动量定理及动量守恒定律

合集下载

§4.1 动量定理与动量守恒定律

§4.1 动量定理与动量守恒定律

联立上两式,解得:
s

M Mm
L
s

m Mm
L
(解毕)
mvx Mvx 0
t
t
m 0 vxdt M 0 vxdt
x
ms Ms
(1)
s s
由图可知:
Hale Waihona Puke Chapter作4者. 动:量杨和茂角田动量
s s L
(2)
§4. 1 动量定理与动量守恒
联立上两式,解得:
u
速度从尾部跳出。
v0
m
M
v M
m u
则:系统水平方向动量守恒,下列式子正确的是( C )
(A) Mv ( mu ) ( M m )v0 (B) Mv m( v0 u ) ( M m )v0 (C) Mv m( v u ) ( M m )v0

1
2tdt
2 2( 2 t )2 dt
0
1
得: I 1.33 ( N S )
F
2
0
1
2 (t)
Chapter作4者. 动:量杨和茂角田动量
§4. 1 动量定理与动量守恒
例 有一方向不变的冲力 作用在原来静止的物体
解F由冲于量ΔI冲方t 力向21.方也330向不变不0.,变67,则(N其: )
得: I 1.33 ( N S )
F
2
(解毕)
0
1
2 (t)
Chapter作4者. 动:量杨和茂角田动量
§4. 1 动量定理与动量守恒
二、质点系的动量定理
例如:两个质点组成的质点系
分别应用质点的动量定理:

动量定理及动量守恒定律

动量定理及动量守恒定律

20
动量定理及动量守恒定律
oy N1 − m1g = 0 又f1max = N1μ1
以 m2 为隔离体,m2 受重力W = m2 g ;桌面的支持力 N2 ; m1 的压力 N1′ (大小与 N1 相等); m1 作用在 m2 上的最大静摩擦力 f1max′(大小与 f1max 相等) ;桌面作用在 m2 上的
oA y A W3 − TA′ − TB′ = m3a3
(7)
因为不计滑轮及绳的质量,不计轴承摩擦. 且已知绳不可伸长.
∴ TA = TB = TA′ = TB′ = T
f A ,绳的拉力 TA , A 的动力学方程为

动量定理及动量守恒定律
W1 + N A + f A + TA = m1a1 建立如图 3.5.7(1)所示的坐标系 oA − xA y A .
oA xA TA − f A = m1a1
(1)
oA y A W1 − N A = 0
(2)
且 fA = NAμ
动量定理及动量守恒定律
第三章 动量定理及动量守恒定律
(Momentum and Conservation Law of Momentum)
一、内容简介(Abstract) 1.牛顿第一定律(Newton’s first law)
孤立质点静止或作等速直线运动,即质点在不受力或所受力的合力为零时,将保持静 止或匀速直线运动状态不变.(惯性定律) 2.牛顿第三定律(Newton’s third law)
g
y
x o
N
2
α m2
a2
W2
N1′
图3.5.(5 3)
y′
N1 f∗
m1

动量定理及动量守恒定律在电磁感应中的应用

动量定理及动量守恒定律在电磁感应中的应用

动量定理及动量守恒定律在电磁感应中的应用摘要:《普通高中物理课程标准》指出,高中物理课程旨在进一步提高学生的科学素养,落实“立德树人”的根本任务。

基于学科核心素养教学实施策略和方法,要落实到教育教学的全过程,本文重点介绍动量定理、动量守恒定律在电磁感应解题的运用。

关键词:动量动量守恒电磁感应应用一、动量定理:物体所受合外力的冲量等于物体的动量变化.表达式:I=Δp或Ft=mv2-mv1.二、动量守恒定律:一个系统不受外力或者所受合外力为零,这个系统的总动量保持不变.表达式:m1v1+m2v2=m1v1′+m2v2′或p=p′.三、在电磁感应中,动量定理应用于单杆切割磁感线运动,可求解变力的时间、速度、位移和电荷量.(1)求电荷量或速度:B LΔt=mv2-mv1, q= t.(2)求时间:Ft-I冲=mv2-mv1, I冲=BILΔt=BL .(3)求位移:-BILΔt=- =0-mv0,即 - s=m(0-v).四、在电磁感应中对于双杆切割磁感线运动,若双杆系统所受合外力为零,运用动量守恒定律结合能量守恒定律可求解与能量有关的问题。

