中考数学复习-几何综合探究题练习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何综合探究题练习
满分训练
类型1 探究线段长度的极值和定值问题
1.(·某高新一中模拟)如图,直线l外有一点D,D到直线l的距离是5,在△ABC中,∠
ABC=90°,AB=6,tan∠CAB=1
3
,边AB在直线l上滑动,则四边形ABCD的周长的最小值是多
少?
2.(·某铁一中模拟)如图,在矩形ABCD中,AB=4,BC=2,E,F分别是AB,CD上的动点,且EF⊥AC,连接EC,FA,求EC+FA的最小值是多少。
3.(·某交大附中模拟)在△ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,P是平面上一点,且DP=1,连接BP,CP,将线段PB绕点P顺时针旋转90°,得到线段PB′,连接AB′,则AB′的最大值为多少?
4.(·某工大附中模拟)(1)如图①,△ABC和△DEC均为等腰直角三角形,且∠BAC=∠
CDE=90°,AB=AC=3,DE=CD=1,连接AD,BE,求AD BE
。
(2)如图②,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=4,过点A作AM⊥AB,P是射线AM 上一动点,连接CP,作CQ⊥CP,交线段AB于点Q,求PQ的最小值。
(3)小姜准备加工一个四边形零件,如图③,这个零件的示意图为四边形ABCD,要求BC=4,∠BAD=135°,∠ADC=90°,AD=CD。请你帮小姜求出这个零件的对角线BD的最大值。
类型2 探究图形面积的最值问题
5.【问题提出】
(1)如图①,在△ABC中,∠ACB=90°,AB=8,△ABC的最大面积是。
(2)如图②,在菱形ABCD中,对角线AC+BD=14,求菱形的最大面积。
【问题解决】
(3)如图③,赵师傅用一个半径为a的圆形板材,想制作一个面积最大的矩形。能否裁出?若能,请算出这个矩形的最大面积;若不能,请说明理由。
6.(·某工大附中模拟)【问题探究】
(1)如图①,在矩形ABCD中,P是AB上一点,请在AD上求作一点Q,使∠QPC=60°。(2)如图②,在矩形ABCD中,AB=7,P是AB上一点,且AP=3,E是BC上一点,且BE=43,点Q在AD边上,且∠QPE=60°,求△PQE的面积。
【问题解决】
(3)为了积极响应政府“建设美丽城市,改善生活环境”的号召,某小区建造如图③的休闲广场。在矩形ABCD中,AB=100米,BC=180米,P为AB上一点,且AP∶PB=2∶3,E为BC 上一点,点Q在AD边上,且满足∠QPE=60°,其中△APQ,△BPE为景观绿化区,四边形CDQE 为健身休闲区,△PQE为商业活动区,为了更好地服务于广大业主,希望极大地减少商业服务区的面积,那么按此要求修建的商业活动区△PQE是否存在最小面积?如果存在,求出最小面积;如果不存在,说明理由。
7.(·某高新一中模拟)(1)如图①,在四边形ABCD中,AB=BC,AD=CD=3,∠BAD=∠BCD=90°,∠ADC=60°,则四边形ABCD的面积为多少?
(2)如图②,在四边形ABCD中,∠BAD=∠BCD=90°,∠ABC=135°,AB=22,BC=3,在AD,CD上分别找一点E,F,使△BEF的周长最小,并求出最小周长。
(3)如图③,在四边形ABCD中,AB=BC=2,AD=CD=3,∠ABC=150°,∠BCD=90°,在四边形ABCD中(包括边缘)是否存在一点E,使∠AEC=30°,且使四边形ABCE的面积最大?若存在,找出点E的位置,并求出四边形ABCE的最大面积;若不存在,请说明理由。
8.(·某高新一中模拟)如图①,在四边形ABCD中,如果对角线AC和BD相交并且相等,那么我们把这样的四边形称为“等角线四边形”。
(1)①在“平行四边形、矩形、菱形”中是“等角线四边形”(填写图形名称);
②若M,N,P,Q分别是等角线四边形ABCD四边AB,BC,CD,DA的中点,当对角线AC,BD还要满足时四边形MNPQ是正方形。
(2)如图②,在△ABC中,∠ABC=90°,AB=4,BC=3,D为平面内一点,若四边形A BCD是等角线四边形,且AD=BD,求四边形ABCD的面积。
(3)如图③,在△ABC中,∠ABC=120°,AB=BC=4,点E是以C为圆心1为半径的圆上一动点,D为平面内一动点,若四边形ABED是“等角线四边形”,求四边形ABED的面积的最大值,并说明理由。
类型3 探究图形面积的分割问题
9.【问题探究】
(1)如图①,点P为平行四边形ABCD内一点,请过点P画一条直线l1,使其将平行四边形ABCD分成面积和周长分别相等的两部分。
【问题探究】
(2)如图②,在平面直角坐标系xOy中,矩形OABC的边OA,OC分别在x轴、y轴的正半轴上,点B的坐标为(8,6)。已知点P(6,7)为矩形外一点,请过点P画一条能将矩形OABC分成面积和周长分别相等的两部分的直线l2,说明理由并求出直线l2被矩形OABC截得的线段的长度。
【问题解决】
(3)如图③,在平面直角坐标系xOy中,五边形OABCD的边OA,OD分别在x轴、y轴的正半轴上,DC∥x轴,AB∥y轴,且OA=OD=8,AB=CD=2,点P(10-52,10-52)为五边
形OABCD内一点。请问:是否存在过点P的直线l3,与边OA,BC分别交于点E,F,且将五边形OABCD分成面积和周长分别相等的两部分?若存在,请求出点E和点F的坐标;若不存在,请说明理由。
10.(·交大附中模拟)【问题探究】
(1)如图①,在平面直角坐标系内,M是边长为4的正方形ABCO边上一点,请过点M(0,3)作一条直线,使它将正方形的面积二等分,求这条直线的解析式。
(2)如图②,在平面直角坐标系中有A(1,4),B(4,0)两点,请过点C
4
3,
3
⎛⎫
⎪
⎝⎭
作一条直