DS证据理论

合集下载

用基于矩阵的DS证据理论方法判定目标属性

用基于矩阵的DS证据理论方法判定目标属性

用基于矩阵的DS证据理论方法判定目标属性基于矩阵的DS证据理论方法是一种用于判定目标属性的有效工具。

该方法基于Dempster-Shafer(DS)证据理论,利用矩阵运算来计算不确定性决策问题的概率。

在进行目标属性的判定时,我们常常面临不确定性的情况。

传统的概率论方法无法处理这种不确定性,而DS证据理论可以有效地解决这类问题。

该方法通过将不同证据进行组合,计算出每个可能的情况的可信度,从而得出最终的判断。

首先,我们需要收集一些与目标属性相关的证据。

这些证据可以是来自专家的观点、实验数据的统计结果或者其他可靠的信息来源。

接下来,我们将这些证据进行编码,转化为矩阵的形式。

然后,我们需要对这些证据进行组合。

DS证据理论通过定义一种称为"mass function"的函数来描述每个证据的不确定性。

这个函数将证据分配给可能的情况,并计算出每种情况发生的概率。

通过对不同证据的组合,我们可以得到每种情况的可信度。

在进行矩阵运算时,我们需要定义一些合适的规则。

例如,我们可以使用矩阵的乘法运算来计算两个证据的组合可信度。

此外,我们还可以使用一些规则来对矩阵进行规范化,以确保最终的结果是一个有效的概率分布。

最后,我们可以根据计算得到的可信度进行目标属性的判定。

通常情况下,我们选择具有最高可信度的情况作为最终的决策。

然而,我们也可以根据需求进行灵活的调整,例如考虑到不同情况的风险和成本等因素。

总而言之,基于矩阵的DS证据理论方法提供了一种有效的方式来判定目标属性。

通过组合不同的证据,我们可以计算出每种情况的可信度,从而得出最终的判断。

这种方法在处理不确定性决策问题时具有广泛的应用前景,能够帮助我们做出准确可信的决策。

《基于DS证据理论的多传感器数据融合算法研究与应用》

《基于DS证据理论的多传感器数据融合算法研究与应用》

《基于DS证据理论的多传感器数据融合算法研究与应用》篇一一、引言在众多复杂系统和智能技术中,数据扮演着至关重要的角色。

在现实生活中,很多场景都需要通过多传感器系统来获取和融合数据。

这些传感器可能会产生不同的数据类型和观点,如何有效地融合这些数据,提高系统的整体性能,就变得至关重要。

本文主要研究了基于DS(Dempster-Shafer)证据理论的多传感器数据融合算法。

通过分析该算法的理论基础,探究其在各种实际场景中的应用,以及面临的挑战和解决方案。

二、DS证据理论的基础DS证据理论是一种用于处理不确定性和不完全性问题的决策理论。

它通过组合多个证据或数据源的信息,来得出更全面、更准确的结论。

该理论基于概率论和信念函数,具有强大的数据处理能力。

在DS证据理论中,每个传感器或数据源都被视为一个独立的证据,它们提供的信息被视为一个假设空间中的不同假设的概率分布。

通过将这些概率分布进行组合,可以得到一个综合的假设概率分布,这就是我们所需的融合结果。

三、多传感器数据融合算法基于DS证据理论的多传感器数据融合算法主要包含以下几个步骤:1. 数据预处理:对各个传感器的数据进行清洗、转换和标准化处理,以便进行后续的融合处理。

