初中数学竞赛辅导-竞赛训练题

合集下载

八年级数学竞赛训练题4

八年级数学竞赛训练题4

练习卷41.如果实数a ,b ,c 在数轴上的位置如图所示,那么代数式22||()||a a b c a b c -++-++可以化简为( ).(A )2c a - (B )22a b - (C )a - (D )a 2.如果22a =-+,那么11123a+++的值为( ).(A )2- (B )2 (C )2 (D )223.如果正比例函数y = ax (a ≠ 0)与反比例函数y =xb (b ≠0 )的图象有两个交点,其中一个交点的坐标为(-3,-2),那么另一个交点的坐标为( ). (A )(2,3) (B )(3,-2) (C )(-2,3) (D )(3,2)4.在平面直角坐标系xOy 中满足不等式x 2+y 2≤2x +2y 的整数点坐标(x ,y )的个数为( ). (A )10 (B )9 (C )7 (D )55.如果a b ,为给定的实数,且1a b <<,那么1121a a b a b ++++,, ,这四个数据的平均数与中位数之差的绝对值是( ). (A )1 (B )214a - (C )12(D )146.如图,四边形ABCD 中,AC ,BD 是对角线,△ABC 是等边三角形.30A D C ∠=︒,AD = 3,BD = 5, 则CD 的长为( ).(A )23 (B )4 (C )52 (D )4.57.小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱数将是你的n 倍”;小玲对小倩说:“你若给我n 元,我的钱数将是你的2倍”,其中n 为正整数,则n 的可能值的个数是( ).(A )1 (B )2 (C )3 (D )48.如果关于x 的方程 20x px q p q --=(,是正整数)的正根小于3, 那么这样的方程的个数是( ).(A ) 5 (B ) 6 (C ) 7 (D ) 89.一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,3,4,5,6.掷两次骰子,设其朝上的面上的两个数字之和除以4的余数分别是0,1,2,3的概率为0123p p p p ,,,,则0123p p p p ,,,中最大的是( ). (A )0p (B )1p (C )2p (D )3p 10.黑板上写有111123100, , ,, 共100个数字.每次操作先从黑板上的数中选取2个数a b ,,然后删去a b ,,并在黑板上写上数a b ab ++,则经过99次操作后,黑板上剩下的数是( ).(A )2012 (B )101 (C )100 (D )99 11.下列运算正确的是( )A .x 2‧x 3=x 6B . 2x +3x =5x 2C .(x 2)3=x 6D . x 6÷x 2=x 312.有大小两种游艇,2艘大游艇与3艘小游艇一次可载游客57人,3艘大游艇与2艘小游艇一次可载游客68人,则3艘大游艇与6艘小游艇一次可载游客的人数为( ) A .129 B .120 C .108 D .96 13.实数a =20123-2012,下列各数中不能整除a 的是( ) A .2013 B .2012 C .2011 D .201014.如图1所示的两个圆盘中,指针落在每一个数所在的区域上的机会均等,则两个指针同时落在数“1”所在的区域上的概率是( ) A .251 B .252 C .256 D .252415.一辆公共汽车从车站开出,加速行驶一段时间后匀速行驶,过了一段时间,汽车到达下一个车站.乘客上下车后汽车开始加速,一段时间后又开始匀速行驶,下面可以近似地刻画出汽车在这段时间内的速度变化情况的图象是( ) 16.要使1213-+-x x 有意义,则x 的取值范围为A .321 x ≤≤B .321 <x≤C .321x <≤D . 321<x<17.菱形的两条对角线之和为L 、面积为S ,则它的边长为( ) A .SL 4212- B .SL 2212- C .SL 4221-D .2421LS -123 45123 45 图 1速度时间OA速度时间OBO速度时间C 速度时间OD18.按如图的程序进行操作,规定:程序运行从“输入一个值x ”到“结果是否>487?”为一次操作. 如果操作进行四次才停止,那么x 的取值范围是 . 19.如果a ,b ,c 是正数,且满足9a b c ++=,111109a bb cc a++=+++,那么a bc b cc a a b+++++的值为 .20.如图,正方形ABCD 的边长为215, E ,F 分别是AB ,BC 的中点,AF 与DE ,DB 分别交于点M ,N ,则△DMN 的面积是 . 21.如果关于x 的方程x 2+kx +43k 2-3k +92= 0的两个实数根分别为1x ,2x ,那么2012220111x x 的值为 .22.设n 为整数,且1≤n ≤2012. 若22(3)(3)n n n n -+++能被5整除,则所有n 的个数为 . 23. 2位八年级同学和m 位九年级同学一起参加象棋比赛,比赛为单循环,即所有参赛者彼此恰好比赛一场.记分规则是:每场比赛胜者得3分,负者得0分;平局各得1分. 比赛结束后,所有同学的得分总和为130分,而且平局数不超过比赛局数的一半,则m 的值为 .24.如果正数x ,y ,z 可以是一个三角形的三边长,那么称x y z (,,)是三角形数.若a b c (,,)和111a b c(,,)均为三角形数,且a ≤b ≤c ,则a c的取值范围是 .25.已知n 是偶数,且1≤n ≤100.若有唯一的正整数对a b (,)使得22a b n =+成立,则这样的n 的个数为 .26.x 与y 互为相反数,且3=-y x ,那么122++xy x 的值为__________. 27.一次函数y =ax +b 的图象如图4所示,则化简1++-b b a 得________.28.若x=-1是关于x 的方程a 2x 2+2011ax -2012=0的一个根,则a 的值为__________. 29.一只船从A 码头顺水航行到B 码头用6小时,由B 码头逆水航行到A 码头需8小时,则一块塑料泡沫从A 码头顺水漂流到B 码头要用______小时(设水流速度和船在静水中的速度不变).30.如图5,边长为1的正方形ABCD 的对角线相交于点O ,过点O 的直线分别交AD 、BC于E 、F ,则阴影部分的面积是 .31.如图6,直线l 平行于射线AM ,要在直线l 与射线AM 上各找一点B 和C ,使得以A 、B、xy -1 o图4C 为顶点的三角形是等腰直角三角形,这样的三角形最多能画_______个.32.如图7,△ABC 与△CDE 均是等边三角形,若∠AEB =145°,则∠DBE 的度数是________.33.如图8所示,矩形纸片ABCD 中,AB =4cm ,BC =3cm , 把∠B 、∠D 分别沿CE 、AG 翻折,点B 、D 分别落在对角线AC 的点B '和D '上,则线段EG 的长度是________.34. 已知整数a ,b 满足:a -b 是素数,且ab 是完全平方数. 当a ≥2012时,求a 的最小值.35. 求所有正整数n ,使得存在正整数122012x x x ,, ,,满足122012x x x <<< ,且122012122012n x x x +++= .36.某市道路改造工程,如果让甲工程队单独工作,需要30天完成,如果让乙工程队单独工作,则需要60天方可完成;甲工程队施工每天需付施工费2.5万元,乙工程队施工每天需付施工费1万元.请解答下列问题:(1)甲、乙两个工程队一起合作几天就可以完成此项工程?(2)甲、乙两个工程队一起合作10天后,甲工程队因另有任务调离,剩下的部分由乙工程队单独做,请问共需多少天才能完成此项工程?(3)如果要使整个工程施工费不超过65万元,甲、乙两个工程队最多能合作几天? (4)如果工程必须在24天内(含24天)完成,你如何安排两个工程队施工,才能使施工费最少?请说出你的安排方法,并求出所需要的施工费.图7ABCDE图5A E DC F O B图6 AMl图8B ' ED 'ABC DG。

初中数学竞赛题汇编(代数部分1)

初中数学竞赛题汇编(代数部分1)

初中数学竞赛题汇编(代数部分1)江苏省泗阳县李口中学沈正中精编、解答例1若m2=m+1,n2=n+1,且m≠n,求m5+n5的值。

解:由已知条件可知,m、n是方程x2-x-1=0两个不相等的根。

∴m+n=1,mn=-1∴m2+n2=(m+n)2-2mn=3或m2+n2=m+n+2=3又∵m3+n3=(m+n) (m2-mn+n2)=4∴m5+n5=(m3+n3) (m2+n2)-(mn)2(m+n)=11例2已知解:设,则u+v+w=1……①……②由②得即 uv+vw+wu=0将①两边平方得u2+v2+w2+2(uv+vw+wu)=1 所以u2+v2+w2=1即例3已知x4+x3+x2+x+1=0,那么1+x+x2+x3+x4+……x2014=。

解:1+x+x2+x3+x4+…x2014=(1+x+x2+x3+x4)+(x5+x6+x7+x8+x9)+…+(x2010+x2011+x2012+x2013+x2014)=(1+x+x2+x3+x4)+x5(1+x+x2+x3+x4)+…+ x2010(1+x+x2+x3+x4)=0例4:证明循环小数为有理数。

证明:设=x…①将①两边同乘以100,得…②②-①,得99x=261.54-2.61 即x=。

例5:证明是无理数。

证明(反证法):假设不是无理数,则必为有理数,设=(p、q是互质的自然数),两边平方有p2=2q2…①,所以p一定是偶数,设p=2m(m为自然数),代入①整理得q=2m2,所以q也是偶数。

p、q均为偶数与p、q是互质矛盾,所以不是有理数,即为有理数。

例6:;;。

解:例7:化简(1);(2)(3);(4);(5);(6)。

解:(1)方法1方法2 设,两边平方得:由此得解之得或所以。

(2)(3)(4)设,两边平方得:由此得解之得所以=+1+(5)设则所以(6)利用(a+b)3=a3+b3+3ab(a+b)来解答。

设两边立方得:即x3-6x-40=0将方程左边分解因式得(x-4)(x2+4x+10)=0因(x2+4x+10)=(x+2)2+6>0 所以(x-4)=0 ,即x=4所以=4例8:解:用构造方程的方法来解。

九年级数学竞赛综合训练题(1)(含解答)-

九年级数学竞赛综合训练题(1)(含解答)-

九年级数学竞赛综合训练题(1)(满分120分,考试时间120分)学校 班级 姓名一、选择题:(每小题5分,共30分)1.过点P (-1,3)作直线,使它与两坐标轴围成的三角形面积为5,这样的直线可以作( )条 (A )4 (B )3 (C )2 (D )1 2.方程13++x x -y=0的整数解有( )组 (A )1 (B )2 (C )3 (D )4 3.如图,若将图(a )的正方形剪成四块,恰能拼成图(b)的矩形,设a=1,则这个正方形的面积为( )(A )2537+ (B )253+(C )251+ (D )21(+)24.关于x 的不等式组255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩只有5个整数解,则a 的取值范围是( )(A )-6<a <-211 (B )-6≤a <-211 (C )-6<a ≤-211 (D )-6≤a ≤-2115.已知四边形ABCD ,从下列条件:(1)AB ∥CD (2)BC ∥AD (3)AB =CD (4)BC =AD (5)∠A =∠C (6)∠B =∠D中任取其中两个,可以得出“四边形ABCD 是平行四边形”这一结论的情况有( )种(A )4 (B )9 (C )13 (D )15 6.已知x 、y 、z 都是实数,且x 2+y 2+z 2=1,则m=xy+yz+zx ( )(A)只有最大值 (B )只有最小值 (C )既有最大值又有最小值 (D )既无最大值又无最小值 二、填空题:(每小题5分,共30分)jab a b ⅠⅡⅢⅣⅣⅢⅡⅠ(b)(a)ba7.已知x=1313+-,y=1313-+, 则x 4+y 4等于 .8.甲、乙两商店某种铅笔标价都是1元,一天,让学生小王欲购这种铅笔,发现甲、乙两商店都让利优惠:甲店实行每买5枝送1枝(不足5枝不送);乙店实行买4枝或4枝以上打8.5折,小王买了13枝这种铅笔,最少需要花 元.9.若1≤p ≤20, 1≤q ≤10,且方程4x 2-px+q=0的两根均为奇数,则此方程的根为 . 10.在1、2、……,2003中有些正整数n ,使得x 2+x -n 能分解为两个整系数一次式的乘积,则这样的n 共有 个.11.已知如图所示,∠MON=40°,P 为∠MON 内一点,A 为OM 上一点,B 为ON 上一点,则当△PAB 的周长取最小值时,∠APB 的度数为 .12.若关于x 的方程rx 2-(2r+7)x+r+7=0的根是正整数,则整数r 的值可以是 .三、解答题:(每小题15分,共60分)13.已知a 、b 、c满足方程组2848a b ab c +=⎧⎪⎨-+=⎪⎩, 试求方程bx 2+cx-a=0的根.PNMBOA14.已知两个二次函数y1 和y2,当x=a(a>0)时,y1取得最大值5,且y2=25. 又y2的最小值为-2,y1+y2=x2+16x+13. 求a的值及二次函数y1、y2的解析式.15.如图所示,正方形ABCD的边长为1,点M、N分别在BC、CD上,使得△CMN的周长为2.求:(1)∠MAN的大小;(2)△MAN面积的最小值.ND CMAB16.如图所示,四边形ABCD 是矩形,甲、乙两人分别从A 、B 同时出发,沿矩形按逆时针方向前进,即按A →B →C →D →……顺序前进,已知甲的速度为每分钟65米,乙的速度为每分钟74米,问乙至少在跑第几圈时才有可能第一次追上甲?又乙至多在跑第几圈时一定能追上甲?请说明理由。

