电气工程课程设计-正弦波逆变器设计

合集下载

正弦波逆变器设计方案

正弦波逆变器设计方案

逆变器建议删除该贴!! | 收藏| 回复| 2008-03-15 12:18:15楼主搞正弦波,难度最大的就是要生产稳定的SPWM波,还有就是要有合理的电压调整电流,电流检测.很多在网上都介绍些用单片机,分立元件等.其实不用哪么麻烦的.主要一个U3990加一个IR2110,4 个IRF460,两个滤波器就可以做成一款精度误差为2%的纯正弦波电源.在这里详细原理图我就不发了,我发一些提示性的东西给大家;U3990:U3988是数字化的、功能完善的正弦波单相逆变电源 / UPS 主控芯片,它不仅可以输出高精度的SPWM正弦波脉冲序列,还可以实现稳压、保护、市电/逆变自动切换、充电控制等功能,并且具备LED指示灯驱动、蜂鸣器控制、逆变桥控制引脚,从而可以利用该芯片组成一个完整的逆变电源/UPS系统,用该芯片控制的逆变桥输出,既可以是传统的工频变压器结构,也可以是高频升压后的直接逆变结构.为方便生产过程中的调试,该芯片还具备测试模式,在该模式下,所有的保护功能、市电切换、充电控制均不起作用,仅工作在可以稳压的逆变状态,为最基本的调试和测试提供了方便.U3988 的内部构成主要有:正弦波发生器、双极性调制脉冲产生逻辑、50Hz(或 60Hz) 时基、电压反馈/短路检测、正弦波峰值调压稳压单元、外部扩展的保护响应逻辑、市电过零脉冲过滤、市电电压测量、电池电压测量、逆变控制、充电控制、指示灯控制、蜂鸣器控制、抗干扰自恢复单元构成.整个电路封装成一个18引脚IC(DIP18),其内部结构框图如图一所示:图二是U3988的引脚图.VDD是芯片的电源引脚,接单一+5V;GND是地;OSC1、OSC2是时钟引脚,接20MHz晶振;OUTA、OUTB是正弦波SPWM脉冲序列的输出引脚,这两个引脚输出的信号一般要通过死区控制电路才能送到逆变桥;OUTG是逆变桥使能控制输出,该引脚输出低电平时允许逆变桥工作,输出高电平时则禁止逆变桥工作;AV_CK是逆变输出电压反馈引脚,该引脚接受的是模拟量输入,逆变桥最终输出的正弦波交流电压通过反馈电路送到该引脚,由芯片对逆变输出电压实现稳压、调压和短路检测;BT_CK是电池电压测量引脚,是模拟量输入引脚,电池电压经过电阻降压送到该引脚,由芯片对电池实现欠压保护、充电检测,若不需要使用该引脚,可以直接接+5V;AC_CK是市电电压测量引脚,这也是模拟量输入引脚,市电电压经过降压、整流、滤波、电阻分压后,送到该引脚,芯片会根据该引脚电压的变化,判断市电是否异常,并决定是否进行市电/逆变切换;若不需要使用该引脚,也可以直接接+5V;ACPLUS引脚是市电检测输入,芯片由此引脚的高低电平判断市电的有无;有市电时要将该引脚拉成低电平,对于检测市电的电路,如果为了提高响应速度而不采用滤波电容,也是允许的,虽然在该引脚的低电平信号中含有过零脉冲,但并不会使U3988频繁地进入逆变状态,因为在芯片的内部有过零脉过滤逻辑;AC/DC引脚是市电/逆变控制输出,输出高电平时为市电,输出低电平时为逆变;CHARG引脚是充电控制输出,高电平有效;LED_L引脚是逆变/欠压指示输出,低电平时表示逆变状态,闪烁时表示欠压;LED_P引脚是保护指示输出,当检测到短路或者外部的扩展保护时,芯片停止逆变,进入保护状态,此时指示灯闪烁;PROT引脚是扩展保护输入引脚,高电平有效,用户可以通过外部的或门逻辑实现过流、过温等保护输入 ,该引脚在逆变和市电状态都可以响应外部的保护请求;BEEP/TEST是双向引脚,正常工作时是蜂鸣器控制输出引脚,通过三极管驱动电磁式蜂鸣器,当在芯片加电的瞬间,该引脚是输入引脚,用来检测外部TEST跳线的状态;关于该引脚的详细用法,将在后面介绍;NC引脚是空余的引脚,一定要接到高电平.在逆变状态下,OUTA、OUTB引脚输出的是双极性的SPWM脉冲序列,见图三所示:OUTA 输出的SPWM脉冲序列,经过逆变后对应正弦波的正半周;OUTB输出的SPWM脉冲序列,对应正弦波的负半周.逆变输出电压反馈引脚的作用是测量逆变输出的交流电压,根据测量值计算输出电压的误差并对输出电压值作出调整.当输出电压升高时,该引脚的电压也随之升高,芯片内部的调压电路会降低输出电压,反之,当该引脚的电压降低时,芯片会升高输出电压.该引脚采用的峰值电压取样法,如图四所示:图中的虚线标识就是芯片的取样点,峰值取样的优点是测量值准确、对电压变化反应迅速.在大多数情况下对于发生偏离的输出电压,芯片可以在1-5个交流电周期内调整完毕,为了降低正弦波形的失真度、保证波形的完整性,这种调整是在下一个交流电周期起作用的.该引脚也可以测量整流滤波后的直流电压(平均值),只是因为滤波电容的存在,使芯片对输出电压的变化反应迟钝.加在AV_CK 引脚上的电压必须是实时的,不能是静态的电压.例如:在某一应用中为了能够调节逆变输出电压,在该引脚施加了一个固定的直流电压,这个电压是可以调节的,但不是输出电压的反馈,这种情况是不允许的(但不会损坏芯片),因为这个电压不是反馈回来的,芯片始终会认为这个值偏高(或偏低),从而会一直做出相反的调整,直到把输出电压调到了最低(或最高),才会停止.芯片的调压 / 稳压范围大约是最高输出电压的50%-100%.该引脚能够测量的电压范围是 0-5V,为了保护该引脚不会因为过压而损坏,要在该引脚串接一只10K的电阻(特别重要).该引脚是以4.5V作为稳压基准的.AV_CK引脚同时还要检测输出电压的短路情况,短路检测的周期是100uS检测一次,同时检测的还有扩展保护引脚,但是在输出电压过零点的前后10度范围内不进行上述检测,在这段时间内,芯片要检测电池电压和市电电压以及市电状态.BT_CK引脚对电池电压检测的动作阀值:该引脚的电压低于1.9V为欠压保护;低于2V为欠压告警;低于2.4V时开始充电(在有市电时),高于2.8V时停止充电.充电控制引脚CHARG的动作带有10秒钟的延迟.并且每次上电芯片都尝试对电池进行充电.AC_CK引脚对市电电压检测的动作阀值:该引脚电压低于1.9V或者高于2.4V表示市电异常,芯片会自动转入逆变;该引脚带有施密特触发特性,在市电高于2V或者低于2.3V时,芯片才认为市电正常.蜂鸣器控制引脚BEEP/TEST是具有两个功能的双向引脚,它的外围电路建议如图五所示:正常情况下,跳线器TEST是断开的,由BEEP/TEST引脚输出的蜂鸣信号通过R3、C1、D1、Q1驱动电磁蜂鸣器发声;在芯片加电启动的过程中,若芯片检测到TEST跳线短接,就会进入测试状态.在测试状态,芯片不理会各种保护信号和市电状态,始终处在可以稳压、调压的逆变状态.图五中的R1为TEST跳线提供高电平上拉,R2是为了及时释放掉C3上的电压,保证跳线未短接时BEEP/TEST引脚是低电平.改变跳线后要对芯片重新加电.蜂鸣器采用不同长度的发声来代表芯片的状态:市电/逆变切换时短鸣一声;电池欠压告警时以3秒钟的间隔短鸣;欠压、短路、扩展保护时以1秒的间隔短鸣;进入测试状态时短鸣两声. PCB布线时要注意的问题:一.时钟引脚要接一20MHz的普通晶振,晶体的两个引脚还要各接一只外部电容,尽管没有外部电容C,振荡电路也能起振,但为了工作稳定和避免干扰,最好采用15-30PF的电容; 二.三个模拟量测量引脚BT_CK、AC_CK、AV_CK的线条要尽可能短,并且能与地平行或者被地包围,以减小干扰;三.U3988的+5V供电和地线要单独到走电源,不要从其它的电路单元分支过来,这样可以把芯片受到的干扰降到最低程度;U3988芯片有两个系列:50Hz和60Hz.每个系列又有不同的版本变化,用户可以从芯片型号的后缀字符加以区分.如:U3988T5-50表示50Hz系列的T5版本,U3988T5-60表示60Hz系列的T5版本.目前U3988提供的版本是T8.RI2110;在功率变换装置中,根据主电路的结构,起功率开关器件一般采用直接驱动和隔离驱动两种方式.美国IR公司生产的IR2110驱动器,兼有光耦隔离和电磁隔离的优点,是中小功率变换装置中驱动器件的首选.IR2110引脚功能及特点简介内部功能如图4.18所示:LO(引脚1):低端输出COM(引脚2):公共端Vcc(引脚3):低端固定电源电压Nc(引脚4): 空端Vs(引脚5):高端浮置电源偏移电压VB (引脚6):高端浮置电源电压HO(引脚7):高端输出Nc(引脚8): 空端VDD(引脚9):逻辑电源电压HIN(引脚10): 逻辑高端输入SD(引脚11):关断LIN(引脚12):逻辑低端输入Vss(引脚13):逻辑电路地电位端,其值可以为0VNc(引脚14):空端IR2110的特点:(1)具有独立的低端和高端输入通道.(2)悬浮电源采用自举电路,其高端工作电压可达500V.(3)输出的电源端(脚3)的电压范围为10—20V.(4)逻辑电源的输入范围(脚9)5—15V,可方便的与TTL,CMOS电平相匹配,而且逻辑电源地和功率电源地之间允许有 V的便移量.(5)工作频率高,可达500KHz.(6)开通、关断延迟小,分别为120ns和94ns.(7)图腾柱输出峰值电流2A.桥电路驱动原理IR2110内部功能由三部分组成:逻辑输入;电平平移及输出保护.如上所述IR2110的特点,可以为装置的设计带来许多方便.尤其是高端悬浮自举电源的设计,可以大大减少驱动电源的数目,即一组电源即可实现对上下端的控制.高端侧悬浮驱动的自举原理:IR2110驱动半桥的电路如图所示,其中C1,VD1分别为自举电容和自举二极管,C2为VCC 的滤波电容.假定在S1关断期间C1已经充到足够的电压(VC1 VCC).当HIN为高电平时如图4.19 :VM1开通,VM2关断,VC1加到S1的栅极和源极之间,C1通过VM1,Rg1和栅极和源极形成回路放电,这时C1就相当于一个电压源,从而使S1导通.由于LIN与HIN是一对互补输入信号,所以此时LIN为低电平,VM3关断,VM4导通,这时聚集在S2栅极和源极的电荷在芯片内部通过Rg2迅速对地放电,由于死区时间影响使S2在S1开通之前迅速关断.当HIN为低电平时如图4.20:VM1关断,VM2导通,这时聚集在S1栅极和源极的电荷在芯片内部通过Rg1迅速放电使S1关断.经过短暂的死区时间LIN为高电平,VM3导通,VM4关断使VCC经过Rg2和S2的栅极和源极形成回路,使S2开通.在此同时VCC经自举二极管,C1和S2形成回路,对C1进行充电,迅速为C1补充能量,如此循环反复./play/4356/1.html/html/zipaitoupai/list_5_6.html。