2. 特征提取:从预处理后的数据中提取出有用的特征信息,这些特征信息将被用于后续的假设空间构建。

3. 假设空间构建:根据提取的特征信息,构建一个假设空间,每个假设对应一个可能的融合结果。

4. 概率分配:根据每个传感器或数据源提供的信息,将概率分配给每个假设。

这一步是DS证据理论的核心步骤。

5. 概率组合:通过DS组合规则,将各个传感器的概率分布进行组合,得到一个综合的假设概率分布。

6. 决策输出:根据综合的假设概率分布,得出最终的决策结果。

四、应用场景基于DS证据理论的多传感器数据融合算法在许多领域都有广泛的应用。

例如:1. 智能交通系统:通过融合来自摄像头、雷达、激光雷达等传感器的数据,提高车辆对环境的感知能力,从而提升交通系统的安全性和效率。

D-S方法介绍4

D-S方法介绍4
证据理论(Evidence Theory)方法

证据理论(Evidence Theory)方法 §1 D-S 理论(Dempster-Shafer Theory) §2 一种简化的证据理论模型 MET1 §3 简化证据理论模型的拓展 凸函数证据理论模型 §3.1 IRM1 的困难 §3.2 具有凸函授性质的简化证据理论模型 §3.3 具有凸函授性质的简化证据理论模型的分析 §3.3.1 对满足有序命题类问题的组合函数的扩展 §3.3.2 小 结
概率论
Pj 1
j
如果 X Y , P(X) P(Y) 是必须的 P(X) + P(X) = 1
表 1.1.1 D-S 理论和概率论的比较 每一个 Mass 能被形式化表成一个函数, 该函数映射幂集合中的每
8
一个元素成为区间 [0 , 1]的一个实数。函数的形式化描述为 m: 2 [0 , 1] 按着惯例, 空集合的 Mass 通常被定义为 0 (zero) , m() = 0 的幂集合 2 的所有子集的 Mass 和为 1 .
{A,F} {A,B} {B , F }
{A}
{B}
{F}

图 1.1.1 飞机环境的所有子集,其中 A , B , F 分别代表 airliner , bomber 和 fighter
注意,图 1.1.1 是一个格,子集节点可以有多个父亲节点,这个格 (Lattice)是一个分层结构。
4
从 到 的任一路径都表达了连接父节点到儿子节点的子集分 层关系.例如,
9
这新 Mass 通过仅仅对交集的 Mass 求和汇集了一致意见,集合 的交集表达了公共的证据元素。 十分重要的一点是:用于组合的证据必须是独立差错的 (independent errors)。注意,独立差错的证据 独立采集的证据。 表 1.1.2 给出了登普斯特的组合规则,其中每一个交集之后都跟随 一个数值(两个 Mass 的乘积)。 m2({B}) = 0.9 m1({B , F}) = 0.7 m1() = 0.3 {B} {B} 表 1.1.2 0.63 0.27 行列 Mass 相乘 (轰炸机) (轰炸机或战斗机) (未表示意见) m2() = 0.1 {B,F} 0.07 0.03

《基于DS证据理论的多传感器数据融合算法研究与应用》

《基于DS证据理论的多传感器数据融合算法研究与应用》

《基于DS证据理论的多传感器数据融合算法研究与应用》篇一一、引言随着科技的进步,多传感器数据融合技术已成为现代信息处理领域的重要研究方向。

该技术能够通过综合不同传感器的信息,提高系统的准确性和可靠性。

其中,DS(Dempster-Shafer)证据理论作为一种重要的融合方法,被广泛应用于多传感器数据融合中。

本文将基于DS证据理论,对多传感器数据融合算法进行研究与应用,旨在提高系统的性能和准确性。

二、DS证据理论概述DS证据理论是一种用于处理不确定性和不完整性的推理方法,其基本思想是通过组合不同证据的基本概率分配(BPA),得到联合概率分配,进而对事件进行决策。

DS证据理论具有处理不确定性和不完整性的优势,能够有效地融合多源信息,提高决策的准确性和可靠性。

三、多传感器数据融合算法研究1. 传感器数据预处理在进行多传感器数据融合之前,需要对传感器数据进行预处理。

预处理包括数据清洗、数据同步、数据降维等步骤,旨在消除噪声、冗余和异常数据,提高数据的可用性和准确性。

2. 基于DS证据理论的数据融合算法该算法首先对不同传感器的数据进行基本概率分配;然后,利用DS组合规则对不同传感器的BPA进行组合,得到联合概率分配;最后,根据联合概率分配进行决策。

四、算法应用本文将所提算法应用于智能交通系统和智能家居两个领域。

在智能交通系统中,通过融合来自雷达、摄像头、激光等不同传感器的数据,提高车辆感知和决策的准确性;在智能家居中,通过融合温度、湿度、光照等传感器的数据,实现智能控制和节能。