初中数学竞赛辅导资料(七年级用)

初中数学竞赛辅导资料(七年级用)

初中数学竞赛辅导资料第一讲 数的整除一、内容提要:如果整数A 除以整数B(B ≠0)所得的商A/B 是整数,那么叫做A 被B 整除. 0能被所有非零的整数整除.能被7整除的数的特征:①抹去个位数 ②减去原个位数的2倍 ③其差能被7整除。

如 1001 100-2=98(能被7整除)又如7007 700-14=686, 68-12=56(能被7整除) 能被11整除的数的特征:①抹去个位数 ②减去原个位数 ③其差能被11整除 如 1001 100-1=99(能11整除)又如10285 1028-5=1023 102-3=99(能11整除) 二、例题例1已知两个三位数328和92x 的和仍是三位数75y 且能被9整除。

求x,y解:x,y 都是0到9的整数,∵75y 能被9整除,∴y=6. ∵328+92x =567,∴x=3 例2已知五位数x 1234能被12整除,求x解:∵五位数能被12整除,必然同时能被3和4整除, 当1+2+3+4+x 能被3整除时,x=2,5,8 当末两位4x 能被4整除时,x =0,4,8∴x=8例3求能被11整除且各位字都不相同的最小五位数解:五位数字都不相同的最小五位数是10234,但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行调整末两位数为30,41,52,63,均可,∴五位数字都不相同的最小五位数是10263。

练习一1、分解质因数:(写成质因数为底的幂的连乘积)①756②1859③1287④3276⑤10101⑥10296987能被3整除,那么a=_______________2、若四位数ax能被11整除,那么x=__________3、若五位数123435m能被25整除4、当m=_________时,59610能被7整除5、当n=__________时,n6、能被11整除的最小五位数是________,最大五位数是_________7、能被4整除的最大四位数是____________,能被8整除的最大四位数是_________。

初中数学竞赛辅导资料(七年级上)

初中数学竞赛辅导资料(七年级上)

数的整除(一)内容提要:如果整数A 除以整数B(B ≠0)所得的商A/B 是整数,那么叫做A 被B 整除. 0能被所有非零的整数整除.①抹去个位数 ②减去原个位数的2倍 ③其差能被7整除。

如 1001 100-2=98(能被7整除) 又如7007 700-14=686, 68-12=56(能被7整除) 能被11整除的数的特征:①抹去个位数 ②减去原个位数 ③其差能被11整除如 1001 100-1=99(能11整除) 又如10285 1028-5=1023 102-3=99(能11整除) 例题例1已知两个三位数328和92x 的和仍是三位数75y 且能被9整除。

求x,y解:x,y 都是0到9的整数,∵75y 能被9整除,∴y=6. ∵328+92x =567,∴x=3例2己知五位数x 1234能被12整除, 求X解:∵五位数能被12整除,必然同时能被3和4整除,当1+2+3+4+X 能被3整除时,x=2,5,8 当末两位X 4能被4整除时,X =0,4,8 ∴X =8例3求能被11整除且各位字都不相同的最小五位数 解:五位数字都不相同的最小五位数是10234,但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行调整末两位数为30,41,52,63,均可, ∴五位数字都不相同的最小五位数是10263。

练习1.分解质因数:(写成质因数为底的幂的連乘积)①593 ② 1859 ③1287 ④3276 ⑤10101 ⑥10296 2.若四位数a 987能被3整除,那么 a=_______________ 3.若五位数3412X 能被11整除,那么 X =__________- 4.当 m=_________时,535m 能被25整除5.当 n=__________时,n 9610能被7整除 6.能被11整除的最小五位数是________,最大五位数是_________7.能被4整除的最大四位数是____________,能被8整除的最小四位数是_________8.8个数:①125,②756,③1011,④2457,⑤7855,⑥8104,⑦9152,⑧70972中,能被下列各数整除的有(填上编号):6________,8__________,9_________,11__________9. 从1到100这100个自然数中,能同时被2和3整除的共_____个, 能被3整除但不是5的倍数的共______个。

八年级数学竞赛辅导训练题(一)(无答案)

八年级数学竞赛辅导训练题(一)(无答案)

八年级 数 学 竞 赛 辅 导 训 练 题(一)一、 填空题:(1)、若a 、b 、c 是三角形的三边,化简c b a -+-c b a --= 。

(2)、多项式42++mx x 有一个因式是1-x ,则=m 。

(3)、 6、如图1,已知BD AC =,要使得DCB ABC ∆≅∆,只需增加的一个条件是(只填一种): 。

(4)、将两个全等的有一个角为︒30的直角三角形如图2拼放,使其两条较长直角边在同一直线上,那么图中的等腰三角形共有 个。

(5)、如图3,已知︒=∠35A ,︒=∠20B ,︒=∠25C ,则BDC ∠的度数为 。

(6)、已知AD 是ABC ∆的中线,︒=∠45ADC ,把ADC ∆沿AD 所在直线对折,点C 落在点E 的位置(如图4),则EBC ∠等于 度。

(7)、对于两个有理数x 与y ,定义一种运算“*”: y x yx xy y x -++=3*,则3*2的值为 。

(8)、如果梯子的底端离建筑物9m ,那么15m 长的梯子可以达到建筑物的高度是( )A.10mB.11mC.12mD.13m(9)、如果点A(-3,a)是点B(3,-4)关于原点的对称点,那么a 的值是( )A.-4B.4C.4或-4D.3或-3二、选择题:(1)、若0136422=++-+y x y x 则=y x ( ) B C图1 图2BC 图3B C D 图4A 、 8B 、 - 8C 、 81D 、- 81 (2)、如果三角形一个内角等于其它两个内角的差,那么这个三角形是( )A 、锐角三角形B 、直角三角形C 、钝角三角形D 、不能确定(3)、设a 、b 、c 是三角形的三边长,且ca bc ab c b a ++=++222,关于此三角形的形状有以下判断:①是等腰三角形 ②是等边三角形 ③是锐角三角形 ④是斜三角形其中正确说法的个数是( )A 、4个B 、3个C 、2个D 、1个(4)、下列说法正确的是( )A 、 全等三角形的中线相等B 、 有两边对应相等的两个等腰三角形全等C 、 有两边和一角对应相等的两个三角形全等D 、周长相等的两个等边三角形全等(5)、若16-m 表示一个整数,则整数m 可取值的个数是( )。

初中奥林匹克数学竞赛训练题(7套)

初中奥林匹克数学竞赛训练题(7套)

数学奥林匹克初中训练题第 一 试一. 选择题.(每小题7分,共42分)( )1.已知33333a b c abc a b c++-=++,则22()()()()a b b c a b b c -+-+--的值为: (A)1 (B)2 (C)3 (D)4( )2.规定”Δ”为有序实数对的运算,如果(,)a b Δ(,)(,).c d ac bd ad bc =++如果对任意实数,a b 都有(,)a b Δ(,)(,),x y a b =则(,)x y 为:(A)(0,1) (B)(1,0) (C)(1,0)- (D)(0,1)-( )3.在ΔABC 中,211a b c=+,则∠A: (A)一定是锐角 (B)一定是直角 (C)一定是钝角 (D)非上述答案( )4.下列五个命题:①若直角三角形的两条边长为3与4,则第三边长是5;②2;a =③若点(,)P a b 在第三象限,则点1(,1)P a b --+在第一象限;④连结对角线垂直且相等的四边形各边中点的四边形是正方形;⑤两边及其第三边上的中线对应相等的两个三角形全等.其中正确的命题的个数是:(A)2个 (B)3个 (C)4个 (D)5个( )5.设P 为等腰Rt ΔABC 斜边AB 上或其延长线上一点,22S AP BP =+,那么:(A)22S CP (B)22S CP = (C)22S CP (D)不确定( )6.满足方程222()x y x y xy +=++的所有正整数解有:(A)一组 (B)二组 (C)三组 (D)四组二. 填空题.(每小题7分,共28分)1.一辆客车,一辆货车和一辆小轿车在同一条直线上朝同一方向行驶,在某一时刻,货车在中,客车在前,小轿车在后,且它们的距离相等.走了10分钟,小轿车追上了货车;又走了5分钟,小轿车追上了客车.问再过分钟,货车追上了客车.2.若多项式2228171642070P a ab b a b =-+--+,那么P 的最小值是 .3.如图1, ∠AOB=30O , ∠AOB 内有一定点P ,且OP=10.在OA 上有一点Q,OB 上有一点R.若ΔPQR 周长最小,则最小周长是 .4.已知二次函数2(1)y ax a =≥的图象上两点A,B 的横坐标分别为1,2-,O 是坐标原点,如果ΔAOB 是直角三角形,则ΔAOB 的周长为 .第 二 试一.(20分)已知实数,,a b c 满足不等式,a b c b c a ≥+≥+,c a b ≥+,求a b c ++的值.二.(25分)如图2,点D 在ΔABC 的边B 小 C 上,且与B,C 不重合,过点D 作AC 的平行线DE 交AB 于E,作AB 的平行线DF 交AC 于点F.又知BC=5.(1) 设ΔABC 的面积为S.若四边形AEFD 的面积为25S .求BD 长.(2) 若,AC =且DF 经过ΔABC 的重心G,求E,F 两点的距离.三.(25分)已知定理:”若三个大于3的质数,,a b c 满足关系式25a b c +=,则a b c ++是整数n 的倍数.”试问:上述定理中整数n 的最大可能值是多少?并证明你的结论。