SG3525正弦波逆变电源设计

SG3525正弦波逆变电源设计

湖南工程学院课程设计课程名称电力电子技术课题名称 SG3525正弦波逆变电源设计专业班级学号姓名指导教师2013年12 月16 日湖南工程学院课程设计任务书课程名称单片机原理及应用课题智能密码锁设计专业班级学生姓名学号指导老师审批任务书下达日期2013 年12 月16 日设计完成日期2013 年12 月27 日目录第1章概述 (1)1.1课题来源 (1)1.2解决方法 (1)1.3设计的优点 (2)第2章系统总体设计 (2)2.1 系统设计总体思路 (2)2.1 系统基本工作原理 (3)2.3 系统设计框图 (4)第3章系统主电路设计 (5)3.1 系统主电路结构设计 (5)3.2 系统保护电路设计 (5)第4章单元电路设计 (6)4.1 正弦信号发生电路设计 (6)4.2 宽度调制PWM电路设计 (7)4.3 电压电流检测电路设计 (11)4.4 光耦合驱动电路设计 (12)第6章总结与体会 (13)附录1总电路图 (14)附录2 参考文献 (15)附录3 课程设计成绩评分表 (16)第1章概述1.1课题来源电力逆变电源有着广泛的用途,它可用于各类交通工具,在太阳能及风能发电领域,逆变器有着不可替代的作用。

