2018学年高二数学上学期寒假作业6理(1)
高二数学理科寒假作业
![高二数学理科寒假作业](https://img.taocdn.com/s3/m/4206bbde28ea81c758f57888.png)
高二年级上学期理科数学寒假作业(完卷时间:120分钟满分:150分)一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内.每题5分,共计50分.)1.下列两变量中具有相关关系的是()A.正方体的体积与边长;B.匀速行驶的车辆的行驶距离与时间;C.人的身高与体重;D.人的身高与视力2.某初级中学领导采用系统抽样方法,从该校预备年级全体800名学生中抽50名学生做牙齿健康检查。
现将800名学生从1到800进行编号,求得间隔数8001650k==,即每16人抽取一个人。
在1~16中随机抽取一个数,如果抽到的是7,则从33 ~ 48这16个数中应取的数是()A.40.B.39. C.38. D.37.3.命题“若一个数是负数,则它的平方是正数”的否命题是()A.“若一个数是正数,则它的平方是负数”B.“若一个数是正数,则它的平方不是正数”C.“若一个数不是负数,则它的平方不是正数”D.“若一个数不是负数,则它的平方是负数”4.若某程序框图如图所示,则输出的p的值是()A. 21 B.26 C. 30 D.555.已知命题265:xxp≥-,命题2|1:|>+xq,则p是q的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.现有男、女学生共8人,从男生中选2人,从女生中选1人分别参加数学、物理、化学三科竞赛,共有90种不同方案,那么男、女生人数分别是A.男生2人女生6人B.男生3人女生5人C.男生5人女生3人D.男生6人女生2人.7.已知椭圆14222=+ayx与双曲线1222=-yax有相同的焦点,则a的值是()A.1 B.2 C.3 D. 48.在正方形ABCD内任取点P,则使APB∠大于90的概率是()A.8πB.4πC.2πD.16π9.中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为()A10.如图,正方体ABCD-A1B1C1D1的棱长为1,点M在棱AB上,且AM=13,点P是平面ABCD上的动点,且动点P到直线A1D1的(第4题图)1A距离与点P 到点M 的距离的平方差为1,那么动点P 的轨迹( ) A .圆 B .椭圆 C .双曲线 D .抛物线二、填空题(请把答案填在题中横线上,每题4分,共计20分.) 11. 抛物线212x y =的焦点到其准线的距离为 . 12. 如右图所示,在一个边长为2的正方形中随机撒入200粒豆子,恰有120粒落在阴影区域内,则该阴影部分的面积约为 . 13.从1,2,3,4,5这5个数中任取两个,则这两个数正好相差1的概率是________.14.在平行六面体1111ABCD A B C D -中,化简1()AB AD DD BC ++-的结果为______;15. 已知椭圆2211612x y +=,其弦AB 的中点为M ,若直线AB 和OM 的斜率都存在,则两条直线的斜率之积等于(O 为坐标原点)______;三、解答题(共6个小题,共80分.解答应写出文字说明、证明过程或演算步骤.)16.(本小题满分13分)已知命题p :方程2212x y m +=表示焦点在x 轴上的椭圆;命题q :方程01)2(442=+-+x m x 无实根,若()p q ∧⌝为真命题,求m 的取值范围。
新课标高二数学寒假作业6(必修5选修23)
![新课标高二数学寒假作业6(必修5选修23)](https://img.taocdn.com/s3/m/8b66dedbdd36a32d727581d6.png)
新课标高二数学寒假作业6(必修5选修23)
(1)求它是第几项;
(2)求的范围。
15.(本小题满分12分)设函数
(1)当时,求曲线处的切线方程;
(2)当时,求的极大值和极小值;
(3)若函数在区间上是增函数,求实数的取值范围.
16.(本小题满分12分)已知椭圆的焦点在轴上,中心在原点,离心率,直线和以原点为圆心,椭圆的短半轴为半径的圆相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的左、右顶点分别为、,点是椭圆上异于、的任意一点,设直线、的斜率分别为、,证明为定值.
选修2-3参考答案
1.C
2.C
3.B
4.D
5.C
6.B
7.C
8.D
9.1
10.4
11.0
12.
13.
14.解:(1)设Tr+1=为常数项,则有m(12-r)+nr=0
即m(12-r)+nr=0 所以=4,即它是第5项
(2)因为第5项是系数最大的项
15.
令6分
递减,在(3,+)递增
的极大值为8分
(3)
①若上单调递增。
满足要求。
10分
②若
∵恒成立,
恒成立,即a011分
时,不合题意。
综上所述,实数的取值范围是12分
16.(Ⅰ)椭圆方程
2019年高二数学寒假作业介绍到这里就结束了,希望对你有所帮助。
高二数学寒假作业:(六)(Word版含答案)
![高二数学寒假作业:(六)(Word版含答案)](https://img.taocdn.com/s3/m/c61c7104f78a6529647d53f3.png)
高二数学寒假作业(六)一、选择题,每小题只有一项是正确的。
1.等差数列{an}的前n 项和为Sn ,若等于则642,10,2S S S ==( ) A. 12 B. 18 C. 24D.42 2.设,,a b c R ∈,且a b >,则 ( )A .ac bc >B .11a b <C .22a b >D .33a b >3.已知实数x 、y 满足0,0,33,x y x y ≥⎧⎪≥⎨⎪+≥⎩则z x y =+的最小值等于A. 0B. 1C. 2D. 34.已知()()2,1,0,1,0,2,a b ==-且ka b +与2a b -互相垂直,则k 的值是 ( ) A. 1 B. 14 C. 34 D. 755.空间直角坐标系中,A(1,2,3),B(-2,-1,6),C(3,2,1),D(4,3,0),则直线AB 与CD的位置关系是( )A .垂直B .平行C .异面D .相交但不垂直6.到两定点1(2,0)F -和2(2,0)F 的距离之和为4的点M 的轨迹是:( )A 、椭圆B 、线段C 、圆D 、以上都不对7.抛物线x y 42-=上有一点P ,P 到椭圆1151622=+y x 的左顶点的距离的最小值为( ) A .32 B .2+3 C .3 D .32-8.已知数列{}n a 中,11,a =前n 项和为n S ,且点*1(,)()n n P a a n N +∈在直线10x y -+=上,则1231111nS S S S ++++= ( ) A. 21n n + B. 2(1)n n + C.(1)2n n + D.2(1)n n +9.数列2,5,11,20,,47,x …中的x 等于( )A .28B .32C .33D .27二、填空题10.命题“存在实数x ,使0222≤++x x ”的否定是 .11.若数列{}n a 中,12341,35,7911,13151719,...a a a a ==+=++=+++则10____a =。
2017-2018学年高二上学期数学寒假作业一含答案
![2017-2018学年高二上学期数学寒假作业一含答案](https://img.taocdn.com/s3/m/c4f4d3c55022aaea998f0f58.png)
2017-2018学年高二上学期数学寒假作业(一)1、命题“若,则”的否命题为( )A.若,则且B.若,则或C.若,则且D.若,则或2、已知命题:“”,命题:“直线与直线互相垂直”,则命题是命题的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3、若动点到点和直线的距离相等,则点的轨迹方程为( )A. B. C. D.4、一个多面体的三视图如下图所示,正视图为等腰直角三角形,俯视图中虚线平分矩形的面积,则该多面体的表面积为( )A. B. C. D.5、如图,棱长为1的正方体中,为线段上的动点,则下列结论正确的有( )①三棱锥的体积为定值②的最大值为③的最小值为A.①②B.①②③C.③④D.②③④6、已知双曲线的一条渐近线与直线垂直,则双曲线的离心率为( )A. B. C. D.7、如图,边长为的正方形中,点分别是边的中点,,分别沿折起,使三点重合于点,若四面体的四个顶点在同一个球面上,则该球的半径为( )A. B. C. D.8、若直线的方向向量为,平面的法向量为,则( )A. B. C. D.与斜交9、下图所示是古希腊数学家阿基米德的墓碑文,墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,相传这个图形表达了阿基米德最引以为自豪的发现.圆柱的体积与球的体积之比和圆柱的表面积与球的表面积之比分别为( )A. B. C. D.10、若圆与曲线没有公共点,则半径的取值范围是( )A. B. C.D11、已知双曲线的两条渐近线均和圆相切,且圆的圆心是双曲线的一个焦点,则该双曲线的方程为( )A. B. C. D.12、已知椭圆的左焦点为与过原点的直线相交于两点,连接.若,则的离心率为( )A. B. C. D.13、已知三棱锥的三视图的正视图是等腰三角形,俯视图是边长为的等边三角形,侧视图是直角三角形,且三棱锥的外接球表面积为,则三棱锥的高为.14、命题:“或”的否定是.15、若直线, 当时.16、在椭圆上有两个动点,为定点, ,则最小值为.17、已知:以点为圆心的圆与轴交于点和点,与轴交于点和点,其中为原点.1.求证:的面积为定值;2.设直线与圆交于点,,若, 求圆的方程.18、设:函数的定义域为;:不等式对一切正实数均成立.如果命题或为真命题,命题且为假命题,求实数的取值范围19、如图,在四棱锥中,底面四边形是正方形,,且.1.求证:平面底面;2.设,当为何值时直线与平面所成角的余弦值为?20、已知动点在抛物线上,过点作轴的垂线,垂足为,动点满足.1.求动点的轨迹的方程;2.点,过点且斜率为的直线交轨迹于两点,设直线,的斜率分别为,求的值.21、如图,在直角梯形中,.直角梯形通过直角梯形以直线为轴旋转得到,且使得平面平面.为线段的中点,为线段上的动点.(1).求证:;2.当点是线段中点时,求二面角的余弦值;3.是否存在点,使得直线平面?请说明理由.22、已知椭圆的两个焦点,且椭圆过点,且是椭圆上位于第一象限的点,且的面积.1.求点的坐标;2.过点的直线与椭圆相交与点,直线与轴相交与两点,点,则是否为定值,如果是定值,求出这个定值,如果不是请说明理由.数学作业(一)参考答案一、单选题1.D2.A3.B4.D5.A6.C7.D8.B9C10.C11. A 12.B二、填空题13.214.且15.或16.9三、解答题17.1.证明:∵圆过原点.∴,设圆的方程为,令,得,;令,得,.∴,即的面积为定值.2.∵,∴垂直平分线段.∵,∴,∴直线的方程为,∴,解得或.当时,圆心的坐标为,,此时圆心到直线:的距离,圆与直线相交于两点. 符合题意,此时,圆的方程为.当时,圆心的坐标为,,此时到直线的距离,圆与直线不相交,∴不符合题意,应舍去.∴圆心的方程.18.为真命题的定义域为对任意实数均成立,所以为真命题.为真命题对一切正实数均成立对一切正实数均成立,由于,所以,所以,所以,所以为真命题.由题意知与有且只有一个是真命题,当真假时,不存在;当假真时,,综上,.19.1.因为,,,所以平面,又平面,所以平面底面.2.取的中点,连接,设,因为平面平面,平面平面,,平面,所以平面.以为坐标原点,方向为轴,方向为轴,方向为轴,建立空间直角坐标系.由题意,得平面的法向量为,,则,,.20.1.设点,由,则点,将代入中,得轨迹的方程为.2.设过点的直线方程为,,.联立,得,则.∵,,∴.21.1.由已知,且平面平面,所以,即.又因为且,所以平面.由已知,所以平面.因为平面,所以.2.由1可知两两垂直.分别以为轴、轴、轴建立空间直角坐标系如图所示. 由已知,所以.因为为线段的中点,为线段的中点,所以.易知平面的一个法向量.设平面的一个法向量为,由得取,得.由图可知,二面角的大小为锐角,所以.所以二面角的余弦值为.3.存在点,使得直线平面.设,且,,则,所以.所以.设平面的一个法向量为,由得取,得(显然不符合题意).又,若平面,则.所以.所以.所以在线段上存在点,且时,使得直线平面.22.1.因为椭圆过点,∴,计算的得出,∴椭圆的方程为:∵的面积,∴∴,代入椭圆方程.∵,计算得出∴2.解法一:设直线的方程为:,直线的方程为:,可得:即直线的方程为:,可得:即联立消去整理的:. 由,可得;故为定值,且.解法二、设,直线、、的斜率分别为,由得,可得:,∴由, 令,得,即同理的,即,则故为定值,该定值为。
广东省2018-2018学年高二数学寒假作业(六)
![广东省2018-2018学年高二数学寒假作业(六)](https://img.taocdn.com/s3/m/8ae6f93bbed5b9f3f80f1c32.png)
广东省2013-2014学年高二寒假作业(六)数学一、选择题1.一个几何体的三视图如图3所示,其中主视图中是边长为的正三角形,俯视图为正六边形,那么该几何体的左视图的面积为A.B.C.1 D.2.如图是某一几何体的三视图,则这个几何体的体积为()A.4 B. 8C. 16 D.203.某三棱锥的侧视图和俯视图如图所示,则该三棱锥的体积为 ( )A.B.C.D.4.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),这个几何体的体积是()A .34000cm 3B .38000cm 3C .32000cmD .34000cm5.圆锥的侧面展开图是A .三角形B . 长方形C .正方形D .扇形6.一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为( )A .()334π+B .()34π+C .()238π+ D .()638π+7.一个几何体的三视图如右图所示则,该几何体的体积为 【 】A .2B .C .23D .138.各棱长均为a 的三棱锥的表面积为A .234aB .233aC .232aD .23a二、填空题9.将4个半径都是R 的球体完全装入底面半径是2R 的圆柱形桶中,则桶的最小高度是 .10.如图,已知图中的三个直角三角形是一个几何体的三视图,那么这个几何体的体积等于正视图侧视图俯视图____.11.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积等于__________12.若某几何体的三视图(单位:cm )如右图所示,则该几何体的体积为 cm 2.13.直三棱柱111ABC A B C -中,1AB AA =,,2CAB π∠=2,AB=BC =,三棱锥11C A AB -的体积为.正视图俯视图侧视图14.如图是一个几何体的三视图,则这个几何体的体积是三、解答题15.(本小题满分12分)一个四棱锥的直观图和三视图如图所示:(1)求证:⊥;(2)求出这个几何体的体积。
2017-2018学年高二上学期数学寒假作业含答案
![2017-2018学年高二上学期数学寒假作业含答案](https://img.taocdn.com/s3/m/829a40c3a58da0116c1749ca.png)
2017-2018学年寒假作业高二数学试题一必修5文理都用一、选择题(本大题共12小题,共60.0分)1.若,则A. B.C. D.2.若正实数满足,则的最小值A. 3B. 4C.D.3.若实数满足条件则的最大值为A. B. C. D.4.中,角A、B、C成等差,边a、b、c成等比,则一定是A. 等边三角形B. 等腰三角形C. 直角三角形D. 等腰直角三角形5.如图,在平面四边形ABCD中,,则BC的长为A. B. 2 C. 3 D.6.若的内角所对的边分别为,已知,且,则等于A. B. C. D.7.中,边长a、b是方程的两根,且则边长c等于A. B. C. 2 D.8.已知等比数列满足,则A. 1B.C.D. 49.设为等差数列的前n项和,若,则当最大时正整数n为A. 4B. 5C. 6D. 1010.数列满足,则A. B. C. 2 D.11.等差数列中,,且为其前n项之和,则A. 都小于零,都大于零B. 都小于零,都大于零C. 都小于零,都大于零D. 都小于零,都大于零12.已知函数的图象关于对称,且在上单调,若数列是公差不为0的等差数列,且,则的前100项的和为A. B. C. D. 0二、填空题(本大题共4小题,共20.0分)13.设函数,则不等式的解集为______ .14.在锐角中,,则a等于______ .15.已知等差数列满足,则数列的前n项和 ______ .16.设等比数列满足,则的最大值为______ .三、解答题(本大题共6小题,共72.0分)17.某客运公司用两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次两种车辆的载客量分别为36人和60人,在甲地和乙地之间往返一次的营运成本分别为1600元辆和2400元辆公司拟组建一个不超过21辆车的客运车队,并要求B型车不多于A型车7辆若每天要运送不少于900人从甲地去乙地的旅客,并于当天返回,为使公司从甲地去乙地的营运成本最小,那么应配备A型车、B型车各多少辆?营运成本最小为多少元?18.已知实数满足.求的取值范围;求最小值.19.在中,角所对的边分别是,满足.求的面积;若,求a的值.20.如图,中,,点D在线段AC上,且Ⅰ求:BC的长;Ⅱ求的面积.21.数列的通项公式是.这个数列的第4项是多少?是不是这个数列的项?若是这个数列的项,它是第几项?该数列从第几项开始各项都是正数?22.已知是等差数列,是各项均为正数的等比数列,.Ⅰ求数列的通项公式;Ⅱ求数列的前n项和.高二数学试题一必修5文理都用1. D2. B3. C4. A5. C6. C7. D8. B9. B10. C11. C12. B13. 14. 15. 16. 6417. 解:设应配备A型车、B型车各x辆,y辆,营运成本为z元;则由题意得,;;故作平面区域如下,故联立,解得,;此时,有最小值元.答:应配备A型车5辆、B型车12辆,营运成本最小,36800元.18.解:实数满足,作出可行域如图所示,并求顶点坐标,表示可行域内任一点与定点连线的斜率,由图知,又,的取值范围是表示可行域内任一点到直线的距离在图中作出直线,由图易知可行域中的点B到该直线的距离最小点B到该直线的距离,,可得最小值为:3.19. 解:分分的面积分分分20. 解:Ⅰ因为,所以分在中,设,由余弦定理可得:分在和中,由余弦定理可得:分因为,所以有,所以由可得,即分Ⅱ由Ⅰ知,则,又,则的面积为,又因为,所以的面积为分21. 解:,.这个数列的第4项是.解方程,得,或,,是这个数列的项,它是第16项.由,得,或.数列从第7项开始各项都是正数.22. 解:Ⅰ设数列的公差为的公比为,由.则解得或舍,所以.Ⅱ.。
