定性响应回归模型15.1 复习笔记考点一:定性响应模型的性质★★定性响应模型是指模型中的回归子是一个二值或二分变量的模型,通常被称为概率模型。

回归子也可以是多分响应变量或多类型响应变量。

将二值响应变量建立成概率模型的方法包括线性概率模型(LPM)、logit模型、probit模型和tobit模型。

考点二:线性概率模型(LPM)★★★★1.LPM的定义以下述回归模型为例说明:Y i=β1+β2X i+u i。

其中X表示家庭收入;Y=1,则表示该家庭拥有住房;Y=0,则该家庭不拥有住房。

该模型被称为线性概率模型,因为Y i在给定X i下的条件期望E(Y i|X i)可解释为在给定X i下事件(家庭拥有住房)发生的条件概率,即Pr(Y i=1|X i)。

2.LPM的特征令P i表示“Y i=1”(即事件发生)的概率,而1-P i表示“Y i=0”(即事件不发生)的概率,则变量Y i服从贝努利概率分布。

根据期望的定义,有:E(Y i)=0(1-P i)+1P i=P i。

此外有:E(Y i|X i)=β1+β2X i =P i,即模型的条件期望事实上可以解释为Y i的条件概率。

该模型的约束条件为:0≤E(Y i|X i)≤1。

3.LPM的问题(1)干扰项u i的非正态性若把方程写成:u i=Y i-β1-β2X i,u i的概率分布见表15-1。

表15-1 u i的概率分布可见u i服从贝努利分布而不是正态分布。

虽然干扰项不满足正态性假定,但OLS的点估计值仍具有无偏性。

此外在大样本下,OLS估计量一般都趋于正态分布,因此LPM的统计推断仍可用正态性假定下的OLS程序。

(2)干扰项的异方差性即使LPM中的干扰项满足零均值和无序列相关性假定,但也不能说它具有同方差性。

对于贝努利分布,理论上的均值和方差分别为P和P(1-P),可见方差是均值的函数,而均值的取值依赖于X的值,因此LPM中的干扰项具有异方差性。

计量经济学复习笔记

计量经济学复习笔记

计量经济学复习笔记CH1导论1、计量经济学:以经济理论和经济数据的事实为依据,运用数学、统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科。

研究主体是经济现象及其发展变化的规律。

2、运用计量分析研究步骤:模型设定——确定变量和数学关系式估计参数——分析变量间具体的数量关系模型检验——检验所得结论的可靠性模型应用——做经济分析和经济预测3、模型变量:解释变量:表示被解释变量变动原因的变量,也称自变量,回归元。

被解释变量:表示分析研究的对象,变动结果的变量,也成应变量。

内生变量:其数值由模型所决定的变量,是模型求解的结果。

外生变量:其数值由模型意外决定的变量。

外生变量数值的变化能够影响内生变量的变化,而内生变量却不能反过来影响外生变量。

前定内生变量:过去时期的、滞后的或更大范围的内生变量,不受本模型研究范围的内生变量的影响,但能够影响我们所研究的本期的内生变量。

前定变量:前定内生变量和外生变量的总称。

数据:时间序列数据:按照时间先后排列的统计数据。

截面数据:发生在同一时间截面上的调查数据。

面板数据:虚拟变量数据:表征政策,条件等,一般取0或1.4、估计评价统计性质的标准无偏:E(^β)=β随机变量,变量的函数?有效:最小方差性一致:N趋近无穷时,β估计越来越接近真实值5、检验经济意义检验:所估计的模型与经济理论是否相等统计推断检验:检验参数估计值是否抽样的偶然结果,是否显著计量经济检验:是否符合计量经济方法的基本假定预测检验:将模型预测的结果与经济运行的实际对比CH2 CH3 线性回归模型模型(假设)——估计参数——检验——拟合优度——预测1、模型(线性)(1)关于参数的线性模型就变量而言是线性的;模型就参数而言是线性的。

Y i=β1+β2lnX i+u i线性影响随机影响Y i=E(Y i|X i)+u i E(Y i|X i)=f(X i)=β1+β2lnX i引入随机扰动项,(3)古典假设A零均值假定 E(u i|X i)=0B同方差假定 Var(u i|X i)=E(u i2)=σ2D 随机扰动项与解释变量不相关假定 Cov(u i ,X i )=0E 正态性假定u i ~N(0,σ2)F 无多重共线性假定Rank(X)=k 2、估计在古典假设下,经典框架,可以使用OLS 方法:OLS 寻找min ∑e i 2^β1ols= (Y 均值)-^β2(X 均值)^β2ols = ∑x i y i /∑x i23、性质OLS 回归线性质(数值性质)(1)回归线通过样本均值 (X 均值,Y 均值) (2)估计值^Y i 的均值等于实际值Y i 的均值 (3)剩余项e i 的均值为0(4)被解释变量估计值^Y i 与剩余项e i 不相关 Cov(^Y i ,e i )=0 (5)解释变量X i 与剩余项e i 不相关 Cov(e i ,X i )=0在古典假设下,OLS 的统计性质是BLUE 统计 最佳线性无偏估计 4、检验 (1)Z 检验Ho:β2=0 原假设 验证β2是否显著不为0标准化: Z=(^β2-β2)/SE (^β2)~N (0,1) 在方差已知,样本充分大用Z 检验 拒绝域在两侧,跟临界值判断,是否β2显著不为0 (2)t 检验——回归系数的假设性检验方差未知,用方差估计量代替 ^σ2=∑e i 2/(n-k) 重点记忆 t =(^β2-β2)/^SE (^β2)~t (n-2)拒绝域:|t|>=t 2/a (n-2)拒绝,认为对应解释变量对被解释变量有显著影响。

计量经济学复习笔记(注释)

计量经济学复习笔记(注释)

计量经济学复习笔记CH1导论1、计量经济学:以经济理论和经济数据的事实为依据,运用数学、统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科。

研究主体是经济现象及其发展变化的规律。

2、运用计量分析研究步骤:模型设定——确定变量和数学关系式估计参数——分析变量间具体的数量关系模型检验——检验所得结论的可靠性模型应用——做经济分析和经济预测3、模型变量:解释变量:表示被解释变量变动原因的变量,也称自变量,回归元。