电力控制系统的可靠程度是电力系统和设备可靠、高效运行的保证,而电力控制系统必须具备安全可靠的控制电源。

电力系统中为保证变电所的诸如后台机、通讯设备等能在交流电源停电后不间断工作,工程做法一般采用UPS电源作为主要解决方案,但UPS电源存在容量小、价格贵、故障率高等不足,因此综合自动化变电所中可采用电力正弦波逆变电源来代替常规不间断UPS电源。

1.2解决方法逆变电源是一种采用电力电子技术进行电能变换的装置,它从交流或直流输入获得稳压恒频的交流输出。

利用逆变电源可以解决UPS电源存在的各种缺点,可以很好的运用在一些不能断电的场合。

本相正弦波SPWM逆变电源的设计以SG3252为核心,采用了运算放大器、二极管、功率场效应管、电容和电阻等器件来组成电路。

如何制作一个2000W的正弦波逆变器

如何制作一个2000W的正弦波逆变器

如何制作一个2000W的正弦波逆变器要制作一个2000W的正弦波逆变器,你需要经过下面的步骤:1.设计规划:首先,你需要设计一个逆变器的电路图。

这个电路图应该包括逆变器的主要部件,例如转换器、滤波器以及控制电路。

你还需要决定所需的输入电压和输出电压,并确保这些参数与你的需求相匹配。

2.所需材料:准备所需的材料和元器件。

这些包括逆变器芯片、电容器、电感、二极管、电阻器和电容等。

3.搭建电路:根据你的电路图,使用电焊工具和电路板将元器件焊接连接。

确保注意正确的焊接顺序和焊点的质量。

4.程序控制:在逆变器中加入一个微控制器或其他控制电路,使其能够监测和调整输入电压和输出电压。

这将增加逆变器的稳定性和可靠性。

5.测试和调整:连接逆变器到适当的电源,并将负载连接到输出端口。

使用示波器或其他测试设备来测试逆变器的输出波形和频率。

如果有任何问题,你需要进一步调整电路或元器件。

6.优化和改进:一旦你的逆变器正常运行,你可以对其进行优化和改进。

这可能包括优化电路参数、增加保护电路以确保逆变器的安全运行,并增加效率等。

在整个制作过程中,请确保注意安全事项。

遵循正确的电气操作程序,确保使用正确的工具和设备。

总结:制作一个2000W的正弦波逆变器需要一些电子知识和技巧。

这个过程需要进行详细的设计和规划,选择和准备所需的材料,并将元器件焊接到电路板上。

然后,你需要进行测试、调整和优化以确保逆变器的稳定和可靠性。

通过遵循正确的步骤和注意事项,你可以成功地制作一个2000W的正弦波逆变器。

10kw高频正弦波逆变器设计

10kw高频正弦波逆变器设计

10kw高频正弦波逆变器设计设计 10 kW 高频正弦波逆变器的要求和步骤如下:1. 电路拓扑选择:常见的高频逆变器电路拓扑有全桥、半桥和谐振等。

根据应用需求和成本因素,选择合适的电路拓扑。

2. 控制策略:设计逆变器的控制策略,包括输出电压控制、频率控制和保护控制等。

常见的控制方法有SPWM、SVPWM 和电流控制等。

3. 电源电路:设计逆变器的电源电路,包括输入滤波电路和直流电源电路。

输入滤波电路用于抑制输入电源的谐波和噪声,直流电源电路用于提供逆变器的工作电源。

4. 开关器件选型:根据逆变器的功率和工作频率选择合适的开关器件,如功率 MOSFET 或 IGBT。

考虑器件的导通和关断损耗、开关速度等因素。

5. 控制电路设计:设计逆变器的控制电路,包括信号调整、比较和驱动电路等。

确保控制电路能够准确控制开关器件的开关和关断。

6. 输出滤波电路:逆变器的输出通常需要通过滤波电路进行滤波,以去除输出的高频噪声和谐波。

根据应用需求选择合适的输出滤波电路。

7. 保护电路设计:对逆变器进行多种保护设计,如过流保护、过压保护、过温保护等。

保护电路可以保证逆变器在异常情况下的安全可靠运行。

8. 热管理:高功率逆变器在工作过程中会产生大量的热量,需要设计合适的散热器和风扇等热管理措施,以保证逆变器的稳定工作温度范围。

9. PCB 设计:根据逆变器电路的特点和布局要求,进行 PCB 的设计,确保电路连接可靠、布局合理、电磁兼容性良好。

10. 实验验证和优化:制作原型逆变器进行实验验证,测试逆变器的性能指标,如输出功率、效率、输出波形等,并根据实验结果进行逆变器的优化和改进。

以上是设计 10 kW 高频正弦波逆变器的基本步骤,具体每个步骤的细节和算法等需要根据具体的要求和应用进行进一步的研究和设计。

正弦波输出逆变电源的设计

正弦波输出逆变电源的设计

正弦波输出逆变电源的设计引言低压小功率逆变电源已经被广泛应用于工业和民用领域。

特别是新能源的开发利用,例如太阳能电池的普遍使用,需要一个逆变系统将太阳能电池输出的直流电压变换为220V、50Hz 交流电压,以便于使用。

本文给出了一种用单片机控制的正弦波输出逆变电源的设计,它以12V直流电源作为输入,输出220V、50Hz、0~150W的正弦波交流电,以满足大部分常规小电器的供电需求。

