几种特殊类型的函数的积分

合集下载

特殊类型函数的积分法

特殊类型函数的积分法

特殊类型函数的积分法
特殊类型函数的积分法是数学中计算积分的一种常用方法。

由于它可以求出各种形状的函数的定积分,积分法用于求解各种类型函数的积分有着广泛的应用。

下面我们就来讨论特殊类型函数的积分法。

其中,多项式函数是最常用的特殊类型函数之一,以一元n次多项式函数为例,当n≥0时,函数的积分可以用分好多项式来表示:$\int{{{x}^{n}dx}}={\frac{{{x}^{n+1}}}{{n+1}}}+c$
而另一种特殊类型函数为指数函数,函数的积分可用如下形式表示:$\int{{e}^{kx}dx}={e}^{kx}/k+c$
又如,x的高次幂函数在求积分时,可使用以下形式进行:
$\int{{{x}^{n}dx}}={\frac{{{x}^{n+1}}}{{n+1}}}+c$
另外,对正弦函数和余项函数(cos(x),tg(x))的积分也同
样采用三角函数的基本定理:
$\int{{sinxdx=}-cosx+c}$
$\int{{cosxdx=}sinx+c}$
$\int{{tgxdx=}-ln\left|cosx\right|+c}$
以上就是特殊类型函数的积分,可以看出,对于不同形式的特殊类型函数,采用不同的积分法来求解。

特殊类型函数的积分属于一类规律性的积分,熟练掌握这些方法,可以快速准确地完成特殊类型函数的积分求解。

08几种特殊类型函数的积分

08几种特殊类型函数的积分

(t
2tdt
2
− 1)
2
,
2t t 2dt 1 1+ x (t 2 − 1)t 2 2 dt = −2∫ 2 ∫ x x dx = − ∫ t −1 (t − 1)
t −1 1 +C = −2 ∫ 1 + 2 dt = −2t − ln t +1 t − 1
2 1+ x 1+ x = −2 − ln x − 1 + C . x x
都是非负整数; 其中 m 、 n都是非负整数; a0 , a1 ,L, a n 及
b0 , b1 ,L, bm 都是实数,并且 a0 ≠ 0, b0 ≠ 0 . 都是实数,
假定分子与分母之间没有公因式 这有理函数是真分式 真分式; (1) n < m , 这有理函数是真分式; 这有理函数是假分式 假分式; ( 2) n ≥ m , 这有理函数是假分式; 利用多项式除法, 利用多项式除法 假分式可以化成一个 多项式和一个真分式之和. 多项式和一个真分式之和
2 k
M1 x + N1 M2 x + N2 Mk x + Nk + 2 + L+ 2 2 k k −1 ( x + px + q ) ( x + px + q ) x + px + q
其中 M i , N i 都是常数( i = 1,2,L , k ) .
Mx + N ; 特殊地: 特殊地:k = 1, 分解后为 2 x + px + q
代入特殊值来确定系数 A, B , C 取 x = 0, ⇒ A = 1 取 x = 1, ⇒ B = 1 取 x = 2, 并将 A, B 值代入 (1) ⇒ C = −1

高数资料(特殊积分法)

高数资料(特殊积分法)

t =∫ ⋅ 2 sin t cos t ⋅ d t = −2 ∫ t ⋅ d cos t cos t
= −2t cos t + 2 ∫ cos t ⋅ d t = −2t cos t + 2 sin t + C = −2 1 − x arcsin x + 2 x + C
5 3 2 = ln( x + 2 x + 4) − ∫ 3 2
dx
2
x + 1 1+ 3 5 x +1 3 arctan +C = ln( x 2 + 2 x + 4) − 3 3 2
例2
8 x + 31 2x + 4 dx ⋅ dx = 4 ∫ 2 ⋅ d x+ 15 ∫ 2 ∫ ( x 2 + 4 x + 13)2 ( x + 4 x + 13) 2 ( x + 4 x + 13) 2
1 1 1 = ∫ + ⋅dt 3 3 − t 3 + t 1 3+ t = ln +C 3 3−t
x 1 3 + tan 2 = ln +C x 3 3 − tan 2
例 6 解一
1 ∫ sin 4 x dx .
x u = tan , 2
2u sin x = , 2 1+ u
2 2
1 3 = − cot x − cot x + C . 3 结论 比较以上三种解法, 比较以上三种解法 便知万能置换不一定是最佳 方法, 故三角有理式的计算中先考虑其它手段, 方法 故三角有理式的计算中先考虑其它手段 不得已才用万能置换. 不得已才用万能置换

常用积分公式

常用积分公式

常用积分公式积分公式是微积分中常用的一种工具,用于求解函数的定积分。

通过积分公式,我们可以将复杂的函数积分转化为简单的数学形式,从而更容易求解。

1. 基本积分公式基本积分公式是求解不同类型函数的基础,下面列举了一些常见的基本积分公式:(1) ∫kdx = kx + C (k为常数)(2) ∫x^ndx = (1/(n+1)) * x^(n+1) + C (n 不等于-1)(3) ∫1/x dx = ln|x| + C (x不等于0)(4) ∫e^x dx = e^x + C(5) ∫a^x dx = (1/ln(a)) * a^x + C (a不等于0且a不等于1)(6) ∫sin(x) dx = -cos(x) + C(7) ∫cos(x) dx = sin(x) + C(8) ∫sec^2(x) dx = tan(x) + C(9) ∫csc^2(x) dx = -cot(x) + C(10) ∫sec(x)*tan(x) dx = sec(x) + C(11) ∫csc(x)*co t(x) dx = -csc(x) + C以上是一些基本的积分公式,对于这些公式的求解,可以根据具体的函数形式进行运算。

