指数函数的概念 ppt课件

合集下载

第三章 第五节 指数函数 课件(共53张PPT)

第三章 第五节 指数函数 课件(共53张PPT)
解析: 函数 y=|3x-1|的图象是由函数 y=3x 的图象向下平移一个单位 后,再把位于 x 轴下方的图象沿 x 轴翻折到 x 轴 上方得到的,函数图象如图所示.
由图象知,其在(-∞,0]上单调递减,所以 k 的取值范围为(-∞,0].
答案: (-∞,0]
指数函数的性质及应用
角度一 比较指数幂的大小
解析: (1)由函数 y=kx+a 的图象可得 k<0,0<a<1.因为函数的图象与 x 轴交点的横坐标大于 1,所以 k>-1,所以-1<k<0.函数 y=ax+k 的图象可以 看成把 y=ax 的图象向右平移-k 个单位长度得到的,且函数 y=ax+k 是减函 数,故此函数与 y 轴交点的纵坐标大于 1,结合所给的选项,选 B.
1.判断下列结论是否正确(请在括号中打“√”或“×”)
n (1)
an
=(n
a
)n=a(n∈N+).(
)
m
(2)分数指数幂 an
可以理解为mn
个 a 相乘.(
)
(3)函数 y=3·2x 与 y=2x+1 都不是指数函数.( )
(4)若 am<an(a>0,且 a≠1),则 m<n.( )
答案: (1)× (2)× (3)√ (4)×
角度二 解简单的指数方程或不等式
(1)若
,则函数 y=2x 的值域是( )
1 A.8,2
1 B.8,2
C.-∞,18
D.[2,+∞)
4x,x≥0, (2)已知实数 a≠1,函数 f(x)=2a-x,x<0, 若 f(1-a)=f(a-1),则 a 的
值为________.
解析: (1)因为

《指数函数的概念》课件

《指数函数的概念》课件
2023
REPORTING
《指数函数的概念》 ppt课件
2023
目录
• 引言 • 指数函数的概念 • 指数函数的图像 • 指数函数的运算 • 指数函数与其他数学概念的联系 • 总结与回顾
2023
PART 01
引言
REPORTING
课程背景
数学的重要性
数学是现代科学的基础,而指数 函数在数学和实际生活中有着广 泛的应用。

人口增长模型
在生物学和人口统计学中,人口增 长通常使用指数函数来描述。通过 指数函数,可以预测未来人口数量 。
放射性物质衰变
在物理学中,放射性物质衰变通常 使用指数函数来描述。通过指数函 数,可以预测未来放射性物质的数 量。
2023
PART 03
指数函数的图像
REPORTING
指数函数的图像特点
2023
PART 04
指数函数的运算
REPORTING
指数函数的四则运算
01
02
03
04
指数加法
$a^m^n = a^{m+n}$
指数减法
$a^m / a^n = a^{m-n}$
指数乘法
$a^m * a^n = a^{m+n}$
指数除法
$frac{a^m}{a^n} = a^{mn}$
指数函数的复合运算
指数函数与一次函数的复合
$y = a^x * k$,其中k为常数
指数函数与二次函数的复合
$y = a^x * x^2$,其中a、x为变量
指数函数与对数函数的关系
对数函数的定义
如果 $y = a^x$,则 $x = log_a y$
对数函数的性质

