SSS全等三角形的判定一

合集下载

全等三角形的判定方法五种的证明

全等三角形的判定方法五种的证明

全等三角形的判定方法五种的证明全文共四篇示例,供读者参考第一篇示例:全等三角形(即三角形的所有对应边和角都相等)在几何学中具有重要意义,因为它们有着很多共性特征和性质。

在实际问题中,我们常常需要判定两个三角形是否全等,以便解决一些几何问题。

下面我们将介绍五种判定方法,并给出它们的证明。

一、SSS法则(边边边全等)首先我们来介绍SSS法则,即如果两个三角形的三条边分别相等,则这两个三角形全等。

设有两个三角形ABC和DEF,已知AB=DE,AC=DF,BC=EF。

我们要证明三角形ABC全等于三角形DEF。

【证明过程】由已知条件可知,三角形ABC和三角形DEF的三边分别相等。

所以可以得到以下对应关系:AB=DEAC=DFBC=EF三角形的两边之和大于第三边,所以我们有以下结论:AB+AC>BCDE+DF>EF由于AB=DE,AC=DF,BC=EF,所以根据上述两个不等式可得:AB+AC>BCAB+AC>BC所以三角形ABC与三角形DEF全等。

由于∠C=∠F,所以我们有以下结论:∠A+∠C+∠B=180°∠A+∠F+∠E=180°由于∠C=∠F,所以可以将两个等式相减,得到:∠B-∠E=0∠B=∠E四、HL法则(斜边-直角-斜边全等)由于∠A=∠D,∠B=∠E,所以可以使用AA法则证明三角形ABC 与三角形DEF全等。

我们介绍了五种全等三角形的判定方法以及它们的证明。

这些方法在解决几何问题中起着至关重要的作用,希望大家能够掌握并灵活运用这些方法。

如果遇到类似的题目,可以根据不同情况灵活选择合适的方法来判定三角形的全等关系。

通过不断练习和思考,相信大家能够在几何学习中取得更好的成绩。

【2000字】第二篇示例:全等三角形是指具有完全相同的三边和三角形的一种特殊情况。

在几何学中,全等三角形之间具有一些特殊的性质和关系。

正确判断两个三角形是否全等是解决几何问题的关键。

八年级数学—全等三角形判定一(SSS,SAS)(基础)巩固练习【名校试题+详细解答】

八年级数学—全等三角形判定一(SSS,SAS)(基础)巩固练习【名校试题+详细解答】

【巩固练习】一、选择题1. △ABC 和△'''A B C 中,若AB =''A B ,BC =''B C ,AC =''A C .则( )A.△ABC ≌△'''A C BB. △ABC ≌△'''A B CC. △ABC ≌△'''C A BD. △ABC ≌△'''C B A2. 如图,已知AB =CD ,AD =BC ,则下列结论中错误的是( )A.AB ∥DCB.∠B =∠DC.∠A =∠CD.AB =BC3. 下列判断正确的是( )A.两个等边三角形全等B.三个对应角相等的两个三角形全等C.腰长对应相等的两个等腰三角形全等D.直角三角形与锐角三角形不全等4. 如图,AB 、CD 、EF 相交于O ,且被O 点平分,DF =CE ,BF =AE ,则图中全等三角形的对数共有( )A. 1对B. 2对C. 3对D. 4对5. 如图,将两根钢条'AA ,'BB 的中点O 连在一起,使'AA ,'BB 可以绕着点O 自由转动,就做成了一个测量工件,则''A B 的长等于内槽宽AB ,那么判定△OAB ≌△''OA B 的理由是( )A.边角边B.角边角C.边边边D.角角边6. 如图,已知AB ⊥BD 于B ,ED ⊥BD 于D ,AB =CD ,BC =ED ,以下结论不正确的是( )A.EC ⊥ACB.EC =ACC.ED +AB =DBD.DC =CB二、填空题7. 如图,AB =CD ,AC =DB ,∠ABD =25°,∠AOB =82°,则∠DCB =_________.8. 如图,在四边形ABCD中,对角线AC、BD互相平分,则图中全等三角形共有_____对.9. 如图,在△ABC和△EFD中,AD=FC,AB=FE,当添加条件_______时,就可得△ABC≌△EFD(SSS)10. 如图,AC=AD,CB=DB,∠2=30°,∠3=26°,则∠CBE=_______.11. 如图,点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=AC,若∠B =20°,则∠C=_______.12. 已知,如图,AB=CD,AC=BD,则△ABC≌,△ADC≌ .三、解答题13. 已知:如图,四边形ABCD中,对角线AC、BD相交于O,∠ADC=∠BCD,AD=BC,求证:CO=DO.14. 已知:如图,AB ∥CD ,AB =CD .求证:AD ∥BC .分析:要证AD ∥BC ,只要证∠______=∠______,又需证______≌______.证明:∵ AB ∥CD ( ),∴ ∠______=∠______ ( ),在△______和△______中,⎪⎩⎪⎨⎧===),______(______),______(______),______(______ ∴ Δ______≌Δ______ ( ).∴ ∠______=∠______ ( ).∴ ______∥______( ).15. 如图,已知AB =DC ,AC =DB ,BE =CE 求证:AE =DE.【答案与解析】一.选择题1. 【答案】B ;【解析】注意对应顶点写在相应的位置.2. 【答案】D ;【解析】连接AC 或BD 证全等.3. 【答案】D ;4. 【答案】C ;【解析】△DOF ≌△COE ,△BOF ≌△AOE ,△DOB ≌△COA.5. 【答案】A ;【解析】将两根钢条'AA ,'BB 的中点O 连在一起,说明OA ='OA ,OB ='OB ,再由对顶角相等可证.6. 【答案】D ;【解析】△ABC ≌△EDC ,∠ECD +∠ACB =∠CAB +∠ACB =90°,所以EC ⊥AC ,ED +AB =BC +CD =DB.二.填空题7. 【答案】66°;【解析】可由SSS 证明△ABC ≌△DCB ,∠OBC =∠OCB =82412︒=︒, 所以∠DCB = ∠ABC =25°+41°=66°8. 【答案】4;【解析】△AOD ≌△COB ,△AOB ≌△COD ,△ABD ≌△CDB ,△ABC ≌△CDA.9. 【答案】BC =ED ;10.【答案】56°;【解析】∠CBE =26°+30°=56°.11.【答案】20°;【解析】△ABE ≌△ACD (SAS )12.【答案】△DCB ,△DAB ;【解析】注意对应顶点写在相应的位置上.三.解答题13.【解析】证明:在△ADC 与△BCD 中,,,,DC CD ADC BCD AD BC =⎧⎪∠=∠⎨⎪=⎩()...ADC BCD SAS ACD BDC OC OD ∠=∠=∴△≌△∴∴14. 【解析】3,4;ABD ,CDB ;已知;1,2;两直线平行,内错角相等;ABD ,CDB ;AB ,CD ,已知;∠1=∠2,已证;BD =DB ,公共边;ABD ,CDB ,SAS ;3,4,全等三角形对应角相等;AD ,BC ,内错角相等,两直线平行.15.【解析】证明:在△ABC 和△DCB 中D C BAAB DC AC DB BC =CB ⎧⎪⎨⎪⎩==∴△ABC ≌△DCB (SSS ) ∴∠ABC =∠DCB , 在△ABE 和△DCE 中ABC DCB AB DC BE CE =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△DCE (SAS ) ∴AE =DE.。

三角形全等的判定方法6种

三角形全等的判定方法6种

三角形全等的判定方法6种
1、SSS(Side-Side-Side)(边边边):三边对应相等的三角形是全等三角形。

2、SAS(Side-Angle-Side)(边角边):两边及其夹角对应相等的三角形是全等三角形。

3、ASA(Angle-Side-Angle)(角边角):两角及其夹边对应相等的三角形全等。

4、AAS(Angle-Angle-Side)(角角边):两角及其一角的对边对应相等的三角形全等。

5、RHS(Rightangle-Hypotenuse-Side)(直角、斜边、边)(又称HL定理(斜边、直角边)):在一对直角三角形中,斜边及另一条直角边相等。