例1.如图所示,在水平面上有两条导电导轨MN,PQ,导轨间距为d,匀强磁场垂直于导轨所在的平面向里,磁感应强度的大小为B,两根完全相同的金属杆1,2间隔一定的距离摆开放在导轨上,且与导轨垂直.它们的电阻均为R,两杆与导轨接触良好,导轨电阻不计,金属杆的摩擦不计.杆1以初速度v滑向杆2,为使两杆不相碰,则杆2固定与不固定两种情况下,最初摆放两杆时的最小距离之比为( C )A.1∶1B.1∶2C.2∶1D.1∶1解析:杆2固定:对回路 q1= = .对杆1:-B d·Δt=0-mv0,q1=·Δt 联立解得s1= .杆2不固定: 对回路 q2=对杆2:B d·Δt=mv2-0 全程动量守恒:mv=mv1+mv2末态两棒速度相同,v1=v2,q2=·Δt 联立解得s2= . s1∶s2=2∶1,则C选项正确.例2.如图所示,宽度为L的平行光滑的金属轨道,左端为半径为r1的四分之一圆弧轨道,右端为半径为r2的半圆轨道,中部为与它们相切的水平轨道.水平轨道所在的区域有磁感应强度为B的竖直向上的匀强磁场.一根质量为m的金属杆a 置于水平轨道上,另一根质量为M的金属杆b由静止开始自左端轨道最高点滑下,当b滑入水平轨道某位置时,a就滑上了右端半圆轨道最高点(b始终运动且a,b 未相撞),并且a在最高点对轨道的压力大小为mg,此过程中通过a的电荷量为q,a,b杆的电阻分别为R1,R2,其余部分电阻不计.在b由静止释放到a运动到右端半圆轨道最高点过程中,求:(1)在水平轨道上运动时b的最大加速度是多大;(2)自b释放到a到达右端半圆轨道最高点过程中,系统产生的焦耳热是多少;(3)a刚到达右端半圆轨道最低点时b的速度是多大.解析:(1)由机械能守恒定律得 M =Mgr1解得vb1=b刚滑到水平轨道时加速度最大,E=BLvb1, I= ,由牛顿第二定律有F安=BIL=Ma 解得a= .(2)由动量定理有-B Lt=Mvb2-Mvb1, 即-BLq=Mvb2-Mvb1解得vb2= -根据牛顿第三定律得:a在最高点受支持力N=N′=mg, mg+N=m解得va1=由能量守恒定律得Mgr1= M + m +mg2r2+Q 解得Q=BLq -3mgr2-.(3)由能量守恒定律有2mgr2= m - m解得va2=由动量守恒定律得Mvb1=Mvb3+mva2解得vb3= - .答案:(1)(2)BLq -3mgr2-(3) -例3.如图所示,将不计电阻的长导线弯折成P1P2P3,Q1Q2Q3形状,P1P2P3和Q1Q2Q3是相互平行且相距为d的光滑固定金属导轨.P1P2,Q1Q2的倾角均为θ,P2P3,Q2Q3在同一水平面上,P2Q2⊥P2P3,整个导轨在方向竖直向上、磁感应强度大小为B的匀强磁场中,质量为m电阻为R的金属杆CD从斜导轨上某处静止释放,然后沿水平导轨滑动一段距离后停下.杆CD始终垂直导轨并与导轨保持良好接触,导轨和空气阻力均不计,重力加速度大小为g,导轨倾斜段和水平段都足够长,求:(1)杆CD能达到的最大速度;( 2)杆CD在距P2Q2为L处释放,滑到P2Q2处恰达到最大速度,则沿倾斜导轨下滑的时间Δt1及在水平导轨上滑行的最大距离.解析:(1)杆CD达到最大速度时,杆受力平衡BdImcosθ=mgsinθ此时杆CD切割磁感线产生的感应电动势为E=Bdvmcosθ由欧姆定律可得Im = , 解得vm= .(2)在杆CD沿倾斜导轨下滑的过程中,动量定理有mgsinθ·Δt1-Bdcosθ·Δt1=mvm-0= = =解得Δt1= +在杆CD沿水平导轨运动的过程中,根据动量定理有 -B d·Δt2=0-mvm该过程中通过R的电荷量为 q2=Δt2,得q2=杆CD沿水平导轨运动的过程中,通过的平均电流为 = =得q2=Δt2=解得s= .答案:(1)(2) +3。

动量定理和动量守恒定律

动量定理和动量守恒定律

动量定理和动量守恒定律
动量定理(或称为莱布尼兹动量定理)是物理学中的一条基本定理,它说明了物体受
力时动量发生变化的定律,即在任何时刻点,物体动量的变化等于向物体施加的力的矢量积。

动量定理的数学公式可以表达为:
$$\vec{P}= \frac{d\vec{p}}{dt} = \sum \vec{F_T}$$
其中,$P$ 代表物体的动量,$F_T$代表施加在物体上的外力,$p$代表物体的线速度,$t$代表时间。

从上式可以看出,动量的定义比较宽泛,除了物体的位置和速度外,还包括了力对物
体的作用,也就是动量改变的原因就是因为物体受力,所以又叫做力学定理。

在微分形式中,动量定理也可以写作:
动量定理的重要意义是:动量是物体受力变化的定律,这个定律蕴含着物体受力量变
化的定律,即动量守恒定律。

动量守恒定律是物理学中最基本也是最重要的定律,它非常宽泛地适用于物理学问题,它宣布了外力作用下物体总动量(包括质量和速度)保持不变。

即:
总动量 $$P_1 + P_2 + ...+ P_N = P_1^{'} + P_2^{'} + ...+ P_N^{'}$$
因此,当外力改变物体的总动量时,实际上就是通过物体内部各外力矢量积之和改
变物体的总动量。

动量守恒定律是一个强有力的物理定律,依照这个定律,动量的总和将
始终守恒不变。

动量定理,动量守恒定律

动量定理,动量守恒定律


3
0
Fx dt m vx m v3
1 2 3 4
对不对?
y
N
f
m
o

F
x
1 :
N 10 0.672 ? t
t , F 1.12t
物体可能飞离桌面,
何时飞离?
mg
令 10 0.672 0 得: t 14.9 s
N 10 - 0.672 t N 0
§4.3 动量定理
一、质点的动量定理 1. 微分形式 2. 积分形式
dp F dt Fdt dp 令 dI Fdt
t1
— 力的元冲量
t2 I Fdt — 力的冲量
t2 p2 得: I Fdt dp p2 p1 p t1 p1
三、动量定理
t2 I内 F内dt 0
t1
t1
四、动量守恒定律——空间平移对称性 孤立系统:
F外 0 p总 恒矢量 vc 恒矢量
m
M
h
当 m 自由下落 h 距离,绳被拉紧 m 的瞬间, 和 M 获得相同的运动速率 M v ,此后 m 向下减速运动, 向上 减速运动。M 上升的最大高度为:
v H 2a
2
分两个阶段求解
第一阶段:绳拉紧,求共同速率 v
解1:
解2:
M m m不能提起M , 共同速率 v 0
绳拉紧时冲力很大,忽略重力, M
*质点所受合力的冲量等于质点动量的增量
分量式:
Ix Iy Iz

