初中数学图形的相似技巧及练习题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学图形的相似技巧及练习题
一、选择题
1.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与111A B C ∆相似的是( )
A .
B .
C .
D .
【答案】B
【解析】
【分析】 根据相似三角形的判定方法一一判断即可.
【详解】
解:因为111A B C ∆中有一个角是135°,选项中,有135°角的三角形只有B ,且满足两边成比例夹角相等,
故选:B .
【点睛】
本题考查相似三角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.
2.如图,已知////AB CD EF ,:3:5AD AF =,6BC =,CE 的长为( )
A .2
B .4
C .3
D .5
【答案】B
【解析】
【分析】 根据平行线分线段成比例定理列出比例式,计算即可.
【详解】
∵AD :AF=3:5,
∴AD :DF=3:2,
∵AB∥CD∥EF,
∴AD BC
DF CE
=,即
36
2CE
=,
解得,CE=4,
故选B.
【点睛】
本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.
3.如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E 点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为()
A.6 B.8 C.10 D.12
【答案】D
【解析】
分析:根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性
质可得出AF AB
GF GD
==2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出
CG为△EAB的中位线,再利用三角形中位线的性质可求出AE的长度,此题得解.详解:∵四边形ABCD为正方形,
∴AB=CD,AB∥CD,
∴∠ABF=∠GDF,∠BAF=∠DGF,
∴△ABF∽△GDF,
∴AF AB
GF GD
==2,
∴AF=2GF=4,
∴AG=6.
∵CG∥AB,AB=2CG,
∴CG为△EAB的中位线,
∴AE=2AG=12.
故选D.
点睛:本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF的长度是解题的关键.
4.如图所示,在△ABC中,∠C=90°,AB=8,CD是AB边上的中线,作CD的中垂线与CD交于点E,与BC交于点F.若CF=x,tanA=y,则x与y之间满足()
A .2244x y +=
B .2244x y -=
C .2288x y -=
D .22
88x y += 【答案】A
【解析】
【分析】
由直角三角形斜边上的中线性质得出CD =
12AB =AD =4,由等腰三角形的性质得出∠A =∠ACD ,得出tan ∠ACD =GE CE
=tan A =y ,证明△CEG ∽△FEC ,得出GE CE CE FE =,得出y =2FE ,求出y 2=24FE ,得出24y
=FE 2,再由勾股定理得出FE 2=CF 2﹣CE 2=x 2﹣4,即可得出答案.
【详解】
解:如图所示:
∵在△ABC 中,∠C =90°,AB =8,CD 是AB 边上的中线,
∴CD =
12
AB =AD =4, ∴∠A =∠ACD ,
∵EF 垂直平分CD , ∴CE =12
CD =2,∠CEF =∠CEG =90°, ∴tan ∠ACD =
GE CE =tanA =y , ∵∠ACD+∠FCE =∠CFE+∠FCE =90°,
∴∠ACD =∠FCE ,
∴△CEG ∽△FEC , ∴GE CE =CE FE , ∴y =2FE
, ∴y 2=
24FE ,
∴24y
=FE 2, ∵FE 2=CF 2﹣CE 2=x 2﹣4,
∴24y
=x 2﹣4, ∴24y
+4=x 2, 故选:A .
【点睛】
本题考查了解直角三角形、直角三角形斜边上的中线性质、等腰三角形的性质、相似三角形的判定与性质等知识;熟练掌握直角三角形的性质,证明三角形相似是解题的关键. 5.如图,在Rt △ABC 中,∠ACB =90°,∠A =60°,AC =2,D 是AB 边上一个动点(不与点A 、B 重合),E 是BC 边上一点,且∠CDE =30°.设AD =x ,BE =y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )
A .
B .
C .
D .
【答案】C
【解析】
【分析】 根据题意可得出4,23,AB BC ==4,23,BD x CE y =-=-然后判断△CDE ∽△CBD ,继而利用相似三角形的性质可得出y 与x 的关系式,结合选项即可得出答案.
【详解】
解:∵∠A =60°,AC =2,
∴4,23,AB BC ==4,23,BD x CE y =-=-
在△ACD 中,利用余弦定理可得CD 2=AC 2+AD 2﹣2AC •AD cos ∠A =4+x 2﹣2x ,
故可得242CD x x =-+,
又∵∠CDE =∠CBD =30°,∠ECD =∠DCB (同一个角),
∴△CDE ∽△CBD ,即可得,CE CD CD CB
= 即2
22342,2342y
x x x x --+=-+ 故可得: 23343.633
y x x =-
++ 即呈二次函数关系,且开口朝下. 故选C .
【点睛】
考查解直角三角形,相似三角形的判定与性质,掌握相似三角形的判定定理与性质定理是解题的关键.
6.如图,在△ABC 中,A ,B 两个顶点在x 轴的上方,点C 的坐标是(﹣1,0).以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A 'B 'C ,使得△A 'B 'C 的边长是△ABC 的边长的2倍.设点B 的横坐标是﹣3,则点B '的横坐标是( )
A .2
B .3
C .4
D .5
【答案】B
【解析】
【分析】 作BD ⊥x 轴于D ,B ′E ⊥x 轴于E ,根据位似图形的性质得到B′C =2BC ,再利用相似三角形的判定和性质计算即可.
【详解】