该电源采用推挽升压和全桥逆变两级变换,前后级之间完全隔离。

在控制电路上,前级推挽升压电路采用SG3525芯片控制,采样变压器绕组电压做闭环反馈;逆变部分采用单片机数字化SPWM控制方式,采样直流母线电压做电压前馈控制,同时采样电流做反馈控制;在保护上,具有输入过、欠压保护,输出过载、短路保护,过热保护等多重保护功能电路,增强了该电源的可靠性和安全性。

该电源可以在输人电压从10.5V到15V变化范围内,输出220V±10V的正弦波交流电压,频率50Hz±O.5Hz,直流分量1、主电路逆变电源主电路采用推挽升压和全桥逆变两级变换。

输入电压一端接在变压器原边的中间抽头,另一端接在开关管S1及S2的中点。

控制S1及S2轮流导通,在变压器原边形成高频的交流电压,经过变压器升压、整流和滤波在电容C1上得到约370 V直流电压。

对S3~S6组成的逆变桥采用正弦脉宽调制,逆变输出电压经过电感L、电容C2滤波后,最终在负载上得到220 V、50 Hz的正弦波交流电。

采用高频变压器实现前后级之间的隔离,有利于提高系统的安全性。

输入电压10.5~15 V,输入最大电流15 A,考虑一倍的余量,推挽电路开关管S1及S2耐压不小于30 V,正向电流不小于30 A,选用IRFZ48N。

升压高频变压器的设计应满足在输入电压最低时,副边电压经整流后不小于逆变部分所需要的最低电压350 V,同时输入电压最高时,副边电压不能过高,以免损坏元器件。

300w正弦波逆变器毕业设计

300w正弦波逆变器毕业设计

300w正弦波逆变器毕业设计毕业设计是大学生在校期间最后一个重要的学习任务,学生需要通过毕业设计来检验自己所学专业知识的掌握情况,并展示自己的综合能力。

在电气工程专业中,一些学生选择设计一个正弦波逆变器作为毕业设计是比较有挑战性的。

正弦波逆变器是一种电子电路设备,它能够将直流电源转换成交流电源,其输出的交流电压和频率可以很好地模拟正弦波形。

毕业设计的主题是“300w正弦波逆变器”,这是一个挑战性的课题,需要综合运用电路理论、电子器件、控制系统等多方面的知识。

我们来看一下300w正弦波逆变器的设计要求和参数,然后再探讨一下具体的设计方案和实现过程。

设计要求:1. 输出功率:300w;2. 输出电压:220V交流;3. 输出波形:正弦波;4. 效率要求:尽量高;5. 控制方式:PWM控制。

300w正弦波逆变器的设计需要考虑的内容非常多,比如电源电路、控制电路、输出滤波等。

我们需要设计一个合适的电源电路,将输入的直流电源转换成高频交流电源,然后再通过变压器降压变频,最终输出所需的220V交流电压。

在这个过程中,需要考虑电路的损耗问题,以及如何提高整个系统的效率。

我们需要设计一个PWM控制电路,用来精确控制逆变器的输出电压和频率,以确保输出的交流电压是符合要求的正弦波。

为了减小谐波等干扰,还需要设计一个合适的输出滤波电路,让输出的交流电压更加纯净稳定。

在300w正弦波逆变器的毕业设计中,学生不仅需要理论知识的扎实运用,还需要动手实际搭建电路,并进行调试。

在这个过程中,可能会碰到各种各样的问题,需要学生具备一定的动手能力和问题解决能力。

总结来说,300w正弦波逆变器的毕业设计是一个综合性的项目,需要学生充分发挥自己的创造力和动手能力。

通过这样的设计,学生不仅可以加深对电力电子领域知识的理解,还能锻炼自己的实际动手能力和解决问题的能力。

希望学生可以在毕业设计中取得成功,为自己的未来工作打下坚实的基础。

电气工程专业的学生通常需要在毕业设计中展现他们所学专业知识的掌握情况,并展示自己的综合能力。

TL494正弦波逆变电源设计2

TL494正弦波逆变电源设计2

TL494正弦波逆变电源设计2第一篇:TL494正弦波逆变电源设计21.TL494正弦波逆变电源设计1.1 概述:TL494本身就是一种固定频率脉宽调制电路,它包含了开关电源控制所需的全部功能,广泛应用于单端正激双管室、半桥式、全桥式开关电源。

TL494有SO-16和PDIP-16两种封装形式,以适应不同场合的要求。

次课程设计我所设计的是TL494正弦波逆变电路,其电路的主要功能是:1)逆变就是将直流变为交流。

由波形发生器产生50Hz、幅度可变的正弦波,与锯齿波比较后,再通过PWM电路,输出SPWM波,经过驱动电路逆变电路,再经过高频变压器与滤波电路输出50Hz的正弦波。

2)电路由主电路与控制电路组成,主电路主要环节:高频逆变电路、滤波环节。

控制电路主要环节:正弦信号发生电路、脉宽调制PWM、电压电流检测单元、驱动电路。

3)功率变换电路中的高频开关器件采用IGBT或MOSFET。

4)系统具有完善的保护这是本次课程设计中要设计的电路的概况,其实总的来说用TL494为主要元件实现的正弦波逆变电路控制器具有构思新颖、电路简单、成本低廉以及控制过程稳定等特点,在很多工业控制场合可获得广泛的应用。

~~ 1.2 系统总体方案的确定:通过对设计内容和设计要求的具体分析,我把电路分别设计成两部分:一是主电路,即是采用高频逆变电路和高频变压器的组合来实现,其中的滤波电路则是采用的线路滤波的方式,高频逆变电路由于其要求的特殊性我采用了电压型半桥逆变电路和高频开关IGBT相连接的方法,并且和高频变压器的组合可以高效的实现直流电向交流电的逆变过程。

第二部分控制电路,当然是采用集成芯片TL494来实现,主要原因在于主电路的电流逆变过程中控制电路各单元的复杂性,而TL494本身包含了开关电路控制所需的全部功能和全部脉宽调制电路,同时片内置有线性误差放大器和其他驱动电路等,因此便可以同时实现:正弦信号发生单元、脉宽调制PWM单元、电压电流检测单元和驱动电路单元。