高一数学指数函数ppt课件

高一数学指数函数ppt课件

与对数式的转换、对数运算的性质等。
拓展延伸:挑战更高难度题目
复杂指数函数的性质研究
引入更复杂的指数函数形式,如复合指数函 数、分段指数函数等,探讨它们的性质和应 用。
指数函数在实际问题中的应 用
结合实际问题,如复利计算、人口增长等,展示指 数函数的应用价值,并引导学生运用所学知识解决 实际问题。
指数函数与其他数学知识 的综合应用
指数函数图像特征
当a>1时,图像在x轴上方,且随着x 的增大,y值迅速增大;当0<a<1时, 图像在x轴上方,但随着
当a>1时,指数函数在R上是增函数;当0<a<1时,指数函数在R 上是减函数。
指数函数的值域
指数函数的值域为(0, +∞)。
在解题时,要注意判断题目所给 条件是否满足对称性,以便更好
地应用这一性质。
05 复杂问题解决方 法与策略
分段讨论法在处理复杂问题时应用
分段讨论法概念
将复杂问题按照一定条件分成若 干段,每一段内问题相对简单,
易于解决。
分段讨论法应用
在处理指数函数问题时,当自变量 在不同区间内取值时,函数性质可 能发生变化,此时可以采用分段讨 论法。
数形结合思想概念
将数学中的“数”与“形”结合起来,通过图形 直观展示数量关系,帮助理解问题本质。
数形结合思想应用
在处理指数函数问题时,可以通过绘制函数图像 来观察函数性质,如单调性、周期性等。
数形结合思想优势
通过数形结合可以更加直观地理解问题,提高解 题准确性。
06 总结回顾与拓展 延伸
关键知识点总结回顾
幂的乘方规则
$(a^m)^n = a^{m times n}$,幂的乘方,底 数不变,指数相乘。

指数函数的概念PPT课件.ppt

指数函数的概念PPT课件.ppt
4.截距:在 x 轴上没有,在y 轴上为1.
二.图象与性质
1.图象的画法:性质指导下的列表描点法. 2.草图:
观察指数函数 f (x) ax (a 1)
性质
(1) 无论a为何值,指数函数 f (x) a x 都有定义域为R
值域为 0, ,都过点(0,1).
(2) a 1 时, f (x) a x 在定义域内为增函数; 0 a 1 时, f (x) a x 在定义域内为减函数.
(3)关于是否是指数函数的判断
请看下面函数是否是指数函数:
(1) y x
(2) y 0.3x2
(3) y ( 3)3x
(5) y 1 x 1 44
(4) y 2 ( 3 )2x 4
归纳性质
函数 y 2 x
1.定义域: R
2.值 域: 0,
3.奇偶性:既不是奇函数也不是偶函数
例2.比较下列各组数的大小.
(1) ( 1 )0.8与( 1 )1.8
4
2
(2)
(
8
)

3 7
与(
7
5
)12
7
8
(3) 1.080.3与0.983.1
小结比较大小的方法:
1.构造函数的方法: 数的特征是同底不同指 (包括可转化为同底的)
2. 搭桥比较法: 用特殊的数1或 0.
课堂小结
1.指数函数的概念 2.指数函数的图象和性质 3.简单应用
一、指数函数的概念
1.定义:形如 f (x) a x (a 0, a 1)的函数称为指数函数.
2.几点说明:
(1)关于对 a 的规定:
若 a 0 对于 x 0, a x 都无意义

4.2.1指数函数的概念PPT课件(人教版)

4.2.1指数函数的概念PPT课件(人教版)
数学问题
这说明2001年…
实际问题
例 2(2)在问题 2 中,某生物死亡 10000 年后,它体内碳 14 的含量衰减为原来的百分之几?
这说明…
思考:连续两个半衰期是否就是一个“全衰期”?
例 2 (1)在问题 1 中,如果平均每位游客出游一次可给当地带 来 1000 元门票之外的收入,A 地景区的门票价格为 150 元,比 较这 15 年间 A,B 两地旅游收入变化情况.
1118 113
1244 126
B景区每年旅游人次约为上 一年的1.11倍
年增加量是相邻两年的游客人次 做减法得到的,能否通过对B地 景区每年的游客人次做其他运算 发现游客人次的变化规律呢?
增长率为常数的变化 方式,称为指数增长 .
时间/
A地景区