初二数学竞赛训练题5

初二数学竞赛训练题5

练习卷51. 1.若实数a 、b 、c 、d 满足a +1=b -2=c +3=d -4,则a 、b 、c 、d 这四个实数中最大的是( )A .aB .bC .cD .d2.一个凸多边形的每一个内角都等于150°,则这个多边形所有对角线的条数共有( )A 、42条B 、54条C 、66条D 、78条3.如图是一个正方体的表面展开图,已知正方体相对两个面上的数值相同,且不相对两个面上的数值不相同,则“★”面上的数为( )A .1B .1或2C .2D .2或34.关于x 满足32537213x x x +-≥--,且23+--x x 的最大值为p ,最小值为q ,则pq 的值是( )A .6B .5C .-5D .45.如图,直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =3,BC =5,将腰DC 绕点D 的逆时针方向旋转90°至DE ,连结AE ,则△ADE 的面积是( )A .1B .2C .3D .46.如图,矩形ABCD 的对角线相交于点O ,AE 平分∠BAD 交BC 于E , 若∠CAE=15°则∠BOE=( )A 、30°B 、45°C 、60°D 、75°7. 若不等式a x x ≤-+-3312有解,则实数a 最小值是( )A 、1B 、2C 、4D 、68. 若实数a 、b 、c 、d 满足4321-=+=-=+d c b a ,则a 、b 、c 、d 这四个实数中最大的是( )A 、aB 、bC 、cD 、d9.已知=++++++++2009200913312211112222 ( ) A 、1 B 、20092008 C 、20102009 D 、20092010 10. 已知51=-a a ,则aa 1-=______________. 11. 一次函数)(111为正整数k k x k k y +++-=的图像与x 轴、y 轴的交点是A 、B ,O 为原点,设Rt△AB O 的面积是k S ,则=++++2009321S S S S ____________.12. 规定任意两个实数对()()d c b a ,,和:当且仅当a=c 且b=d 时,()()d c b a ,,=.定义运算“⊗”: ()()()bc ad bd ac d c b a +-=⊗,,,.若()()()0,5,2,1=⊗q p ,则=+q p _____.13. 已知△ABC 中,AB=39;BC=6;CA=3.点M 是BC 中点,过点B 作AM 延长线的垂线,垂足为D ,则线段BD 的长度是 .14. 一次棋赛,有n 个女选手和9n 个男选手,每位参赛者与其110-n 个选手各对局一次,计分方式为:胜者的2分,负者得0分,平局各自得1分。

数学竞赛资料-数学奥林匹克初中训练题(含答案)

数学竞赛资料-数学奥林匹克初中训练题(含答案)

数学奥林匹克初中训练题第一试一、选择题(每小题7分,共42分) 1.设z y x ++=+++6323,且x 、y 、z 为有理数.则xyz =(). (A)3/4 (B)5/6 (C)7/12(D)13/18 2.设二次函数f (x )=ax 2+ax +1的图像开口向下,且满足f (f (1))=f (3).则2a 的值为( ). (A)-3 (B)-5 (C)-7 (D)-9 3.方程|xy |+|x +y |=1的整数解的组数为(). (A)2 (B)4 (C)6(D)8 **、b 是方程x2+(m -5)x+7=0的两个根.则(a2+ma+7)(b2+mb+7)=( ). (A)365 (B)245 (C)210(D)175 5.如图,Rt △ABC 的斜边BC =4,∠ABC =30°,以AB 、AC 为直径分别作圆.则这两圆的公共部分面积为( ) (A)2332+π (B) 33265-π (C) 365-π(D) 332-π 6.从1,2,…,13中取出k 个不同的数,使这k 个数中任两个数之差既不等于5,也不等于8.则k 的最大值为(). (A)5 (B)6 (C)7 (D)8 二、填空题(每小题7分,共28分)1.若整系数一元二次方程x 2+(a +3)x +2a +3=0有一正根x 1和一负根x 2,且|x 1|<|x 2|,则a = .2.当x =2329-时,代数式x 4+5x 3-3x 2-8x +9的值是的值是. 3.给定两组数,A 组为:1,2,…,100;B 组为:12,22,…,1002.对于A 组中的数x ,若有B组中的数y ,使x +y 也是B 组中的数,则称x 为“关联数”.那么,A 组中这样的关联数有组中这样的关联数有个.4.已知△ABC 的三边长分别为的三边长分别为AB =2576a 2+,BC =62514a a 2++,AC =62514a -a 2+,其中a >7.则△ABC 的面积为面积为 .第二试一、(20分)解方程:(12x +5)2(6x -1)(x +1)=255.二、(25分)如图,四边形ABCD 中,∠ACB =∠ADB =90°,自对角线AC 、BD 的交点N 作NM ⊥AB 于点M ,线段AC 、MD 交于点E ,BD 、MC 交于点F ,P 是线段EF 上的任意一点证明:点P 到线段CD 的距离等于点P 到线段MC 、MD 的距离之和.三、(25分)矩形玻璃台板碎裂成一些小玻璃片,矩形玻璃台板碎裂成一些小玻璃片,每块碎片都是凸多边形,每块碎片都是凸多边形,每块碎片都是凸多边形,将其重新粘合成原将其重新粘合成原矩形后,有交结点30个,其中20个点在原矩形的周界上(包括原矩形的四个顶点),其余10个点在矩形内部.在矩形的内部有45条粘缝(两个结点之间的线段算是一条粘缝,如图所示).试求该矩形台板所碎裂成的各种类型(指三角形、四边形、五边形等)的块数. 说明:若凸多边形的周界上有n 个点,就将其看成n 边形,例如,图中的多边形ABCDE 要看成五边形.数学奥林匹克初中训练题1参考答案参考答案第一试第一试1.A .两边平方得3+2 +3+6=x +y +z +2xy +2yz +2xz .根据有理数x 、y 、z 的对称性,可考虑方程组可考虑方程组 x +y +z =3,2xy =2,2yz =3,2xz = 6.解得x =1,y =1/2,z =3/2.此时,xyz =3/4.**.注意到f(1)=2a+1,f(3)=12a+1,f(f(1))=a(2a+1)2+a(2a+1)+1.由f(f(1))=f(3),得(2a +1)2+(2a +1)=12.所以,2a +1=3或-4.因a <0,故2a =-5. **.因x 、y 为整数,则|xy |、|x +y |为非负整数.于是,|xy |、|x +y |中一个为0,一个为1.分情形考虑得6组解. **.由ab =7,a 2+ma +7=5a ,b 2+mb +7=5b ,所以,(a 2+ma +7)(b 2+mb +7)=25ab =175. **.记两圆公共部分的面积为S .如图,易知S =S 扇形EAD +S 扇形F AD -S 四边形AEDF =5π/6-3 . **.将这13个数按照相邻两数的差为5或8排列于一个圆周上(如图5).若取出的数多于6个,则必有2个数在圆周上相邻.另一方面,可以取出适合条件的6个数(任取圆周上不相邻的6个数即可),因此,k 的最大值为6. 二、1.-2.因方程的两根不等,故Δ>0,即(a +3)2>4(2a +3).解得a >3或a <-1.又由题设条件知,方程的两根和与积皆负,即-(a +3)<0,2a +3<0.从而,a >-3,a <-3/2,即-3<a <-3/2.而a 为整数,则a =-2. 2. 32297-. x =2329-是方程x 2+3x -5=0的根, **.记x +y =a 2,y =b 2,则1≤b <a ≤100.而x =a 2-b 2=(a +b )(a -b )≤100,因a +b 、a -b 同奇偶,故a +b ≥(a -b )+2.(1)若a -b =1,则a +b 为奇数,且3≤a +b ≤99.于是,a +b 可取3,5,7,…,99,共49个值,这时,相应的x 也可取这49个值.(2)若a -b =2,则a +b 为偶数,且4≤a +b ≤50.于是,a +b 可取4,6,8,…,50,共24个值,这时,相应的x 可取8,12,16,…,100这24个值. 其他情况下所得的x 值均属于以上情形.若a -b =奇数,则a +b =奇数.而x =a 2-b 2≥a +b ≥3,归入(1).若a -b =偶数,则a +b =偶数.而x =(a -b )(a +b )为4的倍数,且a -b ≥2,a +b ≥4,故x ≥8,归入(2). 因此,这种x 共有49+24=73个. **.注意到AB 2=(2a )2+482,BC 2=(a +7)2+242,AC 2=(a -7)2+242.如图,以AB 为斜边,向△ABC 一侧作直角△ABD ,使BD =2a ,AD =48,∠ADB =90°=90°. . 在BD 上取点E ,使BE =a +7,ED =a -7,又取AD 的中点F ,作矩形EDFC 1.因BC 21=BE 2+EC 21=(a +7)2+242=BC 2,AC 21=C 1F 2+AF 2=(a -7)2+242=AC 2,故点C 与点C 1重合.而S △ABD =48a ,S △CBD =24a ,S △ACD =24(a -7),则S △ABC =S △ABD -S △CBD -S △ACD =168. 第二试第二试一、将原方程变形得(12x +5)2(12x -2)(12x +12)=660.令12x +5=t ,则t 2(t -7)(t +7)=660,即t 4-49t 2=660.解得t 2=60或t 2=-11(舍去). 由此得t =±=±2 15,2 15,即有12x +5=±+5=±2215.因此,原方程的根为x 1,2=1215 25- .二、如图,易知A 、B 、C 、D 四点共圆,B 、C 、N 、M 四点共圆,因此,∠ACD =∠ABD =∠MCN .故AC 平分∠DCM .同理,BD 平分∠CDM .如图,设PH ⊥MC 于点H ,PG ⊥MD 于点G ,PT ⊥CD 于点T ;过点P 作XY ∥MC ,交MD 于点X ,交AC 于点Y ;过点Y 作YZ ∥CD ,交MD 于点Z ,交PT 于点R ;再作YH 1⊥MC 于点H 1,YT 1⊥CD 于点T 1由平行线及角平分线的性质得PH =YH 1=YT 1=RT 为证PT =PG +PH ,只须证PR =PG 由平行线的比例性质得EP /EF =EY /EC =EZ /ED .因此,ZP ∥DF .由于△XYZ 与△MCD 的对应边分别平行,且DF 平分∠MDC ,故ZP 是∠XZY 的平分线.从而,PR =PG .因此,所证结论成立.三、设全部碎片中,共有三角形a 3个,四边形a 4个,……,k 边形a k 个(a 3,a 4,…,a k 为非负整数).记这些多边形的内角和为S 角,于是,S 角=a 3×π+a 4×2π+…+a k (k -2)π.另一方面,矩形内部有10个结点,对于每个点,围绕它的多边形顶角和为2π,10个内结点共获得10×10×22π弧度;矩形边界上(不含4个顶点)共有16个结点,在每个这种结点处,各多边形的顶角在此汇合成一个平角,16个这种结点共获得16π弧度;而原矩形的4个顶点处,共获得多边形碎片的2π弧度.因此,S 角=20π+16π+2π=38π. 于是,a 3+2a 4+…+(k -2)a k =38.①记这些多边形的边数和为S 边.由于每个n 边形有n 条边,则S 边=3a 3+4a 4+…+ka k .另一方面,在矩形内部的45条粘缝,每条都是两个多边形的公共边,故都计算了两次;矩形周界上的20条线段各被计算了一次,因此,S 边=2×=2×45+20=110. 45+20=110. 于是,3a 3+4a 4+…+ka k =110.② ②-①得2(a 3+a 4+…+a k )=72.故a 3+a 4+…+a k =36.③ ①-③得a 4+2a 5+3a 6+…+(k -3)a k =2.因所有a i ∈N ,故a 6=a 7=…=a k =0,a 4+2a 5=2.所以,或者a 4=2,a 5=0;或者a 4=0,a 5=1.综上,本题的解共有两种情况,即全部碎片共36块,其中,或含有34个三角形,2个四边形;或含有35个三角形,1个五边形.。

初中数学竞赛辅导全完整版.doc

初中数学竞赛辅导全完整版.doc

第一篇 一元一次方程的讨论第一部分 基本方法1. 方程的解的定义:能使方程左右两边的值相等的未知数的值叫做方程的解。

一元方程的解也叫做根。

例如:方程 2x +6=0, x (x -1)=0, |x |=6, 0x =0, 0x =2的解 分别是: x =-3, x =0或x =1, x =±6, 所有的数,无解。

2. 关于x 的一元一次方程的解(根)的情况:化为最简方程ax =b 后, 讨论它的解:当a ≠0时,有唯一的解 x =ab; 当a =0且b ≠0时,无解;当a =0且b =0时,有无数多解。

(∵不论x 取什么值,0x =0都成立) 3. 求方程ax =b (a ≠0)的整数解、正整数解、正数解 当a |b 时,方程有整数解;当a |b ,且a 、b 同号时,方程有正整数解; 当a 、b 同号时,方程的解是正数。