高二理科数学寒假作业参考答案
![高二理科数学寒假作业参考答案](https://img.taocdn.com/s3/m/89d84d954a7302768e9939cd.png)
理科数学寒假作业答案作业11—5.DCBAB 6.平行或异面 7.平行 8.29.(1)证明:连接1B C ,设1B C 与1BC 相交于点O ,连接OD .因为四边形11BCC B 是矩形,所以点O 是1B C 的中点,因为D 为AC 的中点,所以OD 为1AB C ∆的中位线,所以1//OD AB ,因为OD ⊂平面1BC D ,1AB ⊄平面1BC D ,所以1//AB 平面1BC D .(2)因为1AA ⊥平面ABC ,1AA ⊂平面11AAC C ,所以平面ABC ⊥平面11AAC C ,且平面ABC I 平面11AAC C =AC .作BE AC ⊥,垂足为E ,则BE ⊥平面11AAC C .因为12,3,AB BB BC ===在Rt ABC ∆中,224913AC AB BC =+=+=,13AB BC BE AC ⋅==,所以 111111113()1323326213B AACD V AC AD AA BE -=⨯+⋅⋅=⨯⨯⨯=. 10.(1)因为M ,N 分别是BD ,'BC 的中点,所以//MN DC '.因为MN ⊄平面ADC ',DC '⊂平面ADC ', 所以//MN 平面ADC '.同理//NG 平面ADC '.又因为MN NG N =I ,所以平面//GNM 平面ADC '. (2)因为90BAD ∠=o,所以AD AB ⊥.又因为'AD C B ⊥,且'AB C B B =I ,所以AD ⊥平面'C AB .因为'C A ⊂平面'C AB ,所以'AD C A ⊥.因为△BCD 是等边三角形,AB AD =,不防设1AB =,则BC CD BD ===1C A '=.由勾股定理的逆定理,可得'AB C A ⊥. 所以'C A ⊥平面ABD . 作业21-5.DCCBD 6.垂直. 7.①②④⑤ 8.BCD ABD ACD ABC S S S S ∆∆∆∆=++2222 9.(1)因为点F 在CD 上,点E 在D A 上,且DF:FC D :2:3=H HA =, 所以F//C E A ,又F E ⊄平面C AB ,C A ⊂平面C AB , 所以F//E 平面C AB .(2)取D B 的中点M ,连AM ,C M ,因为CD AB 为正四面体,所以D AM ⊥B ,C D M ⊥B , 又C AM M =M I ,所以D B ⊥平面C AM , 又C A ⊂平面C AM ,所以D C B ⊥A , 又F//C H A ,所以直线D B ⊥直线F H .10.(Ⅰ)证明:连结AC 交BD 于O ,连结OM .因为M 为AF 中点,O 为AC 中点,所以//FC MO ,又因为MO ⊂平面MBD ,FC ⊄平面MBD ,所以//FC 平面MBD . (Ⅱ)因为正方形ABCD 和矩形ABEF 所在平面互相垂直,所以AF ⊥平面ABCD . 以A 为原点,以AD ,AB ,AF 为x ,y ,z 轴建立空间直角坐标系.(110)C ,,,(001)M ,,,(010)B ,,,(100)D ,,,42(1)55N ,,,设平面BDM 的法向量为()p x y z =u r,,,00p BD p BM ⎧⋅=⎪⎨⋅=⎪⎩u r u u u r u r u u u u r ,(111)p =u r ,,.设平面BDN 的法向量为()q x y z =r ,,,00q BD q BN ⎧⋅=⎪⎨⋅=⎪⎩r u u u rr u u ur ,(112)q =-r,,.设p u r 与q r 的夹角为θ,cos 0p q p qθ⋅==⋅u r ru rr ,所以二面角M BD N --的大小为90o .作业3一、选择题 BCDBD 二、填空题 6、922 7、共面 8、OC OB OA 313131++ 三、解答题 9、2110、(1)4 (2)415作业4一、选择题 CBCBD二、填空题 6.5 7.30° 8.1+26三、解答题9.解析:将长方体相邻两个面展开有下列三种可能,如图所示.三个图形甲、乙、丙中AC1的长分别为:(a+b)2+c2=a2+b2+c2+2ab,a2+(b+c)2=a2+b2+c2+2bc,(a+c)2+b2=a2+b2+c2+2ac,因为a>b>c>0,所以ab>ac>bc>0.故最短线路的长为a2+b2+c2+2bc.3010.10作业51. 【解析】由已知得直线方程为y=x,圆心坐标为(0,2),所以d==1,又圆半径r=2,所以弦长为2=2.【答案】D2.【解析】圆x2+y2-2x=0的圆心坐标为(1,0),半径为1,解得a=-1.【答案】D3【解析】x2+y2-4x=0是以(2,0)为圆心,2为半径的圆,而点P(3,0)到圆心的距离为d=3-2=1<2,即点P(3,0)恒在圆内,故过P点的直线l恒与圆C相交.故选A.【答案】A4. 【解析】结合图形可知,当AB 垂直于过点(0,1)的直径时,|AB|最短,故将y=1代入圆的方程得x=或-,所以|AB|min =-(-)=2.【答案】B5. 【解析】因为M ∪N=M ⇔N ⊆M,所以两个圆内含或内切,从而|a|≤5-3=2,解得a ∈[-2,2].【答案】D6. 【思路点拨】根据“半径的平方=弦心距的平方+弦长一半的平方”列方程求解.【精讲精析】圆222210x y x y +--+=标准方程为22(1)(1)1x y -+-=,它的圆心到直线l 的距离2d ==,设直:2(1)20l y k x kx y k +=+-+-=即,则=,解得1k =或17.7k =【答案】或17.7 7. 答案:256)4()4(22=-+-y x8【解析】本题主要考查直线与圆的方程及位置关系.【答案】5解答如下:由题可知动直线0ax by c ++=过定点(1,2)A -.设点(,)M x y ,由MP MA ⊥可求得点M的轨迹方程为圆:Q 22(1)2x y ++=,故线段MN 长度的最大值为5QN r +=+9. 【解析】(1)由题意得:C 1(4,2),r 1=2,C 2(1,3),r 2=3,∴|C 1C 2|=,r 2-r 1<|C 1C 2|<r 1+r 2,∴两圆相交,两圆的方程相减得:6x-2y-15=0,即为公共弦所在直线的方程. (2)设直线l 方程为:y=k(x-1),即:kx-y-k=0, 由题意得:2=,解得:k=0或k=.∴直线l 的方程为:y=0或12x-5y-12=0.10. 解:(1)设直线的方程为(1)y k x =+,即0kx y k -+=.因为直线被圆2C 截得的弦长为65,而圆2C 的半径为1,所以圆心2(3 4)C ,到:0kx y k -+=45=.化简,得21225120k k -+=,解得43k =或34k =.所以直线的方程为4340x y -+=或3430x y -+=. (2)①证明:设圆心( )C x y ,,由题意,得12CC CC =,化简得30x y +-=,即动圆圆心C 在定直线30x y +-=上运动.②圆过定点,设(3)C m m -,,则动圆C=于是动圆C 的方程为2222()(3)1(1)(3)x m y m m m -+-+=+++-. 整理,得22622(1)0x y y m x y +----+=.由2210 620x y x y y -+=⎧⎨+--=⎩,,得1 2x y ⎧=⎪⎨⎪=+⎩或1 2x y ⎧=⎪⎨⎪=⎩所以定点的坐标为(1,(1++. 作业61. 【精讲精析】选B.圆的方程22240x y x y ++-=可变形为5)2()122=-++y x (,所以圆心坐标为(-1,2),代入直线方程得1a =.2. 【精讲精析】选B.22222222y(y mx m)0,y0y mx m0,y0y0x y2x0y mx m0y mx m01)x(22)x0,x y2x00,m((0,33--=∴=--===+-=--=--=⎧++-+=⎨+-=⎩∆>∈-⋃Q或当时,很明显直线与圆有两个不同交点,当时,要使直线与圆有两个不同交点,需联立,得:(m m m由得:3. 【思路点拨】小圆在滚动的过程中,一直与大圆内切,其直径为大圆的半径,且一直过大圆的圆心,易得点M,N在大圆内所绘出的图形.【精讲精析】选A.当小圆在滚动的过程中,一直与大圆内切,由于其直径为大圆半径,故小圆在滚动过程中必过大圆的圆心,所以点M,N在大圆内所绘出的图形大致是A.4【思路点拨】设出点C的坐标,求出AB方程,利用点到直线距离公式求出AB边上的高,再利用面积为2可出点C的个数.【精讲精析】选A.设(,)C x y,则AB:20x y+-=,|AB|=点C到直线AB的距离为.又因为点C在2y x=上,所以2d=令2122ABCS∆=⨯=,解得110,1,22x---+=-.所以满足条件的点有4个.5.【思路点拨】根据有关性质可知AC和BD互相垂直,所以四边形ABCD的面积为BDAC•21.【精讲精析】选B.圆的标准方程为10)3()1(22=-+-yx,圆心为)3,1(O半径10=r,由圆的相关性质可知1022==rAC,222OErBD-=因为5)13()01(22=-+-=OE,所以52222=-=OErBD四边形ABCD的面积为.210521022121=⨯⨯=•BDAC6【思路点拨】可设圆心坐标)0,(x C ,利用CB CA =,求出圆心和半径,再写出圆的标准方程.【精讲精析】选A ,设)0,(x C ,由CB CA =,得1)5(9)1(22+-=+-x x解得2=x .∴10==CA r , ∴圆C 的标准方程为10)2(22=+-y x . 答案:10)2(22=+-y x7【思路点拨】本题考查的是直线与圆的位置关系,解题的关键是找出集合所代表的几何意义,然后结合直线与圆的位置关系,求得实数m 的取值范围.【精讲精析】答案:122m ≤≤由φ≠⋂B A 得,φ≠A ,所以,22m m ≥21≥m 或0≤m .当0≤m 时,m m m ->-=-22222,且m m m ->-=--2222122,又12202+>=+m ,所以集合A 表示的区域和集合B 表示的区域无公共部分;当21≥m 时,只要,222m m ≤-或,2122m m ≤--解得2222+≤≤-m 或221221+≤≤-m ,所以,实数的取值范围是⎥⎦⎤⎢⎣⎡+22,21.8. 【思路点拨】考查数形结合,空间想象能力,特例的取得与一般性的检验.根据命题的特点选择合适的情形.【精讲精析】①例如23+=x y ,②如22-=x y 过整点(1,0),③设y kx =(0k ≠)是过原点的直线,若此直线过两个整点1122(,),(,)x y x y ,则有11y kx =,22y kx =,两式相减得1212()y y k x x -=-,则点1212(,)x x y y --也在直线y kx =上,通过这种方法可以得到直线l 经过无穷多个整点,通过上下平移y kx =得对于y kx b =+也成立,所以③正确;④如2131+=x y 不经过无穷多个整点, ④如直线x y 3=,只经过(0,0).故答案:①③④9. 【思路点拨】第(1)问,求出曲线261y x x =-+与坐标轴的3个交点,然后通过3个点的坐标建立方程或方程组求得圆C 的方程;第(2)圆,设1122(,),(,)A x y B x y ,121200OA OB OA OB x x y y ⊥⇒⋅=⇒+=u u u r u u u r,利用直线方程0x y a -+=与圆的方程联立,化简12120x x y y +=,最后利用待定系数法求得的值.【精讲精析】(Ⅰ)曲线261y x x =-+与坐标轴的交点为(0,1)(3)0,22±故可设圆的圆心坐标为(3,t )则有()()221-t 3222=++t2解得t=1,则圆的半径为()31322=+-t .所以圆的方程为()()229x 3y 1+=--.(Ⅱ)设A(),11y x B(),22y x 其坐标满足方程组0x y a -+=()()91322=+--y x消去y 得到方程012)82(222=+-+-+a x a a x由已知可得判别式△=56-16a-4a2>0由韦达定理可得a x x -=+421,212221+-=a ax x ①由OA OB ⊥可得.02121=+yy x x 又11a y x =+,a xy +=22.所以20)(22121=+++a x x x x a ②由①②可得a=-1,满足△>0,故a=-1.10.【思路点拨】(Ⅰ)反证法;先假设1l 与2l 不相交,之后推出矛盾.(Ⅱ)求出交点,代入方程.【精讲精析】(Ⅰ)反证法.假设1l 与2l 不相交,则1l 与2l 平行,有21k k =代入0221=+k k ,得0221=+k .此与1k 为实数的事实相矛盾.从而,21k k ≠即1l 与2l 相交. (Ⅱ)由方程组⎩⎨⎧-=+=1121x k y x k y解得交点P 的坐标(x,y )为⎪⎪⎩⎪⎪⎨⎧-+=-=1212122k k k k y k k x 而.144)()2(22222122212121221222=++++=-++-=+k k k k k k k k k k y x 即P(x,y)在曲线222x +y =1上.. 作业71.解析 由题意得,p =1×1=1,k =1<6;k =1+1=2,p =1×2=2,k =2<6;k =2+1=3,p =2×3=6,k =3<6;k =3+1=4,p =6×4=24,k =4<6;k =4+1=5,p =24×5=120,k =5<6;k =5+1=6,p =120×6=720,k =6不小于6,故输出p =720. 答案 B3.解析 此程序先将A 的值赋给X ,再将B 的值赋给A ,再将X +A 的值赋给B ,即将原来的A 与B 的和赋给B ,最后A 的值是原来B 的值8,而B 的值是两数之和13. 答案 C4.解析 本题代入数据验证较为合理,显然满足p =8.5的可能为6+112=8.5或9+82=8.5.显然若x 3=11,不满足|x 3-x 1|<|x 3-x 2|,则x 1=11,计算p =11+92=10,不满足题意;而若x 3=8,不满足|x 3-x 1|<|x 3-x 2|,则x 1=8,计算p =8+92=8.5,满足题意. 答案 C5.解析 据程序框图可得当k =9时,S =11;k =8时,S =11+9=20.∴应填入k >8.答案 D6.解析 a =1,b =2,把1与2的和赋给a ,即a =3,输出的结果是3.答案 37.解析 依次执行的是S =1,i =2;S =-1,i =3;S =2,i =4;S =-2,i =5;S =3,i =6;S =-3,i =7,此时满足i >6,故输出的结果是-3.答案 -38.解析 此题的伪代码的含义:输出两数的较大者,所以m =3.答案 39.解析 如图所示:10.解析 第一步:S =0;第二步:i =1;第三步:S =S +i ;第四步:i =i +2;第五步:若i 不大于31,返回执行第三步,否则执行第六步;第六步:输出S 值. 程序框图如图:作业8 1.解析 200个零件的长度是总体的一个样本.答案 C2.解析 抽取比例是903 600+5 400+1 800=1120,故三校分别抽取的学生人数为3 600×1120=30,5 400×1120=45,1 800×1120=15. 答案 B4.解析 60kg 以频率为0.04050.01050.25⨯+⨯=,故人数为4000.25100⨯=(人). 答案 B5.解析 由变量的相关关系的概念知,②⑤是正相关,①③是负相关,④为函数关系, 故选C.答案 C6.解析 根据样子相关系数的定义可知,当所有样本点都在直线上时,相关系数为1.答案 17.解析 系统抽样的步骤可概括为:总体编号,确定间隔,总体分段,在第一段内确定起始个体编号,每段内规则取样等几步.