单相正弦波逆变电源设计原理

单相正弦波逆变电源设计原理

单相正弦波逆变电源设计原理首先,交流输入滤波电路用于将输入的交流电进行滤波,以降低输入电压的纹波和噪音。

一般采用电容器和电感器的组合,形成LC滤波网络。

电容器能够通过充电和放电来平滑输出电压,电感器则能够抑制高频噪音的传播,从而实现低纹波电压输出。

其次,逆变电路是实现直流电源到交流电源转换的关键部分。

典型的逆变电路包括全桥逆变电路和半桥逆变电路。

全桥逆变电路由四个开关元件(MOSFET或IGBT)和四个二极管组成,通过控制开关元件的通断状态,实现对输出电压的控制。

进而可以实现正弦波形的输出。

半桥逆变电路与全桥逆变电路类似,只是使用两个开关元件和两个二极管。

最后,控制电路用于控制逆变电路中开关元件的开关状态和频率,使得输出电压与输入电压一致。

控制电路一般由微控制器或专用控制芯片实现,通过采集输入电压和输出电压的信息,经过处理后控制开关元件的动作。

其中,开关元件的开关频率可以通过改变控制信号的频率来实现。

此外,还需要考虑过电流保护、过温保护等电路设计,以保证逆变电源的稳定和安全运行。

在实际设计中,需要根据具体需求选择合适的元器件和参数,如开关元件的功率、并联电容的容值、电感器的电感值等。

同时,还需要结合电路板的布局和散热设计,以确保逆变电源的工作效率和可靠性。

总结起来,单相正弦波逆变电源设计的原理主要包括交流输入滤波电路、逆变电路和控制电路。

通过滤波、逆变和控制,实现将直流电源转换为交流电源,并输出正弦波形。

设计时需要考虑元器件选择、参数设计和电路布局等因素,以保证逆变电源的稳定和可靠运行。

300w正弦波逆变器毕业设计

300w正弦波逆变器毕业设计

300w正弦波逆变器毕业设计摘要:1.毕业设计背景与意义2.300W 正弦波逆变器的原理及结构3.毕业设计的具体实现过程4.毕业设计的总结与展望正文:一、毕业设计背景与意义随着科技的发展,逆变器在众多领域中得到了广泛的应用。

逆变器是一种将直流电转换为交流电的设备,其输出波形可以分为正弦波和修正弦波。

在毕业设计中,我选择了300W 正弦波逆变器作为研究对象,旨在通过本次设计,提高自己的实践能力和对电力电子技术的理解。

二、300W 正弦波逆变器的原理及结构300W 正弦波逆变器主要由电源、控制电路、逆变器电路和输出滤波器组成。

其中,电源为整个系统提供直流电压;控制电路负责对整个系统进行调节和控制;逆变器电路将直流电转换为正弦波交流电;输出滤波器用于滤除逆变器电路中可能存在的高频谐波,以保证输出电压的纯净。

三、毕业设计的具体实现过程1.电路设计在电路设计阶段,我首先选择了合适的元件,包括NE555、SG3525 等。

接着,我绘制了电路原理图和PCB 布局图,并对电路进行了仿真。

2.元件选购与焊接根据电路原理图,我购买了所需的元件,并进行了焊接。

在焊接过程中,我注意了焊接技巧,确保焊点牢固可靠。

3.电路调试在电路焊接完成后,我对电路进行了调试。

我首先检查了电路中各个元件的连接是否正确,然后通过改变输入电压和电流,观察输出电压和电流是否符合预期。

在调试过程中,我发现了一些问题,并对电路进行了优化。

4.系统测试在电路调试完成后,我对整个系统进行了测试。

我测量了逆变器的输出电压、输出电流、效率等参数,并与理论值进行了对比。

测试结果表明,整个系统性能良好,满足设计要求。

正弦波逆变器设计方案

正弦波逆变器设计方案

正弦波逆变器设计方案一、引言正弦波逆变器是一种将直流电转换为交流电的电力转换设备,在各类电力应用领域广泛应用。

在许多应用中,需要高质量的交流电源,如电子设备、家用电器、医疗设备等。

本文将讨论正弦波逆变器的设计方案,以提供稳定、高质量的交流电。

二、基本原理正弦波逆变器的基本原理是将直流电通过逆变器电路转换为交流电。

其主要组成部分包括直流输入电源、逆变电路和输出滤波电路。

直流输入电源提供逆变器的输入电压,逆变电路将直流电转换为交流电,并通过输出滤波电路来滤波输出波形。

三、逆变电路设计1. 调制技术选择逆变电路的调制技术决定了输出波形的质量。

常见的调制技术有PWM(脉宽调制)和SPWM(正弦波调制)。

在正弦波逆变器中,选择SPWM调制技术可以获得更接近纯正弦波的输出。

2. 逆变器拓扑选择常见的逆变器拓扑有单相桥式逆变器、三相桥式逆变器等。

根据实际需求选择逆变器拓扑,单相桥式逆变器适用于单相负载,而三相桥式逆变器适用于三相负载。

3. 电路元件选择逆变电路中的元件选择直接影响到逆变器的性能。

选择合适的功率晶体管、电容器和电感器可以提高逆变器的功率输出和效率。

四、输出滤波电路设计输出滤波电路用于滤除逆变电路产生的谐波成分,生成纯正弦波的交流电。

常用的输出滤波电路包括LC滤波电路和LCL滤波电路。

LC滤波电路结构简单,但不能有效滤除高频成分;而LCL滤波电路在滤除谐波的同时,还能提供较好的带宽特性。

五、保护措施设计正弦波逆变器在实际应用中需要具备安全可靠的特性。

常见的保护措施包括过压保护、过流保护、温度保护等。

通过合理设计电路,设置过压、过流和温度保护装置,可以有效保护逆变器及其外部负载。

六、控制电路设计正弦波逆变器的控制电路主要包括运算放大器、比较器和PWM 控制电路等。

通过运算放大器进行误差放大和控制信号处理,再经过比较器和PWM控制电路产生PWM信号,并控制逆变电路,从而实现对逆变器输出波形的控制。

七、实验验证与结果分析在设计完成后,进行实验验证并对实验结果进行分析。

300w正弦波逆变器毕业设计

300w正弦波逆变器毕业设计

300w正弦波逆变器毕业设计摘要:I.引言- 介绍300w正弦波逆变器毕业设计的背景和意义II.逆变器原理- 解释逆变器的作用和基本原理- 介绍正弦波逆变器的特点和优势III.设计方案- 详述300w正弦波逆变器的设计方案- 包括电路原理图、元器件选型和参数设计等IV.电路实现- 介绍300w正弦波逆变器的具体电路实现- 包括主电路、控制电路和辅助电路等V.调试与测试- 详述300w正弦波逆变器的调试和测试过程- 包括测试仪器、测试方法和测试结果等VI.总结与展望- 总结300w正弦波逆变器毕业设计的主要成果和经验- 展望逆变器技术的未来发展前景正文:I.引言随着可再生能源的广泛应用,逆变器在电力系统中发挥着越来越重要的作用。