(它的证明是用SSS原理)
下列两种方法不能验证为全等三角形:
1、AAA(Angle-Angle-Angle)(角角角):三角相等,不能证全等,但能证相似三角形。

2、SSA(Side-Side-Angle)(边边角):其中一角相等,且非夹角的两边相等。

全等三角形的判定定理

全等三角形的判定定理

经过翻转、平移后,能够完全重合的两个三角形叫做全等三角形,而该两个三角形的
三条边及三个角都对应相等。

判定定理
SSS(Side-Side-Side)(边边边):三边对应相等的三角形是全等三角形。

SAS(Side-Angle-Side)(边角边):两边及其夹角对应相等的三角形是全等
三角形。

ASA(Angle-Side-Angle)(角边角):两角及其夹边对应相等的三角形全等。

AAS(Angle-Angle-Side)(角角边):两角及其一角的对边对应相等的三角
形全等。

RHS(Right angle-Hypotenuse-Side)(直角、斜边、边)(又称HL定理(斜边、直角边)):在一对直角三角形中,斜边及另一条直角边相等。

(它的证明是
用SSS原理)
下列两种方法不能验证为全等三角形:
AAA(Angle-Angle-Angle)(角角角):三角相等,不能证全等,但能证相似
三角形。

SSA(Side-Side-Angle)(边边角):其中一角相等,且非夹角的两边相等。

全等三角形判定sss教学设计

全等三角形判定sss教学设计

《三角形全等的判定(一)》教学设计教材分析:本节是人教版八年级上册第十二章第二节的第一课时,安排的教学内容为三角形全等的判定中的“三边对应相等的两个三角形全等”。

教材安排的上述内容是在学习了全等三角形的概念、全等三角形的性质后展开的,在本节课中给学生提供探索交流的时间和空间,让学生充分感受探索三角形全等的条件的过程。

教学目标:知识与技能:掌握“边边边”判定的内容,初步应用“边边边”条件判定两个三角形全等,能够进行有条理的思考并进行简单的推理。

能够利用尺规画出全等的三角形,具有一定的作图能力。

过程与方法:经历探索三角形全等的判定的过程,体验用操作、归纳得出数学结论的过程,培养学生的动手能力以及发现、归纳、总结问题的能力。

情感态度与价值观:在探究三角形全等的判定过程中,以观察思考、动手画图、合作交流等多种形式让学生共同探讨,培养学生的协作精神。

引导学生从现实的生活经历与体验出发,激发学生学习兴趣。

教学重点:掌握三角形全等“边边边”的判定教学难点:探究三角形全等“边边边”的判定。

“分类讨论”的数学方法的初步渗透和逻辑思维能力的培养也是本节的难点。

教学用具:多媒体电脑、圆规、直尺、剪刀、纸板书设计:教学过程:一、复习回顾师:上一节课我们学习了全等三角形的概念,哪位同学能回答出来?生:能够完全重合的两个三角形叫做全等三角形。

师:那么全等三角形有哪些性质呢?生:全等三角形的对应角相等,对应边相等。

师:已知△ABC≌△DEF则有哪些相等的量,请回答?生:AB=DE,BC=EF,CA=FD,∠A =∠D,∠B =∠E,∠C=∠F(教师给出投影)师:从上面知道只要满足上述六个条件,就能保证△ABC ≌△DEF全等,那么如果只满足上述六个条件的一部分,能否保证△ABC ≌△DEF全等呢?本节课我们来共同讨论这个问题。

(教师板书课题:三角形全等的判定(1))二、新课引入师:如果两个三角形只满足一个条件,也就是只有一条边或一个角对应相等,这两个三角形全等吗?请同学们画图。

全等三角形判定一(SSS,SAS)(基础)巩固练习

全等三角形判定一(SSS,SAS)(基础)巩固练习

【巩固练习】-、选择题2.如图,已知AB= CD AD- BC,则下列结论中错误的是()A.AB // DCB. / B=Z DC. / A=Z CD.AB = BC3. 下列判断正确的是()A. 两个等边三角形全等B. 三个对应角相等的两个三角形全等C. 腰长对应相等的两个等腰三角形全等D. 直角三角形与锐角三角形不全等4. 如图,AB CD EF相交于O,且被O点平分,DF= CE BF= AE则图中全等三角形的对数共有()A. 1 对B. 2 对C. 3 对D. 4 对B.角边角C.边边边AB丄BD于B, ED± BD于D, AB= CD1. (2015?莆田)女口图,AE// DF, AE=DF 要使△ EA3A FDB 需要添加下列选项中的B. EC=BFC. / A=ZDD. AB=BC5. 如图,将两根钢条AA' , BB'的中点O连在一起,就做成了一个测量工件,则A'B'的长等于内槽宽使AA', BB'可以绕着点O自由转动,AB,那么判定厶OAB^A OA'B'的理A.边角边6.如图,已知A.EC 丄ACA. AB=CDB.EC = ACC.ED + AB = DBD.角角边BC= ED,以下结论不正确的是(D.DC = CB12.、填空题如图,AB= CD AC= DB,Z ABD= 25°,/ AOB= 82°,则/ DCB=点D在AB上,点E在AC上, CD与BE相交于点0,且AD= AE, AB= AC,若/ B = 贝y C= .,△ AD®7.AC BD互相平分,则图中全等三角形共有(2015?虎林市校级二模)如图,已知BD=AC,那么添加一个条件后,能得11.8.9.,/ 3= 26°,则/ CBBAC= ABC^如图,20°,12.三、解答题13. (2014春?章丘市校级期中)如图A B两点分别位于一座小山脚的两端,小明想要测量A、B两点间的距离,请你帮他设计一个测量方案,测出AB的距离.并说明其中的道理.14•已知:如图,AB // CD , AB = CD .求证:AD // BC .分析:要证AD// BC只要证/ ________ =Z __________ ,又需证______ 也_______ .证明:••• AB // CD ( ),二 / ________ =/ _________ ( ),在厶 ______ 和厶_____ 中,_____ 二____ ( ),< _____ = _____ (),、---- = -------- ()‘•••△_______ A___________ ( ).二 / ________ =/ ______ ( ).•- _____ // ______ ( ).15.如图,已知AB= DC AC= DB, BE= CE求证:AE= DE.【答案与解析】一. 选择题1. 【答案】A;【解析】解:••• AE// FD,•••/ A=Z D,•/ AB=CD•AC=BD在厶AEC和厶DFB中,f AE=DF-ZA=ZD,AC=DBk•△EAC^A FDB( SAS ,故选:A.2. 【答案】D;【解析】连接AC或BD证全等.3. 【答案】D;4. 【答案】C;【解析】△ DOF^A COE △ BOF^A AOE △ DOB^A COA.5. 【答案】A;【解析】将两根钢条AA' , BB'的中点O连在一起,说明OA= OA', OB= OB',再由对顶角相等可证•6. 【答案】D;【解析】△ ABC^^ EDC Z ECD^Z ACB=Z CA聊/ ACB= 90°,所以ECL AC, ED + AB = BC+ CD= DB.二. 填空题7. 【答案】66°;82 °【解析】可由SSS证明厶ABC^A DCB Z OBC=Z OCB= 41 , 所以Z DCB=2Z ABC= 25°+ 41 °= 66°8. 【答案】4;【解析】△ AOD^A COB △ AOB^A COD △ ABD^A CDB △ ABC^A CDA.9. 【答案】BC=AD ;【解析】解:添加BC=AD ,r AC=BD•••在△ ABC 和厶BAD 中」BC=AD ,i AB 二AB•△ ABC ◎△ BAD ( SSS),故答案为:BC=AD .10. 【答案】56°;【解析】Z CBE= 26°+ 30°= 56° .11. 【答案】20°;【解析】△ ABE^A ACD( SAS12. 【答案】△ DCB △ DAB【解析】注意对应顶点写在相应的位置上.三. 解答题13. 【解析】解:如图所示:在AB下方找一点O,连接BO并延长使BO=B O,连接AQ并延长使AO=A O,在厶AOB和厶A OB中:f AO=OA?“ ZAOB=ZA V0B y,QB 二OB'•••△AOB2A A OB ( SAS, ••• AB=A B ,量出A B'的长即可.14. 【解析】3, 4;ABD CDB已知;1, 2;两直线平行,内错角相等;ABD CDBAB, CD已知;/ 1 = 7 2,已证;BD= DB公共边;ABD CDB SAS3 , 4,全等三角形对应角相等;AD, BC内错角相等,两直线平行15. 【解析】证明:在厶ABC^n^ DCB中AB = DCAC = DBBC =CB• △ABC^A DCB(SSS•••7 ABC=7 DCB 在厶ABE和△ DCE中AB = DCABC = DCBBE =CE•••△ ABE^A DCE( SAS ••• AE= DE.。