五、实验与分析1. 实验设置为了验证所提算法的有效性,本文设计了多个实验场景。

在智能交通系统中,使用真实交通场景的数据进行实验;在智能家居中,使用模拟数据进行实验。

实验中,分别对所提算法与其他算法进行对比,评估其性能和准确性。

2. 实验结果与分析实验结果表明,所提算法在智能交通和智能家居领域均取得了较好的效果。

在智能交通系统中,所提算法提高了车辆感知和决策的准确性,降低了误报和漏报率;在智能家居中,所提算法实现了智能控制和节能,提高了居住的舒适度和节能效果。

基于DS证据理论的不确定信息决策方法

基于DS证据理论的不确定信息决策方法
多模态医学影像融合:在医学影像分析中,将来 自不同模态(如CT、MRI)的影像信息进行融合 ,以提高疾病的诊断准确性和治疗效果评估。
多源情报融合:在军事、安全等领域,将来自不 同情报机构或来源的情报信息进行融合,以获得 对敌方意图、行动等的全面评估。
这些方法的应用都表明了基于DS证据理论的信息 融合方法在处理不确定信息决策中的有效性和实 用性。
局限性
基于模糊数学的决策方法:虽然可以处理模糊信息,但 往往对信息的模糊性有较强的假设,适用范围有限。
基于DS证据理论的不确定信息决策方法的优势
处理不完全信息:DS证据理论能 够融合多种来源的信息,减少信 息不确定性对决策的影响。
灵活性:DS证据理论对于信息的 模糊性和不确定性具有较强的适 应性,可以根据实际情况调整证 据的信任度和似真度。
决策规则
基于组合后的信任函数,DS证据理论采用一定的决策规则来 做出决策,常见的决策规则包括最大信任度规则、最小风险 规则等。
DS证据理论的应用范围
多传感器数据融合
DS证据理论可以应用于多传感器 数据融合中,将不同传感器提供 的冗余或互补信息进行融合,提
高整体系统的性能和鲁棒性。
智能决策支持系统
DS证据理论可用于构建智能决策 支持系统,通过综合考虑各种不 确定因素,辅助决策者做出更加
结合深度学习
鉴于深度学习在特征提取和模式识别方面的强大能力,未来的研究可以探索如何将DS证据理论与深度学习相结合,以处理更复杂的不确定信息决策问题。
实际应用价值与推广建议
实际应用价值
基于DS证据理论的不确定信息决策方法具 有广泛的应用前景,可以应用于风险管理、 投资决策、医疗诊断、环境评估等多个领域 。它可以帮助决策者更好地处理不确定性, 提高决策的准确性和效率。

《DS证据理论》课件

《DS证据理论》课件

DS证据理论的基本原 则和概念
DS证据理论的基本原则包括 证据的量化、证据的集成和 证据的推理。
DS证据理论的核心内容
证据价值评估模型
通过评估不同证据的价值,帮助决策者做出准确的 判断。
Байду номын сангаас
证据可信度量化模型
将证据的可信度量化为具体的数值,用于衡量证据 的可靠程度。
DS证据理论的应用
法律领域的应用
证据收集与保全、证据调取与审查、证据鉴定与证 明等方面。
知识管理领域的应用
知识组织与管理、知识发现与推理、知识创新与应 用等方面。
结语
DS证据理论的现状和前景
DS证据理论在实践中取得了显著成果,应用前景广阔。
DS证据理论的研究方向和挑战
未来的研究方向包括证据的自动化处理和证据的大数据分析。
DS证据理论的启示和建议
DS证据理论提醒我们在决策过程中要重视证据的价值和可信度。
《DS证据理论》PPT课件
DS证据理论是一种理论框架,用于评估和量化证据的价值和可信度,在法律 和知识管理领域有广泛应用。本课件将介绍DS证据理论的基本原理和应用。
DS证据理论简介
什么是DS证据理论?
DS证据理论是一种用于评估 和量化证据的价值和可信度 的方法论。
DS证据理论的起源和 发展
DS证据理论最早由格伦·肯 伊·罗贝特在20世纪70年代提 出,并不断得到发展和完善。