被解释变量:表示分析研究的对象,变动结果的变量,也成应变量。

内生变量:其数值由模型所决定的变量,是模型求解的结果。

外生变量:其数值由模型意外决定的变量。

外生变量数值的变化能够影响内生变量的变化,而内生变量却不能反过来影响外生变量。

前定内生变量:过去时期的、滞后的或更大范围的内生变量,不受本模型研究范围的内生变量的影响,但能够影响我们所研究的本期的内生变量。

前定变量:前定内生变量和外生变量的总称。

数据:时间序列数据:按照时间先后排列的统计数据。

截面数据:发生在同一时间截面上的调查数据。

面板数据:虚拟变量数据:表征政策,条件等,一般取0或1.4、估计评价统计性质的标准无偏:E(^β)=β 随机变量,变量的函数?有效:最小方差性一致:N趋近无穷时,β估计越来越接近真实值5、检验经济意义检验:所估计的模型与经济理论是否相等统计推断检验:检验参数估计值是否抽样的偶然结果,是否显著计量经济检验:是否符合计量经济方法的基本假定预测检验:将模型预测的结果与经济运行的实际对比CH2 CH3 线性回归模型模型(假设)——估计参数——检验——拟合优度——预测1、模型(线性)(1)关于参数的线性 模型就变量而言是线性的;模型就参数而言是线性的。

Y i =β1+β2lnX i +u i线性影响 随机影响Y i =E (Y i |X i )+u i E (Y i |X i )=f(X i )=β1+β2lnX i引入随机扰动项,(3)古典假设A 零均值假定 E (u i |X i )=0B 同方差假定 Var(u i |X i )=E(u i 2)=σ2C 无自相关假定 Cov(u i ,u j )=0D 随机扰动项与解释变量不相关假定 Cov(u i ,X i )=0E 正态性假定u i ~N(0,σ2)F 无多重共线性假定Rank(X)=k2、估计在古典假设下,经典框架,可以使用OLS方法:OLS 寻找min ∑e i2 ^β1ols = (Y 均值)-^β2(X 均值)^β2ols = ∑x i y i /∑x i 23、性质OLS 回归线性质(数值性质)(1)回归线通过样本均值 (X 均值,Y 均值)(2)估计值^Y i 的均值等于实际值Y i 的均值(3)剩余项e i 的均值为0(4)被解释变量估计值^Y i 与剩余项e i 不相关 Cov(^Y i ,e i )=0(5)解释变量X i 与剩余项e i 不相关 Cov(e i ,X i )=0在古典假设下,OLS 的统计性质是BLUE 统计 最佳线性无偏估计4、检验(1)Z 检验Ho:β2=0 原假设 验证β2是否显著不为0标准化: Z=(^β2-β2)/SE (^β2)~N (0,1) 在方差已知,样本充分大用Z 检验拒绝域在两侧,跟临界值判断,是否β2显著不为0(2)t 检验——回归系数的假设性检验方差未知,用方差估计量代替 ^σ2=∑e i 2/(n-k) 重点记忆t =(^β2-β2)/^SE (^β2)~t (n-2)拒绝域:|t|>=t 2/a (n-2)拒绝,认为对应解释变量对被解释变量有显著影响。