全等三角形的判定精选练习题(分SSS、SAS、AAS、ASA、HL分专题)

全等三角形的判定精选练习题(分SSS、SAS、AAS、ASA、HL分专题)

D CB A 全等三角形的判定(一)(SSS )1、如图1,AB=AD ,CB=CD ,∠B=30°,∠BAD=46°,则∠ACD 的度数是( )A.120°B.125°C.127°D.104°2、如图2,线段AD 与BC 交于点O ,且AC=BD ,AD=BC ,•则下面的结论中不正确的是( ) A.△ABC ≌△BAD B.∠CAB=∠DBA C.OB=OC D.∠C=∠D3、在△ABC 和△A 1B 1C 1中,已知AB=A 1B 1,BC=B 1C 1,则补充条件____________,可得到△ABC ≌△A 1B 1C 1.4、如图3,AB=CD ,BF=DE ,E 、F 是AC 上两点,且AE=CF .欲证∠B=∠D ,可先运用等式的性质证明AF=________,再用“SSS ”证明______≌_______得到结论.5、如图,已知AB=CD ,AC=BD ,求证:∠A=∠D .6、如图,AC 与BD 交于点O ,AD=CB ,E 、F 是BD 上两点,且AE=CF ,DE=BF.请推导下列结论:⑴∠D=∠B ;⑵AE ∥CF .7、已知如图,A 、E 、F 、C 四点共线,BF=DE ,AB=CD.⑴请你添加一个条件,使△DEC ≌△BFA ; ⑵在⑴的基础上,求证:DE ∥BF.全等三角形的判定(SAS)1、如图1,AB ∥CD ,AB=CD ,BE=DF ,则图中有多少对全等三角形( )A.3B.4C.5D.62、如图2,AB=AC ,AD=AE ,欲证△ABD ≌△ACE ,可补充条件( ) A.∠1=∠2 B.∠B=∠C C.∠D=∠E D.∠BAE=∠CAD3、如图3,AD=BC ,要得到△ABD 和△CDB 全等,可以添加的条件是( ) A.AB ∥CD B.AD ∥BC C.∠A=∠C D.∠ABC=∠CDA4、如图4,AB 与CD 交于点O ,OA=OC ,OD=OB ,∠AOD=________,•根据_________可得到△AOD ≌△COB ,从而可以得到AD=_________.5、如图5,已知△ABC 中,AB=AC ,AD 平分∠BAC ,请补充完整过程说明△ABD ≌△ACD 的理由. ∵AD 平分∠BAC , ∴∠________=∠_________(角平分线的定义). 在△ABD 和△ACD 中,∵____________________________, ∴△ABD ≌△ACD ( ) 6、如图6,已知AB=AD ,AC=AE ,∠1=∠2,求证∠ADE=∠B.7、如图,已知AB=AD ,若AC 平分∠BAD ,问AC 是否平分∠BCD ?为什么?8、如图,在△ABC 和△DEF 中,B 、E 、F 、C ,在同一直线上,下面有4个条件,请你在其中选3个作为题设,余下的一个作为结论,写一个真命题,并加以证明. ①AB=DE ;②AC=DF ;③∠ABC=∠DEF ;④BE=CF.9、如图⑴,AB ⊥BD ,DE ⊥BD ,点C 是BD 上一点,且BC=DE ,CD=AB .⑴试判断AC 与CE 的位置关系,并说明理由.⑵如图⑵,若把△CDE 沿直线BD 向左平移,使△CDE 的顶点C 与B 重合,此时第⑴问中AC 与BE 的位置关系还成立吗?(注意字母的变化)全等三角形(三)AAS 和ASA【知识要点】1.角边角定理(ASA ):有两角及其夹边对应相等的两个三角形全等.2.角角边定理(AAS ):有两角和其中一角的对边对应相等的两个三角形全等. 【典型例题】例1.如图,AB ∥CD ,AE=CF ,求证:AB=CD例2.如图,已知:AD=AE ,ABE ACD ∠=∠,求证:BD=CE.例3.如图,已知:ABD BAC D C ∠=∠∠=∠.,求证:例4.如图已知:AB=CD ,AD=BC ,O 是BD 中点,过O AE=CF.例5.如图,已知321∠=∠=∠,AB=AD.求证:BC=DE.例6.如图,已知四边形ABCD 中,AB=DC ,AD=BC ,点F 在AD 交于O ,请问O 点有何特征?【经典练习】 1.△ABC 和△C B A '''中,C B C B A A ''='∠=∠,',C C '∠=∠2.如图,点C ,F 在BE 上,,,21EF BC =∠=∠3.在△ABC 和△C B A ''' ) ①A A '∠=∠B B '∠=∠,BC =C A C A ''='③A A '∠=∠B B '∠=∠,AC =C A B A ''=' A . 1个B. 2个C. 3个D. 4个4.如图,已知MB=ND ,NDC MBA ∠=∠,下列条件不能判定是△ABM ≌△CDN 的是( )A . N M ∠=∠ B. AB=CD C . AM=CN D. AM ∥CN 5.如图2所示, ∠E =∠F =90°,∠B =∠C ,AE =AF ,给出下列结论:①∠1=∠2 ②BE=CF ③△ACN ≌△ABM ④CD=DN其中正确的结论是__________________。

三角形全等的判定(1)

三角形全等的判定(1)

活动 3 问题 你如何验证你的结论呢?(请每两 个同学一组合作,先任意画一个三角 形, 然后再画一个三角形使其与前三角 形的三边对应相等, 并将所画的三角形 裁剪下来与前三角形重叠, 看看有什么 结果. )
提醒学生注 意: 已知三边画三角 形是一种重要的作 图, 在几何中用途很 多, 所以这种画图方 法一定要掌握.
2
活动 5 问题 你如何进一步验证你的结论呢 ? (请每两个同学一组合作, 先任意画一 个三角形, 然后再画一个三角形使其与 前三角形有两边和这两边的夹角对应 相等, 并将所画的三角形裁剪下来与前 三角形重叠,看看有什么结果. )
在此活动中教 通过观察和 师应关注学生: 实验我们得到一 做一个角等于已知 个规律: 角的方法的进一步 两边和它们 掌握. 的夹角对应相等 的两个三角形全 教 师 进 一 步 引 等(可以简写成 导学生推出“SAS” “ 边 角 边 ” 或 的结论. “SAS” ) .
活动 6 问题 如果两边对应相等,其夹角不相 等,而是一边的对角对应相等,这样的 两个三角形全等吗?
教师: 通过学生 结论: 两边及 讨论及几何画板的 一边的对角对应 演示使学生认识到: 相等的两个三角 两边及一边的对角 形不一定全等. 对应相等的两个三 角形不一定全等.
活动 7 练习 1.如图,在△ABC 和△DEF 中, 使学生逐步掌 AB = DE 、 AC = DF 请 你 添 加 条 握“SSS”“SAS” 、 件 ,使△ABC≌ △DEF. 公理. 培养学生分析问题 的能力.
11.2
三角形全等的判定(1)
教学任务分析
1.经历探索三角形全等的条件的过程. 知识技能 2.掌握探究问题的一般方法. 3.初步掌握运用 SSS、SAS 判定两个三角形全等. 使学生经历探索三角形全等的条件的过程, 体验用操作、 数学思考 归纳得出数学结论的过程. 会运用 SSS、SAS 条件证明两个三角形全等,并体会多 解决问题 种方法证明结论. 1.通过探究三角形全等的条件的活动,培养学生合作交 流的意识和大胆猜想的良好思维品质,以及发现问题的 情感态度 能力. 2.使学生了解通过观察和实验可以获得许多数学知识, 并学会把这些数学知识应用于他们的日常生活中. 通过观察和实验获得 SSS、SAS,会运用 SSS、SAS 条件证明两个三 角形全等. 认识两边和其中一边的对角对应相等的两个三角形不一定全等. 直尺、圆规、三角板、量角器、剪刀、硬纸片.