综上所述,讨论一元一次方程的解,一般应先化为最简方程ax =b 第二部分 典例精析例1 a 取什么值时,方程a (a -2)x =4(a -2) ①有唯一的解?②无解? ③有无数多解?④是正数解?例2 k取什么整数值时,方程①k(x+1)=k-2(x-2)的解是整数?②(1-x)k=6的解是负整数?例3己知方程a(x-2)=b(x+1)-2a无解。

问a和b应满足什么关系?例4a、b取什么值时,方程(3x-2)a+(2x-3)b=8x-7有无数多解?第三部分典题精练1. 根据方程的解的定义,写出下列方程的解:①(x+1)=0, ②x2=9, ③|x|=9,④|x|=-3,⑤3x +1=3x -1, ⑥x +2=2+x2. 关于x 的方程ax =x +2无解,那么a __________3. 在方程a (a -3)x =a 中,当a 取值为____时,有唯一的解; 当a ___时无解;当a _____时,有无数多解; 当a ____时,解是负数。

4. k 取什么整数值时,下列等式中的x 是整数?① x =k4②x =16-k ③x =k k 32+ ④x =123+-k k5. k 取什么值时,方程x -k =6x 的解是 ①正数? ②是非负数?6. m 取什么值时,方程3(m +x )=2m -1的解 ①是零? ②是正数?7. 己知方程221463+=+-a x 的根是正数,那么a 、b 应满足什么关系?8. m 取什么整数值时,方程m m x 321)13(-=-的解是整数?9. 己知方程ax x b 231)1(2=++有无数多解,求a 、b 的值。

初中数学竞赛辅导资料(70)

初中数学竞赛辅导资料(70)