其中,300w正弦波逆变器作为一种典型的电力电子设备,具有高效、稳定和可靠等特点,广泛应用于太阳能发电、风力发电等领域。

本文将详细介绍300w正弦波逆变器的设计和实现过程,为相关领域的研究提供参考。

II.逆变器原理逆变器是一种将直流电转换为交流电的电力电子设备,其作用是将电池、太阳能电池板等直流电源转换为家用电器、照明设备等所需的交流电源。

正弦波逆变器是逆变器的一种类型,其输出电压波形为正弦波,具有较高的电压质量和电磁兼容性,适用于对电源质量要求较高的场合。

III.设计方案300w正弦波逆变器的设计方案主要包括电路原理图、元器件选型和参数设计等。

电路原理图主要包括输入电路、逆变器主体电路、输出电路和控制电路等部分。

元器件选型主要根据电路原理图和性能指标要求,选择合适的半导体器件、电容、电感等元器件。

参数设计主要包括器件参数、电路参数和控制策略等,以满足性能要求和可靠性要求。

IV.电路实现300w正弦波逆变器的具体电路实现主要包括主电路、控制电路和辅助电路等。

主电路采用全桥逆变器拓扑结构,实现直流电到交流电的转换。

控制电路采用SPWM(正弦波脉宽调制)技术,实现对逆变器输出电压波形的调制。

电力电子课程设计:正弦波逆变器设计

电力电子课程设计:正弦波逆变器设计

逆变器的概述逆变器(inverter)是将交流电能变换成直流电能的过程称为整流,把完成整流功能的电路称为整流电路,把实现整流过程的装置称为整流设备或整流器。

与之相对应,把将直流电能变换成交流电能的过程称为逆变,把完成逆变功能的电路称为逆变电路,把实现逆变过程的装置称为逆变设备或逆变器。

它由逆变桥、控制逻辑和滤波电路组成。

主要用于把直流电力转换成交流电力。

一般由升压回路和逆变桥式回路构成。

升压回路把太阳电池的直流电压升压到逆变器输出控制所需的直流电压;逆变桥式回路则把升压后的直流电压等价地转换成常用频率的交流电压。

逆变器主要由晶体管等开关元件构成,通过有规则地让开关元件重复开-关(ON-OFF),使直流输入变成交流输出。

广泛适用于空调、家庭影院、电动砂轮、电动工具、缝纫机、DVD、VCD、电脑、电视、洗衣机、油烟机、冰箱,录像机、按摩器、风扇、照明等。

引言电力系统变电站和调度所的继电保护和综合自动化管理设备有的是单相交流供电的,其中有一部分是不能长时间停电的。

普通UPS设备因受内置蓄电池容量的限制,供电时间比较有限,而直流操作电源所带的蓄电池容量一般都比较大,所以需要一套逆变电源将直流电逆变成单相交流电。

电力电子器件的发展经历了晶闸管(SCR)、可关断晶闸管(GTO)、晶体管(BJT)、绝缘栅晶体管(IGBT)等阶段。

目前正向着大容量、高频率、易驱动、低损耗、模块化、复合化方向发展,与其他电力电子器件相比,IGBT具有高可靠性、驱动简单、保护容易、不用缓冲电路和开关频率高等特点,为了达到这些高性能,采用了许多用于集成电路的工艺技术,如外延技术、离子注入、精细光刻等。

IGBT最大的优点是无论在导通状态还是短路状态都可以承受电流冲击。

它的并联不成问题,由于本身的关断延迟很短,其串联也容易。

尽管IGBT模块在大功率应用中非常广泛,但其有限的负载循环次数使其可靠性成了问题,其主要失效机理是阴极引线焊点开路和焊点较低的疲劳强度,另外,绝缘材料的缺陷也是一个问题。

电气工程课程设计正弦

电气工程课程设计正弦

电气工程课程设计正弦一、课程目标知识目标:1. 掌握正弦波的基本概念、表达式及其在电气工程中的应用;2. 理解并能够运用正弦波的相关知识分析简单的电气电路和系统;3. 了解正弦波与其他类型波形的关系及其转换方法。

技能目标:1. 能够运用正弦波知识设计简单的电气电路,并对其进行仿真和分析;2. 掌握使用相关测量工具和仪器对正弦波电气信号进行检测、处理和显示;3. 能够运用数学软件或编程语言对正弦波进行数据处理和图像绘制。

情感态度价值观目标:1. 培养学生对电气工程领域的兴趣,激发其探究正弦波及相关现象的欲望;2. 培养学生的团队协作精神,使其在课程设计和实践过程中相互帮助、共同进步;3. 增强学生的环保意识,使其在设计和实践过程中关注能源利用和环境保护。

课程性质分析:本课程为电气工程课程设计,旨在帮助学生将所学理论知识应用于实际工程问题,提高学生的实践能力和创新能力。

学生特点分析:学生处于高年级阶段,已具备一定的电气工程基础知识,具有一定的分析和解决问题的能力,但实践经验相对不足。

教学要求:1. 结合课本内容,注重理论与实践相结合,提高学生的实际操作能力;2. 引导学生通过小组合作、讨论等方式,培养其团队协作和沟通能力;3. 注重培养学生的创新思维,鼓励其在课程设计过程中提出新观点、新方法。