d-s 法

d-s 法

D-S证据理论,也称为Dempster-Shafer证据理论,是一种处理不确定信息的方法。

D-S证据理论的主要特点是满足比贝叶斯概率论更弱的条件,并具有直接表达“不确定”和“不知道”的能力。

在D-S证据理论中,由互不相容的基本命题(假定)组成的完备集合称为识别框架,表示对某一问题的所有可能答案。

该框架的子集称为命题,分配给各命题的信任程度称为基本概率分配(BPA,也称m函数),m(A)为基本可信数,反映着对A的信度大小。

信任函数Bel(A)表示对命题A的信任程度,似然函数Pl(A)表示对命题A非假的信任程度。

D-S方法的推理结构是自上而下的,分三级:第一级为目标合成,第二级为推断,第三级为更新。

DS证据理论 _浙大

DS证据理论 _浙大
[18] Yaghlane, B. B., et al. Belief function independence: II. The conditional case. International Journal of Approximate Reasoning, 2002, 31: 31-75.
本章的主要参考文献(续4)
浙江大学研究生《人工智能》课件
第五章 D-S证据理论
(Chapter5 D-S Evidential Theory )
徐从富(Congfu Xu) PhD, Associate Professor
Email: xucongfu@ Institute of Artificial Intelligence, College of Computer Science, Zhejiang University, Hangzhou 310027, P.R. China
March 10, 2002第一稿 September 25, 2006第四次修改稿
Outline



本章的主要参考文献 证据理论的发展简况 经典证据理论 关于证据理论的理论模型解释 证据理论的实现途径 基于DS理论的不确定性推理 计算举例
本章的主要参考文献
[1] Dempster, A. P. Upper and lower probabilities induced by a multivalued mapping. Annals of Mathematical Statistics, 1967, 38(2): 325-339. 【提出 证据理论的第一篇文献】 [2] Dempster, A. P. Generalization of Bayesian Inference. Journal of the Royal Statistical Society. Series B 30, 1968:205-247. [3] Shafer, G. A Mathematical Theory of Evidence. Princeton University Press, 1976. 【证据理论的第一本专著,标志其正式成为一门理论】 [4] Barnett, J. A. Computational methods for a mathematical theory of evidence. In: Proceedings of 7th International Joint Conference on Artificial Intelligence(IJCAI-81), Vancouver, B. C., Canada, Vol. II, 1981: 868-875. 【第一篇将证据理论引入AI领域的标志性论文】

《基于DS证据理论的多传感器数据融合算法研究与应用》范文

《基于DS证据理论的多传感器数据融合算法研究与应用》范文

《基于DS证据理论的多传感器数据融合算法研究与应用》篇一一、引言随着科技的进步,多传感器数据融合技术已成为现代信息处理领域的重要研究方向。

在各种复杂环境中,通过多传感器数据融合技术,可以有效地提高信息的准确性和可靠性。

本文将针对基于DS(Dempster-Shafer)证据理论的多传感器数据融合算法进行研究,并探讨其在实际应用中的效果。

二、DS证据理论概述DS证据理论是一种用于处理不确定性和不完全性信息的数学工具,它通过组合多个证据或信念来得到一个综合的决策。

该理论在处理多传感器数据融合时,能够有效地融合来自不同传感器的信息,从而提高决策的准确性和可靠性。

三、多传感器数据融合算法研究基于DS证据理论的多传感器数据融合算法主要包括以下几个步骤:1. 数据预处理:对来自不同传感器的原始数据进行预处理,包括去噪、滤波、特征提取等操作,以得到更纯净的数据。