初中数学竞赛辅导资料(70)正整数简单性质的复习甲. 连续正整数一. n 位数的个数:一位正整数从1到9,共9个,两位数从10到99,共90个,三位数从100到999共9×102个,那么 n 位数的个数共__________.(n 是正整数)练习:1. 一本书共1989页,用0到9的数码,给每一页编号,总共要用数码___个.2. 由连续正整数写成的数1234……9991000是一个_______位数;100110021003……19881989是_______位数.3. 除以3余1的两位数有____个,三位数有____个,n 位数有_______个.4. 从1到100的正整数中,共有偶数____个,含 3的倍数____个;从50到1000的正整数中,共有偶数____个,含3的倍数____个.二. 连续正整数的和:1+2+3+……+n=(1+n)×2n . 把它推广到连续偶数,连续奇数以及以模m 有同余数的连续数的和.练习:5.计算2+4+6+……+100=__________.6. 1+3+5+……+99=____________.7. 5+10+15+……+100=_________.8. 1+4+7+……+100=____________.9. 1+2+3+……+1989其和是偶数或奇数?答______10. 和等于100的连续正整数共有______组,它们是______________________.11. 和等于100的连续整数共有_____组,它们是__________________________.三. 由连续正整数连写的整数,各位上的数字和整数 123456789各位上的数字和是:(0+9)+(1+8)+…+(4+5)=9×5=45;1234…99100各位数字和是(0+99)+(1+98)+…+(49+50)+1=18×50+1=901.练习:12. 整数 1234……9991000各位上的数字和是_____________.13. 把由1开始的正整数依次写下去,直到第198位为止:44443444421ΛΛ位198011121234567891这个数用9除的余数是__________. (1987年全国初中数学联赛题)14. 由1到100这100个正整数顺次写成的数1234……99100中:① 它是一个________位数;② 它的各位上的数字和等于________;③ 从这一数中划去100个数字,使剩下的数尽可能大,那么 剩下的数的前十位是___________________________.四.连续正整数的积:① 1×2×3×…×n 记作n ! 读作n 的阶乘.② n 个连续正整数的积能被n !整除.如:2!|a(a+1), 3!|a (a+1)(a+2), n !|a(a+1)(a+2)…(a+n -1). a 为整数.③ n ! 中含有质因数m 的个数是⎥⎦⎤⎢⎣⎡m n +⎥⎦⎤⎢⎣⎡2m n +…+⎥⎦⎤⎢⎣⎡i m n . [x]表示不大于x 的最大正整数,i=1,2,3… m i ≤n如:1×2×3×…×10的积中,含质因数3的个数是:⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡2310310=3+1=4 练习:15. 在100!的积中,含质因数5的个数是:____16.一串数1,4,7,10,……,697,700相乘的积中,末尾共有零_______个(1988年全国初中数学联赛题)17. 求证:10494 | 1989!18. 求证:4! | a(a 2-1)(a+2) a 为整数五. 两个连续正整数必互质练习:19. 如果n+1个正整数都小于2n, 那么必有两个是互质数,试证之.乙. 正整数十进制的表示法一. n+1位的正整数记作:a n ×10n +a n -1×10n -1+……+a 1×10+a 0其中n 是正整数,且0≤a i ≤9 (i=1,2,3,…n)的整数, 最高位a n ≠0.例如:54321=5×104+4×103+3×102+2×10+1.例题:从12到33共22个正整数连写成A=121314…3233. 试证:A 能被99整除.证明:A=12×1042+13×1040+14×1038+……+31×104+32×102+33=12×10021+13×10020+14×1019+……+31×1002+32×100+33.∵ 100的任何次幂除以9的余数都是1,即100 n =(99+1) n ≡1 (mod 9)∴ A=99k+12+13+14+……+31+32+33 (k 为正整数 )=99 k+(12+33)+(13+32)+…+(22+23)=99k+45×11=99k+99×5.∴A 能被99整除.练习:20. 把从19到80的连结两位数连写成19202122…7980.试证明这个数能被1980整除二. 常见的一些特例 43421Λ99999个n =10 n -1, 321Λ33333个n =31(10 n -1), 9111111=321Λ个n (10 n -1). 例题:试证明12,1122,111222,11112222,……这些数中的任何一个,都是两个相邻的正整数的积.证明:第n 个数是43421Λ321Λ2122221111个个n n =)110(91 -n ×10 n +)110(92-n =)110(91 -n (10 n +2) =331103110+-⨯-n n=)13110(3110+-⨯-n n =321Λ33333个n ×433333)1(321Λ个-n . 证毕. 练习:21. 化简 43421Λ99999个n ×43421Λ99999个n +143421Λ99999个n =_______________________________.22. 化简 43421Λ321Λ2122222-1111个个n n =____________________________________________.23. 求证 321Λ119901111个是合数.24. 已知:存在正整数 n,能使数321Λ11111个n 被1987整除.求证:数p=321Λ11111个n 43421Λ99999个n 321Λ88888个n 43421Λ77777个n 和数q=321Λ111111个+n 43421Λ919999个+n 321Λ818888个+n 43421Λ717777个+n 都能被1987整除.(1987年全国初中数学联赛题)25. 证明: 把一个大于1000的正整数分为末三位一组,其余部分一组,若这两组数的差,能被7(或13)整除,则这个正整数就能被7(或13)整除.26. 求证:321Λ11111个n ×143421Λ010000个-n 5+1是完全平方数.丙. 末位数的性质.一.用N (a)表示自然数的个位数. 例如a=124时,N (a)=4; a=-3时,N (a)=3.1. N (a 4k+r )=N (a r ) a 和k 都是整数,r=1,2,3,4.特别的: 个位数为0,1,5,6的整数,它们的正整数次幂的个位数是它本身.个位数是4,9 的正偶数次幂的个位数也是它本身.2. N (a)=N (b)⇔N (a -b)=0⇔10 |(a -b).3. 若N (a)=a 0, N (b)=b 0. 则N (a n )=N (a 0n ); N (ab)=N (a 0b 0).例题1:求①53100 ; 和 ②777的个位数. 解:①N (53100)=N (34×24+4)=N (34)=1②先把幂的指数77化为4k+r 形式,设法出现4的因数.77=77-7+7=7(76-1)+4+3=7(72-1)(74+72+1)+4+3=7×4×12× (74+72+1)+4+3=4k+3∴N(777)=N(74k+3)=N(73)=3.练习:27. 19891989的个位数是______,999的个位数是_______.28. 求证:10 | (19871989-19931991).29. 2210×3315×7720×5525的个位数是______.二. 自然数平方的末位数只有0,1,4,5,6,9;连续整数平方的个位数的和,有如下规律:12,22,32,……,102的个位数的和等于1+4+9+6+5+5+9+4+0=45.1. 用这一性质计算连续整数平方的个位数的和例题1. 填空:12,22,32,……,1234567892的和的个位数的数字是_______.(1991年全国初中数学联赛题) 解:∵12,22,32,……,102的个位数的和等于1+4+9+6+5+5+9+4+0=45.11到20;21到30;31到40;………123456781到123456789,的平方的个位数的和也都是45. 所以所求的个位数字是:(1+4+9+6+5+5+9+4+0)×(12345678+1)的个位数5.2. 为判断不是完全平方数提供了一种方法例题2. 求证:任何五个连续整数的平方和不能是完全平方数.证明:(用反证法)设五个连续整数的平方和是完全平方数,那么可记作:(n-2)2+(n-1)2+n2+(n+1)2+(n+2)2=k2(n, k都是整数)5(n2+2)=k2 .∵k2是5的倍数,k也是5的倍数.设k=5m, 则5(n2+2)=25m2.n2+2=5m2.n2+2是5的倍数,其个位数只能是0或5,那么n2的倍数是8或3.但任何自然数平方的末位数,都不可能是8或3.∴假设不能成立∴任何五个连续整数的平方和不能是完全平方数.3.判断不是完全平方数的其他方法例题3. 已知:a是正整数.求证:a(a+1)+1不是完全平方数证明:∵a(a+1)+1=a2+a+1,且a是正整数∴a2< a(a+1)+1=a2+a+1<(a+1)2,∵a 和a+1是相邻的两个正整数,a(a+1)+1介于它们的平方之间∴a(a+1)+1不是完全平方数例题4. 求证:321Λ11111个n(n>1的正整数) 不是完全平方数证明:根据奇数的平方数除以4必余1,即(2k+1)2=4(k+1)+1.但321Λ11111个n =1100111112-+321Λ个n=4k+11=4k+4×2+3=4(k+2)+3即32 1Λ11111个n除以4余数为3,而不是1,∴它不是完全平方数.例题5. 求证:任意两个奇数的平方和,都不是完全平方数.证明:设2a+1,2b+1(a,b是整数)是任意的两个奇数.∵(2a+1)2+(2b+1)2=4a2+4a+1+4b2+4b+1=4(a2+b2+a+b)+2.这表明其和是偶数,但不是4的倍数,故任意两个奇数的平方和,都不可能是完全平方数.三. 魔术数:将自然数N 接写在每一个自然数的右面,如果所得到的新数,都能被N整除,那么N 称为魔术数.常见的魔术数有:a) 能被末位数整除的自然数,其末位数是1,2,5 (即10的一位正约数是魔术数) b) 能被末两位数整除的自然数,其末两位数是10,20,25,50(即100的两位正约数也是魔术数))c) 能被末三位数整除的自然数,其三末位数是100,125,200,250,500(即1000的三位正约数也是魔术数)练习:30. 在小于130的自然数中魔术数的个数为_________.(1986年全国初中数学联赛题)四. 两个连续自然数,积的个位数只有0,2,6;和的个位数只有1,3,5,7,9. 练习:31. 已知:n 是自然数,且9n 2+5n+26的值是两个相邻自然数的积,那么n 的值是:___________________. (1985年上海初中数学竞赛题)丁. 质数、合数1. 正整数的一种分类:⎪⎩⎪⎨⎧).1(.)1( 1然数整除和本身外还能被其他自除合数;然数整除和本身外不能被其他自除质数; 2. 质数中,偶数只有一个是2,它也是最小的质数.3. 互质数:是指公约数只有1的两个正整数. 相邻的两个正整数都是互质数.例题:试写出10个连续自然数,个个都是合数.解:答案不是唯一的,其中的一种解法是:令A=1×2×3×4×5×6×7×8×9×10×11那么A+2,A+3,A+4,A+5,A+6,A+7,A+8,A+9,A+10,A+11就是10个连续数,且个个都是合数.一般地,要写出n 个连续自然数,个个是合数,可用令m=n+1, 那么m !+2, m !+3, m !+4, +……+ m !+n+1 就是所求的合数.∵m !+i (2≤i ≤n+1) 有公约数i.练习:32. 已知质数a , 与奇数b 的和等于11,那么a=___,b=___.33. 两个互质数的最小公倍数是72,若这两个数都是合数,那么它们分别等于____,____.34. 写出10个连续正奇数,个个都是合数,可设m=(10+1)×2, m !=22!那么所求的合数是22!+3,_____,____,____,……35. 写出10个连续自然数,个个都是合数,还可令 N=2×3×5×7×11.(这里11=10+1,即N 是不大于11的质数的积).那么 N+2,N+3,N+4,……N+11就是所求的合数.这是为什么?如果 要写15个呢?36. 已知:x, m, n 都是正整数 . 求证:24m+2+x 4n 是合数.戊.奇数和偶数1.整数的一种分类:⎩⎨⎧)12(.2)02(2,余数为即除以整除的整数奇数:不能被,余数为即除以整除的整数;偶数:能被2. 运算性质:奇数+奇数=偶数, 偶数+偶数=偶数, 奇数+偶数=奇数.奇数×奇数=奇数,偶数×偶数=偶数,奇数×偶数=偶数.(奇数)正整数=奇数,(偶数)正整数=偶数.4. 其他性质:① 两个连续整数必一奇一偶,其和是奇数,其积是偶数.② 奇数的平方被4除余1;偶数的平方能被4整除;除以4余2或3的整数不是平方数.a) 2n (n 为正整数)不含大 于1的奇因数.b) 若两个整数的和(差)是奇数,则它们必一奇一偶.c) 若n 个整数的积是奇数,则它们都是奇数.例1. 设m 与n 都是正整数,试证明m 3-n 3为偶数的充分必要条件是m -n 为偶数.证明:∵m 3-n 3=(m -n )(m 2+mn+n 2).当m -n 为偶数时,不论m 2+mn+n 2是奇数或偶数,m 3-n 3都是偶数;∴m -n 为偶数是m 3-n 3为偶数的充分条件.当m -n 为奇数时,m, n 必一奇一偶,m 2,mn ,n 2三个数中只有一个奇数,∴m 2+mn+n 2是奇数,从而m 3-n 3也是奇数.∴m -n 为偶数,是m 3-n 3为偶数的必要条件.综上所述m 3-n 3为偶数的充分必要条件是m -n 为偶数.例2. 求方程x 2-y 2=1990的整数解.解:(x+y)(x -y)=2×5×199.若x, y 同是奇数或同是偶数,则 x+y ,x -y 都是偶数,其积是4的倍数,但1990不含4的因数,∴方程左、右两边不能相等.若x, y 为一奇一偶,则x -y ,x+y 都是奇数,其积是奇数,但1990不是奇数,∴方程两边也不能相等.综上所述,不论x, y 取什么整数值,方程两边都不能相等.所以 原方程没有整数解本题是根据整数的一种分类:奇数和偶数,详尽地讨论了方程的解的可能性.练习:37. 设n 为整数,试判定n 2-n+1是奇数或偶数.38. 1001+1002+1003+……+1989其和是偶数或奇数,为什么?39. 有四个正整数的和是奇数,那么它们的立方和,不可能是偶数,试说明理由.40. 求证:方程x 2+1989x+9891=0没有整数根.41. 已知: ⎩⎨⎧=⨯⨯⨯⨯=++++.0321321n x x x x x x x x n n ΛΛ; 求证:n 是4的倍数. 42. 若n 是大于1的整数,p=n+(n 2-1)2)1(1n --试判定p 是奇数或偶数,或奇偶数都有可能. (1985年全国初中数学联赛题)已. 按余数分类1. 整数被正整数 m 除,按它的余数可分为m 类,称按模m 分类.如:模m=2,可把整数分为2类:{2k}, {2k+1} k 为整数,下同模m=3,可把整数分为3类:{3k}, {3k+1},{3k+2}.……模m=9,可把整数分为9类:{9k},{9k+1},{9k+2}.…{9k+8}.2. 整数除以9的余数,与这个整数各位上的数字和除以9的余数相同.如:6372,5273,4785各位数字和除以9的余数分别是0,8,6. 那么这三个数除以9的余数也分别是0,8,6.3. 按模m 分类时,它们的余数有可加,可乘,可乘方的性质.如:若a=5k 1+1, b=5k 2+2.则a+b 除以5 余数 是3 (1+2);ab 除以5余2 (1×2);b 2 除以5余4 (22).例1. 求19891989除以7的余数.解:∵19891989=(7×284+1)1989,∴19891989≡11989 ≡1 (mod 7).即19891989除以7的余数是1.练习:43. 今天是星期一,99天之后是星期________.44. n 个整数都除以 n -1, 至少有两个是同余数,这是为什么?45. a 是整数,最简分数7a 化为小数时,若为循环小数,那么一个循环节最多有几位?4. 运用余数性质和整数除以9的余数特征,可对四则运算进行检验例2. 下列演算是否正确?① 12625+9568=21193 ; ② 2473×429=1060927.解:①用各位数字和除以9,得到余数:12625,9568,21193除以9的余数分别是7,1,7.∵ 7+1≠7, ∴演算必有错.② 2473,429,1060927除以9的余数分别是7,6,7.而7×6=42,它除以9余数为6,不是7,故演算也有错.注意:发现差错是准确的,但这种检验并不能肯定演算是绝对正确.练习:46. 检验下列计算有无差错:①372854-83275=289679 ; ②23366292÷6236=3748.5. 整数按模分类,在证明题中的应用例3. 求证:任意两个整数a 和b ,它们的和、差、积中,至少有一个是3的倍数.证明:把整数a 和b 按模3分类,再详尽地讨论.如果a, b 除以3,有同余数 (包括同余0、1、2),那么a, b 的差是3的倍数;如果a, b 除以3,余数不同,但有一个余数是0,那么a, b 的积是3的倍数;如果a, b 除以3,余数分别是1和2,那么a, b 的和是3的倍数.综上所述任意两个整数a ,b ,它们的和、差、积中,至少有一个是3的倍数.(分类讨论时,要求做到既不重复又不违漏)例4. 已知: p ≥5,且 p 和2p+1都是质数.求证:4p+1是合数.证明:把整数按模3分类. 即把整数分为3k,3k+1,3k+2 (k 为整数)三类讨论∵p 是质数,∴不能是3的倍数,即p ≠3k ;当p=3k+1时, 2p+1=2(3k+1)+1=3(2k+1). ∴ 2p+1不是质数,即p ≠3k+1; 只有当质数p=3k+2时, 2p+1=2(3k+2)+1=6k+5.∴2 p+1也是质数, 符合题设.这时,4p+1=4(3k+2)+1=3(4k+3)是合数. 证毕练习:47. 已知:整数a 不能被2和3整除 . 求证:a 2+23能被24整除.48. 求证:任何两个整数的平方和除以8,余数不可能为6.49. 若正整数a 不是5的倍数. 则a 8+3a 4-4能被100整除.50. 已知:自然数n>2求证:2n -1和2n +1中,如果 有一个是质数,则另一个必是合数.51.设a,b,c 是三个互不相等的正整数,求证 a 3b -ab 3,b 3c -bc 3,c 3a -ca 3三个数中,至少有一个能被10整除. (1986年全国初中数学联赛题)庚. 整数解1. 二元一次方程 ax+by=c 的整数解:当a,b 互质时,若有一个整数的特解⎩⎨⎧==00y y x x 那么可写出它的通解)(00为整数k ak y y bk x x ⎩⎨⎧-=+= 2. 运用整数的和、差、积、商、幂的运算性质整数±整数=整数, 整数×整数=整数,整数÷(这整数的约数)=整数, (整数)自然数=整数3. 一元二次方程,用求根公式,根的判别式,韦达定理讨论整数解.4. 根据已知条件讨论整数解.例1. 小军和小红的生日.都在10月份,且星期几也相同,他们生日的日期的和等于34,小军比小红早出生,求小军的生日.解:设小军和小红的生日分别为x, y ,根据题意,得⎩⎨⎧=+=-347x y k x y (k=1,2,3,4) 2x=34-7k x=17-k 27 k=1, 3时, x 没有整数解;当k=2时, ⎩⎨⎧==.2410y x , 当k=4时,⎩⎨⎧==.313y y x , (10月份没有31日,舍去) ∴小军的生日在10月10日例2. 如果一个三位数除以11所得的商,是这个三位数的各位上的数的平方和,试求符合条件的所有三位数. (1988年泉州市初二数学双基赛题)解:设三位数为100a+10b+c, a, b, c 都是整数,0<a ≤9,0≤b, c ≤9.那么 1191110100c b a b a c b a +-++=++ , 且-8<a -b+c<18. 要使a -b+c 被11整除,其值只能是0和11.( 1)当a -b+c=0时, 得9a+b=a 2+b 2+c 2.以b=a+c 代入,并整理为关于a 的二次方程,得2a 2+2(c -5)a+2c 2-c=0根据韦达定理⎪⎩⎪⎨⎧-=-=+.2522121c c a a c a a , 这是必要而非充分条件. ∵5-c>0, 以c=0, 1, 2, 3, 4 逐一讨论a 的解.当 c=2, 4时,无实数根; 当c=1, 3时,无整数解;只有当c=0时,a=5;或 a=0. (a=0不合题意,舍去)∴只有c=0, a=5, b=5适合∴所求的三位数是550;(2)当a -b+c=11时, 得9a+b+1=a 2+b 2+c 2.以b=a+c 代入,并整理为关于a 的二次方程,得2a 2+2(c -16)a+2c 2-23c+131=0.仿(1)通过韦达定理,由c 的值逐一以讨论a 的解.只有当c=3时, a=8, b=0适合所有条件.即所求三位数为803.综上所述,符合条件的三位数有550和803.练习:52. 正整数x 1, x 2, x 3,……x n 满足等式x 1+x 2+x 3+x 4+x 5=x 1x 2x 3x 4x 4x 5 那么 x 5的最大值是________. (1988年全国初中数学联赛题)53. 如果p, q, pq q p 12,12-- 都是整数,.且p>1, q>1, 试求p+q 的值. (1988年全国初中数学联赛题) 54.能否找到这样的两个正整数m 和n ,使得等式m 2+1986=n 2成立. 试说出你的猜想,并加以证明. (1986年泉州市初二数学双基赛题) 55.当m 取何整数时,关于x 的二次方程m 2x 2-18mx+72=x 2-6x 的根是正整数,并求出它的根. (1988年泉州市初二数学双基赛题) 56.若关于x 的二次方程(1+a )x 2+2x+1-a=0的两个实数根都是整数,那么a 的取值是________________. (1989年泉州市初二数学双基赛题) 57.不等边三角形的三条边都是整数,周长的值是28,最大边与次大边的差比次大边与最小边的差大1,适合条件的三角形共有____个,它们的边长分别是:______________________________________________________________. 58.直角三角形三边长都是整数,且周长的数值恰好等于面积的数值,求各边长. 59.鸡翁一,值钱;,鸡母一,值钱三;鸡雏三,值钱一.百钱买百鸡,问鸡翁、鸡母、鸡雏各几何? 60. 甲买铅笔4支,笔记本10本,文具盒1个共付1.69元,乙买铅笔3支,笔记本7本,文具盒1个共付1.26元,丙买铅笔、笔记本、文具盒各1,应付几元? 若1×2×3×4×……×99×100=12 n ×M ,其中M 为自然数,n 为使得等式成立的最大自然数,则M 是( )(A).能被2整除,不能被3整除 . (B).能被3整除,但不能被2整除.(C).被4整除,不能被3整除. (D).不能被3整除,也不能被2整除.(1991年全国初中数学联赛题)。