计量经济学重点内容笔记讲

计量经济学重点内容笔记讲

一、基本概念:估计量与估计值所谓估计量就是指估计总体参数地一种方法•在该方法下,给定一个样本,我们可以获得一个具体地估计结果,该结果就是所谓地估计值•例如,基于一个样本容量为N地样本,其中为第i次观测值,我们用样本均值来作为对总体均值地估计.在这里,就属于估计量,由于其取值随着样本地变化而变化,因此它是随机地.现在假设我们持有A、B两个样本:与,则基于这两个样本,可以计算出:文档来自于网络搜索分别是估计量可能地取值,它们就是估计值•既然估计量是随机变量,那么它一定服从某种分布,由于估计量与抽样相联系,因此我们把估计量所服从地分布称为抽样分布.有关统计学地一些基本知识请参见本讲附录一一.文档来自于网络搜索笔记:观测值是随机变量地一个可能地取值.我们用样本均值来估计总体均值,实际上就是用来估计.在数理统计中,这被称为矩估计,因为被称为样本(一阶)矩,而被称为总体(一阶)矩.矩估计其要点可以归结为,符号与符号E相对应. 我们再来看看矩估计思想地一个应用.为了估计随机变量地方差E[- E()]2(也即总体方差),在矩估计法下,则方差估计量将是:.应该注意到,这个方差估计量是有偏估计,而才是方差地无偏估计.如果样本容量很大,这两个估计量相差无几,事实上两者都是方差地一致估计量.这个例子暗示,矩估计并不一定会获得一个无偏地估计量,但将获得一个一致地估计量.关于估计量无偏性与一致性地基本含义见附录1文档来自于网络搜索二、高斯-马尔科夫假定对于模型:,贝叽相应地OLS估计量就是:在一些重要地假定下,OLS估计量表现出良好地性质.我们把这些假定称为高斯-马尔科夫假定.•假定一:真实模型是:.有三种情况属于对该假定地违背:(1)遗漏了相关地解释变量或者增加了无关地解释变量;(2)y与x间地关系是非线性地;(3)并不是常数.文档来自于网络搜索笔记:1、遗漏了地解释变量将进入误差项,从而这很可能导致误差项不在满足下面所列举地一些假定;如果真实模型是非线性地,但我们却用一条直线来近似它,显然这是南辕北辙;如果参数并不是常数,然而我们却基于特定样本用一些常数去近似它们,这显然也不合理地.文档来自于网络搜索2、经济学理论或许很少直接认为y与x地关系是线性地,y与x具有非线性关系可能更符合现实.然而把模型建立成非线性形式常常会付出代价,因为非线性模型其待估计地参数可能更多,从而导致自由度地耗费,带来估计精度地下降.另外,从数学上讲,利用泰勒展开,我们也常常可以用一个线性模型去近似非线性模型.文档来自于网络搜索•假定二:对解释变量地N次观测即被预先固定下来,即不会随着样本地变化而发生变化,是一个非随机列向量.显然,如果解释变量含有随机地测量误差,那么该假定被违背.还存其他地违背该假定地情况.文档来自于网络搜索笔记:1、被假定不会随着样本地变化而发生变化,但这并不意味着在一个给定地样本中.事实上,在含有一个截距与一个解释变量地简单线性回归模型中,将意味着OLS 估计量失去意义,见高斯-马尔科夫假定六.文档来自于网络搜索2、被假定为非随机并不是一个标准假定,然而在该假定下数学处理要简单得多,而且OLS基本地涵义也并未丧失.是随机地情况更一般化,此时,高斯- 马尔科夫假定二被更改为:对任意与,与不相关,此即所谓地解释变量具有严格外生性.显然,当非随机时,与必定不相关•事实上,假定二其最终目地在于保证与不相关.文档来自于网络搜索3、在建立模型时,我们总是希望误差项是由一些不重要、没有任何信息价值地成分所构成.如果与相关,这意味着误差项还具有一定地信息价值,因此在某种程度上可以认为,我们预先建立地模型是不完备地.应该注意到,如果模型遗漏了解释变量,而这些被遗漏地解释变量又与已存在地解释变量是相关地,那么这将导致误差项与已存在地解释变量是相关地.文档来自于网络搜索4、为了理解非随机性地假定,我们考虑如下一个例子.我们试图考察受教育年限(x)对收入(y)地影响.假定我们预先知道总体中有1%地人口接受了22 年地学校教育;有3%地人口接受了19年地学校教育;有10%地人口接受了16 年地学校教育….现在,我们进行一个样本容量为1000地抽样调查.为了使样本尽量反映总体地情况,我们要求样本中有10人接受了22年地教育;有30人接受了19年地教育;有100人接受了16年地教育.这种抽样技术被称为分层随机抽样(Stratified random sample .在抽样中,设定前10次观测对象是那些接受了22年地教育地人,接下来是那些接受了19年教育地人….在这种方法下我们可以获得多个样本,但被预先固定下来,即它不会随着样本地变化而发生变化.文档来自于网络搜索•假定三:误差项期望值为0,即.笔记:1、当随机时,标准假定是:根据迭代期望定律有:,因此,如果成立,必定有:.另外,根据迭代期望定律也有:而•故有:因此,在是随机地情况下,假定二、三可以修正为一个假定:2、所谓迭代期望定律是指:如果信息集,则有.无条件期望所对应地信息集是空集,因此按照迭代期望定律必有:•本讲义第十讲对该定律进行了更为详细地介绍.文档来自于网络搜索3 、回忆第一讲,对模型,在OLS法下我们一定能保证:(1)残差均值为零;(2)残差与x样本不相关.我们希望残差是对误差地良好近似,但如果假定二、三不成立,即,误差项期望值不为零,误差项与解释变量相关,显然此时残差并不是对误差项地良好近似.由于,,因此,如果残差并不是对误差项地良好近似,那么参数地OLS估计量就不是对真实参数良好地近似.由此看来,为保证OLS估计量具有良好地性质,假定二、三地成立非常重要.文档来自于网络搜索4 、当假定成立时,必有;,进而(在这里对各随机变量未加注脚标,这是因为无论脚标是什么,相关等式都成立.现在我们来利用所谓地矩估计思想.误差项观测不到,故我们不得不把残差当做是对误差地观测.于是按照矩估计思想有:;,而这两个式子正是OLS估计法中地两个正规方程,由正规方程就可以得到参数地OLS估计量.由此看来,当假定成立时,OLS估计不过是矩估计地特例.如果知道了这一点,我们就会很快地记住OLS估计量公式:当时,.用样本协方差与样本方差代替总体协方差与总体方差,则有:.我们以后在学习工具变量估计法时,将再次体会到矩估计思想地重要性.文档来自于网络搜索可以发现,矩估计仅仅涉到了x与同期不相关地假定,从这个意义上讲,这个条件过于强了,但只有在这个条件下OLS估计量地无偏性才能保证成立,这可参见更高级地教科书.文档来自于网络搜索•假定四:,即所谓地同方差假定.笔记:1、在是随机地情况下,该假定修订为:2、如果误差项是异方差地,那么N个误差项将具有N个不同地分布.如果把残差近似为对误差地观测,则此时每一个分布下只有一次观测,显然仅凭一次观测我们很难对随机变量地分布性质进行统计分析.文档来自于网络搜索•假定五:,即所谓地序列不相关假定.笔记:1、在是随机地情况下,该假定修订为:2、如果误差项序列相关,这表明误差项还含有系统性地、可资利用地信息.但如果我们已建立地线性模型是完备地,那么假定误差项序列不相关就显得相当自然了.文档来自于网络搜索•假定六:,在多元回归中,该假定演变为地逆存在,即矩阵列向量线性无关.笔记:1、假定六是最基本地,因为违背该假定则OLS估计量地相关公式就失去了意义•但假定六在实践中最不值得担心,因为当该假定被违背时,计量软件将立即告诉我们此时无法进行计算.文档来自于网络搜索2、在模型含有截距地情况下,矩阵列向量线性无关这个条件要强于各解释变量线性无关这个条件.高斯-马尔科夫假定二、三、四、五都可以被归结为对误差项性质地假定,而假定一部分可以认为是对误差项性质地假定.假定六是关于参数可识别地假定.结合OLS地代数性质,我们是不是可以直接感觉到假定一、二、三地重要性?但不幸地是,初级计量经济学经常把重心放在了假定四、五上了.文档来自于网络搜索怎么让我们相信假定一至五是成立地呢?首先我们应尽量利用经济学理论来判断相关假定地合理性,其次我们可以进行一系列计量经济检验.应该注意到,假定一至五基本上都涉及到对误差项分布性质地假定,因此计量经济检验可以说就是检验误差项地分布性质.不过困难之处在于,误差项不可观测.但如果高斯-马尔科夫假定成立,残差将是对误差地良好近似,于是,我们可以通过分析残差地性质来间接推断误差项地分布性质.文档来自于网络搜索三、高斯-马尔科夫定理当高斯-马尔科夫假定成立时,在所有线性无偏估计量中,OLS估计量方差最小,即OLS估计量是最有效地.换句话说,当高斯-马尔科夫假定成立时,O LS估计量是最优线性无偏估计量(Best linear unbiased estimator, BLUE),此即高斯-马尔科夫定理.文档来自于网络搜索笔记:1、对一个估计量,我们希望它具有什么样地性质?(1)简单实用.随着计量软件地发展,这一点可能不那么重要了;(2)不同地人利用不同地样本得到不同地估计结果,但我们希望平均来看,估计结果将是准确地,此即估计量地无偏性;(3)不同地人利用不同地样本得到不同地估计结果,但我们希望这些结果差异不要太大,事实上差异越小越好,即估计量地方差越小越好,此即估计量地有效性;(4)如果把总体全部展示在我们面前,则我们希望所利用地估计量能够得到真实地参数值,此即估计量地一致性.显然一致性是一个合理地估计量应该满足地最低要求.如果把事情地真相都告诉你了,你却依据一估计方法得到错误地结果,那么这个估计方法一定是一个垃圾!文档来自于网络搜索2、我们很希望一个无偏估计量也是有效地.