二、教学内容1. 正弦波基本概念与性质- 正弦波的定义及数学表达式- 正弦波的周期、频率、幅值、相位等参数- 正弦波的相位变化及其影响2. 正弦波在电气工程中的应用- 交流电的基本特征及其与正弦波的关系- 正弦波在电气设备中的应用实例- 正弦波电气信号的测量与处理方法3. 正弦波电路设计- 简单的正弦波振荡电路原理- 正弦波振荡电路的仿真与实验- 正弦波信号发生器的制作与调试4. 正弦波与其他波形的转换- 正弦波与方波、三角波等波形的关系- 波形转换电路及其应用- 转换电路的仿真与实验5. 教学进度安排- 第一章节:正弦波基本概念与性质(2课时)- 第二节点:正弦波在电气工程中的应用(2课时)- 第三节点:正弦波电路设计(4课时)- 第四节点:正弦波与其他波形的转换(2课时)6. 教材章节关联- 本教学内容与教材中关于正弦波、交流电、波形转换等章节相关联,具体涉及以下章节:- 第四章:正弦波及其相关性质- 第五章:交流电路分析- 第十二章:波形转换及其应用教学内容旨在帮助学生掌握正弦波相关知识,通过理论教学与实践操作相结合,提高学生的电气工程素养和实际操作能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电气工程课程设计-正弦波逆变器设计东北石油大学课程设计2012年7 月18 日东北石油大学课程设计任务书课程电气工程课程设计题目正弦波逆变器设计专业电气工程及其自动化姓名学号主要内容:了解正弦波逆变器的重要性,及其在单极性、双极性和单极性倍频调制方式下所产生的不同作用,并在有工频和无工频变压器的逆变电源下,进行正弦波逆变器设计。

基本要求:了解开关管逆变器允许输出的峰值,电流的额定值可选为30A,600V,TO—274封装的IGBT管及LC滤波的含义及功能。

参考资料:[1] 李梅.电工基础[M] .北京:中国电力出版社,2004.[2] 何仰赞,温增银.电力系统分析[M] .武汉:华中科技大学出版社,2004.[3] 张桂香.机电类专业毕业设计指南[M] .北京:机械工业出版社,2005.[4] 朱成.全面理解理论联系实际[J]. 社会科学, 1983.[5] 郭瑞.异步电动机自适应矢量控制系统的设计与仿真[D]辽宁工程技术大学,2000 .完成期限2012.7.10至2012.7.18指导教师专业负责人2012年7 月9 日目录1设计要求 (1)2正弦波逆变器的设计要求和主电路形式 (1)2.1逆变电源的设计和目标 (2)2.2主电路形式选择 (2)2.3有工频变压器的逆变电源 (2)2.4 无工频变压器的逆变电源 (2)3有工频变压器的逆变器主电路设计 (2)3.1电路形式 (2)3.2参数设计 (3)4无工频变压器的逆变器主电路设计 (4)4.1电路形式 (4)4.2参数设计 (5)5逆变控制电路的设计 (5)6正弦波输出变压变频电源调制方式 (7)6.1正弦脉宽调制技术 (7)6.2 三种调制方式下逆变器输出电压谐波分析 (8)7结论 (9)参考文献 (11)1设计要求电力系统变电站和调度所的继电保护和综合自动化管理设备有的是单相交流供电的,其中有一部分是不能长时间停电的。

普通UPS设备因受内置蓄电池容量的限制,供电时间比较有限,而直流操作电源所带的蓄电池容量一般都比较大,所以需要一套逆变电源将直流电逆变成单相交流电。

电力电子器件的发展经历了晶闸管(SCR)、可关断晶闸管(GTO)、晶体管(BGT)、绝缘栅晶体管(IGBT)等阶段。

目前正向着大容量、高频率、易驱动、低损耗、模块化、复合化方向发展,与其他电力电子器件相比,IGBT具有高可靠性、驱动简单、保护容易、不用缓冲电路和开关频率高等特点,为了达到这些高性能,采用了许多用于集成电路的工艺技术。

IGBT最大的优点是无论在导通状态还是短路状态都可以承受电流冲击。

它的并联不成问题,由于它本身的关断延迟很短,其串联也容易。

尽管IGBT模块在大功率应用中非常广泛,但其有限的负载循环次数使其可靠性成了问题,其主要失效机理是阴极引线焊点开路和焊点较低的疲劳强度,另外,绝缘材料的缺陷也是一个问题。

随着电力电子技术的飞速发展,正弦波输出变压变频电源已被广泛应用在各个领域,在此同时对变压变频电源的输出电压波形质量也提出了较高的要求。

对逆变器输出波形质量的要求主要包括两个方面:一是稳态精度高;二是动态性能好。

因此,开发既简单又具有优良动、静态性能的逆变器控制策略,已成为电力电子领域的研究特点之一。

在现有的正弦波输出变压变频电源产品中,为了达到SPWM波,一般都采用双极性调制技术。

该调制方法的最大缺点是它的4个功率管都工作在较高频率(载波频率),从而产生了较大的开关损耗,开关频率越高损耗越大。

本文针对正弦波输出变压变频电源SPWM调制方式及数字化控制策略进行了研究,以YMS320F240数字信号处理器为主控芯片,以期得到一种较理想的调制方法,实现逆变电源变压、变频输出。

2正弦波逆变器的设计要求和主电路形式电力系统变电站和调度所的继电保护和综合自动化管理设备有的是单相交流供电的,其中有一部分是不能长时间停电的。

普通UPS设备因受内置蓄电池容量的限制,供电时间比较有限,而直流操作电源所带的蓄电池容量一般都比较大,所以需要一套逆变电源将直流电逆变成单相交流电。

逆变电源的工作原理与UPS有以下两点区别:(1) 逆变电源不需要与交流电网锁相同步,因为其负载可以瞬间停电。

(2) 逆变电源的输入直流电压为180~285V,而UPS内置电池电压为12V或24V。

2.1逆变电源的设计和目标(1) 输出电压:输出为单相220VAC(有效值),频率为50Hz±1Hz。

(2) 输出功率:以1KW为例,允许过载20%,即Pomax=1200W(3) 输出电流:允许失真度为3倍,即在电压峰值时的电流峰值允许最大为有效值的3倍,最大有效值为Pomax/Voe=1200W/220V≈5.5A。