t1
t2
t1 t2
Fx dt p x Fy dt p y Fz dt p z

动量定理与动量守恒定律

动量定理与动量守恒定律

动量定理与动量守恒定律动量是物体运动的重要物理量,揭示了物体运动的性质以及相互作用过程中的变化规律。

动量定理和动量守恒定律是描述物体运动中动量变化和守恒的重要原理。

一、动量定理动量定理又称牛顿第二定律,它指出:当外力作用于物体时,物体的动量变化率等于外力的合力。

在公式表示上,动量定理可以表达为:F = ma其中,F为物体所受到的合外力,m为物体的质量,a为物体的加速度。

根据动量定理,可以得出以下结论:1. 外力对物体的作用时间越长,物体的动量变化越大。

2. 给定外力作用时间不变的情况下,物体的质量越大,其动量的变化越小。

3. 给定物体质量不变的情况下,外力的大小越大,物体的动量变化越大。

二、动量守恒定律动量守恒定律是描述封闭系统中动量守恒的原理。

在封闭系统中,物体之间发生相互作用,它们的动量之和保持不变。

根据动量守恒定律,可以得出以下结论:1. 在没有外力作用的封闭系统中,物体的总动量保持不变。

2. 当物体发生碰撞或相互作用时,只要没有外力干扰,物体的动量总和保持不变。

3. 动量的守恒还适用于多个物体之间的相互作用,无论是弹性碰撞还是非弹性碰撞。

应用动量守恒定律,可以对各种现象进行解释,例如:1. 汽车碰撞:当两辆车发生碰撞时,它们的合动量在碰撞前后保持不变,因此可以用动量守恒定律来分析和解释碰撞过程。

2. 运动员跳远:运动员在起跳瞬间通过腿部发力,推动自己前进。

由于系统是封闭的,跳远过程中动量守恒,从而产生更大的跳远距离。

3. 火箭喷气推进:火箭通过排出高速喷射的气体,产生反冲力推动自身前进。

根据动量守恒,喷气气体的动量变化与火箭的动量变化相互抵消,从而实现火箭的推进。

综上所述,动量定理和动量守恒定律是物理学中对物体运动和相互作用过程进行描述的重要原则。

了解和应用这些定律,可以更好地理解和解释物体的运动行为,对各种物理现象进行分析和解决问题。

动量定理与动量守恒定律

动量定理与动量守恒定律

质点系总动量不随时间改变 P
p
i 1
N
i
常矢量
——质点系动量守恒定律
注意 1. 区分外力和内力
内力仅能改变系统内某个物体的动量,但不能改变系 统的总动量。
第4章 动量和角动量
2.5 动量定理与动量守恒定律
2. 合外力沿某一方向为零: 该方向上的动量守恒
(尽管总动量不守恒)
p const.
第4章 动量和角动量
2.5 动量定理与动量守恒定律
例 质量分别为 和 的小孩在光滑的平面 上通过一条轻绳彼此拉对方。设他们开始时静止, 相距为l,问他们在何处相遇?
解 设t=0时刻,两小孩分别处于 和 。 在水平方向上,系统不受外力作用,因此水平方向上动 量守恒,即 由此得
第4章 动量和角动量
2.5 动量定理与动量守恒定律
F
i 1 i i 1 j i
N
N
dpi d N fij pi dt i 1 i 1 dt
N
第4章 动量和角动量
2.5 动量定理与动量守恒定律
三 动量守恒定律

i
tf
ti
Fi dt Pf Pi
i i
若(1)质点系所有质点不受外力; (2)质点系所受合外力为零;
2.5 动量定理与动量守恒定律
一 质点的动量定理
Fdt dp
定义冲量
力在时间上的积累效应 力 F 在 t t+dt 时间内 给质点的冲量.
dI Fdt
在有限时间内

Pf P i
tf dP Fdt
ti
ti
tf Pf P i I= Fdt

动量定理动量守恒定律

动量定理动量守恒定律
解P:P(1P01)00建(5立tiˆ01坐0F标2dttˆ系j)dOtXYEk25求012iˆm:v120P0,ˆjE2Pmk2,(Ik,gA m s1 )
5t 2 iˆ t 2 ˆj 2
2502 1002 2102
3.63103(J )
(2)求10秒内作用力的冲量及作的功
依冲量的定义:
t2 t1
Fi dt=
p2 p1
dpi
miv2i
mi v1i
t2 t1
Fi dt=
p2 p1
dpi
miv2i
mi v1i
因为时间相同,有:
( t2 t1
Fi )dt
miv2i
mi v1i
把作用力分为外力和内力,则:
(t2
统内的动量可以相互转移,但它们的总和保持不变。
2. 若合外力不为 0,但在某个方向上合外力分量为0, 则在该方向上动量守恒。
3.自然界中不受外力的物体是没有的,但如果系统的内力 >>外力,可近似认为动量守恒。在碰撞、打击、爆炸等
相互作用时间极短的过程中,往往可忽略外力。
4、注意区别 Fi外 0 与 Fi外dt 0
应用该定理应注意:
t2
实际中常用分量式: 对于
F c
Fxdt mv2x mv1x
t1
Fxt mv2x mv1x
t2
Fydt mv2y mv1y
Fyt mv2y mv1y
t1
t2
Fzdt mv2z mv1z
Fzt mv2z mv1z
t1
上式说明:某一方向的冲量只改变该方向的动量.
I
10 Fdt
0
Y m
Fi外)dt P2 P1 P