下面一个调侃计量经济学家地笑话或许有助于我们理解这一点.三个计量经济学家去森林中打猎.一个计量经济学家一枪击到一头野猪前面五米处,一个计量经济学家一枪击到这头野猪后面五米处,第三个计量经济学家高兴得跳起来喊道,“击中了!击中了!我们平均击中了!” .文档来自于网络搜索3、一个估计量可能是有偏地、无效地,但如果满足一致性,它也是有用地.因为当我们手中地样本容量确实很大时,那么基于这个一致估计量地估计结果应该是对真实参数良好地近似.我们在前面地笔记中曾提到,如果假定二、三不成立,则残差并不是对误差项地良好近似,进而参数地OLS估计量就不是对真实参数良好地近似•由此看来假定二、三地成立对于保证OLS估计量地一致性非常重要.文档来自于网络搜索(一)OLS估计量是线性估计量所谓OLS估计量是线性估计量,是指它能够被表示为地线性函数.例如:在这里我们定义.应该注意到,在假定二下,k i是非随机地.练习:把表示成地线性函数:,其中.笔记:可以从数学上验证:另外一种简单地验证方式是:(1)假定被解释变量与解释变量都是x,那么回归直线地斜率将为1,截距将为0,即有:文档来自于网络搜索(2)假定被解释变量取值恒为1,那么回归直线地斜率将为0,截距将为1,即有:(二)OLS估计量具有无偏性:;证明:注意到;,再利用高斯-马尔科夫假定三:,于是有:.笔记:1 、在是随机地情况下,我们需证:2、我们在证明无偏性实际上应用了高斯-马尔科夫假定一、二、三. 练习:证明(三)在所有线性无偏估计量中,OLS估计量方差最小1、OLS估计量地方差利用高斯-马尔科夫假定五:与高斯-马尔科夫假定四:有:.注意到:因此有:笔记:1、,当N趋于无穷大时,样本方差收敛于总体方差,故当N趋于无穷大时,趋于0.由于,因此,当N趋于无穷大时,在概率上收敛于,即是地一致估计量.你能够表明是地一致估计量吗?文档来自于网络搜索2我们得到上述方差公式时实际上利用了高斯-马尔科夫假定一、二、四、五.当上述假定不成立时,上述公式无意义.文档来自于网络搜索练习:(1)证明在高斯-马尔科夫假定下:(2)证明在高斯-马尔科夫假定下:2、OLS估计量地有效性任意一种线性估计量都可表示为,当时,该估计量即为地OLS估计量.现在我们将证明:在所有无偏地地线性估计量中,OLS估计量具有最小地方差.文档来自于网络搜索“在所有无偏地地线性估计量中”是一个前提条件.我们地任务是,在给定前提下(约束条件),证明OLS估计量所对应地权数使方差(目标函数)取最小值.文档来自于网络搜索首先分析前提条件:线性估计量地表达是为了保证地无偏性,那么下面地等式应该恒成立:因此,.其次分析方差表示:在高斯-马尔科夫假定四、五下,有:■最后,形成数学问题:常数只影响目标函数值但不影响地选择,因此在求解上述优化问题时可以省去. 对上述极值问题,其拉格朗日函数是:相应地一阶条件是:把(3group)中各式相加并利用(4)有:把(3group)中第i式两边同时乘以后再各式相加,然后利用(5),有:由(6)、(7)有:于是我们已知道这个权数正是地OLS估计量所对应地权数,故问题得证.练习:证明在所有地线性无偏估计量中OLS估计量其方差是最小地.笔记:线性性质不过是OLS估计量在假定一下所具有地代数性质,无偏性与有效性才是高斯-马尔科夫定理所强调地•高斯-马尔科夫定理为OLS地广泛应用提供了理论依据.当然问题是,该定理涉及到如此众多地假定,这些假定同时成立实属罕见!从而这涉及到两个问题:(1)如何检验这些假定?(2)如果一些假定并不成立,那么OLS估计量具有什么性质?此时我们应该采取何种估计方法?本讲义后续章节将讨论这些问题.文档来自于网络搜索在附录二中,本讲义提供了很多教科书对高斯-马尔科夫地另外一种证明形式四、补充知识点(一)估计误差地方差模型中地误差项其方差经常未知而有待估计.可以证明,在高斯-马尔科夫假定下,对误差项地一个无偏估计是:为简单计,考虑一元线性回归模型地情况,此时k=1.我们需要证明.证明:在高斯马尔科夫假定下,有:因此,,故.注意到:而因此有:故:因此,笔记:1、实际上是残差地样本方差[在含截距地简单线性回归模型中,残差地自由度是N-2].误差是观测不到地,但我们能利用样本得到残差.直观来看,我们可以利用残差地样本方差来作为对误差方差地估计.上述证明结果表明,这个估计还是无偏地.文档来自于网络搜索2、在第一讲谈到自由度调整时,我们曾经举个一例:当计算样本方差时如果注意自由度调整,我们将得到一个对总体方差地无偏估计.文档来自于网络搜索3、只有残差是对误差地良好近似时,基于残差地样本方差来估计误差地方差才是合理地.因此,高斯-马尔科夫假定非常重要地.例如,如果违背假定四,即误差项是异方差地,那么我们利用一个不会随着i地变化而变化地数(会随着i地变化而变化吗?)去估计一系列随i而变化地参数(误差项方差随i地变化而变化),显然这是不合理地.文档来自于网络搜索应该注意,尽管在高斯-马尔科夫假定下是对地无偏估计,然而并不是对地无偏估计,不过可以证明是对地一致估计.被称为“回归地标准误”(standard error of regression,SER .文档来自于网络搜索笔记:1、为什么在高斯-马尔科夫假定下是对地无偏估计,但并不能由此推出是对地无偏估计?从数学上可以表明,当是非线性函数时,由不能推出•事实上由利用Jen sen不等式有:文档来自于网络搜索,而所谓Jen sen不等式是指:,g是凸函数(凸向原点);,g是凹函数(凹向原点)•2、另外还可以证明是对地一致估计,即:.概率极限运算具有如下性质:由上述性质,则•按照定义,是标准差,是非负地,故有:,即,如果是对地一致估计,则是对地一致估计,反之亦然.文档来自于网络搜索(二)基于样本回归直线地预测假定真实模型是:,模型满足高斯-马尔科夫假定.利用OLS法得到:•现在我们获得一次新地观测,然而此次观测只获得X地取值X f,现在我们考虑基于样本回归直线来预测y f和E(y f).文档来自于网络搜索1、预测y f以作为对y f地预测.则预测误差是:.显然E(ei)=0 ;笔记:1、地随机性来源于.与是不相关地,因此与无关.2、根据上述表达式可知,当时,预测误差方差最小.直觉是什么呢?以工资对教育水平回归为例.首先你基于一个样本得到估计结果,该样本主要由具有初中和高中学教育水平地人构成.想一想,如果利用已有地回归结果去预测一位博士地收入,预测精度会高吗?如果利用已有地回归结果去预测一位小学可能都未读完地人地收入,预测精度会高吗?文档来自于网络搜索2、预测E(y f)以作为对E(y f)地预测.此时预测误差是:显然,E(62)=0.比较可知,尽管既是y f地无偏预测也是E(y f)地无偏预测,但它更适合作为对E(y f) 地预测.直觉上,由于y f是随机地而E(y f)是非随机地,因此对y f地预测应该难于对E(y f)地预测,即对y f地预测精度应该低于对E(y f)地预测精度上述两种预测都属于点预测.还有一种预测被称为区间预测,参见第三讲附录附录一:通过例子学习统计学知识(一)期望值、均值、估计量、估计值在座各位所形成地班级是一个总体,总体地平均身高()等于各位同学身高之和除以总人数.我打算利用样本平均身高来估计总体参数.现在我将从在座各位中随机抽取N 位同学以形成一个样本容量为N地样本.记为第i次被抽取同学地身高.在第i次抽取具体实施之前,是一个随机变量,而各位同学地身高都是该随机变量可能地取值.由于班级中地每位同学都等可能地被抽到,因此,这个随机变量地期望值()就是总体地平均身高().我将进行N次抽取,当N次抽取都未具体实施时,那么由所构成地样本是随机样本,而相应地样本均值也是随机地,即,作为地估计量,它是随机地•在N次抽取都已经具体实施之后,我获得了一个特定地样本,该样本均值是非随机地,它实际上就是随机变量地一个可能取值,即所谓地估计值.文档来自于网络搜索(二)无偏性、一致性事实上我可以获得无限多个样本容量等于N地特定地样本,因此相应会有无限多地样本均值.如果这些样本均值地再平均等于总体均值,这就意味着样本均值是总体均值地一个无偏估计量[成立吗?请证明].应该注意到,利用特定地样本计算出一个样本均值,该样本均值恰好等于是不太可能地.但如果样本均值是总体均值地无偏估计,那么平均来看,样本均值等于总体均值[对谁平均?].文档来自于网络搜索对于随机样本,如果样本容量越大,那么利用样本情况来反映总体情况就会越准确.如果样本容量为无穷大,那么该样本应该包含了在座地各位,因此,关于总体地任何信息都会被样本所包含.故从直觉上看,随着N地增加,估计量地方差应该会越来越小;当N趋于无穷时,等于地概率应该趋于1[请对这些结论进行严格地数学证明].如果当N趋于无穷时,等于地概率趋于1,则就是地一致估计量[回忆一下,数理统计中哪一个定理表明了样本均值是总体均值地地一致估计]. 文档来自于网络搜索附录二:证明高斯-马尔科夫定理地其他方式(一)无偏性再利用高斯-马尔科夫假定三:,贝即是地无偏估计量.(二)最小方差性1关于方差在高斯-马尔科夫假定五:及其假定四:下,2、证明方差最小我们已知道OLS估计量是线性无偏估计量,即,.假设是用其他估计方法得到地线性无偏估计量,设.因此,.当然,也是成立地.令,贝U必有:现在来求地方差:在高斯-马尔科夫假定五与假定四下,有:而故,.当时等号成立.注意,恰好是OLS估计量地方差.版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理。