该抽样符合系统抽样的特点.答案 系统抽样8.(注:方差2222121()()()n s x x x x x x n ⎡⎤=-+-++-⎣⎦L ,其中x 为x 1,x 2,…,x n 的平均数)答案 6.89.解析 (1)由试验结果知,用A 配方生产的产品中优质品的频率为22+8100=0.3,所以用A 配方生产的产品的优质品率的估计值为0.3.由试验结果知,用B 配方生产的产品中优质品的频率为32+10100=0.42,所以用B 配方生产的产品的优质品率的估计值为0.42.(2)由条件知,用B 配方生产的一件产品的利润大于0当且仅当其质量指标值t ≥94,由试验结果知,质量指标值t ≥94的频率为0.96.所以用B 配方生产的一件产品的利润大于0的概率估计值为0.96.用B 配方生产的产品平均一件的利润为110010.解析 (1)分数在[120,130)内的频率为1-(0.1+0.15+0.15+0.25+0.05)=1-0.7=0.3.(2)估计平均分为 x =95×0.1+105×0.15+115×0.15+125×0.3+135×0.25+145×0.05=121.(3)由题意,[110,120)分数段的人数为60×0.15=9(人).[120,130)分数段的人数为60×0.3=18(人).∵用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,∴需在[110,120)分数段内抽取2人,并分别记为m ,n ;在[120,130)分数段内抽取4人,并分别记为a ,b ,c ,d ;设“从样本中任取2人,至多有1人在分数段[120,130)内”为事件A ,则基本事件共有(m ,n ),(m ,a ),…,(m ,d ),(n ,a ),…,(n ,d ),(a ,b ),…,(c ,d )共15种.则事件A 包含的基本事件有(m ,n ),(m ,a ),(m ,b ),(m ,c ),(m ,d ),(n ,a ),(n ,b ),(n ,c ),(n ,d )共9种.∴P (A )=915=35. ×[4×(-2)+54×2+42×4]=2.68(元).作业91.B;2.B;3.C;4.A;5.C6. 111; 7. 2572; 8. 87.5%;9:解:如图,由平面几何知识:当AD OB ⊥时,1OD =;当OA AE ⊥时,4OE =,1BE =.(1)当且仅当点C 在线段OD 或BE 上时,AOC ∆为钝角三角形记"AOC ∆为钝角三角形"为事件M ,则11()0.45OD EB P M OB ++=== 即AOC ∆为钝角三角形的概率为0.4.(2)当且仅当点C 在线段DE 上时,AOC ∆为锐角三角,记"AOC ∆为锐角三角"为事件N ,则3()0.65DE P N OB ===即AOC ∆为锐角三角形的概率为0.6.10.解:设构成三角形的事件为A ,长度为10的线段被分成三段的长度分别为x ,y ,10-(x +y ),则 010010010()10x y x y <<⎧⎪<<⎨⎪<-+<⎩,即010010010x y x y <<⎧⎪<<⎨⎪<+<⎩.由一个三角形两边之和大于第三边,有 10()x y x y +>-+,即510x y <+<.又由三角形两边之差小于第三边,有 5x < ,即05x <<,同理05y <<. ∴ 构造三角形的条件为0505510x y x y <<⎧⎪<<⎨⎪<+<⎩.∴ 满足条件的点P (x ,y )组成的图形是如图所示中的阴影区域(不包括区域的边界).2125·522S ∆阴影==,21·1052OAB S ∆==0. ∴ 1()4OMN S P A S ∆∆阴影==.作业101.B2.D 3.B 4.D 5.C 6.32 7.1512 8.23. 9.(1)53159)(==k p (2)94)(=H p 解:设高二甲班同学为A 、B 、C ,A 为女同学,B 、C 为男同学,高二乙班同学为D 、E 、F ,D 为男同学,E 、F 为女同学。
重庆市铜梁县18学年高二数学上学期寒假作业(一)
![重庆市铜梁县18学年高二数学上学期寒假作业(一)](https://img.taocdn.com/s3/m/8f862b7a1ed9ad51f01df2c8.png)
重庆市铜梁县2017-2018学年高二数学上学期寒假作业(一)一、选择题1、如果两个球的体积之比为8:27,那么两个球的表面积之比为( ) A.B.C.D.2、若直线,,相交于同一点,则点可能是( )A.(1,-3)B.(3,-1)C.(-3,1)D.(-1,3) 3、命题“,都有”的否定为( )A.,都有B.,使得C.,都有D.,使得4、直线与圆交于,两点,则△(是原点)的面积为( ) A. B. C. D.5、设,为不重合的平面,,为不重合的直线,则下列命题正确的是( ) A.若,,,则 B.若,,,则 C.若,,,则D.若,,,则6、设满足约束条件70310350x y x y x y +-≤⎧⎪-+≤⎨⎪--≥⎩,则的最大值为( )A.10B.8C.3D.2 7、“”是“方程22125x y k k+=--表示的曲线是椭圆”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 8、已知直线(1)20k x y k ++--=恒过点P, 则点关于直线20x y --=的对称点的坐标是( )A.(3,-2)B.(2,-3)C.(1,3)D.(3,-1)9、某几何体的三视图如图所示,则该几何体的体积为( )A.12B.18C.24D.30 10、与直线和圆都相切的半径最小的圆方程是( ) (A) (B (C)(D)11、已知圆的方程为,设直线(2)(1)810m x m y m ++---=与该圆相交所得的最长弦和最短弦分别为和,则四边形的面积为( ) A.B.C.D.12、若点和点分别为椭圆22143x y +=的中心和左焦点, 点为椭圆上的任意一点,则的最大值为( )A. 2B.3C.6D.8 二、填空题 13、如果直线平行于直线,则直线在两坐标轴上的截距之和是_____________ 14、已知圆:上任意一点关于直线的对称点都在圆上,则实数__________________ 15、长方体中,,,,则一只小虫从点沿长方体的表面爬到点的最短距离是___________16已知顶点与原点重合, 准线为直线410x +=的抛物线上有两点和,若121y y ⋅=-, 则的大小是三、解答题 17、已知两直线.求分别满足下列条件的的值.(1).直线过点,并且直线与垂直;(2).直线与直线平行,并且直线在轴上的截距为.18、(1)在平行四边形中,,,, 求顶点的坐标. (2)过点作圆:的切线, 求切线的方程19、已知圆.(1)求圆的圆心和半径;(2)已知不过原点的直线与圆相切,且直线在轴、轴的截距相等,求直线的方程。
高二(理)上学期数学寒假作业6 含答案
![高二(理)上学期数学寒假作业6 含答案](https://img.taocdn.com/s3/m/4693752ec5da50e2524d7ff0.png)
1.和x 轴相切,且与圆x 2+y 2=1外切的圆的圆心的轨迹方程是 ( )A .x 2=2y +1B .x 2=-2y +1C .x 2=2y -1D .x 2=2|y|+1 【解析】:2.已知两定点A (-2,0),B (1,0),如果动点P 满足|PA|=2|PB|,则点P 的轨迹所包围的图形的面积等于 ( )A .πB .4πC .8πD .9π 【解析】:3.设直线0132=++y x 和圆03222=--+x y x 相交于点A 、B ,则弦AB 的垂直平分线方程是 . 【解析】:4.设直线ax -y +3=0与圆(x -1)2+(y -2)2=4有两个不同的交点A ,B ,且弦AB 的长为2 3 ,则a 等于 . 【解析】:5、设圆上点A (2,3)关于直线x +2y=0的对称点仍在圆上,且圆与直线x -y +1=0相交的弦长为2 2 ,求圆的方程. 【解析】:6、已知与曲线C:x2+y2-2x-2y+1=0相切的直线l叫x轴,y轴于A,B两点,|OA|=a,|OB|=b(a >2,b>2).(1)求证:(a-2)(b-2)=2;(2)求线段AB中点的轨迹方程;(3)求△AOB面积的最小值.【解析】:7、已知点A,B的坐标为(-3,0),(3,0),C为线段AB上的任意一点,P,Q是分别以AC,BC为直径的两圆O1,O2的外公切线的切点,求PQ中点的轨迹方程.【解析】:8.由动点P引圆x2+y2=10的两条切线PA,PB,直线PA,PB的斜率分别为k1,k2.(1)若k1+k2+k1k2=-1,求动点P的轨迹方程;(2)若点P在直线x+y=m上,且PA⊥PB,求实数m的取值范围.【解析】:9.已知P是直线3x+4y+8=0上的动点,P A、PB是圆C:x2+y2-2x-2y+1=0的两条切线,A、B是切点.(1)求四边形P ACB面积的最小值;(2)直线上是否存在点P,使∠BP A=60°,若存在,求出P点的坐标;若不存在,说明理由.【解析】:10.圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0(m∈R).(1)证明:不论m取什么数,直线l与圆C恒交于两点;(2)求直线l被圆C截得的线段的最短长度,并求此时m的值.【解析】:11.已知以点A(-1,2)为圆心的圆与直线l1:x+2y+7=0相切.过点B(-2, 0)的动直线l与圆A相交于M,N两点,Q是MN的中点.(1)求圆的方程;(2)当|MN|=219时,求直线l的方程.【解析】:12.如图,已知圆O:x2+y2=1和定点A(2,1),由圆O外一点P(a,b)向圆O引切线PQ,切点为Q,且有|PQ|=|P A|.(1)求a、b间关系;(2)求|PQ|的最小值;(3)以P为圆心作圆,使它与圆O有公共点,试在其中求出半径最小的圆的方程.【解析】:答案1.D .提示:设圆心(x,y)||1y =+2.B .提示:直接将动点坐标代如等式,求得点的轨迹是一个以(2,0)为圆心,2为半径的圆.3.0323=--y x .提示:弦的垂直平分线过圆心.4.0.提示:依据半径、弦长、弦心距的关系求解.5、解析:设圆的方程为(x -a)2+(y -b)2=r 2, 点A (2,3)关于直线x +2y=0的对称点仍在圆上,说明圆心在直线x +2y=0上,a +2b=0,又(2-a)2+(3-b) 2=r 2,而圆与直线x -y+1=0相交的弦长为2 2 ,,故r 2-2=2,依据上述方程解得:{b 1=-3a 1=6r 12=52或{b 2=-7a 2=14r 22=244∴所求圆的方程为(x -6)2+(y +3)2=52,或(x -14)2+(y +7)2=224. 6、解析:(1)设出直线方程的截距式,用点到直线的距离等于1,化减即得;(2)设AB 中点M(x,y),则a=2x,b=2y,代入(a -2)(b -2)=2,得(x -1)(y -1)=12 (x >1,y >1); (3)由(a -2)(b -2)=2得ab +2=2(a +b)≥4ab ,解得ab ≥2+ 2 (ab ≤2- 2 不合,舍去),当且仅当a=b 时,ab 取最小值6+4 2 ,△AOB 面积的最小值是3+2 2 . 7.作MC ⊥AB 交PQ 于M ,则MC 是两圆的公切线.|MC|=|MQ|=|MP|,M 为PQ 的中点.设M (x,y),则点C ,O 1,O 2的坐标分别为(x,0),(-3+x 2 ,0), ( 3+x 2 ,0) 连O 1M ,O 2M ,由平面几何知识知∠O 1MO 2=90°.∴|O 1M|2+|O 2M|2=|O 1O 2|2,代入坐标化简得:x 2+4y 2=9(-3<x <3) 8.(1)由题意设P (x 0,y 0)在圆外,切线l :y -y 0=k(x -x 0)=∴(x 02-10)k 2-2x 0·y 0k +y 02-10=0由k 1+k 2+k 1k 2=-1得点P 的轨迹方程是x +y±2 5 =0.(2)∵P (x 0,y 0)在直线x +y=m 上,∴y 0=m -x 0,又PA ⊥PB ,∴k 1k 2=-1,202010110y x -=--,即:x 02+y 02=20,将y 0=m -x 0代入化简得,2x 02-2mx 0+m 2-20=0∵△≥0,∴-210 ≤m≤210 ,又∵x 02+y 02>10恒成立,∴m >2,或m <-2 5 ∴m 的取值范围是[-210 ,-2 5 ]∪(2 5 ,210 ]9.解 (1)如图,连接PC ,由P 点在直线3x +4y +8=0上,可设P 点坐标为(x ,-2-34x ).圆的方程可化为(x -1)2+(y -1)2=1,所以S 四边形P ACB =2S △P AC =2×12×|AP |×|AC |=|AP |.因为|AP |2=|PC |2-|CA |2=|PC |2-1,所以当|PC |2最小时,|AP |最小.因为|PC |2=(1-x )2+(1+2+34x )2=(54x +1)2+9.所以当x =-45时,|PC |2min =9. 所以|AP |min =9-1=2 2.即四边形P ACB 面积的最小值为2 2. (2)假设直线上存在点P 满足题意.因为∠APB =60°,|AC |=1,所以|PC |=2.设P (x ,y ),则有⎩⎪⎨⎪⎧(x -1)2+(y -1)2=4,3x +4y +8=0.整理可得25x 2+40x +96=0,所以Δ=402-4×25×96<0.所以这样的点P 是不存在的.10.(1)证明 ∵直线l 的方程可化为(2x +y -7)m +(x +y -4)=0(m ∈R ).∴l 过⎩⎪⎨⎪⎧2x +y -7=0x +y -4=0的交点M (3,1).又∵M 到圆心C (1,2)的距离为d =(3-1)2+(1-2)2=5<5, ∴点M (3,1)在圆内,∴过点M (3,1)的直线l 与圆C 恒交于两点.(2)解 ∵过点M (3,1)的所有弦中,弦心距d ≤5,弦心距、半弦长和半径r 构成直角三角形,∴当d 2=5时,半弦长的平方的最小值为25-5=20.∴弦长AB 的最小值|AB |min =4 5.此时,k CM =-12,k l =-2m +1m +1.∵l ⊥CM ,∴12·2m +1m +1=-1,解得m =-34.∴当m =-34时,取到最短弦长为4 5.11 [解析] (1)设圆A 的半径为r ,∵圆A 与直线l 1:x +2y +7=0相切,∴r =|-1+4+7|5=25,∴圆A 的方程为(x +1)2+(y -2)2=20.(2)当直线l 与x 轴垂直时,则直线l 的方程为x =-2, 此时有|MN |=219,即x =-2符合题意.当直线l 与x 轴不垂直时,设直线l 的斜率为k , 则直线l 的方程为y =k (x +2),即kx -y +2k =0,∵Q 是MN 的中点,∴AQ ⊥MN ,∴|AQ |2+(12|MN |)2=r 2.又∵|MN |=219,r =25,∴|AQ |=20-19=1,解方程|AQ |=|k -2|k 2+1=1,得k =34,∴此时直线l 的方程为y -0=34(x +2),即3x -4y +6=0.综上所得,直线l 的方程为x =-2或3x -4y +6=0.12.解 (1)连接OQ 、OP ,则△OQP 为直角三角形,又|PQ |=|P A |,所以|OP |2=|OQ |2+|PQ |2=1+|P A |2,所以a 2+b 2=1+(a -2)2+(b -1)2,故2a +b -3=0.(2)由|PQ |2=|OP |2-1=a 2+b 2-1=a 2+9-12a +4a 2-1=5a 2- 12a +8=5(a -1.2)2+0.8,得|PQ |min =255.(3)以P 为圆心的圆与圆O 有公共点,半径最小时为与圆O 相切的情形,而这些半径的最小值为圆O 到直线l 的距离减去圆O 的半径,圆心P 为过原点且与l 垂直的直线l ′与l 的交点P 0,所以r =322+12-1=355-1,又l ′:x -2y =0,联立l :2x +y -3=0得P 0(65,35).所以所求圆的方程为(x -65)2+(y -35)2=(355-1)2.。
2018-2019学年上学期寒假作业高二 理科数学 学生版
![2018-2019学年上学期寒假作业高二 理科数学 学生版](https://img.taocdn.com/s3/m/ecd026af240c844768eaee34.png)
an
1 an1 an
,则数
列
1 an1
an
的前
15
项和为(
)
A.3
B.4
C.127
D.128
9.[2018·会宁县一中]已知数列 an ,
a1
1 4
,
an
1
1 an1
n
2
,则
a2020
(
)
A. 4 5
B. 1 4
C. 3
D. 1 5
10.[2018·福州八县一中]等差数列 an 中,a100 0 ,a101 0 ,且 a100 a101 ,Sn 为其前 n 项
A. 30 m
B. 60 m
C. 30 3 m
D. 40 3 m
8.[2018·荆州质检]已知 △ABC 的面积为 1,角 A 、B 、C 的对边分别为 a 、b 、c ,且 a 2 3 ,
b c 4 ,则角 A 的大小为( )
A. π 4
B. π 3
C. π 2
D. 2π 3
9.[2018·云师附中] 我国南宋著名数学家秦九韶发现了从三角形三边求三角形面积的“三斜
【解析】(1)∵等差数列 an 的各项为正数,其公差为 1, a2 a4 5a3 1.