2. 特殊类型函数的积分公式除了基本积分公式,对于一些特殊类型的函数,常常需要使用相应的积分公式进行求解,下面列举了几个常见的特殊类型函数的积分公式:(1) ∫e^ax*sin(bx) dx = (a*sin(bx) - b*cos(bx)) / (a^2 + b^2) + C(2) ∫e^ax*cos(bx) dx = (a*cos(bx) + b*sin(bx)) / (a^2 + b^2) + C(3) ∫sin^2(x) dx = (1/2) * x - (1/4) * sin(2x) + C(4) ∫cos^2(x) dx = (1/2) * x + (1/4) * sin(2x) + C(5) ∫sin^3(x) dx = -(1/3) * cos(x) + (1/12) * cos(3x) + C(6) ∫cos^3(x) dx = (1/3) * sin(x) + (1/12) * sin(3x) + C(7) ∫sec(x) dx = ln|se c(x) + tan(x)| + C(8) ∫csc(x) dx = ln|csc(x) + cot(x)| + C需要注意的是,某些特殊类型的函数的积分公式可能没有明确的表达式,此时需要进行适当的变量替换或其他数学技巧来求解。

求不定积分的基本方法

求不定积分的基本方法
机动 目录 上页 下页 返回 结束
1 例13. 求不定积分 ∫ dx . (2 + cos x) sin x sin x 解: 原式 = ∫ (令 u = cos x) dx 2 (2 + cos x ) sin x 1 =∫ du 2 ( 2 + u )(u − 1) A=1
1 ( 2+u )(u −1)
习题课 不定积分的计算方法
一、 求不定积分的基本方法 二、几种特殊类型的积分
第四章
机动
目录
上页
下页
返回
结束
一、 求不定积分的基本方法
1. 直接积分法 通过简单变形, 利用基本积分公式和运算法则 求不定积分的方法 . 2. 换元积分法
∫ f ( x ) dx
第一类换元法 第二类换元法
∫ f [ϕ (t )]ϕ ′(t ) dt
分部积分
机动
目录
上页
下页
返回
结束
1 dx . 例4. 设 y ( x − y ) = x , 求积分 ∫ x − 3y 解: y ( x − y ) 2 = x 令 x − y = t, 即 y = x −t
2
t3 x= 2 , t −1
t t 2 (t 2 − 3) y = 2 , 而 dx = 2 dt 2 t −1 (t − 1)
=
x x − 3 ln(e 6
+ 1) − 2
x 3 ln(e 3
x + 1) − 3 arctan e 6
+C
返回 结束
机动
目录
上页
下页
3 cos x − sin x dx . 例11. 求 ∫ cos x + sin x