伍德里奇《计量经济学导论》(第6版)复习笔记和课后习题详解-第一篇(第4~6章)【圣才出品】

伍德里奇《计量经济学导论》(第6版)复习笔记和课后习题详解-第一篇(第4~6章)【圣才出品】

型中未知参数的个数(即 k 个斜率参数和截距β0)。


t 统计量服从 t 分布而不是标准正态分布的原因是 se(βj)中的常数σ已经被随机变量σ
所取代。t


统计量的计算公式可写成标准正态随机变量(βj-βj)/sd(βj)与
σ∧ 2/σ2
的平方
根之比,可以证明二者是独立的;而且(n-k-1)σ∧ 2/σ2~χ2n-k-1。于是根据 t 随机变量
有一个联合正态分布。
考点二:单个总体参数检验:t 检验 ★★★★
1.总体回归函数 总体模型的形式为:y=β0+β1x1+…+βkxk+u。假定该模型满足 CLM 假定,βj 的 OLS 量是无偏的。
2.定理 4.2:标准化估计量的 t 分布


在 CLM 假定 MLR.1~MLR.6 下,(βj-βj)/se(βj)~tn-k-1,其中,k+1 是总体模
定理 4.1(正态抽样分布):在 CLM 假定 MLR.1~MLR.6 下,以自变量的样本值为条




件,有:βj~Normal(βj,Var(βj))。将正态分布函数标准化可得:(βj-βj)/sd(βj)~
Normal(0,1)。
1 / 89




注:β1,β2,…,βk 的任何线性组合也都符合正态分布,且 βj 的任何一个子集也都具
1.对排除性约束的检验 对排除性约束的检验是指检验一组自变量是否对因变量都没有影响,该检验不适用于不 同因变量的检验。F 统计量通常对检验一组变量的排除有用处,特别是当变量高度相关的时 候。 含有 k 个自变量的不受约束模型为:y=β0+β1x1+…+βkxk+u,其中参数有 k+1 个。 假设有 q 个排除性约束要检验,且这 q 个变量是自变量中的最后 q 个:xk-q+1,…,xk,则 受约束模型为:y=β0+β1x1+…+βk-qxk-q+u。 虚拟假设为 H0:βk-q+1=0,…,βk=0,对立假设是列出的参数至少有一个不为零。 定义 F 统计量为 F=[(SSRr-SSRur)/q]/[SSRur/(n-k-1)]。其中,SSRr 是受约束模型 的残差平方和,SSRur 是不受约束模型的残差平方和。由于 SSRr 不可能比 SSRur 小,所以 F 统计量总是非负的。q=dfr-dfur,即 q 是受约束模型与不受约束模型的自由度之差,也是 约束条件的个数。n-k-1=分母自由度=dfur,且 F 的分母恰好就是不受约束模型中σ2= Var(u)的一个无偏估计量。 假设 CLM 假定成立,在 H0 下 F 统计量服从自由度为(q,n-k-1)的 F 分布,即 F~ Fq,n-k-1。如果 F 值大于显著性水平下的临界值,则拒绝 H0 而支持 H1。当拒绝 H0 时,就 说,xk-q+1,…,xk 在适当的显著性水平上是联合统计显著的(或联合显著)。