2. 证据建模:将预处理后的数据转化为DS证据理论中的基本概率分配(BPA),即每个命题的支持程度。

3. 证据组合:利用DS组合规则,将来自不同传感器的BPA 进行组合,得到综合的BPA。

4. 决策输出:根据综合的BPA,得出最终的决策结果。

四、算法应用及效果分析1. 目标跟踪:在复杂环境中,通过多传感器数据融合,可以更准确地实现目标跟踪。

例如,在无人驾驶车辆中,通过雷达、摄像头等传感器获取目标的位置、速度等信息,利用DS证据理论进行数据融合,可以更准确地判断目标的轨迹和状态。

2. 智能监控:在智能监控系统中,通过多传感器数据融合,可以提高监控的准确性和实时性。

例如,在安防监控中,通过视频监控、红外传感器等获取现场信息,利用DS证据理论进行数据融合,可以更准确地判断现场情况,及时发现异常。

3. 医疗诊断:在医疗领域,多传感器数据融合技术可以帮助医生更准确地诊断病情。

例如,在医学影像诊断中,通过CT、MRI等不同模态的影像数据,利用DS证据理论进行数据融合,可以更全面地了解病情,提高诊断的准确性。

基于DS证据理论的多传感器数据融合方法研究

基于DS证据理论的多传感器数据融合方法研究

基于DS证据理论的多传感器数据融合方法研究基于DS证据理论的多传感器数据融合方法研究摘要:随着科学技术的快速发展,多传感器数据融合已成为极具潜力的研究领域。

本文旨在研究基于DS证据理论的多传感器数据融合方法,通过案例分析与实验验证,证明该方法的有效性和可行性。

1. 介绍多传感器数据融合是通过结合不同传感器获取的数据来提高系统性能和信息提取准确性的过程。

传统的数据融合方法主要基于概率论和统计学,但在面对模糊、不确定和矛盾信息时存在一定的局限性。

DS证据理论作为一种新兴的数据融合方法,能够有效地处理不确定和模糊信息,因此在多传感器数据融合中得到广泛的应用。

2. DS证据理论DS证据理论源于贝叶斯决策理论和Dempster-Shafer理论的发展,通过引入证据函数和信任度函数来描述不确定和模糊信息。

DS证据理论的核心思想是将不同证据的信任度进行组合,得到更为可靠的信息结果。

具体而言,DS证据理论包括证据提取、证据组合和决策三个重要步骤。

3. 多传感器数据融合方法基于DS证据理论的多传感器数据融合方法首先需要对各传感器进行校准和特征提取,以确保数据的准确性和可比性。

其次,对于每个传感器获取的数据,需要利用DS证据理论进行证据提取,将其转化为信任度函数。

然后,通过证据组合,将各个传感器的信任度进行融合,得到整体的信任度函数。

最后,基于融合后的信任度函数,可以进行决策和信息提取。

4. 案例分析为了验证基于DS证据理论的多传感器数据融合方法的有效性,选择了一个车辆目标跟踪的案例。

该案例中,利用了视频传感器和雷达传感器获得的车辆位置和速度信息。

首先,对两种传感器获取的数据进行校准和特征提取。

然后,通过DS证据理论进行证据提取,将车辆位置和速度的不确定性转化为信任度函数。

通过证据组合,将两个传感器的信任度进行融合得到目标跟踪的整体信任度函数。

最后根据整体信任度函数进行决策,完成车辆目标跟踪任务。

5. 实验验证为了评估基于DS证据理论的多传感器数据融合方法的性能,进行了一系列的实验。

证据理论的应用举例

证据理论的应用举例

证据理论的应用举例1 D-S 证据理论1.1关于D-S 证据理论的概念D-S 理论假定有一个用大写希腊字母 Θ 表示的环境(environment ),该环境是一个具有互斥和可穷举元素的集合:Θ = { θ1 , θ2 , ⋯ , θn }术语环境在集合论中又被称之为论域(the universe of discourse )。

在D-S 理论中,习惯上把证据的信任度类似于物理对象的质量去考虑,即证据的质量(Mass )支持了一个信任。

关于质量这一术语也被称为基本概率赋值(BPA , the Basic Probability Assignment )或简称为基本赋值(Basic Assignment )。

为了避免与概率论相混淆,我们将不使用这些术语,而是简单的使用质量(Mass ) 一词。

1.2 D-S 证据理论与概率论的区别D-S 理论和概率论的基本区别是关于无知的处理。

即使在无知的情况下,概率论也必须分布一个等量的概率值。

假如你没有先验知识,那么你必须假定每一种可能性的概率值都是P, NP 1=其中,N 是可能性的总数。

事实上,这赋值为P 是在无可奈何的情况下作出的。

但是,概率论也有一种冠冕堂皇的说法,即所谓的中立原理(the principle of indifference )。

当仅仅有两种可能性存在的时候,比方说“有石油”和“没有石油”,分别用H 和⌝H 表示,那么出现应用中立原理的极端情况。

在与此相类似的情况中,即使在没有一点知识的条件下,那么也必须是P = 50 % ,因为概率论要求P(H)+P(⌝H) = 1,就是说,要么赞成H ,要么反对H ,对H 无知是不被允许的。