全等三角形判定公式

全等三角形判定公式

全等三角形判定公式
一种常用的全等三角形判定公式是SSS(边边边)判定法。


果两个三角形的三条边分别相等,则这两个三角形全等。

这意味着
如果三角形ABC和三角形DEF的对应边长分别满足AB=DE, BC=EF, AC=DF,那么这两个三角形就是全等的。

另一种常用的全等三角形判定公式是SAS(边角边)判定法。

如果两个三角形的一对对应边和夹角分别相等,则这两个三角形全等。

这意味着如果三角形ABC和三角形DEF的满足AB=DE, ∠B=∠E, BC=EF,那么这两个三角形就是全等的。

还有一种全等三角形判定公式是ASA(角边角)判定法。

如果
两个三角形的一对对应角和夹边分别相等,则这两个三角形全等。

这意味着如果三角形ABC和三角形DEF的满足∠A=∠D, BC=EF,
∠B=∠E,那么这两个三角形就是全等的。

这些是常用的全等三角形判定公式,通过这些公式我们可以判
断两个三角形是否全等,从而在解决几何问题时能够更加准确地应
用相似三角形的性质。

全等三角形判定的三种类型

全等三角形判定的三种类型

全等三角形判定的三种类型1.SSS判定(边边边)SSS判定是指当两个三角形的三条边分别相等时,它们是全等三角形。

例如,对于两个三角形ABC和DEF,如果AB=DE,BC=EF,AC=DF,则可以通过SSS判定断定三角形ABC和DEF是全等的。

SSS判定的原理是,边长相等可以确保两个三角形的相应边之间的角度也是相等的,根据三角形角度之和为180°的性质,可以推导出它们的角度也是相等的,进而判断三角形全等。

2.SAS判定(边角边)SAS判定是指当两个三角形的两边和夹角分别相等时,它们是全等三角形。

例如,对于两个三角形ABC和DEF,如果AB=DE,∠BAC=∠EDF,BC=EF,则可以通过SAS判定判断三角形ABC和DEF是全等的。

SAS判定的原理是,两个三角形的一边和与这边相邻的两个角相等时,可以确保这两个三角形的三个边都相等,从而判断它们全等。

3.ASA判定(角边角)ASA判定是指当两个三角形的两角和边分别相等时,它们是全等三角形。

例如,对于两个三角形ABC和DEF,如果∠BAC=∠EDF,∠ABC=∠DEF,AC=DF,则可以通过ASA判定判断三角形ABC和DEF是全等的。

ASA判定的原理是,两个三角形的两个角和这两个角所夹的边相等时,可以确保这两个三角形的第三个角也相等,从而判断它们全等。

此外,还有两种特殊情况的判定方法:4.直角全等判定如果两个直角三角形的三个边分别相等,那么它们一定是全等的。

这是因为直角三角形的两个直角以及第三个角也是相等的。

5.等腰全等判定如果两个三角形都为等腰三角形,并且有一个角相等,那么它们一定是全等的。

这是因为等腰三角形的两个底角和底边相等,所以只需要一个额外的角相等即可推断两个等腰三角形全等。

综上所述,全等三角形的判定可以通过SSS、SAS、ASA以及两种特殊情况的判定方法来进行。

这些判定方法不仅可以帮助我们判断三角形的全等性质,而且在数学推导和证明过程中也有重要的应用。

全等三角形的判定-角边角-角角边(最新)知识讲解

全等三角形的判定-角边角-角角边(最新)知识讲解

(1)AC∥BD,CE=DF, AC=BD
(SAS)
( 2) AC=BD, AC∥BD ∠A=∠B (ASA)
( 3) CE=DF,∠AEC=∠BFD ∠C=∠D (ASA)
( 4)∠ C= ∠D,AC=BD ∠A=∠B A
(ASA)
C
F E
D
B
思考:如果两个三角形有两个角 和其中一个角的对边分别对应相 等,那么这两个三角形是否全等?
用符号语言表达为: AB=DE B C
在△ABC与△DEF中 ∠B=∠E
D
BC=EF
E
F
∴△ABC≌△DEF(SAS)
已知:如图,要得到△ABC≌ △ABD,已经隐含 有条件是__A_B_=__A_B__根据所给的判定方法,在下 列横线上写出还需要的两个条件
(1)_A__C_=_A_D__∠__C_A_B_=__∠_D_A_B (SAS)
如果知道两个三角形的两个角及一条边分别对 应相等,这两个三角形一定全等吗?
这时应该有两种不同的情况: (1)两个角及两角的夹边; (2)两个角及其中一角的对边
图24.2.8
探究1 先任意画出一个△ABC,
再画一个△A'B'C',使A'B'=AB, ∠A'=∠A, ∠B' =∠B 。把画好
的△A'B'C'剪下,放到△ABC上, 它们全等吗?
( 2 ) __B_C_=_B__D__A__C_=_A_D____
(SSS)
C
A
B
D
如图,小明不慎将一块 三角形模具打碎为两 块,他是否可以只带其 中的一块碎片到商店 去,就能配一块与原来 一样的三角形模具吗? 如果可以,带哪块去合 适? 你能说明其中理由吗?