《计量经济学》各章主要知识点

《计量经济学》各章主要知识点

第一章:绪论1.计量经济学的学科属性、计量经济学与经济学、数学、统计学的关系;2.计量经济研究的四个基本步骤(1)建立模型(依据经济理论建立模型,通过模型识别、格兰杰因果关系检验、协整关系检验建立模型);(2)估计模型参数(满足基本假设采用最小二乘法,否则采用其他方法:加权最小二乘估计、模型变换、广义差分法等);(3)模型检验:经济意义检验(普通模型、双对数模型、半对数模型中的经济意义解释,见例1、例2),统计检验(T 检验,拟合优度检验、F 检验,联合检验等);计量经济学检验(异方差、自相关、多重共线性、在时间序列模型中残差的白噪声检验等);(4)模型应用。

例1:在模型中,y 某类商品的消费支出,x 收入,P 商品价格,试对模型进行经济意义检验,并解释21,ββ的经济学含义。

t t t P x y 31.0ln 25.0213.0ln -+=∧,其中参数21,ββ都可以通过显著性检验。

经济意义检验可以通过(商品需求与收入正相关、与商品价格负相关)。

商品消费支出关于收入的弹性为0.25()/ln(25.0)/ln(11-∧-=t t t t x x y y );价格增加一个单位,商品消费需求将减少31%。

例2:研究金融发展与贫富差距的关系,认为金融发展先使贫富差距加大(恶化),尔后会使贫富差距降低(好转),成为倒U 型。

贫富差距用GINI 系数表示,金融发展用(贷款余额/存款总额)表示。

回归结果为: 229.164.034.2t t t x x GINI -+=∧,模型参数都可以通过显著性检验。

在x 的有意义的变化范围内,GINI 系数的值总是大于1,细致分析后模型变的毫无意义;同样的模型还有:GINI 系数的值总是为负231.1412.734.13t t t x x GINI -+-=∧。

3.计量经济学中的一些基本概念数据的三种类型:横截面数据、时间序列数据、面板数据;线性模型的概念;模型的解释变量与被解释变量,被解释变量为随机变量(如 果一个变量为随机变量,并与随机扰动项相关,这个变量称为内生变量),被解释变量为内生变量,有些解释变量也为内生变量。

伍德里奇《计量经济学导论》(第4版)笔记和课后习题详解(2-8章)

伍德里奇《计量经济学导论》(第4版)笔记和课后习题详解(2-8章)

使用普通最小二乘法,此时最小化的残差平方和为()211niii y x β=-∑利用一元微积分可以证明,1β必须满足一阶条件()110niiii x y x β=-=∑从而解出1β为:1121ni ii nii x yxβ===∑∑当且仅当0x =时,这两个估计值才是相同的。

2.2 课后习题详解一、习题1.在简单线性回归模型01y x u ββ=++中,假定()0E u ≠。

令()0E u α=,证明:这个模型总可以改写为另一种形式:斜率与原来相同,但截距和误差有所不同,并且新的误差期望值为零。

证明:在方程右边加上()0E u α=,则0010y x u αββα=+++-令新的误差项为0e u α=-,因此()0E e =。

新的截距项为00αβ+,斜率不变为1β。

2(Ⅰ)利用OLS 估计GPA 和ACT 的关系;也就是说,求出如下方程中的截距和斜率估计值01ˆˆGPA ACT ββ=+^评价这个关系的方向。

这里的截距有没有一个有用的解释?请说明。

如果ACT 分数提高5分,预期GPA 会提高多少?(Ⅱ)计算每次观测的拟合值和残差,并验证残差和(近似)为零。

(Ⅲ)当20ACT =时,GPA 的预测值为多少?(Ⅳ)对这8个学生来说,GPA 的变异中,有多少能由ACT 解释?试说明。

答:(Ⅰ)变量的均值为: 3.2125GPA =,25.875ACT =。

()()15.8125niii GPA GPA ACT ACT =--=∑根据公式2.19可得:1ˆ 5.8125/56.8750.1022β==。

根据公式2.17可知:0ˆ 3.21250.102225.8750.5681β=-⨯=。

因此0.56810.1022GPA ACT =+^。

此处截距没有一个很好的解释,因为对样本而言,ACT 并不接近0。

如果ACT 分数提高5分,预期GPA 会提高0.1022×5=0.511。

(Ⅱ)每次观测的拟合值和残差表如表2-3所示:根据表可知,残差和为-0.002,忽略固有的舍入误差,残差和近似为零。

计量经济学复习笔记(四):多元线性回归

计量经济学复习笔记(四):多元线性回归

计量经济学复习笔记(四):多元线性回归⼀元线性回归的解释变量只有⼀个,但是实际的模型往往没有这么简单,影响⼀个变量的因素可能有成百上千个。

我们会希望线性回归模型中能够考虑到这些所有的因素,⾃然就不能再⽤⼀元线性回归,⽽应该将其升级为多元线性回归。

但是,有了⼀元线性回归的基础,讨论多元线性回归可以说是轻⽽易举。

另外我们没必要分别讨论⼆元、三元等具体个数变量的回归问题,因为在线性代数的帮助下,我们能够统⼀讨论对任何解释变量个数的回归问题。

1、多元线性回归模型的系数求解多元线性回归模型是⽤k 个解释变量X 1,⋯,X k 对被解释变量Y 进⾏线性拟合的模型,每⼀个解释变量X i 之前有⼀个回归系数βi ,同时还应具有常数项β0,可以视为与常数X 0=1相乘,所以多元线性回归模型为Y =β0X 0+β1X 1+β2X 2+⋯+βk X k +µ,这⾥的µ依然是随机误差项。

从线性回归模型中抽取n 个样本构成n 个观测,排列起来就是Y 1=β0X 10+β1X 11+β2X 12+⋯+βk X 1k +µ1,Y 2=β0X 20+β1X 21+β2X 22+⋯+βk X 2k +µ2,⋮Y n =β0X n 0+β1X n 1+β2X n 2+⋯+βk X nk +µn .其中X 10=X 20=⋯=X n 0=1。

⼤型⽅程组我们会使⽤矩阵表⽰,所以引⼊如下的矩阵记号。

Y =Y 1Y 2⋮Y n,β=β0β1β2⋮βk,µ=µ1µ2⋮µn.X =X 10X 11X 12⋯X 1k X 20X 21X 22⋯X 2k ⋮⋮⋮⋮X n 0X n 1X n 2⋯X nk.在这些矩阵表⽰中注意⼏点:⾸先,Y 和µ在矩阵表⽰式中都是n 维列向量,与样本容量等长,在线性回归模型中Y ,µ是随机变量,⽽在矩阵表⽰中它们是随机向量,尽管我们不在表⽰形式上加以区分,但我们应该根据上下⽂明确它们到底是什么意义;β是k +1维列向量,其长度与Y ,µ没有关系,这是因为β是依赖于变量个数的,并且加上了对应于常数项的系数(截距项)β0;最后,X 是数据矩阵,且第⼀列都是1。

伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解(第4~6章)【圣才出品】

伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解(第4~6章)【圣才出品】

伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解第4章多元回归分析:推断4.1复习笔记一、OLS 估计量的抽样分布1.假定MLR.6(正态性)总体误差u 独立于解释变量12 k x x x ,,…,,而且服从均值为零和方差为2σ的正态分布:()2Normal 0 u σ~,。

2.经典线性模型就横截面回归中的应用而言,从假定MLR.1~MLR.6这六个假定被称为经典线性模型假定。

将这六个假定下的模型称为经典线性模型(CLM)。

在CLM 假定下,OLS 估计量01ˆˆˆ kβββ,,…,比在高斯—马尔可夫假定下具有更强的效率性质。

可以证明,OLS 估计量是最小方差无偏估计,即在所有的无偏估计中,OLS 具有最小的方差。

总结CLM 总体假定的一种简洁方法是:()201122|Normal k k y x x x x ββββσ++++~…,误差项的正态性导致OLS 估计量的正态抽样分布。

3.用中心极限定理去推导u 的分布的缺陷(1)虽然u 是影响y 而又观测不到的众多因素之和,且各因素可能各有极为不同的总体分布,但中心极限定理(CLT)在这些情形下仍成立。

正态近似的效果取决于u 中有多少因素,以及u 中包含因素分布的差异。

(2)更严重的问题是,正态近似假定所有不可观测因素都以独立而可加的方式影响着Y。

因此如果u 是不可观测因素的一个复杂函数,那么CLT 论证并不真正适用。

4.误差项的正态性导致OLS 估计量的正态抽样分布定理4.1:正态抽样分布在CLM 假定MLR.1~MLR.6下,以自变量的样本值为条件,有:()ˆˆ~Normal Var j j j βββ⎡⎤⎣⎦,因此()()()ˆˆ/sd ~Normal 0 1j j j βββ-,注:除ˆj β服从正态分布外,01ˆˆˆ k βββ,,…,的任何线性组合也都是正态分布,而且ˆjβ的任何一个子集也都具有一个联合正态分布。

二、检验对单个总体参数的假设:t 检验1.总体回归函数总体模型可写作:11o k k y x x uβββ=++⋯++假定它满足CLM 假定,OLS 得到j β的无偏估计量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四讲 异方差一、 同方差与异方差:图形展示对于模型12i i i y x ββε=++,在高斯-马尔科夫假定下有:12222()iii iy E y x εββδδδ=+==其中22iεδδ=意味着同方差假定成立。

为了理解同方差假定,我们先考察图一。

在图一中,空心圆点代表(,())i ix E y ,实心圆点代表观测值(,)i i x y 观测,i y 观测是随机变量i y 的一个实现(注意,按照假定,i x 是非随机的,即在重复抽样的情况下,给定i 的取值,ix 不随样本的变化而变化),倾斜的直线代表总体回归函数:12()i iE y x ββ=+。

图一显示了一个重要特征,即,尽管12,,...y y的期望值随着12,,...x x 的不同而随之变化,但由于假定222iiyεδδδ==,它们的离散程度(方差)是不变的。

然而,假定误差项同方差从而被解释变量同方差可能并不符合经济现实。

例如,如果被解释变量y 代表居民储蓄,x 代表收入,那么经常出现的情况是,低收入居民间的储蓄不会有太大的差异,这是因为在满足基本消费后剩余收入已不多。

但在高收入居民间,储蓄可能受消费习惯、家庭成员构成等因素的影响而千差万别。

图二能够展示这种现象。

图一同方差情况图二异方差情况在图二中,依据x1所对应的分布曲线形状,x5所对应的实心圆点看起来是一个异常点(但依据x5所对应的分布曲线形状,它或许称不上是异常点)。

异常点的出现是同方差假定被违背情况下的一个典型症状,事实上通过散点图来发现异常点从而初步识别异方差现象在实践中经常被采用,见图三。

浙江工商大学金融学院姚耀军讲义系列图三异方差情况下的散点图笔记:应该注意的是,如果第一个高斯-马尔科夫假定被违背,即模型设定有误,那么也可能出现异方差症状。

例如,正确模型是非线性的,但我们错误地设定为线性,以这个线性模型为参照,散点图也许显示出明显的异方差症状。

事实上,在很多情况下,异方差症状被认为是模型错误设定的一个表现。

如果产生异方差症状的原因是模型设定有误,那么我们首先应该要做的事情是正确设定模型,而不是基于错误设定的模型寻找有效的估计方法。

在本讲中,我们假定其他所有的高斯-马尔科夫假定成立。

二、异方差的后果在证明高斯-马尔科夫定理时,我们仅仅在证明OLS估计量具有有效性时涉及到了同方差假定,而在证明线性、无偏性并没有用到该假定,因此违背同方差假定并不影响OLS估计量所具有的线性与无偏性这两个性质(实际上也不影响OLS估计量的一致性,一致性只涉及到高斯-马尔科夫假定一、二、三)。

既然存在异方差,在估计各系数时我们为何不利用这个信息呢?要知道,利用的信息越多,我们获得的估计量其方差将越小,即估计精度越高。

利用OLS 估计法来估计系数时并没有利用异方差这个信息,因此,在存在异方差的情况下,在所有线性无偏估计量中,OLS 估计量并不是最有效的。

另外值得注意的是,当同方差假定被违背时,计量软件包在默认状态下计算出的参数估计量的标准误是无意义的,因为默认状态是同方差假定成立。

作为一个复习,下面我们把默认状态下参数估计量的标准差与标准误公式再推导一遍。

真实模型是:01i i i y x ββε=++,那么有:12ˆ12222()()()()(())()()[()]i i i i i i i i i x x Var x x x x Var x x Var x x x x βεδβεε-=+---==--∑∑∑∑∑∑ 在重要假定五:(,)0,i j Cov i j εε=≠下,有:122ˆ22()()[()]i i i x x Var x x βεδ-=-∑∑ 在重要假定四:22()iiVar εεδδ==下, 12ˆ222222()[()]()i iix x x x x x βδδδ-==--∑∑∑计量软件包默认状态下通过公式:1ˆ)(se β=浙江工商大学金融学院姚耀军讲义系列来计算1ˆβ的标准误,其中用22ˆˆ2iN δε=-∑来估计误差项的方差。