动量定理和动量守恒定律(大学物理)

动量定理和动量守恒定律(大学物理)

四、动量定理和动量守恒定理的应用:
F
m1
1
m2 2
Fdt
F
t1
F
t2

t2
t1
t 2 t1
t2 t1 p2 p1 p F t 2 t1 t
t
t1 p F t2 t1 t
注意
t2
Fdt
在 p 一定时
2
两边同乘以 y d y 则
d yv yg dt
m2
O
m1 y
y
0
0
1 3 1 2 gy yv 3 2
2 v gy 3
1
2
大球碰撞小球
小球碰撞大球
同样大小的球相碰
如果两球在碰撞前的速度在两球的中心连线上, 那么,碰撞后的速度也都在这一连线上,这种碰撞 称为对心碰撞(或称正碰撞)。
t
N N t N N 1 N dt mi vi mi vi 0 Fi dt f ij t0 t0 i 1 j 1 i 1 i 1 i 1
因为:

i 1 j 1
N
N 1
f ij 0
非对心碰撞
设 v10和v20分别表示两球在碰撞前的速度,v1和 v2 分别表示两球在碰撞后的速度, m1和 m2 分别为两球
的质量。
v10
v1 f1
v20
f2
v2
m2
m1
碰撞前
m2
m1
碰撞时
m2
m1
碰撞后
牛顿的碰撞定律:碰撞后两球的分离速 度 (v2 v1 ),与碰撞前两球的接近速度 (v10 v成正比, 20 ) 比值由两球的材料性质决定。

2-1动量定理 动量守恒定律

2-1动量定理 动量守恒定律
质点系动量定理 a、微分形式 、
d ∑mivi = ∑Fi dt i i
b、积分形式 、
∑I = ∫ ∑Fdt = ∑m v − ∑m v
i i i i i t0 i i i
t1
i 0i
动量守恒定律 当系统所受的合外力等于零时, 当系统所受的合外力等于零时,即 系统的总动量保持不变 ∑mivi = C
i
∑F = 0
i
注意: 注意:
i i a. 适用条件: F = 0 或 (∑F )外 << (∑F )内 适用条件: ∑i
宏观、 宏观、微观都适用 b. 动量守恒中,系统内所有物体的速度都是 动量守恒中, 相对于同一惯性参照系的
分量式
系统x方向动量守恒 Fix = 0,系统 方向动量守恒 ∑
i=1
M
mv人 - Mv车= 0
M v人= v车 m
L− x
M
x
经历时间相等, 经历时间相等,两边同时积分
M x = (L − x) m
所以,人走的距离为: 所以,人走的距离为:
ML x= M +m
车走的距离为
mL L− x = M +m
练习2 质量m=1kg的质点从o点开始沿半径R=2m 练习2、质量m=1kg的质点从o点开始沿半径R=2m的 m=1kg的质点从 R=2m的 圆周运动。 点为自然坐标原点。 圆周运动。以o点为自然坐标原点。已知质点的运 2 动方程为 s = 0.5π t m。试求从 t1 = 2 s到 t2 = 2 s 这段时间内质点所受合外力的冲量。 这段时间内质点所受合外力的冲量。 解:
在水平光滑的铁轨上有一小车, 例1.在水平光滑的铁轨上有一小车,长度为 ,质 在水平光滑的铁轨上有一小车 长度为L, 量为M, 质量m)和车原来都静止不动。 量为 ,人(质量 )和车原来都静止不动。现 在从车的一端走向另一端, 在从车的一端走向另一端,问人和小车各移动了 多少距离? 多少距离? 解:设人走的距离为x,车走的 设人走的距离为 , 距离为(L-x),由动量守恒 距离为( 由动量守恒

1-5 动量定理,动量守恒定律

1-5 动量定理,动量守恒定律

在t+dt时刻, 火箭质量减为M-dm, 速度增为 v dv
则燃气对地速度为 v dv u 则燃气动量变化
(v dv u)dm vdm udm dmdv udm 由动量定理, 火箭受到的推力为: F u dm dt
火箭速度公式 忽略重力和阻力, 则系统动量守恒
动量状态: t 时刻, v = 300 m/s,p = mv
动量定理: F ( t )dt mv 300m
t

1 m 300
0
F ( t )dt
0
t
O 0t
x
子弹在枪筒内加速时间 t = ?
当 F ( t ) 400 4 105 t 0 时
t 3 10 3 (sec)
都在这一连线上。(对心碰撞)
斜碰:两球碰撞前的速度不在两球的中心连线上。
二维弹性碰撞 两个质量相同的粒子,发生弹性碰撞 碰前一个粒子静止,碰后两个粒子的速度相互垂直
v0 v1 v 2
1 1 1 2 2 2 mv 0 mv 1 mv 2 2 2 2
v 0
v1

0
至某一高度 h 为止。试从高度 h 计算出子弹的速
率 v ,并说明在此过程中机械能损失。
0
解:从子弹以初速击中沙箱到获 得共同速度可看作在平衡位置完 成的完全非弹性碰撞。水平方向
受外力为0,由动量守恒有
v0
m M
mv 0 (m M )v
h
子弹射入沙箱后,只有重力作功,子弹,沙箱、 地球组成的系统机械能守恒。
内力有没有作用?
四、动量守恒定理
如果
F Fi外 0
p mi vi c