表1-1为证据理论与概率论的区别。

表1-1 证据理论与概率论的区别D-S理论不要求必须对无知假设H和反驳假设H赋以信任值,而是仅仅将Mass分配给你希望对其分配信任的环境的子集。

任一未被分配给具体子集的‘信任’被看成‘未表达意见’,并将其分配给环境 ,反驳一个假设的‘信任’,实际上,是对该假设的‘不信任’,但不是对该假设‘未表达意见’。

ds证据理论

ds证据理论

ds证据理论
ds证据理论是一种证明方法,它旨在建立一个有效的、可靠的、有效的评估过程,以便根据可用的证据来确定事实。

它是一种基于统计学和科学原理的形式化理论,用于收集、评估、储存和分析信息,以便识别和检验事实,并为做出正确决策提供指导。

DS证据理论的元素包括:数据、技术、过程、数据库和工具,以及多种可用于收集、储存和分析信息的技术。

它包括:采用合理的技术,以有效的方式收集和存储数据;从数据中提取适当的细节;使用合理的工具和技术来分析数据,以帮助支持或证明某一论点;使用合理的技术来识别不可靠的数据;将所有结果总结起来,以便更好地识别事实。

DS证据理论课件

DS证据理论课件
XX
REPORTING
2023 WORK SUMMARY
DS证据理论课件
汇报人:XX
XX
目录
• DS证据理论概述 • DS证据组合规则 • 信任函数与似然函数 • DS证据理论在决策中的应用 • DS证据理论在模式识别中的应用 • DS证据理论在故障诊断中的应用 • 总结与展望
PART 01
DS证据理论概述
• 归一化处理:m'(A) = m(A) / (m(A) + m(B) + m(A∪B)) = 0.42 / (0.42 + 0.12 + 0.46) = 0.4375,m'(B) = m(B) / (m(A) + m(B) + m(A∪B)) = 0.12 / (0.42 + 0.12 + 0.46) = 0.125,m'(A∪B) = m(A∪B) / (m(A) + m(B) + m(A∪B)) = 0.46 / (0.42 + 0.12 + 0.46) = 0.475
PART 05
DS证据理论在模式识别 中的应用
模式识别问题描述与建模
01
02
03
模式识别问题定义
阐述模式识别的基本概念 、分类和应用领域。
特征提取与选择
介绍如何从原始数据中提 取有效特征,以及特征选 择的方法。
模式识别建模
详细解释模式识别的建模 过程,包括模型假设、参 数估计和模型验证等。
基于DS证据理论的模式识别方法
• 举例:假设有两个独立的证据E1和E2,分别对应两个命题A和B。E1对A和B 的支持度分别为0.6和0.4,E2对A和B的支持度分别为0.7和0.3。根据DS证据 组合规则,可以先计算两个证据对A和B的联合支持度,再归一化得到组合后 的BPA。具体计算过程如下