(共30套)初中数学竞赛辅导讲义及习题解答大全 (含竞赛答题技巧)

(共30套)初中数学竞赛辅导讲义及习题解答大全 (含竞赛答题技巧)

(共30套)初中数学竞赛辅导讲义及习题解答大全适合中学教师作为辅导教材使用第一讲 走进追问求根公式形如02=++c bx ax (0≠a )的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法。

而公式法是解一元二次方程的最普遍、最具有一般性的方法。

求根公式aacb b x 2422,1-±-=内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美。

降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决。

解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法。

【例题求解】【例1】满足1)1(22=--+n n n 的整数n 有 个。

思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程。

【例2】设1x 、2x 是二次方程032=-+x x 的两个根,那么1942231+-x x 的值等于( )A 、一4B 、8C 、6D 、0思路点拨:求出1x 、2x 的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如1213x x -=,2223x x -=。

【例3】 解关于x 的方程02)1(2=+--a ax x a 。

思路点拨:因不知晓原方程的类型,故需分01=-a 及01≠-a 两种情况讨论。

【例4】设方程04122=---x x ,求满足该方程的所有根之和。

思路点拨:通过讨论,脱去绝对值符号,把绝对值方程转化为一般的一元二次方程求解。

【例5】 已知实数a 、b 、c 、d 互不相等,且x ad d c c b b a =+=+=+=+1111, 试求x 的值。

思路点拨:运用连等式,通过迭代把b 、c 、d 用a 的代数式表示,由解方程求得x 的值。

九年级数学竞赛训练题..

九年级数学竞赛训练题..

九年级数学竞赛训练题一、填空题1.已知a 为整数,关于x 的方程3141222-=+-+a x x x x 有实数根. 则a 的可能值为 .2.[x ]表示不超过实数x 的最大整数. 方程[2x ]+[3x ]=479-x 的所有实数解为 .3.如图,甲、乙两动点分别从正方形ABCD 的顶点A 、C 同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依递时针方向环行. 若乙的速度是甲的速度的5倍,则它们第2010次相遇在边 上.4.设Rt △ABC 的三边分别为a 、b 、c ,且a <b <c . 若1513=+++b c a a c b ,则a :b :c = .5.如图,已知∠AOM =60°,在射线OM 上有点B ,使得AB 与OB 的长度都是整数,由此称B 是“奥数点”. 若OA =8,则图中的奥数点B 的个数为 .6.在平面直角坐标系内有两点P (-1,1)、Q (2,2),一次函数y =kx -1的图象与线段PQ 的延长线相交(交点不包括Q ).则实数k 的取值范围为 .7.设a 、b 、c 都是整数,且对一切实数x ,有))((2)2009)((c x b x x a x --=---都成立. 则所有这样的有序数组(a ,b ,c )共有 组.二、选择题8.若关于x 的方程023)221(2=-+-+m x x (m 为有理数)有一个有理数根,则它的另一根为( ) A .2223+ B .2223- C .2221+- D .2221--9.已知∠MON =40°,P 是∠MON 中的一定点,点A 、B 分别在射线OM 、ON 上移动.当△P AB 周长最小时,∠APB 的值为( )A .80°B .100°C .120°D .140°10.在直角坐标系中,已知点A (-1,2)、B (1,2)、C (-3,1)、D (3,1)、E (―2,―2)、F(2,-2)、G (-4,3)、H (4,3).以这八个点为顶点作三角形,且三角形中任意两顶点不关于y 轴对称. 则这样的三角形共有( )个 A .8 B .24 C .32 D .5611.已知点A (1,2)、B (2,1),线段AB 与直线y =3x +b 有交点. 则b 的取值范围是( ) A .b >-5 B .b <-1 C .―5<b <―1 D .―5≤b ≤―112.在Rt △ABC (AC >BC )中,∠C =90°,点D 在AC 上,且CD =CB =2,DE ∥BC 交AB 于点E ,F 是CD 的中点,且∠BEF =∠B. 则DE 的长为( ) A .32 B .1 C .34 D .3513. 已知f (x )表示关于x 的一个四次多项式,f (a )表示当x =a 时f (x )的值. 若0)3()2()1(===f f f ,6)4(=f ,72)5(=f ,求)6(f 的值为( )A .200B .300C .400D .60014.如图,在平面直角坐标系xOy 中,等腰梯形ABCD 的顶点坐标分别为A (1,1)、B (2,-1)、C (-2,-1)、D (-1,1).y 轴上一点P (0,2)绕点A 旋转180°得点P 1,P 1绕点B 旋转180°得点P 2,P 2绕点C 旋转180°得点P 3,P 3绕点D 旋转180°得点P 4,……重复操作依次得到点P 1,P 2,…,P 2010. 则点P 2010的坐标是( )A .(2010,2)B .(2010,-2)C .(2012,-2)D .(0,2)三、解答题15.设关于x 的方程0212482=-+-+-a x a x x 恰有两个实根. 求a 的取值范围.16.已知a 、b 、c 是整数,满足c >0,3=+b a ,222-=--ab c c .若关于x 的方程0)(2=++++d ab x d c dx 的解只有一个值,求d 的值.17.已知反比例函数xy 6=和一次函数5-=kx y 的图像都经过点P (m ,3). (1)求k 的值;(2)作直线平行于y 轴,并且交一次函数的图像于点A ,交反比例函数的图像于点B ,设点A 、B的横坐标为a . 求a 为何值时,有P A =PB ?18. 设直角三角形的两条直角边长分别为a 、b ,斜边长为c . 若a 、b 、c 均为整数,且)(31b a abc +-=,求满足条件的直角三角形的个数.19.如图,在△ABC 中,∠ABC =45°,点D 在边BC 上,∠ADC =60°,且CD BD 21=. 将△ACD 以直线AD 为轴作轴对称变换,得到△AC ′D ,联结BC ′. (1)求证:BC ′⊥BC ; (2)求∠C 的大小.20.如图,已知在正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC 于点F ,连接DF ,G 为DF 中点. 连接EG ,CG . (1)求证:EG =CG(2)如图(1)中△BEF 绕B 点旋转任意角度,如图(2)所示,再接连相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出其他什么结论?证明你的结论。

初中奥林匹克数学竞赛知识点总结及训练题目-三角形的内切圆

初中奥林匹克数学竞赛知识点总结及训练题目-三角形的内切圆

初中数学竞赛辅导讲义---从三角形的内切圆谈起和多边形的各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形.三角形的内切圆的圆心叫做这个三角形的内心,圆外切三角形、圆外切四边形有下列重要性质:1.三角形的内心是三角形的三内角平分线交点,它到三角形的三边距离相等;2.圆外切四边形的两组对边之和相等,其逆亦真,是判定四边形是否有外切圆的主要方法.当圆外切三角形、四边形是特殊三角形时,就得到隐含丰富结论的下列图形:注:设Rt △ABC 的各边长分别为a 、b 、c (斜边),运用切线长定理、面积等知识可得到其内切圆半径的不同表示式:(1)2c b a r -+=; (2)cb a ab r ++=. 请读者给出证【例题求解】【例1】 如图,在Rt △ABC 中,∠C=90°°,BC=5,⊙O 与Rt △ABC 的三边AB 、BC 、AC 分相切于点D 、E 、F ,若⊙O 的半径r =2,则Rt △ABC 的周长为 .思路点拨 AF=AD ,BE=BD ,连OE 、OF ,则OECF 为正方形,只需求出AF(或AD)即可.【例2】 如图,以定线段AB 为直径作半圆O ,P 为半圆上任意一点(异于A 、B),过点P 作半圆O 的切线分别交过A 、B 两点的切线于D 、C ,AC 、BD 相交于N 点,连结ON ,NP ,下列结论:①四边形ANPD 是梯形;②ON=NP :③DP ·P C 为定值;④FA 为∠NPD 的平分线,其中一定成立的是( )A .①②③B .②③④C .①③④D .①④思路点拨 本例综合了切线的性质、切线长定理、相似三角形,判定性质等重要几何知识,注意基本辅助线的添出、基本图形识别、等线段代换,推导出NP ∥AD ∥BC 是解本例的关键.【例3】 如图,已知∠ACP=∠CDE=90°,点B 在CE 上,CA=CB=CD ,过A 、C 、D 三点的圆交AB 于F ,求证:F 为△CDE 的内心.(全国初中数学联赛试题) 思路点拨 连CF 、DF ,即需证F 为△CDE 角平分线的交点,充分利用与圆有关的角,将问题转化为角相等问题的证明.【例4】 如图,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AB=BC=1,以AB 为直径作半圆O 切CD 于E ,连结OE ,并延长交AD 的延长线于F .(1)问∠BOZ 能否为120°,并简要说明理由;(2)证明△AOF ∽△EDF ,且21==OA DE OF DF ; (3)求DF 的长.思路点拨 分解出基本图形,作出基本辅助线.(1)若∠BOZ=120°,看能否推出矛盾;(2)把计算与推理融合;(3)把相应线段用DF 的代数式表示,利用勾股定理建立关于DF 的一元二次方程.注: 如图,在直角梯形ABCD 中,若AD+BC=CD ,则可得到应用广泛的两个性质:(1)以边AB 为直径的圆与边CD 相切;(2)以边CD 为直径的圆与边AB 相切.类似地,三角形三条中线的交点叫三角形的重心,三角形三边高所在的直线的交点叫三角形的垂心.外心、内心、垂心、重心统称三角形的四心,它们处在三角而中的特殊位置上,有着丰富的性质,在解题中有广泛的应用.【例5】 如图,已知Rt △ABC 中,CD 是斜边AB 上的高,O 、O 1、O 2分别是△ABC ;△ACD 、△BCD 的角平分线的交点,求证:(1) O 1O ⊥C O 2;(2)OC= O 1O 2.(武汉市选拔赛试题)思路点拨 在直角三角形中,斜边上的高将它分成的两个直角三角形和原三角形相似,得对应角相等,所以通过证交角为90°的方法得两线垂直,又利用全等三角形证明两线段相 等.学力训练1.如图,已知圆外切等腰梯形ABCD 的中位线EF=15cm ,那么等腰梯形ABCD 的周长等于= cm . 2.如图,在直角,坐标系中A 、B 的坐标分别为(3,0)、(0,4),则Rt △ABO 内心的坐标是 .3.如图,梯形ABCD 中,AD ∥BC , DC ⊥BC ,AB=8,BC=5,若以AB 为直径的⊙O 与DC 相切于E ,则DC= .4.如图,⊙O 为△ABC 的内切圆,∠C=90°,AO 的延长线交BC 于点D ,AC=4,CD=1,则⊙O 的半径等于( )A .54B .45C .43D .655.如图,在梯形ABCD 中,AD ∥BC ,∠BCD=90°,以CD 为直径的半圆O 切AB 于点E ,这个梯形的面积为21cm 2,周长为20cm ,那么半圆O 的半径为( )A .3cmB .7cmC .3cm 或7cmD . 2cm6.如图,△ABC 中,内切圆O 和边B 、CA 、AB 分别相切于点D 、EF ,则以下四个结论中,错误的结论是( )A .点O 是△DEF 的外心B .∠AFE=21(∠B+∠C) C .∠BOC=90°+21∠A D .∠DFE=90°一21∠B 7.如图,BC 是⊙O 的直径,AB 、AD 是⊙O 的切线,切点分别为B 、P ,过C 点的切线与AD 交于点D ,连结AO 、DO .(1)求证:△ABO ∽△OCD ;(2)若AB 、CD 是关于x 的方程0)1()1(2522=-+--m x m x 的两个实数根,且S △ABO + S △OCD =20,求m 的值.8.如图,已知AB 是⊙O 的直径,BC 是⊙O 的切线,OC 与⊙O 相交于点D ,连结AD 并延长,BC 相交于点E .(1)若BC=3,CD=1,求⊙O 的半径; (2)取BE 的中点F ,连结DF ,求证:DF 是⊙O 的切线;(3)过D 点作DG ⊥BC 于G ,OG 与DG 相交于点M ,求证:DM =GM .9.如图,在直角梯形ABCD 中,AD ∥BC ,∠B=90°,AD=13cm ,BC=16cm ,CD=5cm ,AB 为⊙O 的直径,动点P 沿AD 方向从点A 开始向点D 以1cm /秒的速度运动,动点Q 沿CB 方向从点C 开始向点B 以2cm /秒的速度运动,点P 、Q 分别从A 、C 两点同时出发,当其中一点停止时,另一点也随之停止运动.(1)求⊙O 的直径;(2)求四边形PQCD 的面积y 关于P 、Q 运动时间t 的函数关系式,并求当四边形PQCD 为等腰梯形时,四边形PQCP 的面积;(3)是否存在某时刻t ,使直线PQ 与⊙O 相切,若存在,求出t 的值;若不存在,请说明理由. (2002年烟台市中考题)10.已知在△ABC 中,∠C=90°,AC=4,BC=3,CD 为AB 上的高,O l 、O 2分别为△ACD 、△BCD 的内心,则O l O 2= .11.如图,在△ABC 中,∠C=90°,∠A 和∠B 的平分线相交于P 点,又PE ⊥AB 于点E ,若BC=2,AC=3,则AE ·EB= .12.如果一个三角形的面积和周长都被一直线所平分,那么该直线必通过这个三角形的( )A .内心B .外心C .圆心D .重心13.如图,AD 是△ABC 的角平分线,⊙O 过点AB 和BC 相切于点P ,和AB 、AC 分别交于点E ,F ,若BD=AE ,且BE=a ,CF=b ,则AF 的长为( )A .a 251+B .a 231+C .b 251+D .b 231+14.如图,在矩形ABCD 中,连结AC ,如果O 为△ABC 的内心,过O 作OE ⊥AD 于E ,作OF ⊥CD 于F ,则矩形OFDE 的面积与矩形ABCD 的面积的比值为( )A .21B .32 C .43 D .不能确定 (《学习报》公开赛试题)15.如图,AB是半圆的直径,AC为半圆的切线,AC=AB.在半圆上任取一点D,作DE ⊥CD,交直线AB于点F,BF⊥AB,交线段AD的延长线于点F.(1)设AD是x°的弧,并要使点E在线段BA的延长线上,则x的取值范围是;(2)不论D点取在半圆什么位置,图中除AB=AC外,还有两条线段一定相等,指出这两条相等的线段,并予证明.16.如图,△ABC的三边满足关系BC=21(AB+AC),O、I分别为△ABC的外心、内心,∠BAC的外角平分线交⊙O于E,AI的延长线交⊙O于D,DE交BC于H.求证:(1)AI=BD;(2)OI=21AE.17.如图,已知AB是⊙O的直径,BC是⊙O的切线,OC平行于弦AD,过点D作DE⊥AB于点E,连结AC,与DE交于点F,问EP与PD是否相等?证明你的结论.18.如图,已知点P在半径为6,圆心角为90°的扇形OAB的AB(不含端点)上运动,PH ⊥OA于H,△OPH的重心为G.(1)当点P在AB上运动时,线段GO、GP、GH中有无长度保持不变的线段?如果有,请指出并求出其相应的长度;(2)设PH= x,GP=y,求y关于x的函数解析式,并指出自变量x的取值范围;(3)如果△PGH为等腰三角形,试求出线段PH的长.⌒⌒参考答案。