简述质点系的动量定理及动量守恒定律

简述质点系的动量定理及动量守恒定律

动量是物体运动状态的一种量度,它与物体的质量和速度成正比。

质点系的动量定理和动量守恒定律是描述物体运动规律的重要定律,对于理解和研究物体的运动具有重要意义。

本文将从简述质点系的动量定理开始,逐步深入探讨动量守恒定律,希望能够为读者提供一份深入浅出的参考。

1. 质点系的动量定理质点系的动量定理是描述质点系受力情况下动量的变化规律的定理。

根据牛顿第二定律,质点系的动量定理可以表述为:当一个质点系受到合外力时,它的动量随时间的变化率等于合外力的作用,即\[ \frac{d\vec{p}}{dt}=\vec{F} \]其中,\[ \vec{p} \]代表质点系的动量,\[ \vec{F} \]代表合外力的矢量。

这个定理表明了力对物体动量的影响,是经典力学中非常重要的基本定律之一。

2. 动量守恒定律当质点系受到合内力作用时,它的动量不会发生改变,这就是动量守恒定律的基本内容。

对于一个封闭系统来说,合内力为零,因此动量守恒定律可以表述为:在一个封闭系统内,当没有合外力作用时,质点系的动量保持不变,即\[ \vec{p}_1 + \vec{p}_2 + \cdots + \vec{p}_n = \vec{p}_1' +\vec{p}_2' + \cdots + \vec{p}_n' \]其中,\[ \vec{p}_i \]代表质点i的初始动量,\[ \vec{p}_i' \]代表质点i的最终动量。

动量守恒定律是一个非常重要的物理定律,它对于理解和分析自然界中的各种物理现象具有重要作用。

3. 个人观点和理解动量定理和动量守恒定律的提出和应用,使我们能够更深入地理解物体运动规律,并且在工程技术和自然科学研究中得到了广泛的应用。

在实际生活中,通过对动量定理和动量守恒定律的应用,我们可以更好地理解交通事故、火箭发射和碰撞实验等现象。

这些定律的深入理解和应用,有助于我们更加科学地分析和解决相关问题。

动量定理及动量守恒定律

动量定理及动量守恒定律

4、一枚在空中飞行的导弹,质量为m,在某点的速度为 ,方向水平。 、一枚在空中飞行的导弹,质量为 ,在某点的速度为v,方向水平。 导弹在该点突然炸裂成两块,其中质量为 的一块沿着与v相反的 导弹在该点突然炸裂成两块,其中质量为m1的一块沿着与 相反的 方向飞去,速度为v1。求炸裂后另一块的速度 2。 求炸裂后另一块的速度v 方向飞去,速度为
动量守恒定律的理解及应用要点
矢量性:动量守恒定律方程是一个矢量方程。 矢量性:动量守恒定律方程是一个矢量方程。对于作用前后物体的运动方向 都在同一直线上的问题,应选取统一的正方向。若方向未知, 都在同一直线上的问题,应选取统一的正方向。若方向未知,可以 设的正方向为标准列动量守恒方程,通过所得结果的正负, 设的正方向为标准列动量守恒方程,通过所得结果的正负,判定未 知量的方向 瞬时性:动量是一个瞬时量,动量守恒指的是系统任一瞬时的动量和恒定, 瞬时性:动量是一个瞬时量,动量守恒指的是系统任一瞬时的动量和恒定, 不是同一时刻的动量不能相加 相对性: 相对性:应用动量守恒定律时各物体的速度必须是相对同一惯性系的速度 普适性:只要系统所受的合外力为零, 普适性:只要系统所受的合外力为零,不论系统内部物体之间的相互作用力 性质如何,不论系统内各物体是否具有相同运动方向, 性质如何,不论系统内各物体是否具有相同运动方向,不论物体相 互作用时是否直接接触, 互作用时是否直接接触,也不论相互作用后粘合在一起还是分裂成 碎片,动量守恒定律均适用。 碎片,动量守恒定律均适用。动量守恒定律不仅适用于低速宏观物 体,而且适用于接近光速运动的微观粒子。 而且适用于接近光速运动的微观粒子。
A
等于碰撞前的总动能 ③ 碰撞后同向运动时后一
A、 PA=6kg.m/s, PB=6kg.m/s 、 , B、 PA=3kg.m/s, PB=9kg.m/s 、 , C、 PA=-2kg.m/s, PB=14kg.m/s 、 - , D、 PA=-5kg.m/s, PB=17kg.m/s 、 - , 物体速度不大于前一物 体速度

高考物理 动量定理 动量守恒定律

高考物理 动量定理 动量守恒定律
0

(ⅱ)设玩具悬停时其底面相对于喷口的高度为h,水从喷口喷出后到达玩具
底面时的速度大小为v。对于Δt时间内喷出的水,由能量守恒定律得 ④ 在h高度处,Δt时间内喷射到玩具底面的水沿竖直方向的动量变化量的大小 为
考点一
栏目索引
Δp=(Δm)v ⑤ 设水对玩具的作用力的大小为F,根据动量定理有
FΔt=Δp ⑥
由于玩具在空中悬停,由力的平衡条件得 F=Mg ⑦ 联立③④⑤⑥⑦式得 ⑧
考点一
栏目索引
方法技巧 (1)应用动量定理解题的一般步骤
(2)对于过程较复杂的运动,可分段应用动量定理,也可对整个过程应用动量 定理。
考点二
栏目索引
考点二
动量守恒定律
1.内容:如果一个系统① 不受外力 ,或者所受② 外力的矢量和 为0,这个系 统的总动量保持不变。 2.表达式:m1v1+m2v2=③ m1v'1+m2v'2 或p=p'。 3.适用条件 (1)理想守恒:系统不受外力或所受④ 外力的合力 为零,则系统动量守恒。 (2)近似守恒:系统受到的合力不为零,但当内力远⑤ 大于 外力时,系统的动 量可近似看成守恒。
考点一
栏目索引
2.应用动量定理时的注意事项 (1)动量定理的研究对象是一个质点(或可视为一个物体的系统)。 (2)动量定理的表达式是矢量式,在一维情况下,各个矢量必须选同一个正方 向。 3.动量定理的应用 (1)用动量定理解释现象 ①物体的动量变化一定,力的作用时间越短,力就越大;力的作用时间越长,
考点一
栏目索引
答案 A 解法一:由v2=2gh得v= 2 gh 。对人与安全带作用的过程应用动 量定理,则有(mg-F)t=0-mv,解得F=