八种类型积分的特征与异同

八种类型积分的特征与异同

八种类型积分的特征与异同八种类型积分是指对不同的函数进行积分时所得到的不同类型的结果。

这些类型包括了常数积分、幂函数积分、指数函数积分、对数函数积分、三角函数积分、反三角函数积分、分式积分以及特殊函数积分。

每一种类型的积分都有其独特的特征与异同。

首先,常数积分是最简单的一种积分类型,其特征是对常数函数求积分时所得到的结果是该常数与积分变量的乘积。

常数积分的计算非常直观,只需要将常数移到积分符号外即可。

幂函数积分是指对幂函数进行积分时所得到的结果。

幂函数积分的特征是对幂函数求积分时,指数部分加一后再除以新的指数,再乘以一个常数。

例如,对x^n进行积分时,积分结果为x^(n+1)/(n+1)。

指数函数积分是指对指数函数进行积分时所得到的结果。

指数函数积分的特征是对指数函数求积分时,结果仍然是指数函数,只是指数部分除以一个常数。

例如,对e^x进行积分时,积分结果为e^x。

对数函数积分是指对对数函数进行积分时所得到的结果。

对数函数积分的特征是对对数函数求积分时,结果是对数函数的积分函数。

例如,对ln(x)进行积分时,积分结果为xln(x) - x。

三角函数积分是指对三角函数进行积分时所得到的结果。

三角函数积分的特征是对不同的三角函数求积分时,结果是其他三角函数的积分函数。

例如,对sin(x)进行积分时,积分结果为-cos(x)。

反三角函数积分是指对反三角函数进行积分时所得到的结果。

反三角函数积分的特征是对不同的反三角函数求积分时,结果是其他反三角函数的积分函数或者常数乘反三角函数的积分函数。

例如,对arcsin(x)进行积分时,积分结果为xarcsin(x) + sqrt(1-x^2)。

分式积分是指对分式函数进行积分时所得到的结果。

分式积分的特征是对分式函数进行部分分式分解后,对每一项进行积分。

分式积分通常需要运用部分分式分解的技巧,并结合其他类型的积分来求解。

例如,对1/(x(x-1))进行积分时,需要首先进行部分分式分解,然后对每一项进行积分。

几种特殊函数的积分

几种特殊函数的积分
2 2
p p x px q x q , 2 4 p 令 x t 2
记 x 2 px q t 2 a 2 ,

Mx N Mt b,
p2 2 a q , 4
Mp b N , 2
Mx N 2 dx n ( x px q ) Mt b 2 dt 2 dt 2 n 2 n (t a ) (t a )
真分式化为部分分式之和的待定系数法
x3 x3 A B 例1 2 , x 5 x 6 ( x 2)( x 3) x 2 x 3
x 3 A( x 3) B( x 2), x 3 ( A B ) x ( 3 A 2 B ),
1 dx . 例4 求积分 2 x( x 1) 1 1 1 1 dx 解 2 2 dx x ( x 1) x ( x 1) x 1 1 1 1 dx dx dx 2 x ( x 1) x 1
1 ln x ln x 1 C. x 1
三、简单无理函数的积分
ax b 讨论类型 R( x, ax b ), R( x , ), cx e
n
n
解决方法 作代换去掉根号.
1 1 x 例10 求积分 dx x x

1 x 2 1 x 令 t t , x x
1 sin x dx. 例9 求积分 sin 3 x sin x A B A B 解 sin A sin B 2 sin cos 2 2 1 sin x 1 sin x sin 3 x sin x dx 2 sin 2 x cos x dx 1 sin x dx 2 4 sin x cos x 1 1 1 1 dx dx 2 2 4 sin x cos x 4 cos x

几种特殊类型的函数积分

几种特殊类型的函数积分

反三角函数积分公式
∫sin⁡xdx=−cos⁡x+Cint sin x , dx = -cos x + C∫sin⁡xdx=−cos⁡x+C
∫cos⁡xdx=sinx⁡+Cint cos x , dx = sin x + C∫cos⁡xdx=sinx⁡+C
∫tan⁡xdx=ln⁡|sec⁡x|+Cint tan x , dx = ln |sec x| + C∫tan⁡xdx=ln∣secx∣+C
底数小于1的对数函数积分公式
∫logₐ(x) dx = xlogₐ(x) - ∫x/lna dx = xlogₐ(x) x/lna + C,其中C为积分常数。
对数函数积分应用
解决对数方程
计算对数值
通过积分的方法,可以将对数方程转 化为代数方程,从而更容易求解。
利用对数函数的积分公式,可以计算 对数值,例如计算ln(e)、lg(10)等。
积分性质
对于三角函数的积分,有基本的 积分公式,如∫sin(x)dx = -cos(x) + C,∫cos(x)dx = sin(x) + C等。
三角函数的积分具有一些重要的 性质,如∫[sin(x)]^2dx = ∫[1 cos(2x)]/2dx = x/2 - sin(2x)/4 + C。
积分变换
底数小于1的对数函 数
如以0.5为底的对数函数,记作 logₐ(x),其定义域为(0, +∞), 其中a为正实数且a≠1。
对数函数积分公式
自然对数函数积分公式
∫ln(x) dx = xln(x) - x + C,其中C为积分常数。
常用对数函数积分公式

几种特殊类型的积分

几种特殊类型的积分

03
瑕积分常常用于处理具有有限 个间断点的连续函数。
性质
瑕积分具有与普通定积分相似的 性质,如线性性质、可加性等。
瑕积分的一个重要性质是:如果 函数f(x)在区间[a, b]上的瑕点c左 侧连续,右侧无界,那么∫(a到 b)f(x)dx等于∫(a到c)f(x)dx加上
∫(c到b)f(x)dx。
此外,如果函数f(x)在区间[a, b] 上的瑕点c左侧无界,右侧连续 ,那么∫(a到b)f(x)dx等于∫(a到 c)f(x)dx加上∫(c到b)f(x)dx。
几种特殊类型的积分
目录
• 瑕积分 • 复积分 • 曲线积分 • 曲面积分
01 瑕积分
定义
01
瑕积分是定积分的种推广, 它允许函数在积分区间内存在 间断点。
02
瑕积分定义为:对于函数f(x)在 区间[a, b]上的瑕点c,计算积分 ∫(a到c)f(x)dx和∫(c到b)f(x)dx的 和,其中c在[a, b]内。
奇偶性是指曲面积分的结果与被积函数的奇偶性 有关。如果被积函数是偶函数,则积分结果为正 ;如果被积函数是奇函数,则积分结果为0。
周期性是指曲面积分的结果可能与被积函数的周 期性有关。如果被积函数具有周期性,则积分结 果可能与该周期有关。
应用
01
曲面积分在物理学中有广泛的应用,如计算磁场强度、电场强 度、引力场强度等。
02
在工程学中,曲面积分可以用于计算流体动力学中的压力分布、
温度分布等。
在经济学中,曲面积分可以用于计算供需曲线下的面积,从而
03
得到供需平衡点。
THANKS FOR WATCHING
感谢您的观看
曲线积分还具有积分区间的可加性,即对于两 个区间的曲线积分,可以分别对每个区间进行 曲线积分后再求和。