人次/ 万次
年增加量 /万次
2001 600
2002 609 9 2003 620 11 2004 631 11 2005 641 10 2006 650 9 2007 661 11 2008 671 10 2009 681 10 2010 691 10 2011 702 11
1.11x 倍.
设经过 x 年后的游客人次为2001年的 y 倍
探究1:比较两地景区游客人次的变 化情况,你发现怎样的变化规律?
增加量、增长率是 刻画事物变化规律 的两个重要的量.
A地
B地
问题 2 当生物死亡后,它机体内原有的碳 14 含量会按确 定的比率衰减(称为衰减率), 若年衰减率为 p ,你能表 示出死亡生物体内碳 14 含量与死亡年数之间的关系吗?
探究1:比较两地景区游客人次的变化情况, 你发现怎样的变化规律?
A地
B地
线性增长

《指数函数》PPT课件

《指数函数》PPT课件

商的乘方
商的乘方等于乘方的商。 如:$(a/b)^n = a^n div b^n$。
指数函数的极限与连续
极限性质
当底数大于1时,指数函数随着指 数的增大而趋于无穷大;当底数 在0到1之间时,指数函数随着指 数的增大而趋于0。
连续性
指数函数在其定义域内是连续的, 即对于任意两个相邻的点,函数值 之间的差可以无限小。

工程学
在工程学中,指数函数可用于 描述材料疲劳、信号处理等问
题。
计算机科学
在计算机科学中,指数函数可 用于算法分析、图像处理等领
域。
THANKS
感谢观看
02 指数函数的运算 性质
指数函数的四则运算
加法运算
同底数指数相加,指数 不变,底数相乘。如:
$a^m + a^m = 2a^m$。
减法运算
同底数指数相减,指数 不变,底数相除。如: $a^m - a^m = 0$。
乘法运算
同底数指数相乘,指数 相加,底数不变。如:
$a^m times a^n = a^{m+n}$。
级数展开的定义
将指数函数表示为无穷级数的形式,便于分析和 计算。
泰勒级数展开
通过泰勒公式将指数函数展开为幂级数,适用于 函数在某点的局部逼近。
麦克劳林级数展开
特殊形式的泰勒级数,用于在原点处展开指数函 数。
指数函数的傅里叶变换
傅里叶变换的概念
01
将时间域的函数转换为频域的函数,便于分析信号的频率特性
指数函数在生物学中的应用
细菌增长模型
指数函数可以描述细菌在适宜环 境下的增长情况,用于预测细菌
数量。
药物代谢动力学
指数函数可以模拟药物在体内的 代谢过程,用于计算药物浓度随

指数函数的概念图象及性质PPT课件

指数函数的概念图象及性质PPT课件
栏目 导引
第4章 指数函数、对数函数和幂函数
(4)y=(a2+2)-x=a2+1 2x,底数a2+1 2∈0,12,前面系数为 1, 指数为自变量 x,故它是指数函数. (5)y=2×3x+a(a≠0),3x 前面系数为 2≠1,故它不是指数函 数. 故(1)(3)(4)为指数函数.
栏目 导引
第4章 指数函数、对数函数和幂函数
指数式的比较大小问题 比较下列各组数的大小. (1)1.8-π,1.8-3;(2)1.7-0.3,1.9-0.3; (3)0.80.6,0.60.8.
栏目 导引
第4章 指数函数、对数函数和幂函数
【解】 (1)构造函数 f(x)=1.8x. 因为 a=1.8>1,所以 f(x)=1.8x 在 R 上是增函数. 因为-π<-3,所以 1.8-π<1.8-3. (2)因为 y=11..79x在 R 上是减函数, 所以11..79--00..33=11..79-0.3>11..790=1. 又因为 1.7-0.3 与 1.9-0.3 都大于 0, 所以 1.7-0.3>1.9-0.3.
栏目 导引
第4章 指数函数、对数函数和幂函数
(3)取中间值 0.80.8. 因为 y=0.8x 在 R 上单调递减,而 0.6<0.8, 所以 0.80.6>0.80.8. 又因为00..6800..88=00..860.8>00..680=1,且 0.60.8>0, 0.80.8>0,所以 0.80.8>0.60.8.所以 0.80.6>0.60.8.
x=0 时,__y_=__1___; 质 y值
x<0 时__0_<_y_<_1__
x>0 时,_0_<__y_<_1__; x=0 时,_y_=__1____;