动量守恒与动量定理

动量守恒与动量定理

动量守恒与动量定理动量是一个物体的运动状态的量度,它是由物体的质量和速度决定的。

在物理学中,动量守恒是指在一个封闭系统中,当没有外力作用时,系统的总动量保持不变。

动量定理是指当有外力作用时,物体的动量变化率等于外力的大小乘以作用时间。

1. 动量守恒动量守恒定律是描述封闭系统中动量守恒的基本原理。

当一个封闭系统内没有外力作用时,系统的总动量保持不变。

例如,考虑一个封闭系统,由两个物体组成。

初始时,物体1的质量为m1,速度为v1;物体2的质量为m2,速度为v2。

根据动量的定义,物体1的动量为p1 = m1v1,物体2的动量为p2 = m2v2。

根据动量守恒定律,系统的总动量为p = p1 + p2 = m1v1 + m2v2。

当没有外力作用时,系统的总动量保持不变,即p = m1v1 + m2v2 = 常量。

动量守恒定律在物理学中有广泛的应用。

例如,在碰撞问题中,我们可以利用动量守恒定律来求解物体碰撞后的速度或方向的变化。

2. 动量定理动量定理是描述物体在外力作用下动量变化的基本原理。

动量定理表明,物体的动量变化率等于外力的大小乘以作用时间。

设物体质量为m,速度为v。

根据动量的定义,物体的动量为p = mv。

当物体受到外力F作用时,根据牛顿第二定律F = ma,可以得到物体的加速度为a = F/m。

将加速度代入动量定义式中,可得物体的动量变化率为dp/dt = m(dv/dt) = m(a) = F。

动量定理表明,物体的动量变化率等于外力的大小。

动量定理在解决物体的运动问题中非常有用。

通过计算外力对物体的作用时间,我们可以确定物体动量的变化情况。

例如,在推动物体的问题中,我们可以利用动量定理来计算所需的外力大小和作用时间。

3. 动量守恒与动量定理的关系动量守恒定律和动量定理是相互关联的。

当没有外力作用时,系统的总动量保持不变,即动量守恒成立。

当有外力作用时,根据动量定理,物体的动量会发生变化。

在一个封闭系统中,如果没有外力作用,根据动量守恒定律,系统的总动量保持不变。

高三物理【动量定理 动量守恒定律】复习整合

高三物理【动量定理 动量守恒定律】复习整合

[真题再练] 1.(2020·全国卷Ⅰ)行驶中的汽车如果发生剧烈碰撞,车内的安全气囊会被弹出并瞬 间充满气体.若碰撞后汽车的速度在很短时间内减小为零,关于安全气囊在此过程中的作 用,下列说法正确的是( ) A.增加了司机单位面积的受力大小 B.减少了碰撞前后司机动量的变化量 C.将司机的动能全部转换成汽车的动能 D.延长了司机的受力时间并增大了司机的受力面积
B.0.27 N
C.0.022 N
D.0.027 N
解析:D 由题知,水滴质量为 m=0.5 g,重力加速度为 g=10 m/s2,屋檐高度为 h =4 m,设水滴刚落到石板上时速度为 v.水滴从屋檐开始下落到石板上,忽略空气阻力, 水滴的机械能守恒,有 mgh=12mv2.水滴从接触石板到速度为零的过程中,取向下为正方 向,对水滴由动量定理得(mg-F)t=0-mv,解得 F≈0.027 N,由牛顿第三定律可知,D 正确.
动量守恒定律解题的基本步骤 1.明确研究对象,确定系统的组成(系统包括哪几个物体)及研究的过程. 2.进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒). 3.规定正方向,确定初、末状态动量. 4.由动量守恒定律列出方程. 5.代入数据,求出结果,必要时讨论说明.
[精选模拟] 视角 1:动量守恒的判断 1.关于下列四幅图所反映的物理过程的说法正确的是( )
8 次这样推物块后,运动员退行速度的大小大于 5.0 m/s,反弹的物块不能再追上运动员.不
计冰面的摩擦力,该运动员的质量可能为( )
A.48 kg
B.53 kg
C.58 kg
D.63 kg
解析:BC 设运动员和物块的质量分别为 m、m0,规定运动员运动的方向为正方向, 运动员开始时静止,第一次将物块推出后,运动员和物块的速度大小分别为 v1、v0,则根 据动量守恒定律 0=mv1-m0v0,解得 v1=mm0v0,物块与弹性挡板撞击后,运动方向与运动 员同向,当运动员再次推出物块 mv1+m0v0=mv2-m0v0,解得 v2=3mm0v0,第 3 次推出后 mv2+m0v0=mv3-m0v0, 解得 v3=5mm0v0,依次类推,第 8 次推出后,运动员的速度 v8=15mm0 v0, 根据题意可知 v8=15mm0v0>5 m/s, 解得 m<60 kg,第 7 次运动员的速度一定小于 5 m/s, 则 v7=13mm0v0<5 m/s, 解得 m>52 kg,综上所述,运动员的质量满足 52 kg<m<60 kg,AD 错 误,BC 正确.