∴ a1 1a1 3 5 a1 2 1 ,
解得 a1 3 ,或 a1 2 (舍),
∴数列 an 的通项公式 an a1 n 1 d 3 n 1 n 2 .
第 2 页 共 56 页
教育因你我而变
A. 3
B. 5
C. 6
D. 7
高二数学寒假作业试题 理(一)
![高二数学寒假作业试题 理(一)](https://img.taocdn.com/s3/m/a2902ef82af90242a995e571.png)
湖北省武汉市黄陂区2016-2017学年高二数学寒假作业试题理(一) 一.填空题(共3小题)1.已知椭圆:,左右焦点分别为F1,F2,过F1的直线l交椭圆于A,B两点,若|BF2|+|AF2|的最大值为5,则b的值是.2.如图,已知圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(B在A的上方),且|AB|=2.(1)圆C的标准方程为.(2)圆C在点B处切线在x轴上的截距为.3.一个几何体的三视图如图所示,则该几何体的表面积为.二.解答题(共3小题)4.根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立.(Ⅰ)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(Ⅱ)求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率.家长签字:___________________签字日期:___________________5.如图,三棱锥P ﹣ABC 中,PA⊥平面ABC ,PA=1,AB=1,AC=2,∠BAC=60°.(1)求三棱锥P ﹣ABC 的体积;(2)证明:在线段PC 上存在点M ,使得AC⊥BM,并求的值.6.已知椭圆+=1(a >b >0)的左、右焦点为F 1、F 2,点A (2,)在椭圆上,且AF 2与x 轴垂直.(1)求椭圆的方程;(2)过A 作直线与椭圆交于另外一点B ,求△AOB 面积的最大值.寒假作业(一)参考答案1.由0<b<2可知,焦点在x轴上,∵过F1的直线l交椭圆于A,B两点,∴|BF2|+|AF2|+|BF1|+|AF1|=2a+2a=4a=8∴|BF2|+|AF2|=8﹣|AB|.当AB垂直x轴时|AB|最小,|BF2|+|AF2|值最大,此时|AB|=b2,∴5=8﹣b2,解得.故答案为.2.(1)由题意,圆的半径为=,圆心坐标为(1,),∴圆C的标准方程为(x﹣1)2+(y﹣)2=2;(2)由(1)知,B(0,1+),∴圆C在点B处切线方程为(0﹣1)(x﹣1)+(1+﹣)(y﹣)=2,令y=0可得x=﹣1﹣.故答案为:(x﹣1)2+(y﹣)2=2;﹣1﹣.3.由题意可知几何体是底面为正方形边长为,一条侧棱垂直底面高为1的四棱锥,所以四棱锥的表面积为:=.故答案为:.4.(I)设该车主购买乙种保险的概率为p,根据题意可得p×(1﹣0.5)=0.3,解可得p=0.6,该车主甲、乙两种保险都不购买的概率为(1﹣0.5)(1﹣0.6)=0.2,由对立事件的概率该车主至少购买甲、乙两种保险中的1种的概率1﹣0.2=0.8(II)每位车主甲、乙两种保险都不购买的概率为0.2,则该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率P=C31×0.2×0.82=0.384.5.(1)解:由题设,AB=1,AC=2,∠BAC=60°,可得S△ABC==.因为PA⊥平面ABC,PA=1,所以V P﹣ABC=•S△ABC•PA=;(2)过B作BN⊥AC,垂足为N,过N作MN∥PA,交PC于点M,连接BM,由PA⊥平面ABC,知PA⊥AC,所以MN⊥AC,因为BN∩MN=N,所以AC⊥平面MBN.因为BM⊂平面MBN,所以AC⊥BM.在直角△BAN中,AN=AB•cos∠BAC=,从而NC=AC﹣AN=.由MN∥PA得==.6.(1)有已知:c=2,∴a=,b2=4,故椭圆方程为;(2)当AB斜率不存在时:,当AB斜率存在时:设其方程为:,由得,由已知:△=16﹣8(2k2+1)=8,即:, |AB|=,O到直线AB的距离:d=,∴S△AOB==,∴2k2+1∈[1,2)∪(2,+∞),∴,∴此时,综上所求:当AB斜率不存在或斜率存在时:△AOB面积取最大值为.。
吉林省重点高中高二数学寒假作业6 Word版 含答案
![吉林省重点高中高二数学寒假作业6 Word版 含答案](https://img.taocdn.com/s3/m/38198c11763231126edb11f5.png)
高二数学寒假作业本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共22小题,共150分,考试时间120分钟,考生作答时将答案答在答题卡上,在本试卷上答题无效。
第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求。
)1.若01a <<,则不等式1()()0x a x a-->的解集为 ( ) (A)1a x a << (B)1x x a a ><或 (C)1x a a << (D)1x x a a<>或 2.已知a 是实数,则函数()1sin f x a ax =+的图象可能是3. 双曲线221102x y -=的焦距为 A .23 B .24 C .32D .344.双曲线191622=-y x 右支点上一点P 到右焦点的距离为2,则P 到左准线的距离为( ) (A ).6 (B ).8 (C ).10 (D ).125.设等比数列{}n a 的公比2q =,前n 项和为n S ,则24a S 的值为( ) (A )154 (B )152 (C )74 (D )726.设l 为直线,,αβ是两个不同的平面,下列命题中正确的是 ( )A.若//l α,//l β,则//αβB.若l α⊥,l β⊥,则//αβC.若//αβ,//l α,则//l βD.若αβ⊥,//l α,则l β⊥7.一个几何体的三视图如图所示,则该几何体可以是 ( )A.棱柱B.棱台C.圆柱D.圆台8.已知双曲线C 1:22221(00)y x a b a b-=>>,的离心率为2,若抛物线C 2:22(0)y px p =>的焦点到双曲线C 1的渐近线的距离是2,则抛物线C 2的方程是A .28y x =B .23y x =C .2y x =D .216y x = 9.下列命题:①若B C D A 、、、是空间任意四点,则有0AB BC CD DA +++= ; ②-+a b a b = 是a b 、共线的充要条件; ③若a b 、共线,则a 与b 所在直线平行;④对空间任意一点P 与不共线的三点B C A 、、,若OP xOA yOB zOC =++(,,)x y z R ∈,则B C P A 、、、四点共面.其中不正确命题的个数是 ( )(A)1 (B)2 (C)3 (D)410.已知(2,0)M -,(2,0)N ,||3|PM PN|-=,则动点P 的轨迹是( )21(A )圆 (B )椭圆 (C )抛物线 (D )双曲线11.用斜二测画法画出长为6,宽为4的矩形水平放置的直观图,则该直观图面积为( )A.12B.24C.12.若正方体1111ABCD A BC D -的外接球O 的体积为,则球心O 到正方体的一个面ABCD 的距离为 ( )A.1B.2C.3D.4第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4个小题,每小题5分,共20分) 13.椭圆22221x y a b+=(0a b >>)的离心率12e =,右焦点(,0)F c ,方程20ax bx c +-= 的两个根分别为1x ,2x ,则点12(,)P x x 与圆222x y +=的位置关系是_________________.14.过点P(3,4)的动直线与两坐标轴的交点分别为A ,B ,过A ,B 分别作两轴的垂线交于点M ,则点M 的轨迹方程是 。
2018年(全国卷2)高三理科数学寒假作业6Word版含答案
![2018年(全国卷2)高三理科数学寒假作业6Word版含答案](https://img.taocdn.com/s3/m/99f5eaf5f8c75fbfc67db200.png)
2018年(全国卷2)高三理科数学寒假作业6一.选择题1.已知集合{(,)|()}M x y y f x ==,若对于任意11(,)x y M ∈,存在22(,)x y M ∈,得12120x x y y +=成立,则称集合M 是“理想集合”.给出下列5个集合: ①1{(,)|}M x y y x==;②2{(,)|22}M x y y x x ==-+; ③{(,)|2}x M x y y e ==-;④{(,)|lg }M x y y x ==; ⑤{(,)|sin(23)}M x y y x ==+. 其中所有“理想集合”的序号是( )A .①②B .③⑤ C.②③⑤ D .③④⑤2.已知函数()f x =,函数定义域为( )A .[]1,10B .[)(]1,22,10C .(]1,10D .()(]1,22,10 3.已知3sin 22cos 2παπαα<<=,,则cos()απ-的值为( )A .13 B .13- C. 3 D .3- 4.已知数列{}n a 为等差数列,n S 为前n 项和,公差为d ,若201717100201717S S -=,则d 的值为( ) A .120 B .110C .10D .20 5.设3log 7a =, 1.22b =, 3.10.8c =,则( ) A .b a c << B .a c b << C .c b a << D .c a b <<6.运行下面的程序,若2x =,则输出的y 等于( )7题图A .9B .7C .13D .117.如图所示,直四棱柱1111D C B A ABCD -内接于半径为3的半球O ,四边形ABCD 为正方形,则该四棱柱的体积最大时,AB 的长为( ) A .1 B .2 C .3 D .28.在正三棱柱111ABC A B C -中,已知12,AB CC =则异面直线1AB 和1BC 所成角的正弦值为( )A .1BC .12D 9.已知直线l :x+ay-1=0(a ∈R)是圆C :224210x y x y +--+=的对称轴.过点A (-4,a)作圆C 的一条切线,切点为B ,则|AB|=( )A.2B.10.以(,1)a 为圆心,且与两条直线240x y -+=与260x y --=同时相切的圆的标准方程为( ) A .22(1)(1)5x y -+-= B .22(1)(1)5x y +++= C .22(1)5x y -+= D .22(1)5x y +-= 11.若实数,x y 满足24,012222--=+--+x y y x y x 则的取值范围为( ) A.]34,0[ B.),34[+∞ C.]34,(--∞ D.)0,34[-12.若直线ax ﹣by+2=0(a >0,b >0)被圆x 2+y 2+2x ﹣4y+1=0截得的弦长为4,则的最小值为( )A .B .C .+D .+2二.填空题13.若函数()ln f x x ax =+存在与直线20x y -=平行的切线,则实数a 的取值范围是_____________. 14.已知等差数列{}n a 的公差()()()37550,1,cos 2cos 22sin2a a d a d a d +∈--+=,且5sin 0a ≠ ,当且仅当10n =时,数列{}n a 的前n 项和n S 取得最小值,则首项1a 的取值范围是___________.15.在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是正方形,2AB =,PB 与平面PAC 所,若这个四棱锥各顶点都在一个球面上,则这个球的表面积为___________.16.如果对任何实数k ,直线(3)(12)150k x k y k ++-++=都过一个定点A ,那么点A 的坐标是________.三.解答题17.已知等差数列{}n a 中,2614a a +=,n S 为其前n 项和,525S =. (1)求{}n a 的通项公式; (2)设12n n n b a a += ,求数列{}n b 的前n 项和n T .18.如图,平面ABCD ⊥平面ABE ,其中ABCD 为矩形,ABE ∆为直角三角形,90AEB ∠= ,222AB AD AE ===.(1)求证:平面ACE ⊥平面BCE ; (2)求直线CD 与平面ACE 所成角的正弦值.19.如图所示,在四棱锥P ABCD -中,底面ABCD 为 菱形,E 为AC 与BD 的交点,PA ⊥平面ABCD ,M 为PA 中点,N 为BC 中点. (1)证明:直线//MN 平面PCD ;(2)若点Q 为PC中点,120,1BAD PA AB ∠=== ,求三棱锥A QCD -的体积.20.已知点()()1,0,1,0,A B -直线AM,BM 相交于点M ,且2MA MB k k -=- (1)求点M 的轨迹C 的方程; (2)过定点(0,34-)作直线PQ 与曲线C 交于P,Q 两点,求PQ 的最小值21.定圆:M (2216x y +=,动圆N 过点)F且与圆M 相切,记圆心N 的轨迹为E .(1)求轨迹E 的方程;(2)设点A ,B ,C 在E 上运动,A 与B 关于原点对称,且C C A =B ,当C ∆AB 的面积最小时,求直线AB 的方程.22.函数()ln f x x x =.(I )求函数()f x 的单调递减区间;(II )若2()6f x x ax ≥-+-在(0,)+∞上恒成立,求实数a 的取值范围; (III )过点2(,0)A e --作函数()y f x =图象的切线,求切线方程.2018年(全国卷2)高三理科数学寒假作业6参考答案1.B 【解析】试题分析:由题意得,设1122(,),(,)A x y B x y ,又12120x x y y +=可知OA OB ⊥ ,对于①项,1y x=-是以,x y 轴为渐近线的双曲线,渐近线的夹角为90︒,所以当点A ,B 在同一支上时,90AOB ∠<︒,当点A ,B 不在同一支上时,90AOB ∠>︒,不存在OA OB ⊥,故①不正确;②项由图象可知,当(0,2)A M ∈,不存在B M ∈,使得OA OB ⊥,故②项不正确;③项由图象可得,直角始终存在,故正确;④项,由图象可知,点(1,0)在曲线上不存在另外一个点,使得OA OB ⊥成立,故错误;⑤项,通过对图象的分析发现,对于任意的点A 都能找到对应的点B ,使得OA OB ⊥成立,故正确;综合③⑤正确,所以选B. 2.D 【解析】试题分析:要使原函数有意义, 则210901011x x x x ⎧+-≥⎪->⎨⎪-≠⎩,解得:110x <≤ 且2x ≠所以函数()()lg 1f x x =-的定义域为()(]1,22,10 ,故选D.3.C 【解析】试题分析:由题意得,因为παπ<<2,ααcos 22sin 3=与1cos sin 22=+αα,联立方程得,322cos ,31sin -==αα,322cos )cos(=-=-απα,故选C. 4.B 【解析】试题分析:若{}n a 为等差数列,()()111212nn n na S d a n nn -+==+-⨯,则n S n ⎧⎫⎨⎬⎩⎭为等差数列公差为2d ,2017171100,2000100,201717210S S d d ∴-=⨯==,故选B. 5.D 【解析】试题分析:3331log 3log 72log 9a =<=<=, 1.221b =>, 3.10.81c =<,所以c a b <<. 6.A 【解析】试题分析:由题意得,2x =,第一步运算得32513y =+=,第二步运算得1349y =-=,故选A . 7.D 【解析】试题分析:设x AB =,则21213,22x BB x OB -==,所以直四棱柱的体积为22213x x V -=,令t x =-2213,则2226t x -=,则t t t t V 62)26(32+-=-=,故)1)(1(6662/+--=+-=t t t V ,所以当1=t 时,即2=x 时,体积V 最大.故应选D.8.A 【解析】试题分析:如图,作1//BD AB 交11A B 的延长线于D ,连接1DC ,则1DBC ∠就是异面直线1AB 和1BC 所成的角(或其补角),由已知BD ==1BC =1C D =由22211BD BC C D+=知190DBC ∠=︒,所以异面直线1AB 和1BC 所成的角为直角,正弦值为1.故选A .B 1DC 1A 1CBA9.C 【解析】试题分析:直线l 过圆心)1,2(,所以1a =-,所以切线长6AB ==,选C.10.A 【解析】试题分析:因为两条直线240x y -+=与260x y --=的距离为52546=--=d ,所以所求圆的半径为5=r ,所以圆心(,1)a 到直线240x y -+=的距离为53254125+=+-=a a 即1=a 或4-=a ,又因为圆心(,1)a 到直线260x y --=的距离也为5=r ,所以1=a ,所以所求的标准方程为22(1)(1)5x y -+-=,故应选A .11.B 【解析】 试题分析:令4=2y t x --,即240tx y t --+=,表示一条直线;又方程222210x y x y +--+=可化为()()22111x y -+-=,表示圆心为1,1(),半径1r =的圆;由题意直线与圆有公共点,∴圆心1,1()到直线240tx y t --+=的距离1d r =≤= ,∴43t ≥,即42y x -- 的取值范围为4[,)3+∞. 