DS证据理论分析

DS证据理论分析

DS证据理论分析
证据权重表示一项证据对概率假设的支持程度,通常用一个介于0和1之间的数值表示。

当证据权重为1时,表示证据对概率假设的支持非常强,而当权重为0时,表示证据对概率假设没有任何支持。

信任函数则表示不同证据之间的组合方式,它是将证据权重映射到概率分配上的函数,通常采用的是Dempster-Shafer(DS)证据理论的规则。

DS证据理论的应用范围非常广泛,涵盖了多个领域。

例如,在法律领域,DS证据理论可以用于判断被告是否有罪,通过对不同证据的分析和组合,可以推断被告有罪的概率。

在医学诊断中,DS证据理论可以用于评估患者是否患有其中一种疾病,通过对患者的不同症状和检测结果的分析和组合,可以推断患者患病的可能性。

DS证据理论的分析过程可以分为三个主要步骤:观察证据、计算证据权重和组合证据。

观察证据是指从现实生活中收集和获取各种证据。

计算证据权重是指通过数学公式或计算方法,将证据的权重从原始数据转化为DS证据权重。

组合证据是指将不同证据的权重进行组合,得出最终的概率假设。

总结来说,DS证据理论是一种通过考虑证据权重和信任函数来推断概率假设真实度的方法。

该理论的应用广泛,可以用于法律、医学等多个领域。

在应用该理论进行分析时,需要考虑证据的可靠性和不确定性,以及对证据的观察、计算权重和组合证据三个主要步骤的操作。

DS证据理论

DS证据理论

适用领域:信息融合、专家系统、情报分析、法律 案件分析、多属性决策分析,等等。
4、证据理论的局限性
要求证据必须是独立的,而这有时不易满足
证据合成规则没有非常坚固的理论支持,其合理 性和有效性还存在较大的争议
计算上存在着潜在的指数爆炸问题
5、证据理论的发展概况
“Zadeh悖论”:对证据理论的合成公式的合理性进行 质疑。 例子:利用Dempster证据合成规则对两个目击证人 (W1, W2)判断某宗“谋杀案” 的三个犯罪嫌疑人(Peter, Paul, Mary)中究竟谁是真正的凶手,得到的结果(认定Paul 是凶手)却违背了人的常识推理结果,Zadeh认为这样的结果 无法接受。 m1() Peter Paul Mary 0.99 0.01 0.00 m2() 0.00 0.01 0.99 m12() 0.00 1.00 0.00
5.1
证据理论的发展简况
证据理论(Evidential Theory) Dempster-Shafer理论 Dempster-Shafer证据理论 DS (或D-S)理论
1、证据理论的名称
其它叫法:
Dempster规则 Dempster合成规则 Dempster证据合成规则
March 10, 2002第一稿 September 25, 2006第四次修改稿
Outline



本章的主要参考文献 证据理论的发展简况 经典证据理论 关于证据理论的理论模型解释 证据理论的实现途径 基于DS理论的不确定性推理 计算举例
本章的主要参考文献
[1] Dempster, A. P. Upper and lower probabilities induced by a multivalued mapping. Annals of Mathematical Statistics, 1967, 38(2): 325-339. 【提出 证据理论的第一篇文献】 [2] Dempster, A. P. Generalization of Bayesian Inference. Journal of the Royal Statistical Society. Series B 30, 1968:205-247. [3] Shafer, G. A Mathematical Theory of Evidence. Princeton University Press, 1976. 【证据理论的第一本专著,标志其正式成为一门理论】 [4] Barnett, J. A. Computational methods for a mathematical theory of evidence. In: Proceedings of 7th International Joint Conference on Artificial Intelligence(IJCAI-81), Vancouver, B. C., Canada, Vol. II, 1981: 868-875. 【第一篇将证据理论引入AI领域的标志性论文】

DS证据理论浙大

DS证据理论浙大

5.1 证据理论的发展简况
1、证据理论的名称
证据理论(Evidential Theory) Dempster-Shafer理论 Dempster-Shafer证据理论 DS (或D-S)理论
其它叫法:
Dempster规则 Dempster合成规则 Dempster证据合成规则
2、证据理论的诞生和形成
Outline
本章的主要参考文献 证据理论的发展简况 经典证据理论 关于证据理论的理论模型解释 证据理论的实现途径 基于DS理论的不确定性推理 计算举例
本章的主要参考文献(续1)
[5] Zadeh, L. A. Review of Shafer’s a mathematical theory of evidence. AI Magazine, 1984, 5:81-83. 【对证据理论进行质疑的经典文献之一】
[17] Yaghlane, B. B., et al. Belief function independence: I. The marginal case. International Journal of Approximate Reasoning, 2002, 29(1): 47-70.
[18] Yaghlane, B. B., et al. Belief function independence: II. The conditional case. International Journal of Approximate Reasoning, 2002, 31: 31-75.
[10] Smets, P, and Kennes, R. The transferable belief model. Artificial Intelligence, 1994, 66: 191-234.