高中数学《指数函数》ppt课件

高中数学《指数函数》ppt课件

课件•指数函数基本概念与性质•指数函数运算规则与技巧•指数函数在生活中的应用举例•指数函数与对数函数关系探讨目录•指数方程和不等式求解技巧•总结回顾与拓展延伸01指数函数基本概念与性质指数函数定义及图像特点指数函数定义形如y=a^x(a>0且a≠1)的函数称为指数函数。

指数函数图像特点当a>1时,图像上升;当0<a<1时,图像下降。

图像均经过点(0,1),且y轴为渐近线。

指数函数性质分析指数函数的值域为(0,+∞)。

当a>1时,指数函数在R上单调递增;当0<a<1时,指数函数在R上单调递减。

指数函数既不是奇函数也不是偶函数。

指数函数没有周期性。

值域单调性奇偶性周期性常见指数函数类型及其特点自然指数函数底数为e(约等于2.71828)的指数函数,记为y=e^x。

其图像上升速度最快,常用于描述自然增长或衰减现象。

幂指数函数形如y=x^n(n为实数)的函数,当n>0时图像上升,当n<0时图像下降。

特别地,当n=1时,幂指数函数退化为线性函数y=x。

对数指数函数底数为a(a>0且a≠1)的对数函数和指数函数的复合函数,记为y=log_a(a^x)=x。

其图像为一条直线,斜率为1,表示输入与输出之间呈线性关系。

复合指数函数由多个基本指数函数通过四则运算组合而成的复杂函数。

其性质取决于各基本函数的性质及组合方式。

02指数函数运算规则与技巧$a^m times a^n =a^{m+n}$,同底数幂相乘,底数不变,指数相加。

乘法法则除法法则幂的乘方法则$a^m div a^n =a^{m-n}$,同底数幂相除,底数不变,指数相减。

$(a^m)^n =a^{m times n}$,幂的乘方,底数不变,指数相乘。

030201同底数指数运算法则$a^m times b^m =(a times b)^m$,不同底数幂相乘,指数不变,底数相乘。

乘法法则$a^m div b^m =(a div b)^m$,不同底数幂相除,指数不变,底数相除。

指数函数及其性质PPT课件

指数函数及其性质PPT课件

05 指数函数与其他函数的比 较
与线性函数的比较
线性函数
y=kx+b,表示的是一种 匀速变化,增加或减少的 趋势。
指数函数
y=a^x,表示的是一种爆 炸式增长或衰减的趋势。
比较
线性函数的变化速率是恒 定的,而指数函数的变化 速率会随着x的增大或减小 而快速增大或减小。
与幂函数的比较
01
幂函数
y=x^n,当n>0时,表示的是一种增长趋势;当n<0时,表示的是一种
包括单调性、奇偶性、周期性等。
指数函数的应用
在数学、物理、工程等领域都有广泛的应用。
练习与思考
练习题
根据指数函数的性质,判断下列哪些是指数函数,哪些不是,并说明理由。
思考题
指数函数在生活和生产中有哪些应用?请举例说明。
THANKS FOR WATCHING
感谢您的观看
指数函数的运算性质
01
基本运算性质
02
$a^m times a^n = a^{m+n}$
03
$(a^m)^n = a^{mn}$
04
$frac{a^m}{a^n} = a^{m-n}$
05
复合运算性质:如果 $u(x) = b^x$ 且 $b > 0$ 且 $b neq 1$,则 $y = a^{u(x)}$ 也是指数函数。
04
05
指数函数的值域为 $(0, +infty)$。
指数函数的图像
当 $a > 1$ 时,图像位于第一象限和第四象限 ;
绘制方法:选择一个 $a$ 值,例如 $y = 2^x$ 或 $y = frac{1}{2}^x$,然后使用计算器或数学软件绘制图