显然,如果同方差假定不成立,则12ˆ22()ix x βδδ≠-∑,故试图1ˆβδ的想法是错误的。

我们也注意到,只有在高斯-马尔科夫假定成立的前提下,22ˆˆ2iN δε=-∑才是对误差项方差的一个无偏估计。

当误差项具有异方差性时,即误差项的方差随着i 的变化而变化时,用一个与i 无关的估计量(2ˆ2iN ε-∑的最终结果与i 无关)去估计误差项的方差显然是不合理的。

换句话说,当误差项具有异方差性时,22ˆˆ2iN δε=-∑不可能是对误差方差的一个恰当估计。

笔记:如果误差项方差已被恰当估计出,如22212,,...,ˆˆˆN δδδ,直观来看,我们应该1ˆβ的标准差估计。

不幸的是,我们无法很好地估计出各个误差项的方差。

误差项是观察不到的,因为我们并不知道参数的真实值。

但我们可以获得残差。

如果残差是对误差的良好近似,则对误差项性质的任何推断都可以建立在对残差的观察基础上。

然而,在异方差情况下,对于每一种不同的误差分布曲线,我们只有一个残差观测值。

仅仅依靠一个观察值,我们无法获得对误差方差的一致估计。

应该注意到,22)2([]()ii i i E E E εεεεδ-==,既然残差是对误差的近似,难道我们不可以用2ˆi ε来作为对2iεδ的估计吗?问题还是在于,我们只能使用一个观测值来估计2iεδ,它不可能是一个一致估计。

然而,尽管2ˆi ε是对2iεδ的糟糕估计,但以2222ˆ()[()]i i i x x x x ε--∑∑来估计12ˆβδ其情况应该更为乐观,因为借助于求和,单个估计误差有被抵消的可能。

事实上White(1980)已经证明,2222ˆ()[()]i i i x x x x ε--∑∑是对估计量1ˆβ方差的一致估计,其正的平方根被称为异方差稳健性标准误,或者White-Huber-Eicher 标准误。

总而言之,在异方差情况下采用公式1ˆ)(se β=算1ˆβ的标准误是不恰当的,当然,依靠这个错误的标准误来进行的t 检验也是无效的。

思考题:通常的F 检验有效吗?F 检验在何处体现了同方差假定?三、 发现异方差我们是通过对残差的分析来检验同方差假定是否被违背。

因此,下面所有的异方差检验方法都隐含一个前提,即残差是对误差的良好近似。

记住这一点十分重要,因为高斯-马尔科夫假定中的假定一、二、三被违背将使得下面的一系列检验都无效。

(一)Goldfeld-Quandt 检验Goldfeld-Quandt 检验法假设,在经典线性模型假定中,只有同方差假定或许并不成立,而其他假定是成立的。

浙江工商大学金融学院姚耀军讲义系列笔记:如果误差项序列相关,即使其他经典线性模型假定成立,但2RSS/ δ并不服从卡方分布,而2RSS/ δ对于构造F 检验十分重要。

为什么2RSS/ δ不服从卡方分布呢?这是因为按照定义,221()ni i n z χ==∑,其中..(0,1)i i di z N ~。

如果服从正态分布的误差项序列相关,则各误差项并不独立,此时,作为对误差项的近似,各残差将不是独立的,进而通过残差标准化所构建的卡方统计量就再也不服从卡方分布了。

这意味着,在利用Goldfeld-Quandt 检验法之前,误差项序列无关的假定是否被违背应该先于检验,在序列相关情况下,异方差检验将无效。

只有在序列相关被校正之后,异方差检验才能被进行。

该检验的原假设是误差项同方差,备择假设是方差随着某一个变量z 的增加而增加。

其检验步骤是:1、对N 个观测值按z 升序排列,并抛弃中间的N-2N*个观测值,形成两个容量都为N*的子样本;2、就两个子样本分别进行回归,记RSS 1、RSS 2分别为两次回归的残差平方和。

3、计算RSS 2/RSS 1。

在同方差的原假设下有:22***2122*RSS /1=RSS / RSS (1,1)RSS /1N k F N k N k N k δδ--~------若计算出的F 值大于F a ,则在显著水平a 下我们拒绝原假设。

笔记:1、在原假设为真时,*2RSS / (1)N k --与*1RSS / (1)N k --都是对2δ的无偏、一致估计,故RSS 2与RSS 1应该相差不大,而RSS 2/RSS 1与1接近。

2、为了提高检验的势(不会错误地不拒绝原假设的概率),中间被抛弃的观测值数目约为总样本容量的3/8,以使RSS 2与RSS 1的差异显得更明显(“放大镜”作用)。

通俗地讲,所谓检验的势,是指该检验对原假设的“苛刻度”,如果该检验不会轻易地“不拒绝原假设”,那么检验的势就高。

实际上,如果轻易地“不拒绝原假设”,那么我们犯“第二类错误”(不拒绝错误的原假设)的概率就高。

显然,当检验对原假设的“苛刻度”较高时我们仍然不拒绝原假设,那么原假设的真实性是更加可信的。

3、有时我们或许具有确切的理由认为不同的样本期间被解释变量具有不同的方差。

例如,在解释我国1952-2002年间工业产值增长率时,我们有理由认为,在1952-1978年间工业产值增长率的方差应该小于1979-2002年期间的方差,因为前段样本期间属于计划经济,缺乏市场冲击,而后一段时期属于市场或者半市场经济,存在市场冲击。

此时,我们可以把完整样本期间只划分为两个子期间,按照Goldfeld-Quandt 检验法第2、3步进行异方差检验。

(二) White 检验Goldfeld-Quandt 检验对误差方差的形式作了一定的假定。

然而,很多时候我们除了知道方差与解释变量具有一定关系之外,并无其他的关于方差的确切先验信息。

此时,我们可以利用White 检验。

假设模型是01122i i i i yx x βββε=+++,则White 检验的步骤是:1、估计模型并计算残差的平方2ˆi ε;2、估计辅助回归(auxiliary regression )模型:222501122314212ˆi i i i i ii i a a x a x a x a x a x x v ε=++++++ 原模型同方差的原假设对应于辅助模型的原假设:512340a a a a a =====3、对于辅助回归模型,利用拉格朗日乘数(LM )统计量22()aurNR q χ~进行检验原假设512340a a a a a =====。

其中2ur R 是辅助模型的判定系数(利用第三讲的术语,对于辅助模型,它就是不受约束情况下的判定系数),q 是辅助模型中不包含截距项的浙江工商大学金融学院姚耀军讲义系列解释变量的个数,在上例中q=5。

笔记:1、应该注意到,辅助模型的被解释变量是2ˆi ε而不是误差方差2δ,毕竟误差方差是无法获得的。

采取这样的做法有什么理由呢?注意到0011ˆˆˆ()()i i ix εββββε=-+-+。

相关文档
最新文档