故选A. 12.C 【解析】试题分析:圆即(x+1)2+(y ﹣2)2=4,表示以M (﹣1,2)为圆心,以2为半径的圆,由题意可得 圆心在直线ax ﹣by+2=0上,得到a+2b=2,故=+++1,利用基本不等式求得式子的最小值.解:圆x 2+y 2+2x ﹣4y+1=0 即 (x+1)2+(y ﹣2)2=4,表示以M (﹣1,2)为圆心,以2为半径的圆, 由题意可得 圆心在直线ax ﹣by+2=0(a >0,b >0)上,故﹣1a ﹣2b+2=0, 即 a+2b=2,∴=+=+++1≥+2=,当且仅当时,等号成立,故选 C .13.11,22,2e e⎛⎫⎛⎫-∞-- ⎪ ⎪⎝⎭⎝⎭【解析】试题分析:()12f x a x '=+=有正数解,所以122a x=-<,若切点在20x y -=上, 则12ln ,12ln 1,,2y x x ax ax x x x e a e==++=∴===- ,所以实数a 的取值范围是11,22,2e e⎛⎫⎛⎫-∞-- ⎪ ⎪⎝⎭⎝⎭14.59,24ππ⎛⎫-- ⎪⎝⎭【解析】试题分析:由()()3755cos 2cos 22sin2a a a d a d +--+=得552sin sin 22sin a d a =,因为5sin 0a ≠,所以sin 20d =,又(0,1)d ∈,所以22πd =,即4πd =.因为当且仅当10n =时,数列{}n a 的前n 项和n S 取得最小值,所以101100a a <⎧⎨>⎩,所以119041004πa πa ⎧+⨯<⎪⎪⎨⎪+⨯>⎪⎩,解得15924ππa -<<-.15.π24 【解析】试题分析:由题意得,设PA a =,连接,AC BC 交于点O ,因为PA ⊥平面ABCD ,底面ABCD 是正方形,所以BD ⊥平面PAC ,所以BPO ∠即为PB 与平面PAC 所成的角,在Rt BPO ∆∠中,BO =,PB =,所以0s i nBO BPO PB ∠===,解得4a =,所以此时PC=,即外接圆的直径2R R =⇒=,所以外接球的表面积为224424S R πππ==⨯=.16.(1,2)- 【解析】试题分析:(3)(12)150(x 2y 5)(3x y 1)0k x k y k k ++-++=⇒-++++=,所以两直线x 2y 50,3x y 10-+=++=交点为A (1,2)-17.(1)21n a n =-;(2)122+=n nT n . 【解析】试题分析:(1)由已知建立方程组11126141510252a d a a d d +==⎧⎧⇒⎨⎨+==⎩⎩;(2)由(1),121121+--=n n b n ,裂项求和法求n T .试题解析:(1)∵{}n a 是等差数列,且2614a a +=,525S =,∴11126141510252a d a a d d +==⎧⎧⇒⎨⎨+==⎩⎩. ∴1(1)1(1)221n a a n d n n =+-=+-=-. 故{}n a 的通项公式为21n a n =-. (2)由(1)知12211(21)(21)2121n n n b a a n n n n +===--+-+ ,∴1211111(1)()()3352121n n T b b b n n =+++=-+-++--+ 1212121nn n =-=++. 18.(1)证明见解析;(2)4. 试题解析:(1)∵平面ABCD ⊥平面ABE ,平面ABCD 平面ABE AB =BC AB ⊥,BC ⊂平面ABCD∴BC ⊥平面ABE , 又AE ⊂平面ABE , ∴BC AE ⊥又AE BE ⊥,BC BE B = ∴AE ⊥平面BCE 而AE ⊂平面ACE ,∴平面ACE ⊥平面BCE .(2)解法一: ∵//AB CD∴CD 与平面ACE 所成角的大小等于AB 与平面ACE 所成角的大小 过B 作BF CE ⊥于F ,连接AF∵平面ACE ⊥平面BCE ,平面ACE 平面BCE CE =,BF ⊂平面BCE ∴BF ⊥平面ACE∴BAF ∠即为AB 与平面ACE 所成的角由1,BC BE =2CE =,2BF =∴sin 4BF BAF AB ∠==∴直线CD 与平面ACE . 19.(1)证明线面平行,一般利用线面平行判定定理,即从线线平行出发给予证明,而线线平行的寻找与论证,往往利用平几知识,如本题利用三角形中位线性质及平行四边形性质,取PD 中点R ,由三角形中位线性质得//MR AD ,12MR AD =,因此//,MR NC MR NC =,故四边形MNCR 为平行四边形,即得//MN RC (2)求三棱锥体积,关键确定高,可利用等体积法转化易求高的三棱锥:由于PA ⊥平面ABCD ,所以111328A QCD Q ACD ACD V V S PA --∆==⨯⨯=【解析】试题分析:(1)(2)试题解析:解:(1)取PD 中点R ,连结,MR RC ,1//,//,2MR AD NC AD MR NC AD ==, //,MR NC MR NC ∴=,∴四边形MNCR 为平行四边形,//MN RC ∴,又RC ⊂ 平面PCD ,MN ⊄平面PCD , //MN ∴平面PCD .(2)由已知条件得1,AC AD CD ===所以4ACD S ∆=.所以111328A QCD Q ACD ACD V V S PA --∆==⨯⨯= 20.(1) 2212y x +=()1x ≠±; (2)1【解析】试题解析:(1)解:设(),M x y , 1分 则1MA y k x =+,()11Mb yk x x =≠±-, 3分 ∴211yyx x -=-+-, 4分∴21x y =+()1x ≠± 6分 (条件1分)(2) 显然直线PQ 的斜率存在,设直线PQ 的方程是34y kx =-,()()1122,,,P x y Q x y ,则直线PQ 的方程为:1212()y y k x x -=-, 8分 联立2134x y y kx ⎧=+⎪⎨=-⎪⎩,消去y 得2104x kx --= 9分∵210k ∆=+>,∴k R ∈, 10分12121,4x x k x x +==-, 11分 ∴PQ ==21k =+ 12分 1≥,当且仅当0k =时取等号,此时1313,,,2424P Q ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭, 13分 所以PQ 的最小值是1 14分R21.(1)轨迹E 的方程为2214x y +=;(2)直线AB 的方程为y x =或y x =-. 试题解析:(1)因为点)F 在圆:M (2216x y +=内,所以圆N 内切于圆M . 因为F 4F NM +N =>M 所以点N 的轨迹E是以()M,)F为焦点的椭圆. 且24a =,c =1b =. 所以轨迹E 的方程为2214x y +=. (2)当AB 为长轴(或短轴)时,依题意知,点C 就是椭圆的上下顶点(或左右顶点), 此时C 1C 22S ∆AB =⨯O ⨯AB =. 当直线AB 的斜率存在且不为0时,设其斜率为k ,直线AB 的方程为y kx =, 联立方程2214x y y kx ⎧+=⎪⎨⎪=⎩,得22414x k A =+,222414k y k A =+, 所以()222224114k x y k A A +OA =+=+. 由C C A =B 知,C ∆AB 为等腰三角形,O 为AB 的中点,C O ⊥AB ,所以直线C O 的方程为1y x k =-,由22141x y y x k ⎧+=⎪⎪⎨⎪=-⎪⎩, 解得22C244k x k =+,2C 244y k =+,()22241C 4k k +O =+.2C C 412C k S S ∆AB ∆OA +==OA ⨯O ==.()()()2221445122k k k ++++≤=.所以C 85S ∆AB ≥, 当且仅当22144k k +=+,即1k =±时等号成立,此时C ∆AB 面积的最小值是85. 因为825>,所以C ∆AB 面积的最小值为85,此时直线AB 的方程为y x =或y x =-. 22.(I )1(0,)e;(II )(,5ln 2]-∞+;(III )210x y e ++=. 试题解析:(Ⅰ)'()ln 1f x x =+ '()0f x ∴<得ln 1x <-10x e∴<<∴函数()f x 的单调递减区间是1(0,)e ; (Ⅱ) 2()6f x x ax ≥-+-即6ln a x x x ≤++ 设6()ln g x x x x =++则2226(3)(2)'()x x x x g x x x +-+-== 当(0,2)x ∈时'()0g x <,()g x 单调递减;当(2,)x ∈+∞时'()0g x >,()g x 单调递增; ∴()g x 最小值(2)5ln 2g =+∴实数a 的取值范围是(,5ln 2]-∞+;(Ⅲ)设切点00(,)T x y 则0'()AT k f x =∴00002ln ln 11x x x x e=++即200ln 10e x x ++= 设2()ln 1h x e x x =++,当0x >时'()0h x >∴()h x 是单调递增函数∴()0h x =最多只有一个根,又2222111()ln 10h e e e e =⨯++=∴021x e = 由0'()1f x =-得切线方程是210x y e++=.。
2018学年高二数学上学期寒假作业5理(1)
![2018学年高二数学上学期寒假作业5理(1)](https://img.taocdn.com/s3/m/534baa28ee06eff9aef807a9.png)
云南省峨山彝族自治县2017-2018学年高二数学上学期寒假作业5 理1.已知全集U={-2,-1,0,1,2},A={-2,-1},B={1,2},则U C (A ∪B)=( )A.∅B.{0}C.{-1,1}D.{-2,-1,1,2}2.命题∀x ∈R,cosx ≤1的真假判断及其否定是( )A.真,∃x 0∈R,cosx 0>1B.真,∀x ∈R,cosx>1C.假,∃x 0∈R,cosx 0>1D.假,∀x ∈R,cosx>13.一等腰三角形的周长是底边长的5倍,那么顶角的余弦值为( )A.518B.34C.2D.784.在△ABC 中,AB =(cos18°,cos72°),BC =(2cos63°,2cos27°),则△ABC 面积为( )A.4B.2C.2D.5.如果函数y=3cos(2x+φ)的图象关于点4,03π⎛⎫⎪⎝⎭中心对称,那么|φ|的最小值为( ) A.6π B.4π C.3π D.2π 6.在△ABC 中,P 是BC 边中点,角A,B,C 的对边分别是a,b,c,若c AC +a PA +b PB =0,则△ABC 的形状为 ( )A.等边三角形B.钝角三角形C.直角三角形D.等腰三角形但不是等边三角形7.对于集合{a 1,a 2,…,a n }和常数a 0,定义:ω=错误!未找到引用源。
为集合{a 1,a 2,…,a n }相对a 0的“正弦方差”,则集合57,,266πππ⎧⎫⎨⎬⎩⎭相对a 0的“正弦方差”为( ) A.12 B.13 C.14 D.与a 0有关的一个值8.函数y=sin ωx(ω>0)的部分图象如图所示,点A,B 是最高点,点C 是最低点,若△ABC 是直角三角形,则ω的值为( ) A.2π B.4π C.3π D.π9.已知函数2()(1cos2)sin f x x x =+,x R ∈,则()f x 是( )A. 最小正周期为π的奇函数B. 最小正周期为π/2的奇函数C. 最小正周期为π的偶函数D. 最小正周期为π/2的偶函数10.△ABC 的三内角A,B,C 所对的边分别为a,b,c,设向量m=(3c-b,a-b),n=(3a+3b,c), m ∥n,则cosA= .11.已知α∈R,sin α+2cos α则tan2α= .12已知函数()sin 3f x A x π⎛⎫=+ ⎪⎝⎭,x R ∈,且5122f π⎛⎫= ⎪⎝⎭.(1)求A 的值; (2)若()()ff θθ--,0,2πθ⎛⎫∈ ⎪⎝⎭,求6f πθ⎛⎫- ⎪⎝⎭.13.(14分)已知α∈,2ππ⎛⎫ ⎪⎝⎭,且sin 2α+cos 2α. (1)求cos α的值. (2)若sin(α+β)=-35,β∈0,2π⎛⎫ ⎪⎝⎭,求sin β的值.14.已知向量m=,cos 44x x ⎫⎪⎭,n=sin ,cos 44x x ⎛⎫ ⎪⎝⎭,函数f(x)=m ·n. (1)求函数f(x)的最小正周期及单调递减区间.(2)在锐角△ABC 中,A,B,C 的对边分别是a,b,c,且满足acosC+12c=b,求f(2B)的取值范围.。
小度写范文2018高二数学寒假作业检测题及答案模板
![小度写范文2018高二数学寒假作业检测题及答案模板](https://img.taocdn.com/s3/m/d13612ab580216fc710afd4c.png)
[2018高二数学寒假作业检测题及答案]2018年高二数学高二网权威发布2018高二数学寒假作业检测题及答案,更多2018高二数学寒假作业检测题及答案相关信息请访问高二网。
【导语】2018高二数学寒假作业答案!不知不觉又一个寒假快要来临了,那寒假回去除了开心过年,还要做什么呢?那就是大家的寒假作业啦!那么,今天大范文网就给大家整理了2018高二数学寒假作业答案,供家长参考。
1.在5的二项展开式中,x的系数为() A.10B.-10C.40D.-40 解析:选DTr+1=C(2x2)5-rr=(-1)r·25-r·C·x10-3r,令10-3r=1,得r=3.所以x的系数为(-1)3·25-3·C=-40. 2.在(1+)2-(1+)4的展开式中,x的系数等于() A.3B.-3C.4D.-4 解析:选B因为(1+)2的展开式中x的系数为1,(1+)4的展开式中x的系数为C=4,所以在(1+)2-(1+)4的展开式中,x的系数等于-3. 3.(2013·全国高考)(1+x)8(1+y)4的展开式中x2y2的系数是() A.56B.84C.112D.168 解析:选D(1+x)8展开式中x2的系数是C,(1+y)4的展开式中y2的系数是C,根据多项式乘法法则可得(1+x)8(1+y)4展开式中x2y2的系数为CC=28×6=168. 4.5的展开式中各项系数的和为2,则该展开式中常数项为() A.-40B.-20C.20D.40 解析:选D由题意,令x=1得展开式各项系数的和为(1+a)·(2-1)5=2,a=1. 二项式5的通项公式为Tr+1=C(-1)r·25-r·x5-2r,5展开式中的常数项为x·C(-1)322·x-1+·C·(-1)2·23·x=-40+80=40. 5.在(1-x)n=a0+a1x+a2x2+a3x3+…+anxn中,若2a2+an-3=0,则自然数n的值是() A.7B.8C.9D.10 解析:选B易知a2=C,an-3=(-1)n-3·C=(-1)n-3C,又2a2+an-3=0,所以2C+(-1)n-3C=0,将各选项逐一代入检验可知n=8满足上式. 6.设aZ,且0≤a A.0B.1C.11D.12 解析:选D512012+a=(13×4-1)2012+a,被13整除余1+a,结合选项可得a=12时,512012+a能被13整除.7.(2015·杭州模拟)二项式5的展开式中第四项的系数为________. 解析:由已知可得第四项的系数为C(-2)3=-80,注意第四项即r=3. 答案:-808.(2013·四川高考)二项式(x+y)5的展开式中,含x2y3的项的系数是________(用数字作答). 解析:由二项式定理得(x+y)5的展开式中x2y3项为Cx5-3y3=10x2y3,即x2y3的系数为10. 答案:10 .(2013·浙江高考)设二项式5的展开式中常数项为A,则A=________.解析:因为5的通项Tr+1=C()5-r·r=(-1)rCxx-=(-1)rCx.令15-5r=0,得r=3,所以常数项为(-1)3Cx0=-10.即A=-10. 答案:-1010.已知(1-2x)7=a0+a1x+a2x2+…+a7x7,求:(1)a1+a2+…+a7;(2)a1+a3+a5+a7; (3)a0+a2+a4+a6; (4)|a0|+|a1|+|a2|+…+|a7|.解:令x=1,则a0+a1+a2+a3+a4+a5+a6+a7=-1. 令x=-1,则a0-a1+a2-a3+a4-a5+a6-a7=37. (1)∵a0=C=1,a1+a2+a3+…+a7=-2.(2)(-)÷2,得a1+a3+a5+a7==-1094.(3)(+)÷2,得a0+a2+a4+a6==1093. (4)(1-2x)7展开式中a0、a2、a4、a6大于零,而a1、a3、a5、a7小于零,|a0|+|a1|+|a2|+…+|a7|=(a0+a2+a4+a6)-(a1+a3+a5+a7) =1093-(-1094)=2187.11.若某一等差数列的首项为C-A,公差为m的展开式中的常数项,其中m是7777-15除以19的余数,则此数列前多少项的和最大?并求出这个最大值. 解:设该等差数列为{an},公差为d,前n项和为Sn.由已知得又nN*,n=2,C-A=C-A=C-A=-5×4=100,a1=100. 7777-15=(76+1)77-15=7677+C·7676+…+C·76+1-15=76(7676+C·7675+…+C)-14 =76M-14(MN*),7777-15除以19的余数是5,即m=5.m的展开式的通项是Tr+1=C·5-rr=(-1)rC5-2rxr-5(r=0,1,2,3,4,5),令r-5=0,得r=3,代入上式,得T4=-4,即d=-4,从而等差数列的通项公式是an=100+(n-1)×(-4)=104-4n. 设其前k项之和最大,则解得k=25或k=26,故此数列的前25项之和与前26项之和相等且最大,S25=S26=×25=×25=1300.12.从函数角度看,组合数C可看成是以r为自变量的函数f(r),其定义域是{r|rN,r≤n}.(1)证明:f(r)=f(r-1); (2)利用(1)的结论,证明:当n为偶数时,(a+b)n的展开式中最中间一项的二项式系数最大. 解:(1)证明:f(r)=C=,f(r-1)=C=,f(r-1)=·=.则f(r)=f(r-1)成立. (2)设n=2k,f(r)=f(r-1),f(r-1)>0,=. 令f(r)≥f(r-1),则≥1,则r≤k+(等号不成立). 当r=1,2,…,k时,f(r)>f(r-1)成立. 反之,当r=k+1,k+2,…,2k时,f(r)。