4.2.1 指数函数的概念 4.2.2 指数函数的图象和性质 课件(20张)

4.2.1 指数函数的概念 4.2.2 指数函数的图象和性质 课件(20张)
4.2 指数函数
4.2.1 指数函数的概念 4.2.2 指数函数的图象和性质
1.理解指数函数的概念. 2.探索指数函数的单调性与图象的特殊点,并掌握指数函数图象的性质. 3.体会直观想象的过程,加强数学抽象、数学运算素养的培养.
指数函数 一般地,函数① y=ax(a>0,且a≠1) 叫做指数函数,其中指数x是自变量,定义 域是② R .
解下列方程:
(1)81×32x=
1 9
x2
;(2)22x+2+3×2x-1=0.
思路点拨
(1)两边化为同底数幂 利用指数相等求解.
(2)令2x=t(t>0),将原方程化为4t2+3t-1=0 求出t的值
解析
(1)∵81×32x=
1 9
x
2
,∴32x+4=3-2(x+2),
∴2x+4=-2(x+2),解得x=-2.
与指数函数有关的复合函数的定义域、值域问题
大家对“水痘”应该不陌生,它与其他的传染病一样,有一定的潜伏期,这段时 间里病原体在机体内不断地繁殖.病原体的繁殖方式有很多种,分裂就是其中的一 种.我们来看某种球菌的分裂过程:由1个分裂成2个,2个分裂成4个,4个分裂成8个, …… 问题 1.2个这样的球菌分裂x次后,得到的球菌的个数y与分裂次数x的关系式是什么? 提示:y=2x+1. 2.上述求出的关系式中x的范围是什么? 函数的值域是什么? 提示:x∈N*;值域是{22,23,24,…}.
比较指数幂大小
1.01365 37.8, 0.99365 0.03,
1.02365 1 377.4, 0.98365 0.000 6.
问题 1.上面的式子告诉我们一个什么道理? 提示:积跬步以致千里,积怠惰以致深渊. 2.如果不计算出结果,如何比较上式中各指数幂的大小? 提示:利用函数单调性进行比较.

指数函数课件(共16张PPT)

指数函数课件(共16张PPT)
问题情境: 一种放射性物质不断变化为其他物质,毎经过一
年剩留的质量约是原来的84%.试写出这种物质的剩 留量随时间变化的函数解析式。
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
我们设最初的质量为1,经过x年,剩留量是y.则 经过1年,y=1×84%=0.84; 经过2年,y=1×0.84×0.84=0.84; 经过3年,y=1×0.84×0.84×0.84=0.84; …… 一般地,经过x年,
y=0.84x.
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
用描点法画出图象(图4-2).
从这个函数的对应值表和图象,可看到
y=2x在(-
,+
)上是增函数,y
1 2
x
在(-,+ )上是减函数.这两个函数
的任意函数值y都大于0,且它们的图象
都经过点(0,1).
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
1.02365≈? 1.01365≈? 0.99365≈? 借助计算器,我们可以算得: 1.02365≈1377.41 1.01365≈37.78 0.99365≈0.03 1.02365×1.01365≈52043.22 1.01365×0.99365≈0.96 对比上述计算结果,你能感受到指数运算的“威力”吗?