高中物理专题复习 动量及动量守恒定律

高中物理专题复习  动量及动量守恒定律

高中物理专题复习动量及动量守恒定律一、动量守恒定律的应用1.碰撞两个物体在极短时间内发生相互作用,这种情况称为碰撞。

由于作用时间极短,一般都满足内力远大于外力,所以可以认为系统的动量守恒。

碰撞又分弹性碰撞、非弹性碰撞、完全非弹性碰撞三种。

仔细分析一下碰撞的全过程:设光滑水平面上,质量为m 1的物体A 以速度v 1向质量为m 2的静止物体B 运动,B 的左端连有轻弹簧。

在Ⅰ位置A 、B 刚好接触,弹簧开始被压缩,A 开始减速,B 开始加速;到Ⅱ位置A 、B 速度刚好相等(设为v ),弹簧被压缩到最短;再往后A 、B 开始远离,弹簧开始恢复原长,到Ⅲ位置弹簧刚好为原长,A 、B 分开,这时A 、B 的速度分别为21v v ''和。

全过程系统动量一定是守恒的;而机械能是否守恒就要看弹簧的弹性如何了。

⑴弹簧是完全弹性的。

Ⅰ→Ⅱ系统动能减少全部转化为弹性势能,Ⅱ状态系统动能最小而弹性势能最大;Ⅱ→Ⅲ弹性势能减少全部转化为动能;因此Ⅰ、Ⅲ状态系统动能相等。

这种碰撞叫做弹性碰撞。

由动量守恒和能量守恒可以证明A 、B 的最终速度分别为:121121212112,v m m m v v m m m m v +='+-='。

⑵弹簧不是完全弹性的。

Ⅰ→Ⅱ系统动能减少,一部分转化为弹性势能,一部分转化为内能,Ⅱ状态系统动能仍和⑴相同,弹性势能仍最大,但比⑴小;Ⅱ→Ⅲ弹性势能减少,部分转化为动能,部分转化为内能;因为全过程系统动能有损失(一部分动能转化为内能)。

这种碰撞叫非弹性碰撞。

⑶弹簧完全没有弹性。

Ⅰ→Ⅱ系统动能减少全部转化为内能,Ⅱ状态系统动能仍和⑴相同,但没有弹性势能;由于没有弹性,A 、B 不再分开,而是共同运动,不再有Ⅱ→Ⅲ过程。

这种碰撞叫完全非弹性碰撞。

可以证明,A 、B 最终的共同速度为121121v m m m v v +='='。

在完全非弹性碰撞过程中,系统的动能损失最大,为:()()21212122121122121m m v m m v m m v m E k +='+-=∆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

规定m0=1千克(kg),则有
m v 2 / v1 kg
2.动量 · 动量守恒定律 将气桌上两物体的碰撞抽象为两个质点m1和m2的相互作用, 则有
令 v10和v 20
m1v1 m2 v 2
分别表示两质点相互作用后的末速度,则
分别表示两质点相互作用前的初速度,v1和v 2
T cos d / 2 0 N T dT cos d / 2 0
因 d 很小 sin d / 2 d / 2, cos d / 2 1 得到 N Td , dT 0 N dT / T 0 d 4 , 0 0.5, T 积分得 dT / T 0 d ln T / T0 0 T0 5 N ,
d F 21 k m1 v1 dt