2017-2018学年高二上学期数学(理)人教版 寒假作业(含答案和解析)
![2017-2018学年高二上学期数学(理)人教版 寒假作业(含答案和解析)](https://img.taocdn.com/s3/m/76b687fb524de518964b7d83.png)
训练01 求函数的平均变化率高考频度:★☆☆☆☆难易程度:★☆☆☆☆.【名师点睛】1.对于函数()y f x=,我们把式子2121()()f x f xx x--称为函数()y f x=从1x到2x的平均变化率.习惯上用x∆表示21x x-,即21x x x∆=-.函数()y f x=的变化量是21()()y f x f x∆=-,于是,平均变化率可以表示为yx∆∆.注意:(1)x∆是一个整体符号,而不是∆与x相乘.(2)1x,2x是定义域内不同的两点,因此0x∆≠,但x∆可正也可负;21()()y f x f x∆=-是21x x x∆=-相应的改变量,y∆的值可正可负,也可为零.因此,平均变化率可正可负,也可为零.2.求函数()y f x=从1x到2x的平均变化率的三个步骤:(1)求出或者设出自变量的改变量:21x x x∆=-;(2)根据自变量的改变量求出函数值的改变量:21()()y f x f x∆=-;(3)求出函数值的改变量与自变量的改变量的比值,即2121()()f x f xyx x x-∆=∆-.1.如图,函数f(x)在A,B两点间的平均变化率是-A.1 B.1-C.2 D.22.求函数f(x)=x2+2x+3从1到1+Δx的平均变化率._______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________训练02 平均变化率的应用高考频度:★☆☆☆☆难易程度:★☆☆☆☆,其中m,的单位为s.(1(2)求第1s内高度的平均变化率.【名师点睛】平均变化率问题在生活中随处可见,常见的有求某段时间内的平均速度、加速度及膨胀率、经济效益等.找准自变量、因变量和相应增量是解题的关键.1.水经过虹吸管从容器甲流向容器乙中,t s后容器甲中水的体积(单位:cm3)V(t)=5×2-0.1t,则第一个10 s内V的平均变化率为A.0.25 cm3/s B.0.5 cm3/sC.-0.5 cm3/s D.-0.25 cm3/s2.如图,已知一个倒置的正四棱锥形容器的底面边长为10 cm,高为10 cm,现用一根水管以9 ml/s的速度向容器里注水.(1)将容器中水的高度h表示为时间t的函数;(2)求第二个1 s内水面高度的平均变化率.______________________________________________________________________________________________________________________________________________________________ _______________________________________________________________________________训练03 求函数在定点处的导数高考频度:★☆☆☆☆ 难易程度:★★☆☆☆求下列函数的导数:(1)求函数y =3在x =2处的导数; (2)求函数1y x=在x =1处的导数; (3)求函数y =在x =x 0(x 0>0)处的导数.【参考答案】(1)0;(2)1-;(3.(3)记()y f x =,由y =,得ΔΔy x =()()00ΔΔf x x f x x +-==,∴函数y=x =x 0处的导数0'x x y ==Δlim x →.【名师点睛】1.一般地,函数()y f x =在0x x =处的瞬时变化率是0000()()lim limx x f x x f x yx x∆→∆→+∆-∆=∆∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =',即00()limx yf x x ∆→∆'==∆000()()limx f x x f x x∆→+∆-∆. 2.求函数()f x 在某点处的导数、求瞬时变化率的步骤简称为一差、二比、三极限. 3.利用定义求函数()y f x =在0x x =处的导数的两个注意点: (1)0()f x '与x ∆的具体取值无关,x ∆不可以是0.1.设函数y =f (x )在x =x 0处可导,且()()0003lim 1x f x x f x x∆→-∆-=∆,则f′(x 0)等于A .1B .-1C .13-D .132.若3()f x x =,0()6f x '=,则0x 的值是___________.______________________________________________________________________________________________________________________________________________________________ _______________________________________________________________________________训练04 瞬时速度的应用高考频度:★☆☆☆☆ 难易程度:★★☆☆☆一物体做初速度为0的自由落体运动,运动方程为s 2(g =10 m/s 2,位移单位:m,时间单位:s),求物体在t =2 s时的瞬时速度. 【参考答案】20 m/s.【名师点睛】做变速运动的物体在不同时刻的速度是不同的,我们把物体在某一时刻的速度称为瞬时速度. 设物体的运动规律为()s s t =,则该物体在时刻t 的瞬时速度v 就是物体在t 到t t +∆这段时间内,当t ∆无限趋近于0时,st∆∆无限趋近的常数. 设非匀速直线运动中物体的位移随时间变化的函数为s =s (t ),则求物体在t =t 0时刻的瞬时速度的步骤如下: (1)写出时间改变量Δt ,位移改变量Δs =s (t 0+Δt )-s (t 0); (2)求平均速度:ΔΔs v t=;(3)求瞬时速度v :当Δt →0→v (常数).注意:(1)t ∆无限趋近于0是指时间间隔t ∆越来越短,能超过任意小的时间间隔,但始终不能为0. (2),t s ∆∆在变化中都趋近于0,其比值st∆∆趋近于一个确定的常数,这时,此常数才称为0t 时刻的瞬时速度.(3)瞬时速度与平均速度的区别与联系:平均速度与路程和时间都有关系,它反映的是物体在一段时间内的平均运动状态;瞬时速度是物体在某一时刻的速度,是在这一时刻附近时间差t ∆趋近于0时平均速度的极限值.1.物体运动时位移s 与时间t 的函数关系式是s =-4t 2+16t ,若此物体在某一时刻的速度为零,则相应时刻为 .2.一质点M 按运动方程s (t )=at 2+1做直线运动(位移单位:m ,时间单位:s).若质点M 在t =2 s 时的瞬时速度为8 m/s ,求常数a 的值._______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________训练05 导数的实际意义高考频度:★☆☆☆☆ 难易程度:★☆☆☆☆某河流在x min 内流过的水量为y m 3,且()y f x ==(1)当x 从1变到4时,y 关于x 的平均变化率是多少? (2)求()16f ',并解释它的实际意义. 【参考答案】(1)13m 3/min ;(2)见试题解析.实际意义为当时间为16 min 时,水流速度为18m 3/min. 【名师点睛】函数在某点处的导数反映了函数在该点处的瞬时变化率,它揭示了事物在某时刻的变化状况,导数可以描述任何事物的瞬时变化率.1.将原油精炼为汽油、柴油、塑胶等产品,需要对原油进行冷却和加热.如果第x h 时,原油的温度(单位:℃)为()()271508y f x x x x ==-+≤≤,求函数()y f x =在x =2和x =6处的导数,并解释它们的实际意义.2.已知某工人上班后开始连续工作,其生产的产品重量y (单位:g)是工作时间x (单位:h)的函数,且该函数表达式为y =f (x )=220x +. (1)求当x 从1 h 变到4 h 时,y 关于时间x 的平均变化率,并解释它的实际意义; (2)求()()1,4f f '',并解释它们的实际意义._______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________训练06 导数的几何意义高考频度:★★★☆☆ 难易程度:★★☆☆☆已知点P 在曲线21y x =+上,若曲线21y x =+在点P 处的切线与曲线221y x =--相切,求点P 的坐标.【参考答案】73)或(,73).令Δ=420x -8(2-20x )=0,解得x 0此时y 0=73, 所以点P 的坐标为73)或(,73). 【名师点睛】1.导数的几何意义:函数()y f x =在0x x =处的导数,就是曲线()y f x =在0x x =处的切线的斜率,即0000()()()limx f x x f x k f x x∆→+∆-'==∆.2.求曲线的切线方程的步骤:(1)如果所给点00()P x y ,就是切点,一般叙述为“在点P 处的切线”,此时只要求函数()f x 在点0x x =处的导数0()f x ',即得切线的斜率0()k f x =',再根据点斜式写出切线方程. (2)已知切线过点(),a b 求切线方程(点(),a b 可以在曲线上,也可以不在曲线上). ①设切点坐标为00(,())x f x ; ②利用斜率000()()f x bk f x x a-'==-求出切点坐标及斜率;③写切线方程:000()()()y f x f x x x '-=-. 注意:曲线在点P 处的切线垂直于x 轴时的情况.1.求过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线.2.已知函数y=ax+1x图象上各点处的切线斜率均小于1,求实数a的取值范围._______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________训练07 导数几何意义的实际应用高考频度:★☆☆☆☆难易程度:★★☆☆☆“菊花”烟花是最壮观的烟花之一,制造时通常期望它在达到最高点时爆裂.如果烟花距地面的高度h (单位:m)与时间t (单位:s)之间的关系式为h(t)=-4.9t2+14.7t,求烟花在t=2 s 时的瞬时速度,并解释烟花升空后的运动状况.【参考答案】见试题解析.画出二次函数h (t )=-4.9t 2+14.7t (t ≥0,h ≥0)的函数图象,如图,结合导数的几何意义,我们可以看出:在t =1.5 s 附近曲线比较平坦,也就是说此时烟花的瞬时速度几乎为0,达到最高点并爆裂;在0~1.5 s 之间,曲线在任何点处的切线斜率都大于0且切线的倾斜程度越来越小,也就是说烟花在达到最高点前,以越来越小的速度升空;在1.5~3 s,曲线在任何点处的切线斜率都小于0且切线的倾斜程度越来越大,即烟花达到最高点后,以越来越大的速度下降,直到落地.【名师点睛】1.若函数()y f x =在0x x =处的导数存在且0()0f x '>(即切线的斜率大于零),则函数()y f x =在0x x =附近的图象是上升的;若0()0f x '<(即切线的斜率小于零),则函数()y f x =在0x x =附近的图象是下降的. 导数绝对值的大小反映了曲线上升和下降的快慢.2.导数的几何意义是曲线的切线的斜率.反之,在曲线上取确定的点,作曲线的切线,则可以根据切线斜率的符号及绝对值的大小来确定曲线的升降情况及升降的快慢程度.3.函数图象在每一点处的切线斜率的变化情况反映函数图象在相应点处的变化情况,由切线的倾斜程度可以判断出函数图象升降的快慢.因此,研究复杂的函数问题,可以考虑通过研究其图象的切线来了解函数的性质.1.如图,点A (2,1),B (3,0),E (x ,0)(x ≥0),过点E 作OB 的垂线l .记AOB △在直线l 左侧部分的面积为S ,则函数S=f(x)的图象为下图中的2.某斜坡在某段内的倾斜程度可以近似地用函数y=-x2+4x x≤2)来刻画,试分析该段斜坡坡度的变化情况._______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________训练08 利用导数公式及运算法则求函数导数高考频度:★★★☆☆ 难易程度:★★☆☆☆求下列函数的导数: (1)221()(31)y x x =-+; (2)sincos 22x x y x =-;(3)y =.【参考答案】见试题解析.(2)∵sin cos 22x x y x =-, ∴111(sin )()(sin )1cos 222y x x '=x 'x 'x '=--=-.(3)∵3122359y x x x-=-+-,∴31223)()(5)((9)y x 'x ''x '-'=-+-1322313109()22x x -=⨯-+-⨯-⋅21)1x=+-. 【名师点睛】1.基本初等函数的导数公式 (1)若()f x c =,则()0f x '=;(2)若()()f x x Q αα*=∈,则1()f x x αα-'=;(3)若()sin f x x =,则()cos f x x '=; (4)若()cos f x x =,则()sin f x x '=-;(5)若()x f x a =,则()ln (01)xf x a a a a '=>≠且;(6)若()e x f x =,则()e xf x '=; (7)若()log a f x x =,则1()(01)ln f x a a x a'=>≠且; (8)若()ln f x x =,则1()f x x'=. 2.导数运算法则(1)[()()]()()f x g x f x g x '''±=±; (2)[()()]()()()()f x g x f x g x f x g x '''⋅=+; (3)2()()()()()[](()0)()[()]f x f xg x f x g x g x g x g x ''-'=≠. 3.求函数导数的一般原则:①遇到连乘积的形式,先展开化为多项式形式,再求导; ②遇到根式形式,先化为分数指数幂,再求导; ③遇到复杂分式,先将分式化简,再求导. 4.熟记如下结论: ①21()'x x 1=-; ②奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数; ③(ln ||)x 'x1=; ④21[]()[()()0()]()x 'x x x f 'f f f -≠=; ⑤[]()()()()a x x 'a x f bg f 'x bg'=++.1A BC D.2.f(x)=x(2015+ln x),若f'(x0)=2016,则x0=A.e2B.1C.ln 2 D.e_______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________训练09 导数的几何意义的应用高考频度:★★★☆☆难易程度:★★★☆☆设函数f(x)=a,b∈Z),曲线y=f(x)在点(2,f(2))处的切线方程为y=3.(1)求f(x)的解析式;(2)证明:曲线y=f(x)上任意一点处的切线与直线x=1和直线y=x所围成的三角形的面积为定值,并求出此定值.【参考答案】(1)f (x )=(2)见试题解析.【试题解析】(1)求导可得f '(x )=由题意,可得2123210(2)a b a b ⎧+=⎪+⎪⎨⎪-=+⎪⎩,因为a ,b ∈Z ,故f (x )=(2)在曲线上任取一点(x 0,x 0由f '(x 0)=1-()2000200[1111(]1)x x y x x x x -+-=----.令x =1,得y所以切线与直线x =1的交点为(1,令y =x ,得y =2x 0-1,所以切线与直线y =x 的交点为(2x 0-1,2x 0-1). 显然直线x =1与直线y =x 的交点为(1,1).1||2x 0-1-1|2x 0-2|=2,所以所围成的三角形的面积为定值2.【名师点睛】(1)求曲线在某点处的切线时,要注意切点既是曲线上的点也是切线上的点,即切点的坐标同时适合曲线方程和切线方程,利用这个方法可以确定一些未知的常数.(2)函数()y f x =在某点处的导数、曲线()y f x =在某点处切线的斜率和倾斜角,这三者是可以相互转化的.(3)当曲线()y f x =在点00((),)x f x 处的切线垂直于x 轴时,函数在该点处的导数不存在,切线方程是0x x =.(4)注意区分曲线在某点处的切线和曲线过某点的切线.曲线()y f x =在点00((),)x f x 处的切线方程是000()()()y f x f x x x -='-;求过某点的切线方程,需先设出切点坐标,再依据已知点在切线上求解.1与曲线A BC D2.已知曲线 及曲线上一点P (1,-2).(1)求曲线 在P 点处的切线方程;(2)求曲线过P 点的切线方程._______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________训练10 函数与导数图象之间的关系高考频度:★★★☆☆ 难易程度:★★☆☆☆如图中有一个图象是函数f (x )=13x 3+ax 2+(a 2-1)x+1(a ∈R ,且a ≠0)的导函数的图象,则f (-1)=A .13B .13- C .73D .13- 或53【参考答案】B【名师点睛】已知一个具体函数,我们可以用导数公式和运算法则求函数的导数;对于含有参数的函数,我们可以通过已知的某一个(或多个)点的导数值或函数值反过来确定参数或参数间的关系,此即逆向思维的体现.1.