人教版初二数学上册:全等三角形判定一(SSS,SAS)(基础)巩固练习

人教版初二数学上册:全等三角形判定一(SSS,SAS)(基础)巩固练习

【巩固练习】一、选择题1. (2015•莆田)如图,AE∥DF,AE=DF ,要使△EAC≌△FDB,需要添加下列选项中的( )A .AB=CDB . EC=BFC . ∠A=∠D D . AB=BC2. 如图,已知AB =CD ,AD =BC ,则下列结论中错误的是( )A.AB ∥DCB.∠B =∠DC.∠A =∠CD.AB =BC3. (2016春•成安县期末)如图,由∠1=∠2,BC =DC ,AC=EC ,得△ABC ≌△EDC 的根据是( )A.SASB.ASAC.AASD.SSS4. 如图,AB 、CD 、EF 相交于O ,且被O 点平分,DF =CE ,BF =AE ,则图中全等三角形的对数共有( )A. 1对B. 2对C. 3对D. 4对5. 如图,将两根钢条'AA ,'BB 的中点O 连在一起,使'AA ,'BB 可以绕着点O 自由转动,就做成了一个测量工件,则''A B 的长等于内槽宽AB ,那么判定△OAB ≌△''OA B 的理由是( )A.边角边B.角边角C.边边边D.角角边6. 如图,已知AB⊥BD于B,ED⊥BD于D,AB=CD,BC=ED,以下结论不正确的是()A.EC⊥ACB.EC=ACC.ED +AB =DBD.DC =CB二、填空题7. 如图,AB=CD,AC=DB,∠ABD=25°,∠AOB=82°,则∠DCB=_________.8. 如图,在四边形ABCD中,对角线AC、BD互相平分,则图中全等三角形共有_____对.9.(2016•牡丹江)如图,AD和CB相交于点E,BE=DE,请添加一个条件,使△ABE≌△CDE(只添一个即可),你所添加的条件是.10. 如图,AC=AD,CB=DB,∠2=30°,∠3=26°,则∠CBE=_______.11. 如图,点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=AC,若∠B =20°,则∠C=_______.12. 已知,如图,AB =CD ,AC =BD ,则△ABC ≌ ,△ADC ≌ .三、解答题13. (2014春•章丘市校级期中)如图A 、B 两点分别位于一座小山脚的两端,小明想要测量A 、B 两点间的距离,请你帮他设计一个测量方案,测出AB 的距离.并说明其中的道理.14. 已知:如图,AB ∥CD ,AB =CD .求证:AD ∥BC .分析:要证AD ∥BC ,只要证∠______=∠______,又需证______≌______.证明:∵ AB ∥CD ( ),∴ ∠______=∠______ ( ),在△______和△______中,⎪⎩⎪⎨⎧===),______(______),______(______),______(______ ∴ Δ______≌Δ______ ( ).∴ ∠______=∠______ ( ).∴ ______∥______( ).15. 如图,已知AB =DC ,AC =DB ,BE =CE 求证:AE =DE.【答案与解析】一.选择题1. 【答案】A ;【解析】解:∵AE∥FD,∴∠A=∠D,∵AB=CD,∴AC=BD,在△AEC 和△DFB 中,,∴△EAC≌△FDB(SAS ),故选:A .2. 【答案】D ;【解析】连接AC 或BD 证全等.3. 【答案】A ;【解析】通过等量加等量得到∠BCA=∠DCE, 从而由SAS 定理判定全等.4. 【答案】C ;【解析】△DOF ≌△COE ,△BOF ≌△AOE ,△DOB ≌△COA.5. 【答案】A ;【解析】将两根钢条'AA ,'BB 的中点O 连在一起,说明OA ='OA ,OB ='OB ,再由对顶角相等可证.6. 【答案】D ;【解析】△ABC ≌△EDC ,∠ECD +∠ACB =∠CAB +∠ACB =90°,所以EC ⊥AC ,ED +AB =BC +CD =DB.二.填空题7. 【答案】66°;【解析】可由SSS 证明△ABC ≌△DCB ,∠OBC =∠OCB =82412︒=︒, 所以∠DCB = ∠ABC =25°+41°=66°8. 【答案】4;【解析】△AOD ≌△COB ,△AOB ≌△COD ,△ABD ≌△CDB ,△ABC ≌△CDA.9. 【答案】AE=CE ;【解析】由题意得,BE=DE ,∠AEB=∠CED (对顶角),可选择利用SAS 进行全等的判定,答案不唯一.10.【答案】56°;【解析】∠CBE =26°+30°=56°.11.【答案】20°;【解析】△ABE ≌△ACD (SAS )12.【答案】△DCB ,△DAB ;【解析】注意对应顶点写在相应的位置上.三.解答题13.【解析】解:如图所示:在AB 下方找一点O ,连接BO ,并延长使BO=B′O,连接AO ,并延长使AO=A′O,在△AOB 和△A′OB′中:,∴△AOB≌△A′OB′(SAS ),∴AB=A′B′,量出A′B′的长即可.14. 【解析】3,4;ABD ,CDB ;已知;1,2;两直线平行,内错角相等;ABD ,CDB ;AB ,CD ,已知;∠1=∠2,已证;BD =DB ,公共边;ABD ,CDB ,SAS ;3,4,全等三角形对应角相等;AD ,BC ,内错角相等,两直线平行.15.【解析】证明:在△ABC 和△DCB 中AB DC AC DB BC =CB ⎧⎪⎨⎪⎩==∴△ABC ≌△DCB (SSS )∴∠ABC =∠DCB ,在△ABE 和△DCE 中ABC DCB AB DC BE CE =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△DCE (SAS )∴AE=DE.附录资料:【巩固练习】一、选择题1. (2016•长沙模拟)如图所示,△ABC≌△DEC,则不能得到的结论是()A. AB=DEB. ∠A=∠DC. BC=CDD. ∠ACD=∠BCE2. 如图,△ABC≌△BAD,A和B,C和D分别是对应顶点,若AB=6cm,AC=4cm,BC=5cm,则AD的长为()A. 4cmB. 5cmC. 6cmD. 以上都不对3. 下列说法中正确的有()①形状相同的两个图形是全等图形②对应角相等的两个三角形是全等三角形③全等三角形的面积相等④若△ABC≌△DEF,△DEF ≌△MNP,△ABC≌△MNP.A.0个B.1个C.2个D.3个4. (2014秋•庆阳期末)如图,△ABC≌△A′B′C,∠ACB=90°,∠A′CB=20°,则∠BCB′的度数为()A.20°B.40°C.70°D.90°5. 已知△ABC≌△DEF,BC=EF=6cm,△ABC的面积为18平方厘米,则EF边上的高是()A.6cmB.7cmC.8cmD.9cm6. 将一张长方形纸片按如图所示的方式折叠,BC、BD分别为折痕,则∠CBD的度数为()A.60° B.75°C.90°D.95°二、填空题7.(2014秋•安阳县校级期末)如图所示,△AOB ≌△COD ,∠AOB=∠COD ,∠A=∠C ,则∠D 的对应角是___________,图中相等的线段有____________________________.8. (2016•成都)如图,△ABC ≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=___________.9. 已知△DEF ≌△ABC ,AB =AC ,且△ABC 的周长为23cm ,BC =4cm ,则△DEF 的边中必有一条边等于______.10. 如图,如果将△ABC 向右平移CF 的长度,则与△DEF 重合,那么图中相等的线段有__________;若∠A =46°,则∠D =________.11.已知△ABC ≌△'''A B C ,若△ABC 的面积为10 2cm ,则△'''A B C 的面积为________ 2cm ,若△'''A B C 的周长为16cm ,则△ABC 的周长为________cm .12. △ABC 中,∠A ∶∠C ∶∠B =4∶3∶2,且△ABC ≌△DEF ,则∠DEF =______ .三、解答题13.如图,已知△ABC ≌△DEF ,∠A =30°,∠B =50°,BF =2,求∠DFE 的度数与EC 的长.14. (2014秋•射阳县校级月考)如图,在图中的两个三角形是全等三角形,其中A和D、B和E是对应点.(1)用符号“≌“表示这两个三角形全等(要求对应顶点写在对应位置上);(2)写出图中相等的线段和相等的角;(3)写出图中互相平行的线段,并说明理由.15. 如图,E为线段BC上一点,AB⊥BC,△ABE≌△ECD.判断AE与DE的关系,并证明你的结论.【答案与解析】一.选择题1. 【答案】C;【解析】因为△ABC≌△DEC,可得:AB=DE,∠A=∠D,BC=EC,∠ACD=∠BCE,故选C.2. 【答案】B;【解析】AD与BC是对应边,全等三角形对应边相等.3. 【答案】C;【解析】③和④是正确的;4. 【答案】C;【解析】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,∴∠BCB′=∠A′CB′﹣∠A′CB=70°.故选C.5. 【答案】A;【解析】EF边上的高=1826 6⨯=;6. 【答案】C;【解析】折叠所成的两个三角形全等,找到对应角可解.二.填空题7. 【答案】∠OBA,OA=OC、OB=OD、AB=CD;【解析】解:∵△AOB≌△COD,∠AOB=∠COD,∠A=∠C,∴∠D=∠OBA,OA=OC、OB=OD、AB=CD,故答案为:∠OBA,OA=OC、OB=OD、AB=CD.8. 【答案】120°;【解析】∵△ABC≌△A′B′C′,∴∠C=∠C′=24°,∴∠B=180°﹣∠A﹣∠B=120°.9. 【答案】4cm或9.5cm;【解析】DE=DF=9.5cm,EF=4cm;10.【答案】AB=DE、AC=DF、BC=EF、BE=CF, 46°;11.【答案】10,16;【解析】全等三角形面积相等,周长相等;12.【答案】40°;【解析】见“比例”设k,用三角形内角和为180°求解.三.解答题13.【解析】解:在△ABC中,∠ACB=180°-∠A-∠B,又∠A=30°,∠B=50°,所以∠ACB=100°.又因为△ABC≌△DEF,所以∠ACB=∠DFE,BC=EF(全等三角形对应角相等,对应边相等)所以∠DFE=100°EC=EF-FC=BC-FC=BF=2.14. 【解析】解:(1)△ABC≌△DEF;(2)AB=DE,BC=EF,AC=DF;∠A=∠D,∠B=∠E,∠ACB=∠DFE;(3)BC∥EF,AB∥DE,理由是:∵△ABC≌△DEF,∴∠A=∠D,∠ACB=∠DFE,∴AB∥DE,BC∥EF.15. 【解析】 AE=DE ,且AE⊥DE证明:∵△ABE≌△ECD,∴∠B=∠C,∠A=∠DEC,∠AEB=∠D,AE=DE又∵AB⊥BC∴∠A+∠AEB=90°,即∠DEC+∠AEB=90°∴AE⊥DE∴AE与DE垂直且相等.。