初二数学竞赛训练题

初二数学竞赛训练题

初二数学竞赛辅导专用材料制作:何春华1 初二数学竞赛训练题1、 计算:20012000200019982000220002323-+-∙- 2、 有三个有理数c b a ,,,其积是负数,其和是正数,当c c b b a a x ++=时,试求代数式29219+-x x 的值。

3、 已知关于x 的方程1+=ax x 有一个负根而没有正根,求a 的取值范围。

4、 已知11=+b a (),11,0=+≠c b a 求ac 1+的值。

5、 已知0,0=++≠c b a abc ,求⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++⎪⎭⎫⎝⎛+b a c a c b c b a 111111的值。

6、 实数y x b a ,,,满足2213,13b y x a x y --=--=-+,求b a y x +++22的值。

7、 若多项式b x ax x x +++-732234能被22-+x x 整除,求ba 的值。

8、 若实数m y x ,,适合关系式y x y x m y x m y x --∙+-=-++--+19919932253,试确定m 的值。

9、 若△ABC 的三边长为,,,c b a 且同时满足2244422444,c a a c b c b c b a -+=-+=,则△ABC 是( )A 、不等边三角形B 、等边三角形C 、直角三角形D 、钝角三角形10、有九个袋子分别装球9、12、14、16、18、24、25、28只,甲取走若干袋,乙取走若干袋,最后只剩下一袋,已知甲取走的球数是乙的2倍,剩下的一袋内装球 只。

11、设一个直角三角形的两条直角边为b a ,,斜边为c ,斜边上的高为h ,那么,以h b a h c ,,++为边构成的三角形的形状是( )A 、直角三角形B 、锐角三角形C 、钝角三角形D 、不能确定,形状与c b a ,,大小有关12、在三边是连续自然数,周长不超过100的三角形中,锐角三角形的个数是 。

九年级数学竞赛训练题1

九年级数学竞赛训练题1

九年级数学竞赛训练题11、如图,在直角坐标系中,矩形OABC 的顶点B 的坐标为 (9,-6),直线y=kx-23恰好将矩形OABC 分成面积相 等的两部分,则k 为( )。

A 、21 B 、-21 C 、31 D 、-312、如图,在等腰R t △ABC ,AC=BC,以斜边AB 为一边作等 边△ABD 在,使点C 、D 在AB 的同侧,再以CD 为一边作等 边△CDE,使点C 、E 在AD 的异侧,若AE =a ,则CD 的 长为( )。

A 、(213-)a B 、(a )226-C 、(3-1)aD 、(6-2)a 3、已知关于y 的方程(m 2-1)(1-y y )2-(2m +7)1-y y +1=0有两实数根y1,y2,且111-y y +122-y y =81,则m 为( )。

A 、3 B 、-3 C 、19 D 、-194、已知关于x 的方程︱6x -5︱+3a=0无实数根,︱5x -4︱+b=0有两个实数根,︱4x -3︱+c=0只有一个实数根,则化简︱a -b ︱-︱a -c ︱-︱c -b ︱= .5、如图所示,点A 、B 在直线MN 上,AB =13cm ,⊙A 、⊙B 的半径分别为1cm 、3cm, ⊙A 以每秒2cm 的速度自左向右运动,与此同时,⊙B 的半径也不断增大,其半径r(cm)与时间t (秒)之间的关系式为r=3+t (t ≧0),当点A 出发后 秒两圆相切。

6、已知实数a 、b 、x 、y 满足ax+by=3,ay-bx=5,则=++))((2222y x b a7、菱形ABCD 的两条对角线分别长6和8,点P 是对角线AC 上的一个动点,点M 、N 分别是边AB 、BC 的中点,则PM+PN 的最小值是8、四边形ABCD 中,∠B=∠C=120° AB=3,BC=4,CD=5,则此四边形的面积是9、如果242114x x x =++则=+-22351554x x x AO Cx (9,-6)10.如图,对称轴为直线72x=的抛物线经过点A(6,0)和B(0,4).(1)求抛物线解析式及顶点坐标;(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形.求平行四边形OEAF的面积S与x之间的函数关系式,并写出自变量x 的取值范围;①当平行四边形OEAF的面积为24时,请判断平行四边形OEAF是否为菱形?②是否存在点E,使平行四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.11、(1分)已知A、B、C、D顺次在⊙O上 , AB=BD ,BM⊥ AC于M。