函数f (x )=ax 2+bx +c 的图象过原点,它的导函数y =f '(x )的图象是如图所示的一条直线,则A .2b a ->0,244ac b a ->0B .2b a -<0,244ac b a ->0C .2b a ->0,244ac b a-<0D .2b a -<0,244ac b a-<02.已知函数32()f x ax bx cx =++过点(1,5),其导函数()y f x ='的图象如图所示,求()f x 的解析式._______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________训练11 复合函数的导数高考频度:★★★☆☆ 难易程度:★★☆☆☆求下列函数的导数: (1)y =;(2)()sin e ax b y +=; (3)2πsin 23y x ⎛⎫=+⎪⎝⎭; (4)()25log 21y x =+. 【参考答案】见试题解析.(3)设y =u 2,sin u v =,π23v x =+, 则2π2cos 24sin cos 2sin 22sin 43x u v x y y u v u v v v v x ⎛⎫''⋅'⋅'⋅⋅===+ ⎪⎝⎭==. (4)设y =5log 2u ,u =2x +1,则()()()210105log 21ln221ln 2x y u x u x '''=+==+. 【名师点睛】1.一般地,对于两个函数()y f u =和()u g x =,如果通过变量u ,y 可以表示成x 的函数,那么称这个函数为函数()y f u =和()u g x =的复合函数,记作(())y f g x =.复合函数(())y f g x =的导数和函数()y f u =,()u g x =的导数间的关系为x u x y y u '''=⋅,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.2.当函数中既有复合函数求导,又有函数的四则运算时,要根据题中给出的表达式决定是先用四则运算还是先用复合函数求导法则,同时需要注意,复合函数的求导原则是从外层到内层进行,不要遗漏. 3.复合函数的求导,关键在于分清函数的复合关系,合理选定中间变量,明确求导过程中每次是哪个变量对哪个变量求导.一般地,如果所设中间变量可直接求导,就不必再选中间变量.1.已知函数()ln(1)f x ax =-的导函数是()f 'x ,且()22f '=,则实数a 的值为 A .12 B .23C .34D .12.已知()()sin (0,0,0π)f x A x A ωϕωϕ=+>><<,其导函数()f x '的图象如图所示,则()πf 的值为AB .C D ._______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________训练12 函数的单调性与导数高考频度:★★★★☆ 难易程度:★★★☆☆求下列函数的单调区间:(1)()3f x x x =-;(2)()232ln f x x x =-.【参考答案】(1)单调递增区间为,⎛-∞ ⎝和⎫∞⎪⎪⎭,单调递减区间为⎛ ⎝.(2)单调递增区间为⎫+∞⎪⎪⎭,单调递减区间为⎛ ⎝.(2)函数的定义域为(0,+∞),()223162x f x x x x -=-=⋅'.令f′(x )>0,即23120x x -⋅>,解得0x <或x又∵x >0,∴x ;令f′(x )<0,即23120x x -⋅<,解得x <或0x <,又∵x >0,∴0x <∴f (x )的单调递增区间为⎫+∞⎪⎪⎭,单调递减区间为⎛ ⎝. 【名师点睛】1.在某个区间(,)a b 内,如果()0f x '>,那么函数()y f x =在这个区间内单调递增;如果()0f x '<,那么函数()y f x =在这个区间内单调递减.注意:在某个区间内,()0f x '>(()0f x '<)是函数()f x 在此区间内单调递增(减)的充分条件,而不是必要条件.函数()f x 在(,)a b 内单调递增(减)的充要条件是()0f x '≥(()0f x '≤)在(,)a b 内恒成立,且()f x '在(,)a b 的任意子区间内都不恒等于0. 2.求可导函数单调区间的基本步骤: (1)确定定义域; (2)求导数()f x ';(3)解不等式()0f x '>,解集在定义域内的部分为单调递增区间; (4)解不等式()0f x '<,解集在定义域内的部分为单调递减区间.3.在利用导数求函数的单调区间时,首先要确定函数的定义域,解题过程中,只能在定义域内讨论,定义域为实数集R 可以省略不写.在对函数划分单调区间时,除必须确定使导数等于零的点外,还要注意在定义域内的不连续点和不可导点.4.当求得的单调区间不止一个时,单调区间要用“,”或“和”字等隔开,不要用符号“∪”连接.1.函数f (x )=(x-3)e x 的单调递增区间是 A .(-∞,2) B .(0,3) C .(1,4) D .(2,+∞)2.已知()()ln 0a xf x a x=≠, (1)写出()f x 的定义域. (2)求()f x 的单调区间._______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________训练13 函数与导函数图象之间的关系高考频度:★★☆☆☆难易程度:★☆☆☆☆设函数f(x)是其定义域内的可导函数,其图象如图所示,则其导函数f '(x)的图象可能是【参考答案】B【名师点睛】1.一般地,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化得快,这时,函数的图象就比较“陡峭”(向上或向下);反之,函数的图象就“平缓”一些.2.导函数为正的区间是函数的单调递增区间,导函数为负的区间是函数的单调递减区间.f x,要注3.研究一个函数的图象与其导函数图象之间的关系时,注意抓住各自的关键要素.对于函数()f'x,则应注意其函数值在哪意其图象在哪个区间内单调递增,在哪个区间内单调递减;而对于导函数()f x的单调区间是否一致.个区间内大于零,在哪个区间内小于零,并分析这些区间与函数()4.常见的函数值变化快慢与导数的关系为:对于①,函数值增加得越来越快,()0f x '>且越来越大; 对于②,函数值增加得越来越慢,()0f x '>且越来越小;对于③,函数值减少得越来越快,()0f x '<且越来越小,绝对值越来越大; 对于④,函数值减少得越来越慢,()0f x '<且越来越大,绝对值越来越小.1,A B C D2.已知定义在R 上的函数()f x ,其导函数()f x '的大致图象如下图所示,则下列叙述正确的是A .()()()f f c b f d >>B .()()()f b f a f e >>C .()()()f c f b f a >>D .()()()f c f e f d >>_______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________训练14 讨论含参函数的单调性高考频度:★★★☆☆ 难易程度:★★★☆☆已知函数()()22ln f x x x a x a =-+∈R .(1)若函数在1x =处的切线与直线420x y --=垂直,求实数a 的值; (2)当0a >时,讨论函数的单调性.(i)当0∆≤即12a ≥时,()0f x '≥,函数()f x 在()0,+∞上单调递增;(ii)当0∆>即12a <时,令()0f x '=,又0a >,故210x x >>.当()()120,,x x x ∈+∞ 时,()0f x '>,函数()f x 单调递增, 当()12,x x x ∈时,()0f x '<,函数()f x 单调递减. 综上所述,当12a ≥时,函数()f x 在()0,+∞上单调递增; 当12a <时,函数()f x 在()()120,,,x x +∞上单调递增,在()12,x x 上单调递减. 【名师点睛】讨论含有参数的函数的单调性,通常归结为求含参不等式的解集问题,而对含有参数的不等式要针对具体情况进行讨论,但要始终注意定义域对单调性的影响以及分类讨论的标准.1.已知函数f (x )=2x 3-6ax+1,a ≠0,则函数f (x )的单调递减区间为A .(-∞,+∞)B .+∞)C .(-∞,)∪+∞)D .(2.已知函数()()21e 2xf x x a x x a ⎛⎫=-+∈⎪⎝⎭R (1)若0a =,求曲线()y f x =在点()1,e 处的切线方程;(2)当0a >时,讨论函数()f x 的单调性._______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________训练15 已知函数的单调性求参数的取值范围高考频度:★★★☆☆ 难易程度:★★★☆☆已知函数()32143f x x ax x =-+.(1)若曲线()()()11y f x f =在点,a 的值; (2)若函数()102y f x ⎛⎫= ⎪⎝⎭在区间,上单调递增,求实数a 的取值范围. 【参考答案】(1)2a =;(2)174a ≤. 【试题解析】(1()224f x x ax =-+',又π(1)tan14f '==,则可得1241a -+=,则2a =.【名师点睛】已知函数的单调性求参数的值或取值范围问题,是一类非常重要的题型,其基本解法是利用分离参数法,将()0f x '≥或()0f x '≤的参数分离,转化为求函数的最值问题.1.设函数()219ln 2f x x x =-在区间[]1,1a a -+上单调递减,则实数a 的取值范围是 A .(]1,2 B .()1,3 C .()1,2D .(]1,32.已知()2e 1xf x ax=+, 其中a 为正实数. 若()f x 为实数集R 上的单调函数, 求实数a 的取值范围._______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________答案及解析训练01 求函数的平均变化率【参考答案】训练02 平均变化率的应用【参考答案】1.【答案】D【解析】第一个10 s 内V 的平均变化率为()()0.1100.1055100Δ52522Δ1001010V V V t -⨯-⨯--⨯-⨯===-30.25 cm /s =-,选D .训练03 求函数在定点处的导数【参考答案】【易错辨析】在导数的定义()()()0000'limx f x x f x f x x∆→+∆-∆=中,x ∆是()0f x x +∆与()0f x 中的两个自变量的差,即()00x x x +∆-.初学者在求解此类问题时容易忽略分子与分母相应的符号的一致性. 2.【答案】【解析】∵33223000000()3Δ3(Δ)(Δ()())y f x x f x x x x x x x x x +-+-=++∆=∆=∆,∴2200Δ33Δ(Δ)Δy x x x x x++=, ∴2220000Δ0lim[3()3Δ(Δ)3]x f 'x x x x x x →+=+=.由0()6f 'x =得2036x =,则0x =训练04 瞬时速度的应用【参考答案】1.【答案】t =2【解析】Δs =-4(t+Δt )2+16(t+Δt )-(-4t 2+16t )=16Δt-8t ·Δt-4(Δt )2, 因为某时刻瞬时速度为零,所以当Δt 趋于0时-8t-4Δt =0,即16-8t =0,解得t =2.训练05 导数的实际意义【参考答案】2.【解析】(1)当x 从1 h 变到4 h 时,生产的产品的重量y 从f (1)=8120变到f (4)=445, 故所求平均变化率为()()4481411952041312f f --==-(g/h),它表示从第1 h 到第4 h 这段时间内,该工人平均每小时生产1912g 产品. (2)因为()()00Δ0Δlimlimx x f x x f x x→→+∆-=∆=Δ0lim x →(110x 0+Δ20x110x 0所以f '(1)=110×12110=(g/h),它表示该工人上班后工作1 h 的时候,其生产速度为2110g/h. f '(4) =110×475= (g/h), 它表示该工人上班后工作4 h 的时候,其生产速度为75g/h.训练06 导数的几何意义【参考答案】2.【解析】()()()Δ0Δ011ΔΔΔlim lim ΔΔx x a x x ax ax x x x x x x x y x x x x x →→⎡⎤⎛⎫+∆+-+ ⎪⎢⎥⋅⋅+-+∆⎣⎦⎝⎭'==∆⋅⋅+ =()()Δ0·Δ1lim ·Δx ax x x x x x →+-+=221ax x-=a -21x . ∵函数y =ax +1x 图象上各点处的切线斜率均小于1,∴a -21x<1, 即a <1+21x 对于非零实数x 恒成立. ∵对于非零实数x ,都有1+21x >1,∴a ≤1, 故实数a 的取值范围是(-∞,1].训练07 导数几何意义的实际应用【参考答案】1.【答案】D【解析】函数的定义域为[0,+∞),当x∈[0,2]时,在单位长度改变量Δx内面积改变量ΔS越来越大,即斜率f'(x)在[0,2]内越来越大,因此,函数S=f(x)的图象是上升的,且图象是下凸的;当x∈(2,3)时,在单位长度改变量Δx内面积改变量ΔS越来越小,即斜率f'(x)在(2,3)内越来越小,因此,函数S=f(x)的图象是上升的,且图象是上凸的;当x∈[3,+∞)时,在单位长度改变量Δx内面积改变量ΔS为0,即斜率f'(x)在[3,+∞)内为常数0,此时,函数图象为平行于x轴的射线.训练08 利用导数公式及运算法则求函数导数【参考答案】训练09 导数的几何意义的应用【参考答案】1.【答案】C【解析】设切点为(,则011x y ⎧=⎪⎨⎪=⎩2.【解析】(1)由f (x )=x 3-3x 得,f ′(x )=3x 2-3. 过点P 且以P (1,-2)为切点的直线的斜率f ′(1)=0, ∴所求切线方程为y =-2.训练10 函数与导数图象之间的关系【参考答案】2.【解析】∵22(3)f x ax bx c =+'+,且 )0(1f '=,)0(2f '=,5(1)f =,∴32012405a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩,解得2912a b c =⎧⎪=-⎨⎪=⎩. ∴322912()f x x x x =-+.训练11 复合函数的导数【参考答案】且1ππ·222ϕ+=,则π4ϕ=, 则()1ππ4sin π24f ⎛⎫=+=⎪⎝⎭故选B .训练12 函数的单调性与导数【参考答案】②当0a <时,在()0,e 上()0f x '<;在()e,+∞上()0f x '>,()f x ∴的单调递增区间为()e,+∞;单调递减区间为()0,e .训练13 函数与导函数图象之间的关系【参考答案】训练14 讨论含参函数的单调性【参考答案】1.【答案】D【解析】f '(x )=6x 2-6a =6(x 2-a ),当a <0时,对x ∈R ,有f '(x )>0;当a >0时,由f '(x )<0解得x所以当a >0时,f (x )的单调递减区间为().故选D .(2)()()()1e xf x x a =+-',令()0f x '=,得1x =-或ln x a =,①当1e a =时,()0f x '≥,所以()f x 在R 上单调递增; ②当10ea <<时,ln 1a <-,由()0f x '>,得ln x a <或1x >-;由()0f x '<,得ln 1a x <<-,所以单调递增区间为()(),ln ,1,a -∞-+∞,单调递减区间为()ln ,1a -; ③当1ea >时,ln 1a >-,由()0f x '>,得1x <-或ln x a >;由()0f x '<,得1ln x a -<<, 所以单调递增区间为()(),1,ln ,a -∞-+∞,单调递减区间为()1,ln a -. 综上所述,当1ea =时,()f x 在R 上单调递增; 当10ea <<时,单调递增区间为()(),ln ,1,a -∞-+∞,单调递减区间为()ln ,1a -; 当1ea >时,单调递增区间为()(),1,ln ,a -∞-+∞,单调递减区间为()1,ln a -.训练15 已知函数的单调性求参数的取值范围【参考答案】2.【解析】()22221()e 1xax ax f x ax -+'=⋅+,若()f x 为R 上的单调函数, 则()f x '在R 上不变号,又0a >,2210ax ax ∴-+≥在R 上恒成立,即()2044410a a a a a ∆>⎧⎪⎨=-=-≤⎪⎩01a ⇒<≤. 则实数a 的取值范围是(0,1].。
高二数学上学期寒假作业6理word版本
![高二数学上学期寒假作业6理word版本](https://img.taocdn.com/s3/m/232c8c6a67ec102de2bd89d5.png)