指数函数_PPT

指数函数_PPT

思考题 2 (1)(2012·四川文)函数 y=ax-a(a>0,且 a≠1)
的图像可能是
()
【答案】 C
(2)k 为何值时,方程|3x-1|=k 无解?有一解?有两解? 【解析】 函数 y=|3x-1|的图像是由函数 y=3x 的图像向 下平衡一个单位后,再把位于 x 轴下方的图像沿 x 轴翻折到 x 轴上方得到的,函数图像如图所示.
1.在进行指数运算时要遵守运算法则,防止“跟着感觉 走”.
2.合理运用图像解决单调、方程、不等式问题. 3.对 f(x)=ax 的单调性要注意 a>1 和 0<a<1 两种情况.
1.给出下列结论:
①当 a<0 时,

②n an=|a|(n>1,n∈N*,n )0 的定义域是{x|x≥2 且
探究 3 (1)研究函数的值域、单调区间应先求定义域. (2)求复合函数 y=f[g(x)]的值域应先求内层 u=g(x)的取值 范围,再根据 u 的取值范围去求 y=f(u)的取值范围,即为所求. (3)求复合函数的单调区间应首先分清该复合函数是由哪几 个基本函数复合而得.
思考题 3 (1)求下列函数的定义域与值域. ①y= ;②y=4x+2x+1+1.
B.c<a<b
C.b<a<c
D.b<c<a
答案 A
解析 ∵(12)-0.8=20.8, ∴21.2>20.8>1 即 a>b>1.
又 c=2log52=log54<1, ∴a>b>c.
5.在如图中曲线是指数函数 y=ax,已知 a 的取值为 2,43,
130,15,则相应于 C1,C2,C3,C4 的 a 依次为

4.2 指数函数-(新教材人教版必修第一册)(70张PPT)

4.2 指数函数-(新教材人教版必修第一册)(70张PPT)

类型三:指数函数的图象及应用
典例示范
【例 5】在如图所示的图象中,二次函数 y=ax2+bx+c 与函数
y=bax 的图象可能是(
)
A 解析:根据图中二次函数的图象可知 c=0, ∴二次函数 y=ax2+bx.∵ba>0, ∴二次函数的对称轴 x=-2ba<0,排除 B,D. 对于 A,C,都有 0<ba<1,∴-21<-2ba<0,C 不符合.故选 A.
定向训练
1.不等式 a2x-7>a4x-1(0<a<1)的解集为_(_-__3_,__+__∞_)__.
2.比较下列各组数的大小.
(1)1.52.5 和 1.53.2;
(2)0.6-1.2 和 0.6-1.5;
(3)1.70.2 和 0.92.1;
(4)a1.1 与 a0.3(a>0,且 a≠1).
类题通法
1.利用指数型函数的单调性解不等式,需将不等式两边都凑成 底数相同的指数式.
2.解不等式 af(x)>ag(x)(a>0,a≠1)的依据是指数型函数的单调 性,要养成判断底数取值范围的习惯.若底数不确定,就需进行分
类讨论,即 af(x)>ag(x)⇔ffxx> <ggxx, ,a0> <1a, <1.
数学(人教版)
必修第一册
第四章 指数函数与对数函数
4.2 指数函数
第一 阶段
课前自学质疑
必备知识 深化预习
1.指数函数的概念 一般地,函数_y_=__a_x_ (a>0,且 a≠1)叫做指数函数,其中__指__数__x_ 是自变量,定义域是 R.
2.指数函数 y=ax(a>0,且 a≠1)的图象和性质
【例 2】指数函数 f(x)=(2b-3)(1-a)x,若 f(2)=9,求 a,b 的 值.

4.2.1 指数函数的概念 课件(共30张PPT) 高一数学人教A版(2019)必修第一册

4.2.1 指数函数的概念 课件(共30张PPT) 高一数学人教A版(2019)必修第一册

体会课堂探究的乐趣, 汲取新知识的营养, 让我们一起 吧!