(4) 整机效率:设计目标η≥82%2.2主电路形式选择这种正弦波输出逆变器的输入电压变化范围较宽,为185~285V,而其输出则要求是稳压的。

因此,该逆变电源的逆变电路必须有一个升压的过程。

这种逆变电源的主回路形式有下述两种。

2.3有工频变压器的逆变电源桥式逆变电路以SPWM方式工作,将185~285VDC电压逆变成有效值基本不变的SPWM波形,由工频变压器升压得到220V交流电压。

这种电路方式效率比较高、可靠性较高、抗输出短路的能力较强。

但是,它响应速度较慢、波形畸变较重、带非线性负载的能力较差,而且噪声大。

2.4无工频变压器的逆变电源逆变电路以PWM方式首先将185~285VDC电压逆变成高压波,经高频升压变压器升压,再整流滤波得到一个稳定的直流电压,比如350VDC。

这部分电路实际上是一套直流/直流变换器,既DC/DC或DC—DC。

然后,再由另一套逆变器以SPWM方式工作,将稳定的直流电压逆变成有效值稍大于220V的SPWM 电压波形,经LC滤波后,就可以得到有效值为220V的50Hz交流电压。

3有工频变压器的逆变电源主电路形式3.1电路形式有工频变压器的逆变电源主回路基本工作工作过程可以理解,可以把它设计成以IGBT为开关的桥式逆变电路形式,如图1所示。

图1有工频变压器的逆变电源主回路电源为180V~285VDC,四个开关管分别为Tr1、Tr3、Tr2、Tr4.图中,Tr1~Tr4为IGBT开关管,C1为串联耦合电容,防止变压器因单相偏磁而饱和,T为隔离升压变压器,C2为输出滤波电容,L为输出滤波电感。

3.2参数设计3.2.1逆变变压器变压器输出220V AC得到峰值为311V,考虑到变压器副边绕组电压峰值设为-LT315V ,原边在考虑去耦电容C1的降压后,最低电压时为170V ,所以变压器的匝比n 为n=N2/N1=315V/170V=1.85电源输出功率也就是变压器的输出功率Po=1200W 。

设变压器的效率ηr=95%,则原边效率P1=Po/ηr≈1260W 。

因为变压器是变换SPWM 电压波形,其基波(50Hz )的成分相当大,所以我们可以选择400Hz 硅钢C 型铁芯,其Ke=0.9,Bm=1.2T ,所以铁芯面积乘积为23c e cm 1140104.11.21103.30.90504.445.905.9011200A A =⨯≈⨯⨯⨯⨯⨯⨯⨯+=)( 可选取CD 型400Hz 硅钢铁芯查出截面积Ae ,求出有效面积Se=A e ×Ke, 然后就可以由下面的两个公式先求出原边匝数,再求出副边匝数。

N1=V1max/(KfSeBm)N2=N1/n导线截面:副边S2=I2/j=5.5/3≈1.8(mm²),选Φ1.2mm 漆包线两股并绕;原边S1=I1/j=Ni2/J=1.87×5.5/3≈3.43(mm²),Φ1.2mm 漆包线三股并绕。

3.2.2开关管最高电压为285V ,所以开关管的耐压可选为600V 。

开关管的峰值电流:Im=3I1m=3×5.5×1.87≈31(A)4无工频变压器的逆变器主电路设计4.1电路形式我们知道,无工频变压器的逆变电源实际是包含两个部分:一套DC/DC 和一套SPWM 逆变器,我们将在这里讨论SPWM 逆变主电路,其电路形式如图2所示。

图2单相SPWM逆变主电路电源350V,各个管子分别为Tr1、Tr3、Tr2、Tr4。

4.2参数设计4.2.1开关管逆变器允许输出峰值为Im=3Iom=3×5.5A=16.5A所以开关管的电流定额可以选为600V。

我们可以选30A,600V,TO—274封装的IGBT管。

4.2.2 LC滤波L为工频电感,电感量可选为1~2mH,为减小噪声,选闭合铁芯,如OD型硅钢铁芯(400Hz)或铁粉芯铁芯。

C为工频电容,可以选CBB61-10µF-250V AC。

5逆变控制电路的设计逆变电源控制电路的核心是SPWM发生器,SPWM的实现包括分立电路、集成芯片和单片机实现。

它们的电器性能和成本有所不同,各有各的优势和不足-之处。

逆变电源SPWM电路的调制频率固定为50Hz不变,为了降低成本,在这里用分立电路组成,如图3所示。

图3单相SPWM逆变电源控制电路放大第一路Tr1、Tr4输出,第二路Tr2、Tr3输出,IC3输出正值比较,IC4输出负值比较图中,正弦波发生器和三角波发生器分别见下两图图4正弦波发生器图5三角波发生器以标准的正弦波信号为参考,将输出电压的反馈信号与之相比较,经由IC1及其外围电路组成的PI型误差放大器调节后得到一个控制信号,送到IC2去调制三角波,即可得到SPWM波形。

IC3和IC4分别为正负值比较器,他们的输出信号分别为IC5和IC6,从而将SPWM交替的分成两路,各自放大后驱动相应的开关管,控制主回路完成SPWM逆变。

需要注意的事,驱动电路要将每一路信号分成相互隔离的两路,分别驱动处于对角位置上的两个开关管。

以上控制电路的特点是不仅能控制正弦波输出的有效值,还能调节输出电压的瞬时值,优化波形,减小谐波失真,提高带负载能力。

6正弦波输出变压变频电源调制方式6.1正弦脉宽调制技术随着逆变器控制技术的发展,电压型逆变器出现了多种变压,变频控制方法。

目前采用较多的是正弦脉宽调制技术既SPWM控制技术。

正弦脉宽调制法,是将每一正弦周期内的多个脉冲作自然或规则的宽度调制,使其依次调制出相当于正弦函数值的相位角和面积等效于正弦波的脉冲序列,形成等幅不等宽的正弦化电流输出。

其中每周基波(正弦调制波)与所含调制输出的脉冲总数之比即为波比。

正弦脉宽调制的特点是脉宽调制以逆变器的功率器件的快速而有规律的开关,形成一系列有规则的矩形方波,以和期望的控制电压等效。

其特点是其波分量打,2N—1次以下谐波得到有效的抑制,输出电流接近正弦波。

在正弦波逆变电源数字化控制方法中,目前国内外主要研究的有数字PID控制、无差拍控制、双环反馈控制、重复控制、滑模变结构控制、模糊控制以及神经网络控制等。

相关文档
最新文档