云南省峨山彝族自治县2017-2018学年高二数学上学期寒假作业6 理1.和x 轴相切,且与圆x 2+y 2=1外切的圆的圆心的轨迹方程是 ( )A .x 2=2y +1 B .x 2=-2y +1 C .x 2=2y -1 D .x 2=2|y|+1 【解析】:2.已知两定点A (-2,0),B (1,0),如果动点P 满足|PA|=2|PB|,则点P 的轨迹所包围的图形的面积等于 ( )A .πB .4πC .8πD .9π 【解析】:3.设直线0132=++y x 和圆03222=--+x y x 相交于点A 、B ,则弦AB 的垂直平分线方程是. 【解析】:4.设直线ax -y +3=0与圆(x -1)2+(y -2)2=4有两个不同的交点A ,B ,且弦AB 的长为2 3 ,则a 等于. 【解析】:5、设圆上点A(2,3)关于直线x+2y=0的对称点仍在圆上,且圆与直线x-y+1=0相交的弦长为2 2 ,求圆的方程.【解析】:6、已知与曲线C:x2+y2-2x-2y+1=0相切的直线l叫x轴,y轴于A,B两点,|OA|=a,|OB|=b(a >2,b>2).(1)求证:(a-2)(b-2)=2;(2)求线段AB中点的轨迹方程;(3)求△AOB面积的最小值.【解析】:7、已知点A,B的坐标为(-3,0),(3,0),C为线段AB上的任意一点,P,Q是分别以AC,BC 为直径的两圆O1,O2的外公切线的切点,求PQ中点的轨迹方程.【解析】:8.由动点P引圆x2+y2=10的两条切线PA,PB,直线PA,PB的斜率分别为k1,k2.(1)若k1+k2+k1k2=-1,求动点P的轨迹方程;(2)若点P在直线x+y=m上,且PA⊥PB,求实数m的取值范围.【解析】:9.已知P是直线3x+4y+8=0上的动点,PA、PB是圆C:x2+y2-2x-2y+1=0的两条切线,A、B是切点.(1)求四边形PACB面积的最小值;(2)直线上是否存在点P,使∠BPA=60°,若存在,求出P点的坐标;若不存在,说明理由.【解析】:10.圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0(m∈R).(1)证明:不论m取什么数,直线l与圆C恒交于两点;(2)求直线l被圆C截得的线段的最短长度,并求此时m的值.【解析】:11.已知以点A(-1,2)为圆心的圆与直线l1:x+2y+7=0相切.过点B(-2, 0)的动直线l与圆A相交于M,N两点,Q是MN的中点.(1)求圆的方程;(2)当|MN|=219时,求直线l的方程.【解析】:12.如图,已知圆O :x 2+y 2=1和定点A (2,1),由圆O 外一点P (a ,b )向圆O 引切线PQ ,切点为Q ,且有|PQ |=|PA |.(1)求a 、b 间关系;(2)求|PQ |的最小值;(3)以P 为圆心作圆,使它与圆O 有公共点,试在其中求出半径最 小的圆的方程. 【解析】:答案1.D .提示:设圆心(x,y)||1y =+2.B .提示:直接将动点坐标代如等式,求得点的轨迹是一个以(2,0)为圆心,2为半径的圆. 3.0323=--y x .提示:弦的垂直平分线过圆心. 4.0.提示:依据半径、弦长、弦心距的关系求解.5、解析:设圆的方程为(x -a)2+(y -b)2=r 2, 点A (2,3)关于直线x +2y=0的对称点仍在圆上,说明圆心在直线x +2y=0上,a +2b=0,又(2-a)2+(3-b) 2=r 2,而圆与直线x -y +1=0相交的弦长为2 2 ,,故r 2-2=2,依据上述方程解得:{b1=-3a1=6r12=52或{b2=-7a2=14r22=244∴所求圆的方程为(x -6)2+(y +3)2=52,或(x -14)2+(y +7)2=224. 6、解析:(1)设出直线方程的截距式,用点到直线的距离等于1,化减即得;(2)设AB 中点M(x,y),则a=2x,b=2y,代入(a -2)(b -2)=2,得(x -1)(y -1)=12 (x >1,y >1);(3)由(a -2)(b -2)=2得ab +2=2(a +b)≥4ab ,解得ab ≥2+ 2 (ab ≤2- 2 不合,舍去),当且仅当a=b 时,ab 取最小值6+4 2 ,△AOB 面积的最小值是3+2 2 .7.作MC ⊥AB 交PQ 于M ,则MC 是两圆的公切线.|MC|=|MQ|=|MP|,M 为PQ 的中点.设M (x,y),则点C ,O 1,O 2的坐标分别为(x,0),(-3+x 2 ,0), ( 3+x 2 ,0)连O 1M ,O 2M ,由平面几何知识知∠O 1MO 2=90°.∴|O 1M|2+|O 2M|2=|O 1O 2|2,代入坐标化简得:x 2+4y 2=9(-3<x <3) 8.(1)由题意设P (x 0,y 0)在圆外,切线l :y -y 0=k(x -x 0)=∴(x 02-10)k 2-2x 0·y 0k +y 02-10=0由k 1+k 2+k 1k 2=-1得点P 的轨迹方程是x +y±2 5 =0.(2)∵P (x 0,y 0)在直线x +y=m 上,∴y 0=m -x 0,又PA ⊥PB ,∴k 1k 2=-1,202010110y x -=--,即:x 02+y 02=20,将y 0=m -x 0代入化简得,2x 02-2mx 0+m 2-20=0∵△≥0,∴-210 ≤m ≤210 ,又∵x 02+y 02>10恒成立,∴m >2,或m <-2 5 ∴m 的取值范围是[-210 ,-2 5 ]∪(2 5 ,210 ]9.解 (1)如图,连接PC ,由P 点在直线3x +4y +8=0上,可设P 点坐标为(x ,-2-34x ).圆的方程可化为(x -1)2+(y -1)2=1,所以S 四边形PACB =2S △PAC =2×12×|AP |×|AC |=|AP |.因为|AP |2=|PC |2-|CA |2=|PC |2-1, 所以当|PC |2最小时,|AP |最小.因为|PC |2=(1-x )2+(1+2+34x )2=(54x +1)2+9.所以当x =-45时,|PC |2m in =9.所以|AP |min =9-1=2 2.即四边形PACB 面积的最小值为2 2. (2)假设直线上存在点P 满足题意. 因为∠APB =60°,|AC |=1,所以|PC |=2.设P (x ,y ),则有⎩⎪⎨⎪⎧-+-=4,3x +4y +8=0.整理可得25x 2+40x +96=0,所以Δ=402-4×25×96<0.所以这样的点P 是不存在的.10.(1)证明 ∵直线l 的方程可化为(2x +y -7)m +(x +y -4)=0(m ∈R ).∴l 过⎩⎪⎨⎪⎧2x +y -7=0x +y -4=0的交点M (3,1).又∵M 到圆心C (1,2)的距离为d =-+-=5<5,∴点M (3,1)在圆内,∴过点M (3,1)的直线l 与圆C 恒交于两点.(2)解 ∵过点M (3,1)的所有弦中,弦心距d ≤5,弦心距、半弦长和半径r 构成直角三角形,∴当d 2=5时,半弦长的平方的最小值为25-5=20. ∴弦长AB 的最小值|AB |min =4 5.此时,k CM =-12,k l =-2m +1m +1.∵l ⊥CM ,∴12·2m +1m +1=-1,解得m =-34.∴当m =-34时,取到最短弦长为4 5.11 [解析] (1)设圆A 的半径为r ,∵圆A 与直线l 1:x +2y +7=0相切,∴r =|-1+4+7|5=25,∴圆A 的方程为(x +1)2+(y -2)2=20.(2)当直线l 与x 轴垂直时,则直线l 的方程为x =-2, 此时有|MN |=219,即x =-2符合题意. 当直线l 与x 轴不垂直时,设直线l 的斜率为k , 则直线l 的方程为y =k (x +2),即kx -y +2k =0, ∵Q 是MN 的中点,∴AQ ⊥MN ,∴|AQ |2+(12|MN |)2=r 2.又∵|MN |=219,r =25,∴|AQ |=20-19=1, 解方程|AQ |=|k -2|k2+1=1,得k =34,∴此时直线l 的方程为y -0=34(x +2),即3x -4y +6=0.综上所得,直线l 的方程为x =-2或3x -4y +6=0.12.解 (1)连接OQ 、OP ,则△OQP 为直角三角形,又|PQ |=|PA |,所以|OP |2=|OQ |2+|PQ |2=1+|PA |2,所以a 2+b 2=1+(a -2)2+(b -1)2,故2a +b -3=0. (2)由|PQ |2=|OP |2-1=a 2+b 2-1=a 2+9-12a +4a 2-1=5a 2-12a +8=5(a -1.2)2+0.8, 得|PQ |min =255.(3)以P 为圆心的圆与圆O 有公共点,半径最小时为与圆O 相切的情形,而这些半径的最小值为圆O 到直线l 的距离减去圆O 的半径,圆心P 为过原点且与l 垂直的直线l ′与l 的交点P 0,所以r =322+12-1=355-1,又l ′:x -2y =0,联立l :2x +y -3=0得P 0(65,35).所以所求圆的方程为(x -65)2+(y -35)2=(355-1)2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
云南省峨山彝族自治县2017-2018学年高二数学上学期寒假作业6 理1.和x 轴相切,且与圆x 2+y 2=1外切的圆的圆心的轨迹方程是 ( )A .x 2=2y +1 B .x 2=-2y +1 C .x 2=2y -1 D .x 2=2|y|+1 【解析】:2.已知两定点A (-2,0),B (1,0),如果动点P 满足|PA|=2|PB|,则点P 的轨迹所包围的图形的面积等于 ( )A .πB .4πC .8πD .9π 【解析】:3.设直线0132=++y x 和圆03222=--+x y x 相交于点A 、B ,则弦AB 的垂直平分线方程是 . 【解析】:4.设直线ax -y +3=0与圆(x -1)2+(y -2)2=4有两个不同的交点A ,B ,且弦AB 的长为2 3 ,则a 等于 . 【解析】:5、设圆上点A(2,3)关于直线x+2y=0的对称点仍在圆上,且圆与直线x-y+1=0相交的弦长为2 2 ,求圆的方程.【解析】:6、已知与曲线C:x2+y2-2x-2y+1=0相切的直线l叫x轴,y轴于A,B两点,|OA|=a,|OB|=b(a >2,b>2).(1)求证:(a-2)(b-2)=2;(2)求线段AB中点的轨迹方程;(3)求△A OB面积的最小值.【解析】:7、已知点A,B的坐标为(-3,0),(3,0),C为线段AB上的任意一点,P,Q是分别以AC,BC为直径的两圆O1,O2的外公切线的切点,求PQ中点的轨迹方程.【解析】:8.由动点P引圆x2+y2=10的两条切线PA,PB,直线PA,PB的斜率分别为k1,k2.(1)若k1+k2+k1k2=-1,求动点P的轨迹方程;(2)若点P在直线x+y=m上,且PA⊥PB,求实数m的取值范围.【解析】:9.已知P是直线3x+4y+8=0上的动点,PA、PB是圆C:x2+y2-2x-2y+1=0的两条切线,A、B是切点.(1)求四边形PACB面积的最小值;(2)直线上是否存在点P,使∠BPA=60°,若存在,求出P点的坐标;若不存在,说明理由.【解析】:10.圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0(m∈R).(1)证明:不论m取什么数,直线l与圆C恒交于两点;(2)求直线l被圆C截得的线段的最短长度,并求此时m的值.【解析】:11.已知以点A(-1,2)为圆心的圆与直线l1:x+2y+7=0相切.过点B(-2, 0)的动直线l 与圆A相交于M,N两点,Q是MN的中点.(1)求圆的方程;(2)当|MN|=219时,求直线l的方程.【解析】:12.如图,已知圆O:x2+y2=1和定点A(2,1),由圆O外一点P(a,b)向圆O引切线PQ,切点为Q,且有|PQ|=|PA|.(1)求a 、b 间关系;(2)求|PQ |的最小值;(3)以P 为圆心作圆,使它与圆O 有公共点,试在其中求出半径最 小的圆的方程. 【解析】:答案1.D .提示:设圆心(x,y)||1y +2.B .提示:直接将动点坐标代如等式,求得点的轨迹是一个以(2,0)为圆心,2为半径的圆.3.0323=--y x .提示:弦的垂直平分线过圆心. 4.0.提示:依据半径、弦长、弦心距的关系求解.5、解析:设圆的方程为(x -a)2+(y -b)2=r 2, 点A (2,3)关于直线x +2y=0的对称点仍在圆上,说明圆心在直线x +2y=0上,a +2b=0,又(2-a)2+(3-b) 2=r 2,而圆与直线x -y +1=0相交的弦长为2 2 ,,故r 2-)2=2,依据上述方程解得: {b 1=-3a 1=6r 12=52或{b 2=-7a 2=14r 22=244∴所求圆的方程为(x -6)2+(y +3)2=52,或(x -14)2+(y +7)2=224. 6、解析:(1)设出直线方程的截距式,用点到直线的距离等于1,化减即得;(2)设AB 中点M(x,y),则a=2x,b=2y,代入(a -2)(b -2)=2,得(x -1)(y -1)=12(x >1,y>1);(3)由(a -2)(b -2)=2得ab +2=2(a +b)≥4ab ,解得ab ≥2+ 2 (ab ≤2- 2 不合,舍去),当且仅当a=b 时,ab 取最小值6+4 2 ,△AOB 面积的最小值是3+2 2 . 7.作M C⊥AB 交PQ 于M ,则MC 是两圆的公切线.|MC|=|MQ|=|MP|,M 为PQ 的中点.设M (x,y),则点C ,O 1,O 2的坐标分别为(x,0),(-3+x 2 ,0), ( 3+x 2 ,0)连O 1M ,O 2M ,由平面几何知识知∠O 1MO 2=90°.∴|O 1M|2+|O 2M|2=|O 1O 2|2,代入坐标化简得:x 2+4y 2=9(-3<x <3) 8.(1)由题意设P (x 0,y 0)在圆外,切线l :y -y 0=k(x -x 0)∴(x 02-10)k 2-2x 0·y 0k +y 02-10=0由k 1+k 2+k 1k 2=-1得点P 的轨迹方程是x +y±2 5 =0.(2)∵P(x 0,y 0)在直线x +y=m 上,∴y 0=m -x 0,又PA⊥PB,∴k 1k 2=-1,202010110y x -=--,即:x 02+y 02=20,将y 0=m -x 0代入化简得,2x 02-2mx 0+m 2-20=0∵△≥0,∴-210 ≤m≤210 ,又∵x 02+y 02>10恒成立,∴m>2,或m <-2 5 ∴m 的取值范围是[-210 ,-2 5 ]∪(2 5 ,210 ]9.解 (1)如图,连接PC ,由P 点在直线3x +4y +8=0上,可设P 点坐标为(x ,-2-34x ).圆的方程可化为(x -1)2+(y -1)2=1,所以S 四边形PACB =2S △PAC =2×12×|AP |×|AC |=|AP |.因为|AP |2=|PC |2-|CA |2=|PC |2-1, 所以当|PC |2最小时,|AP |最小.因为|PC |2=(1-x )2+(1+2+34x )2=(54x +1)2+9.所以当x =-45时,|PC |2min =9.所以|AP |min =9-1=2 2.即四边形PACB 面积的最小值为2 2. (2)假设直线上存在点P 满足题意. 因为∠APB =60°,|AC |=1,所以|PC |=2.设P (x ,y ),则有⎩⎪⎨⎪⎧x -2+y -2=4,3x +4y +8=0.整理可得25x 2+40x +96=0,所以Δ=402-4×25×96<0.所以这样的点P 是不存在的.10.(1)证明 ∵直线l 的方程可化为(2x +y -7)m +(x +y -4)=0(m ∈R ).∴l 过⎩⎪⎨⎪⎧2x +y -7=0x +y -4=0的交点M (3,1).又∵M 到圆心C (1,2)的距离为d =-2+-2=5<5,∴点M (3,1)在圆内,∴过点M (3,1)的直线l 与圆C 恒交于两点.(2)解 ∵过点M (3,1)的所有弦中,弦心距d ≤5,弦心距、半弦长和半径r 构成直角三角形,∴当d 2=5时,半弦长的平方的最小值为25-5=20. ∴弦长AB 的最小值|AB |min =4 5.此时,k CM =-12,k l =-2m +1m +1.∵l ⊥CM ,∴12·2m +1m +1=-1,解得m =-34.∴当m =-34时,取到最短弦长为4 5.11 [解析] (1)设圆A 的半径为r ,∵圆A 与直线l 1:x +2y +7=0相切,∴r =|-1+4+7|5=25,∴圆A 的方程为(x +1)2+(y -2)2=20.(2)当直线l 与x 轴垂直时,则直线l 的方程为x =-2, 此时有|MN |=219,即x =-2符合题意. 当直线l 与x 轴不垂直时,设直线l 的斜率为k , 则直线l 的方程为y =k (x +2),即kx -y +2k =0,∵Q 是MN 的中点,∴AQ ⊥MN ,∴|AQ |2+(12|MN |)2=r 2.又∵|MN |=219,r =25,∴|AQ |=20-19=1, 解方程|AQ |=|k -2|k 2+1=1,得k =34,∴此时直线l 的方程为y -0=34(x +2),即3x -4y +6=0.综上所得,直线l 的方程为x =-2或3x -4y +6=0.12.解 (1)连接OQ 、OP ,则△OQP 为直角三角形,又|PQ |=|PA |,所以|OP |2=|OQ |2+|PQ |2=1+|PA |2,所以a 2+b 2=1+(a -2)2+(b -1)2,故2a +b -3=0. (2)由|PQ |2=|OP |2-1=a 2+b 2-1=a 2+9-12a +4a 2-1=5a 2-12a +8=5(a -1.2)2+0.8, 得|PQ |min =255.(3)以P 为圆心的圆与圆O 有公共点,半径最小时为与圆O 相切的情形,而这些半径的最小值为圆O 到直线l 的距离减去圆O 的半径,圆心P 为过原点且与l 垂直的直线l ′与l 的交点P 0,所以r =322+12-1=355-1, 又l ′:x -2y =0,联立l :2x +y -3=0得P 0(65,35).所以所求圆的方程为(x -65)2+(y -35)2=(355-1)2.。