高等数学方明亮44几种特殊类型函数的积分.ppt

高等数学方明亮44几种特殊类型函数的积分.ppt

,
1 A(1 x2 ) (Bx C)(1 2x),
整理得 1 ( A 2B)x2 (B 2C)x C A,
A 2B 0,
B A
(1
2C 0, C 1,
1 2x)(1
x2)
A 4, 5 4
5 1 2
B 2,C 52xx来自5 1 x21 5
1 5.
,
2024年9月27日星期五
一、 有理函数的积分
(Integration of Rational Function)
有理函数的定义:两个多项式的商表示的函数.
P(x) Q( x)
a0 xn b0 x m
a1 x n1 b1 x m1
an1 x an bm1 x bm
其中m、n都是非负整数;a0 ,a1 ,,an及b0 ,b1,,bm 都是实数,并且a0 0,b0 0.
1 6a3
ln
x3 a3 x3 a3
C
(2) 原式
sin2 x sin3
x
cos2 cos x
x
dx
dx sin x cos x
cos sin 3
x x
dx
d tan x tan x
d sin sin 3
x x
2024年9月27日星期五
29
目录
上页
下页
返回
2. 求
(a
sin
x
1 b
解法 2 令
a sin ,
a2 b2
b cos
a2 b2
原式
a2
1
b2
dx
cos2 (x )
a
2
1
b2
tan(x
)