①底数是大于0,且不等于1的常数. ②指数是自变量x. ③ax的系数必须是1.
【解析】选C.因为函数y=(a-2)ax是指数函数,所以a-2=1,解得a=3.
C
y=N(1+p)x(x∈N)
增长
衰减
提;1时为指数衰减型函数.
1%
10%
C
【解析】选D.因为函数f(x)=(2a-3)ax是指数函数,所以2a-3=1,解得a=2.所以f(x)=2x,所以f(1)=2.
D
64
729
y=a·0.85x(x∈N*)
《庄子·天下篇》中写道:“一尺之棰,日取其半,万世不竭。”请你写出截取x次后,木棰剩余量y关于x的函数关系式?
截取次数
木棰剩余
1次
2次
3次
4次
x次
通过具体实例引入指数函数的定义,培养数学抽象的核心素养通过指数型函数的实际应用,培养数学建模的核心素养。
理解指数函数的定义,会求函数的定义域以及定区间的值域。
【解析】选C.设荷叶覆盖水面的初始面积为a,则x天后荷叶覆盖水面的面积为y=a·2x(x∈N*),根据题意,令2(a·2x)=a·220,解得x=19.
C
指数函数 的概念
核心知识
方法总结
易错提醒
核心素养
指数函数的定义
指数型函数模型
指数型函数模型公式:原有量为N,每次的增长(衰减)率为p,经过x次增长(衰减),该量增长到y,则 y=N(1±p)x(x N)
D
定义是考查的重点
3.若函数f(x)=(4-3a)x是指数函数,则实数的取值范围是__________________.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解析:根据指数函数的定义,据题可知
a2 3a 3 1
a
0
a
1
解得 a 2
1. 指数函数的定义; 2. 指数函数形式上的三个特征; 3. 指数函数的定义域和值域。
在平面直角坐标系中做出一对底数互为倒数的指 数函数图像,并写出你观察到的图像性质。
4

8
16
(1)x尺 2
y 2 x, y (1)x
2
以上两个函数有何共同特征?
①均为指数幂的形式 ②自变量x在指数位置 ③底数是一个正的常数
函数 y a x (a 0,且a 1)
叫做指数函数,其中 x是自变量.
函数的定义域是 R .
0
1
a
1
当 a 0 时,a x 不一定有意义。例如( - 2)2
y 4x
y 4x
y (4)x
y 4x
y xx
y x4
y x
y(2a1)x(a1,且 a1) 2
1
y 2 x 的定义域为 ,00,,值域为 0,11,。
解析:要使函数有意义,
有 x 0 ,则 1 0
x
1
2x 1
故函数的定义域为 ,00, 值域为 0,11,。
☺已知指数函数 y f (x)图像经过点(4,16),求此函数的
当 a 0 时,若 x0, ax 无0研究价值 若 x0, a 没x 有意义
当 a 0 时, a x有意义
当 a 1 时,ax 1为常量,无研究价值
为了研究方便,我们规定:a 0 且 a 1
指数函数y=ax(a>0,且a≠1) 形式上有什么特征 ?
判断下列函数是否为指数函数?请给出理由。
x次
……
y 2x
细菌 2个 4个 8个 16 个
总数 21
22
23
24
2x
☺问题2:《庄子·天下篇》中写道:“一尺之棰,日 取其半,万世不竭。”请你写出截取x次后,木棰剩余 量y关于x的函数关系式?
截取
次数 1次 2次 3次 4次
x次
y (1)x 2
木棰 1 尺 1 尺 1 尺 1 尺
剩余 2
解析式并求 f ( 0 ) 、f ( 1 ) 的值。
解析:据题可设 f(x)axa0且 a1
由函数图像过(4,16)知 f(4)a4 16 解得 a 2 (负值舍去),则 f (x) 2x 故 f (0) 20 1,f (1) 21 2 。
☺函数 y(a23a3)ax是指数函数,求 a 的值。
3.1 指数函数的概念
☺ 理解指数函数的概念; ☺ 初步认识指数函数的定义域和值域; ☺ 培养归纳能力及知识的灵活运用能力。
10.15
☺问题1:假设霍乱弧菌每小时分裂一次(每个细菌 分裂一次变成两个),1个霍乱弧菌经过x个小时的 繁殖后变成了y个,那么y与x的关系式是什么?
分裂
次数 1次 2次 3次 4次
相关文档
最新文档