12.2三角形全等的判定(一)(SSS、SAS)(原卷版)

12.2三角形全等的判定(一)(SSS、SAS)(原卷版)

八年级上册数学《第十二章 全等三角形》1.2.2 三角形全等的判定(一)“边边边”与“边角边”◆利用“SSS ”判定两个三角形全等文字语言:三边分别相等的两个三角形全等,简写为“边边边”或“SSS”.几何语言:在△ABC 和△DEF 中,AB =DE BC =EF CA =FD∴△ABC ≌△DEF (SSS).◆利用“SAS ”判定两个三角形全等1、文字语言:两边和它们的夹角分别相等的两个三角形全等,简写成“边角边”或“SAS”.2、几何语言:在△ABC 和△DEF 中,AB =DE ∠B =∠E BC =EF∴△ABC ≌△DEF (SSS).3、方法:(1)已知两边,可以找“夹角”;(2)已知一角和这角的一夹边,可找这角的另一夹边【注意】1. 有两边和其中一边的对角对应相等的两个三角形不一定全等.2. 说明两三角形全等所需的条件应按对应边的顺序书写.3. 结论中所出现的边必须在所证明的两个三角形中.【例题1】如图,△ABC 中,AB =AC ,EB =EC ,则由“SSS ”可以判定( )A.△ABE≌△ACE B.△ABD≌△ACDC.△BDE≌△CDE D.以上答案都不对【变式1-1】如图,在△ACE和△BDF中,AE=BF,CE=DF,要利用“SSS”证明△ACE≌△BDF,需添加的一个条件可以是( )A.AB=BC B.DC=BC C.AB=CD D.以上都不对【变式1-2】下列四个三角形中,与图中的△ABC全等的是( )A.B.C .D .【变式1-3】如图,已知点A 、D 、B 、F 在一条直线上,AC =EF ,AD =FB ,要使△ABC ≌△FDE ,还需添加一个条件,这个条件可以是( )A .AC ∥EFB .∠E =∠C C .∠ABC =∠FDED .AB =DF【变式1-4】如图,已知∠1=∠2,若用“SAS ”证明△BDA ≌△ACB ,还需加上条件( )A .AD =BCB .BD =AC C .∠D =∠C D .OA =OB【例题2】如图,已知点B ,C ,D ,E 在同一直线上,且AB =AE ,AC =AD ,BD =CE .求证:△ABC ≌△AED.【变式2-1】(2023•云南)如图,C是BD的中点,AB=ED,AC=EC.求证:△ABC≌△EDC.【变式2-2】如图,AB=DE,AC=DF,BF=EC,△ABC和△DEF全等吗?请说明理由.【变式2-3】(2023•永善县三模)如图,AB=DE,AC=DF,BE=CF,求证:△ABC≌△DEF.【例题3】11.(2018秋•庆云县校级月考)请仔细观察用直尺和圆规作一个角等于已知角的示意图,请你根据所学的三角形全等有关的知识,说明画出∠A ′O ′B ′=∠AOB 的依据是 .【变式3-1】小聪在用直尺和圆规作一个角等于已知角时,具体过程是这样的:已知:∠AOB .求作:∠A ′O ′B ′,使∠A ′O ′B ′=∠AOB .作法:(1)如图,以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ;(2)画一条射线O ′A ′,以点O ′为圆心,OC 长为半径画弧,交O ′A ′于点C ′;(3)以点C '为圆心,CD 长为半径画弧,与第(2)步中所画的弧相交于点D ′;(4)过点D '画射线O ′B ′,则∠A ′O ′B ′=∠AOB .小聪作法正确的理由是( )A .由SSS 可得△O ′C ′D′≌△OCD ,进而可证∠A ′O ′B ′=∠AOBB .由SAS 可得△O ′C ′D ′≌△OCD ,进而可证∠A ′O ′B ′=∠AOBC .由ASA 可得△O ′C ′D ′≌△OCD ,进而可证∠A ′O ′B ′=∠AOBD .由“等边对等角”可得∠A ′O ′B ′=∠AOB【变式3-2】(2023春•白银期中)已知∠AOB ,点C 是OB 边上的一点.用尺规作图画出经过点C 与OA 平行的直线.【变式3-3】如图,以△ABC 的顶点A 为圆心,以BC 长为半径作弧,再以顶点C 为圆心,以AB 长为半径作弧,两弧交于点D ;连接AD 、CD ,若∠B =56°,则∠ADC 的大小为 度.【例题4】(2023•官渡区一模)如图,点A ,B ,C ,D 在同一直线上,AF =DE ,∠A =∠D ,AC =DB .求证:△ABF ≌△DCE.【变式4-1】(2023•从化区二模)为了制作燕子风筝,燕子风筝的骨架图如图所示,AB=AE,AC=AD,∠BAD=∠EAC,证明:△ABC≌△AED.【变式4-2】(2023•祥云县模拟)已知:如图,点F、C在线段BE上,AB=DE,∠B=∠E,BF=EC,求证:△ABC≌△DEF.【变式4-3】(2023•乾安县四模)已知:如图,BA=BD,BE=BC,∠ABD=∠CBE,求证:△ABE≌△DBC.【变式4-4】(2023•宁江区二模)如图,△ABC 中,D 是BC 延长线上一点,满足CD =AB ,过点C 作CE ∥AB 且CE =BC ,连接DE 并延长,分别交AC 、AB 于点F 、G ,求证:△ABC ≌△DCE .【变式4-5】(2023•五华区校级模拟)如图,已知AB ∥DE ,AB =DE ,AF =DC .求证:△ABC ≌△DEF .【例题5】如图,点D 在AB 上,点E 在AC 上,CD 与BE 相交于点O ,且AD =AE ,∠B =∠C ,若BE =4,则CD =  .【变式5-1】(2022春•成华区期末)如图,在等腰△ABC 中,∠ACB =90°,点D 是AC 的中点,过点A 作直线BD 的垂线交BC 的延长线于点E ,若BC =4,则CE 的长为 .【变式5-2】茗茗用同种材料制成的金属框架如图所示,已知∠B =∠E ,AB =DE ,BF =EC ,其中△ABC 的周长为24cm ,CF =3cm ,则制成整个金属框架所需这种材料的长度为 cm .【变式5-3】(2023•青海一模)在△ABC 中,D 是BC 边的中点,若AB =9,AC =5,则△ABC 的中线AD 长的取值范围是( )A .5<AD <9B .4<AD <9C .2<AD <14D .2<AD <7【例题6】如图,已知OA =OB ,OC =OD ,∠O =50°,∠D=35°,则∠OBC =( )A.95°B.120°C.50°D.105°【变式6-1】(2022春•福山区期中)如图,AC是四边形ABCD的对角线,∠1=∠B,点E、F分别在AB、BC上,BE=CD,BF=CA,连接EF.(1)求证:∠D=∠2;(2)若EF∥AC,∠D=76°,求∠BAC的度数.【变式6-2】(2023春•青羊区期末)如图在△ABC中,D是BC边上的一点,AB=DB,BE平分∠ABC,交AC边于点E,连接DE.(1)求证:△ABE≌△DBE;(2)若∠A=100°,∠C=40°,求∠DEC的度数.【变式6-3】(2022秋•湟中区校级期末)如图,在△ABC中,D为AB上一点,E为AC中点,连接DE 并延长至点F,使得EF=ED,连CF.(1)求证:CF∥AB(2)若∠ABC=50°,连接BE,BE平分∠ABC,AC平分∠BCF,求∠A的度数.【例题7】(2022秋•甘井子区校级月考)如图,点C、E、B、F在同一直线上,AC∥DF,AC=DF,BF =CE,试判断AB和DE的关系,并说明理由.【变式7-1】(2023春•罗湖区校级期末)已知:如图,点A、F、C、D在同一直线上,AF=DC,AB=DE,AB∥DE,连接BC,BF,CE.求证:(1)△ABC≌△DEF;(2)BC∥EF.【变式7-2】(2023春•萍乡期末)如图,已知:AB⊥BD,ED⊥BD,AB=CD,BC=DE,那么AC与CE 有什么关系?写出你的猜想并说明理由.【变式7-3】如图,在△ABC中,D为AB的中点,F为BC上一点,DF∥AC,延长FD至E,且DE=DF,联结AE、AF.(1)求证:∠E=∠C;(2)如果DF平分∠AFB,求证:AC⊥AB.【例题8】如图,AC =DC ,BC =EC ,请你添加一个适当的条件: ,使得△ABC ≌△DEC .【变式8-1】如图,已知在△ABC 和△DEF 中,∠B =∠E ,BF =CE ,点B 、F 、C 、E 在同一条直线上,若使△ABC ≌△DEF ,则还需添加的一个条件是 (只填一个即可).【变式8-2】如图,AB =AE ,AC=AD,要使△ABC ≌△AED ,应添加一个条件是 .【变式8-3】问题:如图,在△ABC 和△DEF 中,B ,E ,C ,F 在同一条直线上,AB =DE ,若 .求证:△ABC ≌△DEF .在①AC =DF ,②∠ABC =∠DEF ,③BE =CF 这三个条件中选择其中两个,补充在上面的问题中,并完成解答.【例题9】(2022春•包头期末)如图,已知点A ,C 在线段BD 两侧,AB =AD ,CB =CD ,线段AC ,BD 相交A 于点O .下列结论:①∠ABC =∠ADC ;②AC ⊥BD ;③AC 平分∠BAD ;④OB =OD .其中正确的是  (填写所有正确结论的序号).【变式9-1】(2023•禅城区校级一模)如图,已知AB=AC,AD=AE,∠BAC=∠DAE,且B、D、E三点共线,(1)证明:△ABD≌△ACE;(2)证明:∠3=∠1+∠2.【变式9-2】(2022春•沙坪坝区校级期中)如图,点C在线段AB上,AD∥BE,AC=BE,AD=BC,CF 平分∠DCE.求证:△DCF≌△ECF【变式9-3】(2023春•浦东新区校级期末)如图,已知AB=AE,AC=AD,∠BAD=∠EAC,AD∥BC.(1)△ADE与△ACB是否全等?说明理由;(2)如果∠B=30°,∠D=40°,求∠BAE的度数.【变式9-4】(2022秋•自流井区校级期末)如图,在△ABC和△ADE中,AB=AD,AC=AE,∠1=∠2,AD、BC相交于点F.(1)求证:∠B=∠D;(2)若AB∥DE,AE=3,DE=4,求△ACF的周长.【变式9-5】如图,AD=CB,E、F是AC上两动点,且有DE=BF.(1)若点E、F运动至如图(1)所示的位置,且有AF=CE,求证:△ADE≌△CBF;(2)若点E、F运动至如图(2)所示的位置,仍有AF=CE,则△ADE≌△CBF还成立吗?为什么?(3)若点E、F不重合,则AD和CB平行吗?请说明理由.。