几种特殊类型函数地积分

几种特殊类型函数地积分

几种特殊类型函数的积分一、有理函数的不定积分1.化有理函数为简单函数两个多项式的商所表示的函数)(x R 称为有理函数,即mm m m m nn n n n b x b x b x b x b a x a x a x a x a x Q x P x R ++++++++++==------122110122110)()()( (1) 其中n 和m 是非负整数;n a a a a ,,,,210 及m b b b b ,,,,210 都是实数,并且0,000≠≠b a .当(1)式的分子多项式的次数n 小于其分母多项式的次数m ,即m n <时,称为有理真分式;当m n ≥时,称为有理假分式.对于任一假分式,我们总可以利用多项式的除法,将它化为一个多项式和一个真分式之和的形式.例如12)1(112224+++-=+++x x x x x x . 多项式的积分容易求得,下面只讨论真分式的积分问题.设有理函数(1)式中m n <,如果多项式)(x Q 在实数围能分解成一次因式和二次质因式的乘积:μλβα)()()()()(220s rx x q px x b x a x b x Q ++++--= .其中s r q p b a ,,,,,,, 为实数;042<-q p ,…,042<-s r ;,,,βα μλ,, 为正整数,那末根据代数理论可知,真分式)()(x Q x P 总可以分解成如下部分分式之和,即βααα)()()()()(1121b x B a x A a x A a x A x Q x P -++-++-+-=-λββ)()(21112q px x N x M b x B b x B ++++-++-+-μλλλ)()(21121222s rx x S x R q px x N x M q px x N x M ++++++++++++++-srx x S x R s rx x S x R +++++++++-21222)(μμμ . (2) 其中i i i i i i S R N M B A ,,,,,,, 都是待定常数,并且这样分解时,这些常数是唯一的.可见在实数围,任何有理真分式都可以分解成下面四类简单分式之和: (1)a x A - , (2)k a x A )(- (k 是正整数,2≥k ), (3)qpx x B Ax +++2(042<-q p ), (4)kq px x B Ax )(2+++ (k 是正整数,04,22<-≥q p k ).2. 有理函数的不定积分求有理函数的不定积分归结为求四类简单分式的积分.下面讨论这四类简单分式的积分.(1)C a x A a x d ax A dx a x A +-=--=-⎰⎰ln )(1,(2)C a x k A a x d a x A dx a x A k k k+-⋅--=--=---⎰⎰1)(11)()()(, (3)dx qpx x B Ax ⎰+++2(042<-q p ). 将分母配方得)4()2(222p q p x q px x -++=++,作变量代换2px u +=,则du dx p u x =-=,2;由于04,0422>-<-p q q p ,记224a p q =-,于是 du a u B pu A dx p q p x B Ax dx qpx x B Ax ⎰⎰⎰++-=-+++=+++22222)2()4()2( du au ApB du a u Au ⎰⎰+-++=22222C au a Ap B a u A +-++=arctan 2)ln(222 C pq p x p q Ap B q px x A +-+--+++=22242arctan 42)ln(2.(4)dx q px x B Ax k⎰+++)(2 (04,22<-≥q p k ).作变量代换2px u +=,并记224a p q =-,于是⎰⎰⎰+-++=+++du a u ApB du a u Au dx q px x B Ax k k k )(2)()(22222. 其中第一个积分C a u k A a u d a u A du a u Au k k k ++⋅--=++=+--⎰⎰122222222)(1)1(2)()(2)(. 第二个积分可通过建立递推公式求得.记 ⎰+=kk a u du I )(22 利用分部积分法有⎰⎰++++=+=12222222)(2)()(k kk k a u du u k a u u a u du I du a u a a u k a u u k k ⎰++-+++=12222222)()(2)(122222)(+-++=k k kkI a kI a u u .整理得 k k k I ka k a u u k a I 22221212)(21-++⋅=+. 于是可得递推公式]2232)()1(21[111222----++⋅-=k k k I k k a u u k a I . (3)利用(3)式,逐步递推,最后可归结为不定积分C a u aa u du I +=+=⎰arctan 1221. 最后由2px u +=全部换回原积分变量,即可求出不定积分⎰+++dx q px x B Ax k )(2. 例1 求⎰++-dx x x x 22)32(1. 解⎰⎰++-+=++-dx x x dx x x x 2222]2)1[(21)32(1 ⎰⎰+-++=2222)2(2)2(1u du du u u x u]2212121[212)2(21222⎰+++⋅⨯⨯-+-=u du u u uC u u u +-++-=2arctan 221)2(212`C x x x x ++-+++-=21arctan 221)32(222.例2 求dx x x ⎰-2)1(1. 解 因为2)1(1-x x 可分解为1)1()1(122-+-+=-x C x B x A x x . 其中A ,B ,C 为待定系数.可以用两种方法求出待定系数.第一种方法:两端去掉分母后,得)1()1(12-++-=x Cx Bx x A . (4)即 A x C A B x C A +--++=)2()(12由于(4)式是恒等式,等式两端2x 和x 的系数及常数项必须分别相等,于是有⎪⎩⎪⎨⎧==--=+1020A C A B C A , 从而解得 1=A ,1=B ,1-=C .第二种方法:在恒等式(4)中,代入特殊的x 值,从而求出待定系数.如令0=x ,得1=A ;令1=x ,得1=B ;把A ,B 的值代入(4)式,并令2=x ,得C 2211++=,即1-=C .于是⎰⎰---+=-dx x x x dx x x )11)1(11()1(122 ⎰⎰⎰---+=dx x dx x dx x 11)1(112C x x x +----=1ln 11ln . 例3 求⎰+-+dx x x x 22)1)(1(22. 解 因为1)1(1)1)(1(2222222++++++-=+-+x E Dx x C Bx x A x x x , 两端去分母得)1)(1)(()1)(()1(22222+-++-+++=+x x E Dx x C Bx x A x234)2()()(x B E D A x D E x D A +-++-++=)()(C E A x C B E D --++-+-+.两端比较系数得 ⎪⎪⎪⎩⎪⎪⎪⎨⎧=--=+-+-=+-+=-=+220200C E A C B ED BE D A D E D A ,解方程组得1=A ,2-=B ,0=C ,1-=D ,1-=E ,故dx x x x x x dx x x x )11)1(211()1)(1(2222222⎰⎰++-+--=+-+ dx x x dx x x dx x ⎰⎰⎰++-+--=11)1(211222C x x x x +-+-++-=arctan )1ln(21111ln 22 C x x x x +-+++-=arctan 1111ln22. 例4 求⎰+-+dx x x x 6532. 解 因为32)3)(2(36532-+-=--+=+-+x B x A x x x x x x ,两端去分母得 )2()3(3-+-=+x B x A x . 令2=x ,得5-=A ;令3=x ,得6=B .于是Cx x dx x x dx x x x +---=---=+-+⎰⎰2ln 53ln 6)2536(6532C x x +--=56)2()3(ln . 从理论上讲,多项式)(x Q 总可以在实数围分解成一次因式和二次质因式的乘积,从而把有理函数)()(x Q x P 分解为多项式与四类简单分式之和,而简单分式都可以积出.所以,任何有理函数的原函数都是初等函数.但我们同时也应该注意到,在具体使用此方法时会遇到困难.首先,用待定系数法求待定系数时,计算比较繁琐;其次,当分母的次数比较高时,因式分解相当困难.因此,在解题时要灵活使用各种方法.例5 求dx x x x x x ⎰+++++12232. 解dx x dx x dx x x x x dx x x x x x ⎰⎰⎰⎰+++=+++++=+++++1111)1)(1()1()1(12222232C x x +++=arctan 1ln .例6 求dx x x x x ⎰+-+-)54)(44(122 .解 dx x x x x x x x x dx x x x x ⎰⎰+-+-+--+-=+-+-)54)(44()44()54()54)(44(1222222dx x x dx x x ⎰⎰+--+-=54144122 ⎰⎰-+----=)2(1)2(1)2()2(122x d x x d xC x x +----=)2arctan(21.例7 求dx x ⎰+114. 解⎰⎰⎰+--++=+dx x x dx x x dx x 112111211142424dx x x x dx x x x ⎰⎰+--++=2222221112111121 )1(2)1(121)1(2)1(12122xx d xx x x d x x +-+--+-=⎰⎰C x x x x x x ++++---=1212ln 24121arctan 221222.二、三角函数有理式的积分由三角函数和常数经过有限次四则运算所构成的函数称为三角函数有理式.因为所有三角函数都可以表示为x sin 和x cos 的有理函数,所以,下面只讨论)cos ,(sin x x R 型函数的不定积分.由三角学知道,x sin 和x cos 都可以用2tan x 的有理式表示,因此,作变量代换2tan x u =,则222122tan12tan22sec 2tan22cos 2sin 2sin u u x xx x x x x +=+===, 22222222112tan 12tan 12sec 2tan 12sin 2cos cos u u x xx x x x x +-=+-=-=-=. 又由u x arctan 2=,得du u dx 212+=,于是 ⎰⎰++-+=du u u u u u R dx x x R 222212)11,12()cos ,(sin . 由此可见,在任何情况下,变换2tan x u =都可以把积分dx x x R )cos ,(sin ⎰有理化.所以,称变换2tan x u =为万能代换.例8 求dx xx ⎰++cos sin 11. 解 设2tan x u =,则du u du u u u u u dx x x ⎰⎰⎰+=+⋅+-+++=++1112111211cos sin 112222C xC u ++=++=2tan1ln 1ln . 例9 求dx xx ⎰-+cos 1sin 1.解 设2tan x u =,则du u u u u du u u u u u dx xx ⎰⎰⎰+++=+⋅+--++=-+)1(2)1(12111121cos 1sin 12222222du u u du u ⎰⎰++=)1(2122du u u u u du u ⎰⎰+-++=)1()1(212222⎰⎰⎰+-+=du u u du u du u 2212121C u u u ++-+-=)1ln(ln 212 C x x x +--=)2ln(sec 2cot 2tan ln 22.虽然利用代换2tan x u =可以把三角函数有理式的积分化为有理函数的积分,但是,经代换后得出的有理函数积分一般比较麻烦.因此,这种代换不一定是最简捷的代换.例10 求dx xx ⎰+sin 1sin . 解 dx x x x dx xx x dx x x ⎰⎰⎰-=--=+222cos sin sin sin 1)sin 1(sin sin 1sin dx xx dx x x ⎰⎰--=222cos cos 1cos sin ⎰⎰⎰+--=dx dx x x d x 22cos 1cos cos 1C x x x ++-=tan cos 1. 例11 求dx x ⎰+2cos 311. 解x d x dx x x dx xtan 4tan 13sec sec cos 3112222⎰⎰⎰+=+=+ C x +=)2tan arctan(21.三、简单无理函数的积分(一)),(nb ax x R +型函数的积分),(u x R 表示x 和u 两个变量的有理式.其中a ,b 为常数.对于这种类型函数的积分,作变量代换u b ax n=+,则a b u x n -=,du anu dx n 1-=,于是 du a nuu a b u R dx b ax x R n n n 1),(),(-⋅-=+⎰⎰ . (5)(5)式右端是一个有理函数的积分.例12 求⎰++dx x 3211. 解 令u x =+32,则23-=u x ,du u dx 23=,于是⎰⎰⎰++-=+=++du u u du u u dx x 111313211223 C u u u du u u +++-=++-=⎰)1ln 2(3)111(32C x x x +++++-+=333221ln 323)2(23.例13 求dx xx ⎰+31.解 为了同时去掉被积函数中的两个根式,取3和2的最小公倍数6,并作变量代换u x =6,则6u x =,du u dx 56=,23u x =,3u x =,于是du u u du u u dx xx⎰⎰⎰+=+=+1616128283u d uu u u ⎰++-+-=)111(62246 C u u u u u ++-+-=arctan 6625676357 C x x x x x x ++-+-=66656arctan 6625676.(二)),(ndcx b ax x R ++型函数的积分 这里),(u x R 仍然表示x 和u 两个变量的有理式.其中d c b a ,,,为常数.对于这种类型函数的不定积分,作变量代换u d cx b ax n=++,则nn cu a b du x --=,du cu a bc ad nu dx n n 21)()(--=-,于是du cu a bc ad nu u cu a b du R dx d cx b ax x R n n n nn21)()(),(),(--⋅--=++-⎰⎰. (6) (6)式右端是一个有理函数的积分.例14 求dx xx x ⎰+11. 解 令u x x =+1, 则112-=u x ,du u u dx 22)1(2--=,于是 duu u du u u du u u u u dx x x x ⎰⎰⎰⎰-+--=--=--⋅-=+111212)1(2)1(112222222C u u u du u ++---=-+-=⎰11ln 2)111(22C u u u +--++-=1ln )1ln(222 C x x xx x++++++-=ln )11ln(212.例15 求dx x x ⎰-+342)1()1(1.解 ⎰⎰+--+=-+dx x x x x dx x x 334211)1)(1(1)1()1(1,令ux x =+-311,则311u x x =+-,3311u u x -+=,du u u dx 232)1(6-=, 于是du u dx x x x dx x x ⎰⎰⎰=+--=-+23234212311)1(1)1()1(1C x x C u +-+-=+-=3112323.。