d , F 12 k m2 v 2 dt


式中k为常数。在SI中k=1,力的量纲为LMT-2,于是 d d F 21 m1 v1 , F 12 m2 v 2 dt dtFra bibliotek
d 或一般的可写作 F mv dt
r d Fi m dt ma 回旋加速器 (劳伦斯 1930) 2 动力学方程 qvB mv / r v qBr / m
Fin m
粒子运动半周的时间 t r / v m / qB 频率为 qB / 2 m 最早的回旋加速器
R 0.18m, B 1.7T , mD 3.35 1027 kg , q 1.6 1019 C 频率 1.3 107 H 速度 v 1.46 107 m / s z
yl 2
gt 2
N 3 g (l y)
v2 l y 2g
2.变力作用下的直线运动
d 2x dx 动力学方程为 m F (t , x, ) 2 dt dt
[例题3] 已知一质点从高空落下,设重力加速度为常量, 质点所受空气阻力与其速率成正比,求质点速度并与自由下 落比较。 [解] 动力学方程为
F i ma
i
即,物体所获得的加速度的大小与作用在物体上的合外 力成正比,与物体的质量成反比,加速度的方向与和外 力的方向相同。
3) 牛顿第三定律 F21 F 12
即,两物体之间的相互作用力和反作用力沿同一直线, 大小相等,方向相反,分别作用于两个不同物体上。
2. 伽利略相对性原理 不可能在惯性系内部进行任何物理实验来确定该系统 作匀速直线运动的速度。 由此可推出:对于力学规律来说,一切惯性系都是等效的。 也即,牛顿运动定律在任何惯性参照系都成立。 若惯性系S’相对另一惯性系S沿x轴方向以速度V运动, 则两惯性系间坐标和时间的变换关系为
p pi mvi 恒矢量
动量守恒定律是自然界最基本的定律之一。
原子核的β 衰变可写为AB+e,但实验显示B核和e电子的 径迹不在一条直线上,违背动量守恒定律。为此泡利(W.Pauli) 于1930年提出中微子假说来维护动量守恒定律。1956年终于在 实验中发现了中微子。 在电磁学中研究两个运动带电粒子,人们发现两者动量的 矢量和似乎不守恒,后来考虑了电磁场的动量,总动量又守恒 了。
3.惯性系
我们将孤立粒子相对它静止或作等速直线运动的 参考系称为惯性参考系,简称惯性系。
相对于惯性系作等速直线运动的参考系也为惯性系。
注意,惯性系是一个理想概念,实际上不存在严格 意义上的惯性系。研究地球表面附近的许多现象时,地球 可以看作是惯性系。
牛顿第一定律仅在惯性系中成立
§3.2 惯性质量 • 动量和动量守恒定律
m1m2 1)万有引力 F12 G r12 2 r12 W M 地m M 地 2)重力 W mg g G 2 r G 2 r
3)弹性力
f x kx
m
r m
r
4)静电场力和洛仑兹力 静电场力 Fe qE
F m q B 磁场力 洛仑兹力 F qE q B
§3.1 牛顿第一定律和惯性参考系
1.惯性运动 伽利略的实验与推理 demo 实验结果:小球总是力图回到原来的高度 推理:运动的小球若不受阻力会一直保持运动状态
伽利略的发现以及他所用的科学推理方法是人类思想史 上最伟大的成就之一,而且标志着物理学的真正开端。 —爱因斯坦
2.惯性定律 “任意物体都要保持其静止或匀速直线运动状态, 直到外力迫使它改变运动状态为止。” “一自由粒子永远保持静止或匀速直线运动的状态。” (自由粒子是指不受任何相互作用的粒子) 以上叙述就是牛顿第一定律(惯性定律)。
解以上方程,得到
F N1 sin m1a, N 2 sin m2 a, m2 g N 2 cos 0
F arctg m1 m2 g
一个有趣的例子: 谁先到达?
一个现代的例子: 直线加速器
例:一柔软绳长 l ,线密度 ,一端着地开始自由下落, 下落的任意时刻,给地面的压力为多少? 解:在竖直向上方向建坐标,地面为原点(如图)。 y 设压力为 N
得到 m1 g T m1a1x ,
最后解出
m2 g T m2 a2 x m2 a1x
m1 m2 2m1m2 T g m1 m2
a1x a2 x
m1 m2 g ,
[例题2] 斜面上的滑块 [解] 根据牛顿第二和第三定律,有
其投影式为
F N W1 N1 m1a , W2 N 2 m2 a , N1 N 2
动量守恒定律有许多重要的应用,例如火箭的发射。
§3.3 牛顿运动定律 ·伽利略相对性原理
1. 力 · 力的独立作用原理
1)由动量变化引入力的概念 实验表明两质点相互作用时动量连续发生变化,但总动量 仍然守恒,即 m1 v1 m2 v 2 ,在单位时间内两质点交换的 动量为
a ~ 3.4 cm/s2 a ~ 0.6 cm/s2 a ~ 3 10-8 cm/s2
1. 直线加速参考系中的惯性力
若参考系O‘相对参考系O作加速直线运动,则在参 考系O'中牛顿运动定律失效。在参考系O'中引入惯性力 * f ma , 则仍可沿用牛顿第二定律的形式。 由上图可见,在参考系O'和参考系O之间有
2) 力的独立作用原理

若在一质点上同时作用几个力,则这些力各自产生自己 的效果而不相互影响。 3) 质点的动量定理
d F i dt mv i

2.牛顿运动定律 1) 牛顿第一定律 一自由粒子永远保持静止或匀速直线运动的状态。 (自由粒子是指不受任何相互作用的粒子)
2) 牛顿第二定律
m1 v1 t

d d m1 v1 m2 v 2 将时间间隔取极限 t 0 ,则有 dt dt
m v
2 2
t




若分别考察两质点,它们各自的动量都发生了变化,而变化 的原因是相互作用,这种相互作用可以称之为力,于是可以 引入力的概念:
力是一物体对另一物体的作用,将受力物体视为质点时, 力可用受力物体动量的变化率来量度
W1 T1 m1a1 , W2 T2 m2 a2
因绳子不伸长,有
T1 T2 T , x1 x2 R l 恒量 a1x a2 x ,又因 W1 m1 g1 , W2 m2 g 2 求导,得
d ( yv ) 2 yg v dt yg 2( l y ) g
dp N gl p dt dp d ( yv) p yv dt dt 0 d ( yv) N gl dt dy
y
l
v
v gt
dt
dv g dt 1
x ' x Vt ' y y ' z z t ' t
这就是伽利略变换,可看作是 伽利略原理的数学形式。
y
S
y
o
r
V
o
S
P
r
x
§3.4 自然界中常见的力 ·主动力与被动力
1.主动力 有其“独立自主”的方向和大小,不受其它力的影响, 处于“主动”地位的力。
2.被动力或约束反作用力 物体间的挤压力,绳内张力和摩擦力常没有自己独立 自主的方向和大小,要看质点受到的主动力及运动状态而 定,从而处于“被动地位”。 1)绳内的张力 2)支承面的支撑力 3)摩擦力
f 0 f 0max 0 N
f N
§3.5 牛顿运动定律的应用
1. 质点的直线运动 [例题1] 阿特伍德机 可求得加速度 与物体质量以及重力加速度的关系,用 于验证牛顿定律。 [解] 由牛顿第二定律
m1 v1 m2 v 2 m1 v10 m2 v 20 引入一个物理量 p mv p1 p 2 p10 p 20
以上结果就是两质点系统的动量守恒定律
推广到多个质点组成的质点系,可以证明,若质点系不受 该质点系以外其他物体的作用,则质点系动量守恒,可表示为
T0 0
也即
T T0e 0 , Tmax T0e 0
Tmax 2.7 103 N
§3.6 非惯性系中的力学
E 在 E 参考系,
a
a
S
运动符合牛顿定律,在 S 则不然
牛顿定律只在惯性系成立 近似惯性系 地面参考系,自转加速度 地心参考系,公转加速度 太阳参考系,绕银河系加速度
dv m W v dt
可解得
t mg m vy 1 e
相关文档
最新文档