全等三角形判定一(SSSSAS)(基础)知识讲解

全等三角形判定一(SSSSAS)(基础)知识讲解

全等三角形判定一(SSS ,SAS )(基础)责编:杜少波【学习目标】1.理解和掌握全等三角形判定方法1——“边边边”,和判定方法2——“边角边”;2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.【要点梳理】【高清课堂:379109 全等三角形判定一,基本概念梳理回顾】要点一、全等三角形判定1——“边边边”全等三角形判定1——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS ”).要点诠释:如图,如果''A B =AB ,''A C =AC ,''B C =BC ,则△ABC ≌△'''A B C .要点二、全等三角形判定2——“边角边”1. 全等三角形判定2——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).要点诠释:如图,如果AB = ''A B ,∠A =∠'A ,AC = ''A C ,则△ABC ≌△'''A B C . 注意:这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.【典型例题】类型一、全等三角形的判定1——“边边边”【高清课堂:379109 全等三角形的判定(一)同步练习4】1、已知:如图,△RPQ 中,RP =RQ ,M 为PQ 的中点.求证:RM 平分∠PRQ .【思路点拨】由中点的定义得PM =QM ,RM 为公共边,则可由SSS 定理证明全等.【答案与解析】证明:∵M 为PQ 的中点(已知),∴PM =QM在△RPM 和△RQM 中,()(),,RP RQ PM QM RM RM ⎧=⎪=⎨⎪=⎩已知公共边 ∴△RPM ≌△RQM (SSS ).∴ ∠PRM =∠QRM (全等三角形对应角相等).即RM 平分∠PRQ.【总结升华】在寻找三角形全等的条件时有的可以从图中直接找到,如:公共边、公共角、对顶角等条件隐含在题目或图形之中. 把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等,综合应用全等三角形的性质和判定.类型二、全等三角形的判定2——“边角边”2、(2016•泉州)如图,△ABC 、△CDE 均为等腰直角三角形,∠ACB=∠DCE=90°,点E 在AB 上.求证:△CDA ≌△CEB .【思路点拨】根据等腰直角三角形的性质得出CE=CD ,BC=AC ,再利用全等三角形的判定证明即可.【答案与解析】证明:∵△ABC 、△CDE 均为等腰直角三角形,∠ACB=∠DCE=90°,∴CE=CD ,BC=AC ,∴∠ACB ﹣∠ACE=∠DCE ﹣∠ACE ,∴∠ECB=∠DCA ,在△CDA 与△CEB 中,∴△CDA ≌△CEB .【总结升华】本题考查了全等三角形的判定,熟记等腰直角三角形的性质是解题的关键,同时注意证明角等的方法之一:利用等式的性质,等量加等量,还是等量.举一反三:【变式】(2014•房县三模)如图,C 是线段AB 的中点,CD 平分∠ACE ,CE 平分∠BCD ,CD=CE .求证:△ACD ≌△BCE .【答案】证明:∵C 是线段AB 的中点,∴AC=BC ,∵CD 平分∠ACE ,CE 平分∠BCD ,∴∠ACD=∠ECD ,∠BCE=∠ECD ,∴∠ACD=∠BCE ,在△ACD 和△BCE 中,∴△ACD ≌△BCE (SAS ).3、如图,将两个一大、一小的等腰直角三角尺拼接 (A 、B 、D 三点共线,AB =CB ,EB =DB ,∠ABC =∠EBD =90°),连接AE 、CD ,试确定AE 与CD 的位置与数量关系,并证明你的结论.【答案与解析】AE =CD ,并且AE ⊥CD证明:延长AE 交CD 于F ,∵△ABC 和△DBE 是等腰直角三角形∴AB =BC ,BD =BE在△ABE 和△CBD 中90AB BC ABE CBD BE BD =⎧⎪∠=∠=︒⎨⎪=⎩∴△ABE≌△CBD(SAS)∴AE=CD,∠1=∠2又∵∠1+∠3=90°,∠3=∠4(对顶角相等)∴∠2+∠4=90°,即∠AFC=90°∴AE⊥CD【总结升华】通过观察,我们也可以把△CBD看作是由△ABE绕着B点顺时针旋转90°得到的.尝试着从变换的角度看待全等.举一反三:【变式】已知:如图,AP平分∠BAC,且AB=AC,点Q在PA上,求证:QC=QB【答案】证明:∵ AP平分∠BAC∴∠BAP=∠CAP在△ABQ与△ACQ中∵∴△ABQ≌△ACQ(SAS)∴ QC=QB类型三、全等三角形判定的实际应用4、(2014秋•兰州期末)如图,点D为码头,A,B两个灯塔与码头的距离相等,DA,DB为海岸线.一轮船离开码头,计划沿∠ADB的角平分线航行,在航行途中C点处,测得轮船与灯塔A和灯塔B的距离相等.试问:轮船航行是否偏离指定航线?请说明理由.【思路点拨】只要证明轮船与D点的连线平分∠ADB就说明轮船没有偏离航线,也就是证明∠ADC=∠BDC.要证明角相等,常常通过把角放到两个三角形中,利用题目条件证明这两个三角形全等,从而得出对应角相等.【答案与解析】解:此时轮船没有偏离航线.理由:由题意知:DA=DB,AC=BC,在△ADC和△BDC中,,∴△ADC≌△BDC(SSS),∴∠ADC=∠BDC,即DC为∠ADB的角平分线,∴此时轮船没有偏离航线.【总结升华】本题考查了全等三角形的应用,解答本题的关键是:根据条件设计三角形全等,巧妙地借助两个三角形全等,寻找对应角相等.要学会把实际问题转化为数学问题来解决.举一反三:【变式】工人师傅经常利用角尺平分一个任意角,如图所示,∠AOB是一个任意角,在边OA,边OB上分别取OD=OE,移动角尺,使角尺两边相同的刻度分别与D、E重合,这时过角尺顶点P的射线OP就是∠AOB的平分线,你能先说明△OPE与△OPD全等,再说明OP平分∠AOB吗?【答案】证明:在△OPE与△OPD中∵OE OD OP OP PE PD=⎧⎪=⎨⎪=⎩∴△OPE≌△OPD (SSS)∴∠EOP=∠DOP(全等三角形对应角相等) ∴ OP平分∠AOB.。