几种特殊类型函数的积分

几种特殊类型函数的积分

2

解 设 3 x 2 u .于是xu22,dx3u2d u ,从而
1
dx 3x
2
1
1 u
·3u2d u
3
u2 1
1du u
3 (u
1 1 )du 1 u
3(
u2 2
uln|1u|)C
3 3 (x 2)2 33 x 2 ln |1 3 x 2 | +C. 2
练习
求积分:
(1)
2
dx cos
an bm
其中m和n都 是非负整数;a0 ,a1 ,a2 ,… ,an 及b0 ,b1 ,b2
,… ,bm都是实数,并且a00,b00.当n<m时,称这有理函数
是真分式;而当nm时,称这有理函数是假分式.假分式总可以
化成一个多项式与一个真分式之和的形式.例如
x3 x 1 x2 1
x
1 x2 1

例2 求
x
2
x
2 2x
3
dx


x2
x
2
2 x
3
dx
(1 2
x
2x 2 2 2x
3
3
x
2
1 2
x
)dx 3
1 2
x
2x 2 2 2x
dx 3
3
x
2
1 2
x
dx 3
1 2
d (x2 2x 3) x2 2x 3
3
d (x 1) (x 1)2 ( 2)2
1 ln(x2 2x 3) 3 arctan x 1 C .
2
dx.

x2
3x 1 3x

几种特殊类型函数的积分

几种特殊类型函数的积分

x 2 tan 2
2u 1 u
2 du dx 1 u
2
2
1 u 1 u
2
2
2
2 tan

万能代换
sin x dx. 例7. 求(1) 1 sin x
1 dx. (2) 3 cos x
利用万能公式处理比较复杂,更多地是利 用三角恒等式化简被积函数
1 dx. 例8. 求 2 sec x sin x tan x
例5. 求
( x 2 x 2) (2 x 2) dx 解: 原式 2 2 ( x 2 x 2)
dx d( x 2 2 x 2) 2 2 ( x 1) 1 ( x 2 x 2) 2
2
1 arctan(x 1) 2 C x 2x 2