ds证据理论

ds证据理论

ds证据理论
DS证据理论是一种用于数据挖掘和机器学习应用的理论。

它建立在统计概率理论和数学统计学的基础上,用于从大量数据中发现隐藏的规律和特征。

它的概念很简单,即从大量的数据中提取出有用的信息,并基于这些信息建立有用的模型。

DS证据理论的思想是,通过分析大量数据,发现不同的见解,有助于更好地了解和预测特定问题。

例如,可以使用DS证据理论来发现哪些消费者更有可能购买某一产品,以及产品的价格等等。

此外,它还可以用于发现病毒传播的规律、分析股市走势、计算机安全以及政策分析等方面。

DS证据理论的基本思想是使用统计概率理论和数学统计学来构建模型,并应用到大量数据中。

它的目标是从数据中推断出模型,并用来改善预测精度和提高预测精度。

DS证据理论的优势在于它可以从大量的数据中发现隐含的规律,为实际问题提供更准确的解决方案。

总之,DS证据理论是一种用于发现数据隐含规律的理论,它的优势在于可以提供准确的解决方案,为实际问题提供更准确的解决方案。

DS证据理论的应用已经广泛渗透到数据挖掘、机器学习、病毒传播、股市走势、计算机安全和政策分析等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.D-S证据理论引入
诞生
D-S证据理论的诞生:起源于20世纪60年代的哈佛大学数学家A.P. Dempster利用上、下限概率解决多值映射问题,1967年起连续发表一系列论文,标志着证据理论的正式诞生。

形成
dempster的学生G.shafer对证据理论做了进一步发展,引入信任函数概念,形成了一套“证据”和“组合”来处理不确定性推理的数学方法
D-S理论是对贝叶斯推理方法推广,主要是利用概率论中贝叶斯条件概率来进行的,需要知道先验概率。

而D-S证据理论不需要知道先验概率,能够很好地表示“不确定”,被广泛用来处理不确定数据。

适用于:信息融合、专家系统、情报分析、法律案件分析、多属性决策分析
二.D-S证据理论的基本概念
定义1 基本概率分配(BPA)
设U为以识别框架,则函数m:2u→[0,1]满足下列条件:
(1)m(ϕ)=0
(2)∑A⊂U m(A)=1时
称m(A)=0为A的基本赋值,m(A)=0表示对A的信任程度也称为mass函数。

定义2 信任函数(Belief Function)
Bel:2u→[0,1]
Bel(A)=∑B⊂A m(B)=1(∀A⊂U)
表示A的全部子集的基本概率分配函数之和
定义3 似然函数(plausibility Function)
似然函数表示不否认A的信任度,是所有与A相交的子集的基本概率分配之和。

定义4 信任区间
[Bel(A),pl(A)]表示命题A的信任区间,Bel(A)表示信任函数为下限,pl(A)表示似真函数为上限
举例:如(0.25,0.85),表示A为真有0.25的信任度,A为假有0.15的信任度,A不确定度为0.6
三.D-S证据理论的组合规则
m个mass函数的Dempster合成规则
其中K称为归一化因子,1−K即∑A1⋂...⋂A n=ϕm1(A1)⋅m2(A2)⋅⋅⋅m n(A n)反映了证据的冲突程度
四.判决规则
设存在A1,A2⊂U ,满足
m(A1)=max{m(A i),A i⊂U}
m(A2)=max{m(A i),A i⊂U且A i≠A1}
若有:
m(A1)−m(A2)>ε1
m(Θ)<ε2
m(A1)>m(Θ)
则A1为判决结果,ε1,ε2为预先设定的门限,Θ为不确定集合五.D-S证据理论存在的问题
(一)无法解决证据冲突严重和完全冲突的情况
该识别框架为{Peter,Paul,Mary},基本概率分配函数为m{Peter},m{Paul},m{Mary} 由D-S证据理论的基本概念和组合规则进行解析
可以看出虽然在W1,W2目击中,peter和mary都为0.99,但是存在严重的冲突,造成合成之后的Bel函数值为0,这显然与实际情况不合,更极端的情况如果W1中
m{peter)=1,W2中m{Mary}=1,则归一化因子K=0,D-S组合规则无法进行
(二)难以辨识模糊程度
由于证据理论中的证据模糊主要来自于各子集的模糊度。

根据信息论的观点,子集中元素的个数越多,子集的模糊度越大
(三)基本概率分配函数的微小变化会使组合结果产生急剧变化
在学习笔记(一)中,对D-S证据理论引入,对D-S证据理论的基本概念和存在的问题进行了学习。

学习笔记(二)对证据理论的改进方法进行学习,主要学习了Yager的合成公式
一.Yager合成公式
改进中主要引入了m(X),把冲突给了未知命题
二.Yager合成公式改进
为了解决多个证据中有一个证据否定A,则合成结果也否认A,对Yager公式进行改进。

相关文档
最新文档