初中奥林匹克数学竞赛知识点总结及训练题目-转化灵活的圆中角

初中奥林匹克数学竞赛知识点总结及训练题目-转化灵活的圆中角

初中数学竞赛辅导讲义---转化灵活的圆中角角是几何图形中最重要的元素,证明两直线位置关系、运用全等三角形法、相似三角形法都要涉及角,而圆的特征,赋予角极强的活性,使得角能灵活地互相转化.根据圆心角与圆周角的倍半关系,可实现圆心角与圆周角的转化;由同弧或等弧所对的圆周角相等,可将圆周角在大小不变的情况下,改变顶点在圆上的位置进行探索;由圆内接四边形的对角互补和外角等于内对角,可将与圆有关的角互相联系起来.熟悉以下基本图形、基本结论.注:根据顶点、角的两边与圆的位置关系,我们定义了圆心角与圆周角,类似地,当角的顶点在圆外或圆内,我们可以定义圆外角与圆内角,这两类角分别与它们的所夹弧度数有怎样的关系?读者可自行作一番探讨.【例题求解】【例1】 如图,直线AB 与⊙O 相交于A ,B 再点,点O 在AB 上,点C 在⊙O 上,且∠AOC =40°,点E 是直线AB 上一个动点(与点O 不重合),直线EC 交⊙O 于另一点D ,则使DE=DO 的点正共有 个.思路点拨 在直线AB 上使DE=DO 的动点E 与⊙O 有怎样的位置关系?分点E 在AB 上(E 在⊙O 内)、在BA 或AB 的延长线上(E 点在⊙O 外)三种情况考虑,通过角度的计算,确定E 点位置、存在的个数.注: 弧是联系与圆有关的角的中介,“由弧到角,由角看弧”是促使与圆有关的角相互转化的基本方法.【例2】 如图,已知△ABC 为等腰直角三形,D 为斜边BC 的中点,经过点A 、D 的⊙O 与边AB 、AC 、BC 分别相交于点E 、F 、M ,对于如下五个结论:①∠FMC=45°;②AE+AF =AB ;③BCBA EF ED ;④2BM 2=BF ×BA ;⑤四边形AEMF 为矩形.其中正确结论的个数是( )A .2个B .3个C .4个D .5个思路点拨 充分运用与圆有关的角,寻找特殊三角形、特殊四边形、相似三角形,逐一验证.注:多重选择单选化是近年出现的一种新题型,解这类问题,需把条件重组与整合,挖掘隐合条件,作深入的探究,方能作出小正确的选择.【例3】 如图,已知四边形ABCD 外接⊙O 的半径为5,对角线AC 与BD 的交点为E ,且AB 2=AE ×AC ,BD =8,求△ABD 的面积.思路点拨 由条件出发,利用相似三角形、圆中角可推得A 为弧BD 中点,这是解本例的关键.【例4】 如图,已知AB 是⊙O 的直径,C 是⊙O 上的一点,连结AC ,过点C 作直线CD ⊥AB 于D(AD<DB),点E 是AB 上任意一点(点D 、B 除外),直线CE 交⊙O 于点F ,连结AF 与直线CD 交于点G .(1)求证:AC 2=AG ×AF ;(2)若点E 是AD(点A 除外)上任意一点,上述结论是否仍然成立?若成立.请画出图形并给予证明;若不成立,请说明理由.思路点拨 (1)作出圆中常用辅助线证明△ACG ∽△AFC ;(2)判断上述结论在E 点运动的情况下是否成立,依题意准确画出图形是关键.注:构造直径上90°的圆周角,是解与圆相关问题的常用辅助线,这样就为勾股定理的运用、相似三角形的判定创造了条件.【例5】 如图,圆内接六边形ABCDEF 满足AB=CD=EF ,且对角线AD 、BE 、CF 相交于一点Q ,设AD 与CF 的交点为P .求证:(1)EC AC ED QD =;(2)22CE AC PE CP =.思路点拨 解本例的关键在于运用与圆相关的角,能发现多对相似三角形.(1) 证明△QDE ∽△ACF ;(2)易证DEQC PE CP =,通过其他三角形相似并结合(1)把非常规问题的证明转化为常规问题的证明.注:有些几何问题虽然表面与圆无关,但是若能发现隐含的圆,尤其是能发现共圆的四点,就能运用圆的丰富性质为解题服务,确定四点共圆的主要方法有:(1)利用圆的定义判定;(2)利用圆内接四边形性质的逆命题判定.学历训练1.一条弦把圆分成2:3两部分,那么这条弦所对的圆周角的度数为.2.如图,AB是⊙O的直径,C、D、E都是⊙O上的一点,则∠1+∠2= .3.如图,AB是⊙O的直径,弦CD⊥AB,F是CG的中点,延长AF交⊙O于E,CF=2,AF=3,则EF的长为.4.如图,已知△ABC内接于⊙O,AB+AC=12,AD⊥BC于D,AD=3,设⊙O的半径为y,AB的长为x,用x的代数式表示y,y= .5.如图,ABCD是⊙O的内接四边形,延长BC到E,已知∠BCD:∠ECD=3:2,那么∠BOD等于( )A.120°B.136°C.144°D.150°6.如图,⊙O中,弦AD∥BC,DA=DC,∠AOC=160°,则∠BOC等于( ) A.20°B.30°C.40°D.50°7.如图,BC为半圆O的直径,A、D为半圆O上两点,AB=3,BC=2,则∠D的度数为( )A.60°B.120°C.135°D.150°8.如图,⊙O的直径AB垂直于弦CD,点P是弧AC上一点(点P不与A、C两点重合),连结PC、PD、PA、AD,点E在AP的延长线上,PD与AB交于点F.给出下列四个结论:①CH2=AH×BH;②AD=AC;③AD2=DF×DP;④∠EPC=∠APD,其中正确的个数是( )A.1 B.2 C.3 D.49.如图,已知B正是△ABC的外接圆O的直径,CD是△ABC的高.(1)求证:AC·BC=BE·CD;⌒⌒(2)已知CD=6,AD=3,BD=8,求⊙O的直径BE的长.10.如图,已知AD是△ABC外角∠EAC的平分线,交BC的延长线于点D,延长DA交△ABC的外接圆于点F,连结FB,FC.(1)求证:FB=FC;(2)求证:FB2=FAFD;(3)若AB是△ABC的外接圆的直径,∠EAC=120°,BC=6cm,求AD的长.11.如图,B、C是线段AD的两个三等分点,P是以BC为直径的圆周上的任意一点(B、C点除外),则tan∠APB·tan∠CPD=.12.如图,在圆内接四边形ABCD中,AB=AD,∠BAD=60°,AC=a,则四边形ABCD 的面积为.13.如图,圆内接四边形ABCD中,∠A=60°,∠B=90°,AD=3,CD=2,则BC= .14.如图,AB是半圆的直径,D是AC的中点,∠B=40°,则∠A等于( ) A.60°B.50°C.80°D.70°15.如图,已知ABCD是一个以AD为直径的圆内接四边形,AB=5,PC=4,分别延长AB 和DC,它们相交于P,若∠APD=60°,则⊙O的面积为( )A.25πB.16πC.15πD.13π(2001年绍兴市竞赛题)⌒16.如图,AD 是Rt △ABC 的斜边BC 上的高,AB=AC ,过A 、D 两点的圆与AB 、AC 分别相交于点E 、F ,弦EF 与AD 相交于点G ,则图中与△GDE 相似的三角形的个数为( )A .5B .4C .3D .217.如图,已知四边形ABCD 外接圆⊙O 的半径为2,对角线AC 与BD 的交点为E ,AE=EC ,AB=2AE,且BD=32,求四边形ABCD 的面积.18.如图,已知ABCD 为⊙O 的内接四边形,E 是BD 上的一点,且有∠BAE=∠DAC . 求证:(1)△ABE ∽△ACD ;(2)ABDC+AD ·B C =AC ·BD .19.如图,已知P 是⊙O 直径AB 延长线上的一点,直线PCD 交⊙O 于C 、D 两点,弦DF ⊥AB 于点H ,CF 交AB 于点E .(1)求证:PA ·PB=PO ·PE ;(2)若DE ⊥CF ,∠P=15°,⊙O 的半径为2,求弦CF 的长.20.如图,△ABC 内接于⊙O ,BC=4,S △ABC =36,∠B 为锐角,且关于x 的方程01cos 42=+-B x x 有两个相等的实数根,D 是劣弧AC 上任一点(点D 不与点A 、C 重合),DE 平分∠ADC ,交⊙O 于点E ,交AC 于点F .(1)求∠B 的度数;(2)求CE 的长;(3)求证:DA 、DC 的长是方程02=⋅+⋅-DF DE y DE y 的两个实数根.⌒参考答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(A)1189 (B)1517 (C)1657 (D)1749
5.正整数 n 小于 100,并且满足[ n ] [ n ] [ n] n ,其中[x]表示不超过 x 的最大整 236
数,这样的正整数n 有( )。 (A)2 个 (B)3 个 (C)12 个 (D)16 个 二、填空题
6.如果*表示一种运算,它是由下面的式子来定义的, a * b ab b ,则(1*2)
(A)24 条 (B)30 条 (C)36 条 (D)42 条
3.用数码 2、4、5、7 可以组成四位数,在每个四位数中,每个数码只出现一次,一共 有 24 个四位数,将这些四位数从小到大排列,则排在第 17 位的四位数是( )。
(A)4527 (B)5724 (C)5742 (D)7245
4.在 x y 2009 的正整数解(x,y)中,x+y 的最大值是( )。
*3=________。 7.为了给一本书的各页标上页码,排版人员一共打击了 3289 个数码,则这本书的页数
是_________页。 8.y=|x+1|+|x-2|+|x+3|,则 y 的最小值是_________。
9.已知 y 11 6 2 ,x 表示 y 的小数部分,则 x 2 2 y 的值为_________。
8.如图 4,
-1,2,3 在数轴上的对应点分别为 A、B、C 由绝对值的意义知即要在数轴上找一点, 使得这一点与 A、B、C 三点的距离之和最小,显然这一点就是 B 点。当 x=2 时,
y最小 | 2 1 | | 2 2 | | 2 3 | 4 。
9. y (3 2)2 | 3 2 | 3 2 ,则 x 2 1, 于是 x 2 2 y ( 2 1)2 2(3 2) 9 。
10.设 x 2 y 2 a 2 ,且 a2 1,设 S 1 x2 1 y 2 ,则 S 的最大值是_________。
三、解答题
11.求出所有的三位正整数 ABC 使得 2 ABC 1BCA 。
12.矩形 ABCD 中,AB=20,BC=10,若在 AC、AB 上各取一点 M、N(如图 2),使 BM+MN 的值最小,求这个最小值。
4.∵ 2009 7 41 ,且 x、y 为正整数,
∴ x m 41 , y n 41,m、n 为正整数。
则 m 41 n 41 7 41 。
∴m+n=7。
∴ x y 41 6 41 2 41 5 41 3 41 4 41 。
当 x y 41 6 41 41 1476 时,x+y=1517,
10 . 设 1 x2 A , 1 y2 B , 则 A+B=S , A2 B 2 1 x 2 1 y 2 , 将 x 2 y 2 a 2 代入上式,得 A2 B2 2 a2 ,
∴ S 2 1 [(A B)2 (A B)2 ] 2 a2 , 2
S 2 4 2a2 ( A B)2 0 , ∴ S 2 4 2a2 ,易知 S>0, ∴ S 4 2a2 , ∴S 的最大值为 4 2a2 。
13.如图 3,ABCD 是正方形,点 P 是正方形的中心,以正方形的一边 AD 为斜边,向 外作直角三角形 AED,连结 PE,证明:PE 平分∠DEA。
参考答案 1.∵x≤y<z, ∴z+y>2x。
又 x2 y2 z2 ,
∴ x2 z 2 y 2 (z y)( z y) ,
而(z+y)(z-y)>2x(z-y)
236
2 23 36 6
都成立,必须有 n 是 2、3、6 的倍数,即 n 是 6 的倍数。这里 1≤n<100,所以 n 可取其中
的[99] 16 个数。故应选 D。 6
6.∵1 2 12 2 3 , 3 3 33 3 30 。
7.从 1~9 页用了 9 个数码,10~99 页用了 2×90=180 个数码。100~999 用了 2700 个数 码,而排版人员点击了 3289 个数码,从而知有 400 个数码用于标四位数的页码。只能从 1000 标到 1099 页,所以这本书的页码为 1099 页。
11.因为 2 倍的三位数 ABC 大于 1000 而小于 2000,所以 ABC 一定是大于 500 而小于
1000,因此 A 为 5、6、7、8 或 9,整数 A 又必须是偶数,所以 A 是 6 或 8。如果 A 是 6,
这样我们需要找出 B 和 C 使得 2 6BC 1BC6 ,
这等价于1200 2BC 1006 10BC ,化简后即为194 8BC ,而 194 不是 8 的倍
∴ x2 2x(z y) ,
∴x>2(z-y)。 ∴应选 A。 2.原长方体有 12 条棱,每砍去一个角增加 3 条棱,所以新的立体一共有 36 条棱(12+8 ×3), 3.从第 1 到第 6 个数,开头的数码是 2,从第 7 到第 12 个数,开头的数码是 4,从第 13 到第 18 个数的开头的数码是 5。5 开头的四位数按大小排列应为 5247,5427,5472,5724, 5742。故应选 B。
设 AB′交 CD 于点 P,连结 BP,则△ABP 的面积等于 1 20 10 100 ,由 AB∥CD 2
及由对称性知∠PAC=∠PCA,
∴AP=PC,设 AP=PC=x,则 DP=20-x,根据勾股定理,得 x 2 (20 x)2 10 AP BH' 1 10 20 ,
当 x y 2 41 5 41 164 1025 时,x+y=1189。
当 x y 3 41 4 41 369 656 时,x+y=1025,
∴x+y 的最大值为 1517。故应选 B。
5.由于 n n n n ,若 x 不是整数,则[x]<x,所以要使[ n] n ,[ n] n ,[ n] n
∴PE 平分∠DEA。
2
2
∴ BH' 200 16 。 12.5
故 BM+MN 的最小值是 16。
13.如图 6,过 C 作 ED 延长线的垂线,交于 F,过 B 作 EA 延长线的垂线,交于 H。
HB 的延长线和 FC 的延长线交于 G。易证 Rt△CFD≌Rt△DEA≌Rt△AHB≌Rt△BGC,
∴四边形 EHGF 也是正方形,P 也是正方形 EHGF 的中心。
数,所以 A 不能是 6。如果 A=8,我们就有 2 8BC 1BC8 ,
这就等价于1600 2BC 1008 10BC ,即 592 8BC ,因此, BC 等于 74,所以
B=7,C=4,所以所求的三位数是 874。
12.如图 5,作 B 关于 AC 的对称点 B′,连结 AB′,则 N 关于 AC 的对称点 N′在 AB′上,过 B 作 AB′的垂线,垂足为 H′,则 BM+MN=BM+MN′≥BH′,即 BM+MN 的最小值为 BH′。
学科:奥数
教学内容:竞赛训练题
一、选择题 1.如果一个直角三角形的两条直角边为 x 和 y,并且 x≤y,z 是斜边,则下面的关系 式中一定成立的是( )。 (A)x>2(z-y) (B)x=2(z-y) (C)x<2(z-y) (D)不能确定
2.如图 1 所示为一个长方体砍去两个角后的立体图形,如果照这样砍去长方体的八个 角,则新的立体的棱有( )。
相关文档
最新文档