( m n)
例9. 求
和差化积公式
解:
1 1 ∴原式 = sin 4 x dx sin 2 x d x 2 2 1 1 sin 4 x d(4 x) sin 2 x d(2 x) 4 8
1 sin x cos3x (sin 4 x sin 2 x) 2
解: (1)用赋值法
1 A B C 1 1 1 2 2 x( x 1) x x 1 ( x 1) x x 1 ( x 1) 2
右端通分后比较两端分子得
1 A( x 1)2 Bx( x 1) Cx 令 x=0 得 A=1 令 x=1 得 C=1 令 x=2 得 B=-1
例2. 求 解: 原式 1
4 1 2x 1 dx dx 2 5 1 2x 5 1 x 2 d(1 2 x) 1 2 x dx 1 dx 1 x2 1 x2 5 5 5 1 2x 2 2 1 d ( 1 x ) 1 arctan x ln 1 2 x 5 5 5 1 x2

几种特殊类型函数的积分

几种特殊类型函数的积分

假分式总可以化成一个多项式与一个真分式之和的形式.例如,
x3 x 1 x(x2 1) 1
x
1

x2 1
x2 1
x2 1
求真分式的不定积分时,如果分母可因式分解,则先因式分解,然后化成部分分式再积分.
1.1 有理函数的积分
例1

x2
x
3 5x
6
dx

解 设 x 3 x 3 A B ,则
x ln sec x ln 1 tan x C .
2
2
2
1.2 三角函数有理式的积分
说明 并非所有三角函数有理式积分计算都要通过变换化为有理函数的积分.例如,
1
cos x sin
x
dx
1
1 sin
x
d(1
sin
x)
ln(1
sin
x)
C

高等数学
x2 5x 6 (x 2)(x 3) x 2 x 3
A(x 3) B(x 2) (A B)x 3A 2B x 3 ,
即 A B 1, 3A 2B 3,
解得 A 5 , B 6 ,所以
x2
x
3 5x
6
dx
5 x2
x
6
3
dx
5
x
1
2
dx
6
x
1
3
dx
5ln | x 2 | 6ln | x 3| C .
7
7
1.2 三角函数有理式的积分
三角函数有理式是指由三角函数和常数经过有限次四则运算所构成的函数,其特点是分子 分母都包含三角函数的和差与乘积运算.由于各种三角函数都可以用 sin x 及 cos x 的有理式表 示,故三角函数有理式也就是 sin x , cos x 的有理式.

高等数学 第4章 第四节 几种特殊类型函数的积分

高等数学 第4章 第四节 几种特殊类型函数的积分



1
cos x sin
x
dx

1
cos x sin
x
dx
d1 sin x
1 sin x
ln(1 sin x) C
17
三. 简单无理函数的积分:
只讨论R
x, n
ax b
及R x, n
ax b cx d
作代换n ax b t及n ax b t。 cx d
例7

x 1 dx x
b dt
t2 a2 n
11
Mt
b
dt
dt
t2 a2 n
t2 a2 n
当 n 1时,如例4。
当 n 1时,
Mx N dx M
1 d t 2 a2 b dt
x2 px q n
2 t2 a2 n
t2 a2 n
M
b dt
2 n 1 t 2 a 2 n1
A
3
B A
1
2B
3
A 5, B 6
法2. (赋值法) x 3 Ax 3 Bx 2
令x 2,得A 5; 令x 3, 得B 6.
x2
x
3 5x
6
x
5
2
x
6
3
3
例1
可分解为
xx 12
1
xx 12
A x
x
B
1
x
C
12
A( x 1)2 Bx( x 1) Cx x( x 1)2
6t 2dt 1 t2
6
1
1
1 t
2
dt
6t arctan t C 6 6 x arctan 6 x C
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

dt dt 6 原式 6 3 2 (1 t t t ) t (t 1)(t 2 1) t
dt 3 2 ln( t 1) 3 arctan t C 6 ln t 3 ln t 1 2

山东农业大学
高等数学
主讲人: 苏本堂
解 原式
1 [ln x 10 ln( x 10 2)] C 20 1 1 ln x ln( x 10 2) C . 2 20
山东农业大学
高等数学
主讲人: 苏本堂
例16 求
3
3
dx . 2 4 ( x 1) ( x 1)
2 4 3
x 1 4 ) ( x 1) 2 . 解 ( x 1) ( x 1) ( x1 2 x 1 则有 dt dx , 令t , 2 ( x 1) x1 4 1 dx 原式 t 3 dt x 1 4 2 2 3 ( ) ( x 1) x1 33 x 1 3 1 3 C. t C 2 x 1 2
ln 2 ln 3
C
山东农业大学
高等数学
主讲人: 苏本堂
例2
计算
x2 dx 6 6 a x
3 3 1 1 3 1 x a 解:原式 3 2 dx ln 3 C 3 2 3 3 3 ( x ) (a ) 6a x a 例3 计算 1 cos x dx x sin x d ( x sin x ) ln | x sin x | C 解:原式 x sin x
x1 例10 求 2 dx. 2 x x 1 1 解 令x , (倒代换)
1 1 1 1 t t 原式 ( 2 )dt dt 2 1 12 t 1 t ( ) 1 t2 t 1 d (1 t 2 ) 2 arcsin t 1 t C dt 2 2 1 t 2 1 t
例14. 求不定积分 解: 原式
1 ( 2u )(u 2 1)