12.2.1全等三角形的判定(SSS,SAS,ASA,AAS)20160724

12.2.1全等三角形的判定(SSS,SAS,ASA,AAS)20160724

E C
A 练习:如图,点 D 在 AB 上,点 E 在 AC 上,BA =AC, ∠B =∠C,BE、CD 相交于点 O.求证:OB=OC D B 练习:如图,CD⊥AB 于 D,BE⊥AC 与 E, BE、CD 交于 O,且 AO 平分∠BAC,求证:OB=OC D O B 六、全等三角形的判定方法 简称 边边边 边角边 角边角 角角边 缩写 SSS SAS ASA AAS 具体条件 三边对应相等 两边和它们的夹角对应相等 两角和它们的夹边对应相等 两角和其中一角的对边对应相等 A O E C
A 练习:如图:己知 AD∥BC,AE=CF,AD=BC,E、F都在直线AC来自,试说明DE∥ D A BF。
B
E
F
C B 五、全等三角形的判定方法(ASA,AAS) 1. 两角和它们的夹边对应相等的两个三角形全等。简写为“角边角”或“ASA” 。 2. 两角和其中一角的对边对应相等的两个三角形全等。简写为“角角边”或“AAS”。
E A D
B
C
H
B
四、全等三角形的判定方法(SAS) 1. 用尺规作图,两边和它们的夹角对应相等的两个三角形,发现它们是能够完全重合(全 等)的。 2. 两边和它们的夹角对应相等的两个三角形全等。简写为“边角边”或“SAS” 练习:如图,AC=BD,∠CAB=∠DBA,你能判断 BC=AD 吗?说明理由。 C D
12.2 三角形全等的判定 复习 1. 全等三角形的定义:能够完全重合的两个三角形是全等三角形。 2. 全等三角形的性质:全等三角形对应边相等,对应角相等。 3. 因为△ABC≌△A’B’C’, 所以 AB=A’B’, BC=B’ C’, AC=A’ C’ ∠A=∠A’, ∠B=∠B’, ∠C=∠C’ 一、全等三角形的判定方法 1. 首先可以肯定的是,三条边对应相等,三个角对应相等的两个三角形全等。 2. 然后至少需要几个条件才能判定两三角形全等。 二、全等三角形的判定方法(SSS) 1. 用尺规作图,画两个三边相等的三角形,发现它们是能够完全重合(全等)的。 2. 三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。 三、证明三角形全等的书写格式 例题:如图已知 AB=CD,AC=DB,求证△ABC≌△DCB 证明:∵在△ABC 和△DCB 中 A AB=CD 已知 AC=DB 已知 BC=BC 公共边 B
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

AC=DF
BC=EF ∴△ABC≌△DEF(SSS)
叫判 做断 证两 明个 三三 角角 形形 全全 等等 。的 推 理 过 程 ,
?
例题:
已知:如图1 ,AC=FE,AB=FD,BC=DE 求证:△ABC≌△FDE
A

c
= B F
D
证明:在△ABC和△FDE 中 AC=FE(已知) BC=DE(已知) AB=FD(已知)
C B
AB=AB( 公共边 ∴△ABC≌△ABD( SSS
∴∠1=∠2 (全等三角形的对应角相等) ∴AB是∠DAC的平分线 (角平分线定义)
D
2.已知:如图,AB=AC,DB=DC, 请说明∠B =∠C成立的理由
解:连接AD 在△ABD和△ACD中, AB=AC (已知) DB=DC (已知) AD=AD (公共边) ∴△ABD≌△ACD (SSS)
三角形全等的判定(SSS)
龙头山中学 饶金玉
1、 什么叫全等三角形?
能够重合的两个三角形叫 全等三角形。
2、全等三角形的性质
对应边相等,对应角相等
3、 已知△ABC ≌△ DEF,找出其中相等的边与角
A D
①AB=DE
B
C
E
F
② BC=EF
③ CA=FD
④ ∠A= ∠D
⑤ ∠B=∠E
⑥ ∠C= ∠F
∴△ABC≌△FDE(SSS)
证明的书写步骤:
①准备条件: 证全等时要用的间接条件要先证好; ②三角形全等书写三步骤: 写出在哪两个三角形中 摆出三个条件用大括号括起来 写出全等结论
巩固练习
(1)如图,AB=CD,AC=BD,△ABC和△DCB是否全等? 试说明理由。 A D 解: △ABC≌△DCB Ⅴ Ⅴ = = 理由如下: C AB = DC(已知) B AC = DB(已知) BC = CB (公共边) △ABC ≌ △DCB (SSS ) (2)如图,D、F是线段BC上的两点, AB=CE,AF=DE,要使△ABF≌△ECD , 还需要条件 BF=CD或 BD=FC A
将两个三角形剪下来,观察有什么特点?
边边边公理:
三边对应相等的两个三角形全等。
简写为“边边边”或“SSS” 注: 这个定理说明,只要三角形的 三边的长度确定了,这个三角形的形 状和大小就完全确定了,这也是三角 形具有稳定性的原理。
A
D
如 何 用 符 号 语 言 来 表 达 呢
B
C
E
F
在△ABC与△DEF中 AB=DE
∴△ABC≌△FDE(SSS)
=
E

图1
例题:
已知:如图1 ,AC=FE,AD=FB AD=FB,BC=DE 求证:△ABC≌△FDE A 。 c 证明:∵AD=FB D = AD+DB=FB+BD = B ∴ AB=FD(等式的性质) 。 E 图1 在△ABC和△FDE 中
F
AC=FE(已知) BC=DE(已知) AB=FD(已证)
A
D
B
①AB=DE
② BC=EF
C
E
③ CA=FD
F
④ ∠A= ∠D
⑤ ∠B=∠E
⑥ ∠C= ∠F
思考:
1.满足这六个条件可以保证△ABC ≌△ DEF吗? 2.如果只满足这些条件中的一部分,那么能保证 △ABC ≌△ DEF吗?
探究:
一个条件:一组角;一组边 两个条件:一组角一组边;
两组角; 两组边。
B
A
D C
∴ ∠B =∠C (全等三角形的对应角相等)
能力提升
• 如图,已知 AB=DC,AC=DB , • 求证: ∠ A= ∠ D .
结论:只给出一个或两个条件时,都不 能保证所画的三角形一定全等。
探究三角形全等的条件
如果满足三个条件,你能说出有 哪几种可能的情况?
①三组角; ②三组边; ③两组边一组角;
④两组角一组边。
尺规作图
请同学们先任意画出一个三角形ABC, 再画另一个三角形A'B'C'。 要求:AB=A'B' BC=B'C' AC=A'C'
= × ×
E
=
B
D
F
C
小 结
1. 知道三角形三条边的长度怎样画三角形; 2. 三边对应相等的两个三角形全等
(简写成“边边边” 或“SSS”);
3. 初步学会理解证明的思路, 应用“边边边”证明两个三角形全等.
作业布置: 1.课本第37页练习第1,2题。 2.一课一练第一课时。
已知:AC=AD,BC=BD, 求证:AB是∠DAC的平分线. 证明:在△ABC和△ABD中 ∵ AC=AD( 已知 ) BC=BD( 已知 ) A ) ) 1 2
相关文档
最新文档