A 2u

B u 1

C u 1
山东农业大学
高等数学
主讲人: 苏本堂
例15 求
dx . 10 x( 2 x )
10 1 d ( x ) x dx 10 10 10 10 10 x ( 2 x ) x (2 x ) 9
2
d [ ln( x 1 x ) 5 ]
x 1 x

dx 1 x
2
山东农业大学
高等数学
主讲人: 苏本堂
例6. 求
x x x 2 sin cos x x 解 : 原式 x d tan tan d x 2 2 dx 2 2 2 x 2 cos 2 x x tan C 2 例7. 求
第一类换元法 第二类换元法
(代换: x (t ))
(注意常见的换元积分类型)
山东农业大学
高等数学
主讲人: 苏本堂
3. 分部积分法
u v dx u v uv dx
使用原则: 1) 由 v 易求出 v ;
2)
u v dx 比
好求 .
一般经验: 按“反, 对, 幂, 指 , 三” 的顺 序, 排前者取为 u , 排后者取为 v . 计算格式: 列表计算
(2) 初等函数的原函数不一定是初等函数 , 因此不一
定都能积出. 例如 ,

1 k sin x dx (0 k 1) ,
2
2
山东农业大学
高等数学
主讲人: 苏本堂
例13. 求
dx 1 e e e
x 6
x 2 x 3 x 6
.
解: 令 t e , 则 x 6 ln t , dx 6 dt t
山东农业大学
高等数学
主讲人: 苏本堂
例1. 求
2 3 解: 原式 dx 2x 2x 3 2 2) x d ( 1 3 2 ln 3 1 ( 2 ) 2 x 3
x x
x 2 ( 3) 2x 2 1 ( 3)
da a ln a dx
dx
x
x

x 2 arctan( 3 )
例4
1 sin x 1 cos x dx
1 sin x 解:原式 1 cos x dx 1 cos x dx
x 1 d (1 cos x) 1 2 x cot ln | 1 cos x | C csc dx 2 2 2 2 1 cos x
sec
n2
(n 2) sec
n 3
x sec x tan x
x tan x (n 2) I n (n 2) I n2
山东农业大学
高等数学
主讲人: 苏本堂
例12. 求
解: 设 F ( x) x 1 则 因 连续 , 利用
x 1 , 1 x ,
解 : 原式
山东农业大学
高等数学
主讲人: 苏本堂
例8. 求 解: 原式 arctan e x de x
x x
x
e e arctan e e dx 2x 1 e
2x 2x ( 1 e ) e e x arctan e x dx 2x 1 e
x 1 x 1
x 1 x 1

1 x2 x C , 1 2 2 1 x 2 x C2 ,
1 C1 2


1 C 2 2
记作
C
x 1
1 1 1 C1 1 2 C2 2 1 1 xx 1x ,C , x 1 22 ( ) C 2 2
山东农业大学
高等数学
主讲人: 苏本堂
例5. 求
解: 原式 [ ln( x 1 x ) 5 ] d [ ln( x 1 x 2 ) 5 ]
2
3 2 2 ln( x 1 x ) 5 2 C 3
1 2
分析:
(1
2
2x 2 1 x
2
) dx
山东农业大学
高等数学
主讲人: 苏本堂
主要内容

选 择 u 有 效 方 法


不 定 积 分
直接 积分法
分部 积分法
积分法
第一换元法 第二换元法
几种特殊类型 函数的积分
基 本 积 分 表
山东农业大学
高等数学
主讲人: 苏本堂
一、 求不定积分的基本方法
1. 直接积分法 通过简单变形, 利用基本积分公式和运算法则 求不定积分的方法 . 2. 换元积分法
2x e x arctan e x x 1 ln ( 1 e )C 2
x
山东农业大学
高等数学
主讲人: 苏本堂
例9. 求
解: (一) 令 x=tant
原式
x2 1
t 1
x
山东农业大学
高等数学
主讲人: 苏本堂
例9. 求
解 : (二 )

即 所以
山东农业大学
高等数学
主讲人: 苏本堂
2 2 1 11 ( x 1)x C , C, 22 2
山东农业大学
高等数学
主讲人: 苏本堂
二、几种特殊类型的积分
1. 一般积分方法
指数函数有理式
指数代换
有理函数
分解
万能代换 根式代换
三角函数有理式
三角代换
多项式及 部分分式之和
简单无理函数
山东农业大学
高等数学
主讲人: 苏本堂
2. 需要注意的问题 (1) 一般方法不一定是最简便的方法 , 要注意综合 使用各种基本积分法, 简便计算 .
x2 1 1 arcsin C . x x
t
山东农业大学
高等数学
Байду номын сангаас
主讲人: 苏本堂
例11. 设
证明递推公式:
1 n2 n2 In sec x tan x I n2 n 1 n 1
证: I n sec n 2 x sec 2 x dx
(n 2)
sec n 2 x sec n2 x tan x (n 2) sec n 2 x (sec 2 x 1) dx
相关文档
最新文档