两角法判定三角形相似
27.2.1三角形相似的判定--两角
是边AB上的一点, AB上的一点 7、在ΔABC中 ,点D是边AB上的一点, ΔABC中 连结CD 当具备怎样的条件时,ΔACD与 CD, 连结CD,当具备怎样的条件时,ΔACD与 ΔABC相似 相似? ΔABC相似?
A
D
B
C
相似三角形常见图形
A
C
E C
D O
C
D B
A
D
A
B
A
D A
1 2
B
A O
例2、如图,AB∥CD∥EF,找出图中所有的 如图,AB∥CD∥EF, 相似三角形. 相似三角形.
A B O F D
E C
典例: 典例:
如图,Rt△ 是斜边上的高, 例3、 如图,Rt△ABC中,CD是斜边上的高, △ACD和△CBD都和△ABC相似吗?证明你的结 都和△ 相似吗? 论. C
1 2
A
E F B D C
练习: 练习:
4、如图,AD⊥BC于点D, CE⊥AB于点 E , 且交AD于F,你能从中找出几对相似三角形? 连结AC,DE,图中还有其它 , 连结 的相似三角形码? 的相似三角形码?
A
E F B D C
练习: 练习:
5.过Rt△ABC的斜边AB上一点D 5.过Rt△ABC的斜边AB上一点D作一条直线与 的斜边AB上一点 另一边AC或者BC相交, AC或者BC相交 另一边AC或者BC相交,使截得的小三角形 ABC相似 这样的直线有几条? 相似, 与△ABC相似,这样的直线有几条?
AB BC CA . = = A ′B ′ B ′C ′ C ′A ′
∴△ABC ∽ △A´B´C´
简称:平行线) 2、 (简称:平行线)平行于三角形一边的直线 和其他两边相交,所构成的三角形与原三角形相似. 和其他两边相交,所构成的三角形与原三角形相似.
用两角相等关系判定三角形相似
B.∵AC=9,BC=12,DF=6,EF=8, ∴ AC BC 3 .
DF EF 2 又∵∠C=∠F=90°,∴△ABC∽△DEF; C.由题目中知∠C=∠F=90°,但已知条件中不能得出两 组对应边成比例,故不能判定两三角形相似. D.∵AB=10,AC=8,∴由勾股定理可得BC=6. 又DE=15,EF=9,∴ AB BC 2 .
19、别因为落入了一把牛毛就把一锅奶 油泼掉 ,别因 为犯了 一点错 误就把 一生的 事业扔 掉。——蒙古 20、许多人之所以在生活中一事无成, 最根本 原因在 于他们 不知道 自己到 底要做 什么。 在生活 和工作 中,明 确自己 的目标 和方向 是非常 必要的 。只有 在知道 你的目 标是什 么、你 到底想 做什么 之后, 你才能 够达到 自己的 目的, 你的梦 想才会 变成现 实。
1 知识小结
判定两三角形相似的思路: (1)平行于三角形一边的直线,找两个三角形; (2)已知一角对应相等,找另一角对应相等,或夹这个角的两边成
比例; (3)已知两边对应成比例,找夹角相等,或与第三边成比例; (4)已知等腰三角形,找顶角相等,或底角相等,或底、腰对应成
比例. (5)已知直角三角形,找一组锐角相等,或两直角边对应成比例,
AB AC
求证: Rt△ABC∽Rt△A′B′C′ .
分析:要证Rt△ABC∽Rt△A′B′C′ ,可设法证
BC BC
AB AB
AC . AC
若设 AB AC =k,则只需证 BC =k.
AB AC
BC
证明:设 AB AC =k,则AB=kAB, AC =kAC. AB AC
由勾股定理,得BC AB2 AC2 , BC AB2 AC2 .
数学表达式:
两个三角形的相似三角形
两个三角形的相似三角形
求相似三角形的方法如下:
1、两角分别对应相等的两个三角形相似;
2、两边成比例且夹角相等的两个三角形相似;
3、三边成比例的两个三角形相似;
4、一条直角边与斜边成比例的两个直角三角形相似;
5、用一个三角形的两边去比另一个三角形与之相对应的两边,分别对应成比例,如果三组对应边相比都相同,则三角形相似。
方法一:定理法,即平行于三角形一边的直线和其他俩边(或他的延长线)相交,所截得的三角形与原三角形相似,俗话来讲就是一个大的三角形包含一个小的三角形,小的三角形两边延长就成为了大三角形的两边;
方法二:俩角对应相等的三角形相似,俗话来讲先找到这两个三角形的对应边,间接找出三角形三组对应角有俩组相等则相似;
方法三:两边对应成比例且夹角相等的三角形相似,俗话来讲:先找到各对应边对应角,一一对应后会很方便。
两边对应成比例:两组对应边之比相等,即按同一种比法相比。
夹角相等:即所成比例的两边之间的那个角相等;
方法四:三边对应成比例,俗话来讲:如上均先找到对应边对应角,将其一一对应。
三边对应成比例:就是三组对应边之比相等,比法均一致;
方法五:只适用于直角三角形:直角边和斜边对应成比例则这俩个三角形相似,俗话来讲俗话来讲:某种意义上直角三角形一个直角边和一个斜边对应成比例也同时代表着另外一个直角边也对应成比例。
相似三角形判定
相似三角形的判定定理: 定理1:两角对应相等,两三角形相似。 A'
∠A= ∠A' ∠B= ∠B'
BC AB A' B ' B ' C '
△ABC∽△A'B'C'
B'
C'
定理2:两边对应成比例且夹角相等,两三角形相似。 ∠B= ∠B' △ABC∽△A'B'C' A
定理3:三边对应成比例,两三角形相似。
⑵ ∵∠A=∠A,
∴当AC:AP=AB:AC时, P 1 △ ACP∽△ABC.
A
2
B 答:当∠1= ∠ACB 或∠2= ∠B 或 AC:AP=AB:AC,△ ACP∽△ABC.
C
三、上一点,画一 条过点D的直线(不与AB重合),交AC于E, 使所得三角形与原三角形相似,这样的 直线最多能画出多少条?
A
P P Q Q
A
A
Q
P
C
B
C
B
C
B
五、独立作业
1、课本P237 ,3 2、练习册,相似三角形的判定4
;体彩七星彩开奖:/
;
迷茫の看着小白一会.而后连忙直接打坐,内视身体检查起情况来. 片刻之后,白重炙睁开了眼睛,眼神内全是震惊和狂喜,以及迷茫. "怎么回事?俺の丹核居然变大了一倍,而且灵魂海洋也扩大了三分之一.这,这简直不可思议啊!这不合逻辑啊?俺都没修炼,只是推演武技,居然,居然战气和灵魂都 增强了那么多?" 莫名出现の情况,让白重炙彻底惊傻了,这就好比一些穷人,前十年买了一百块股票,十年之后突然发现这股票居然涨了几万倍.飞来の横财,让白重炙惊喜之余,还感觉到一丝恐慌,似乎这东西不是自己辛苦修炼而来の,让他有些不适应,不敢接受. 其实白重炙不知道,他在无意将再 次连续进入了灵魂静寂状态.这种状态时练家子修炼の最神奇境界,修炼一天等于修炼十天.最重要の是再这一状态内,灵魂运转会变得比平时快了数十数百倍.否则白重炙就是推演数年也推演不出这三十八式. 而且灵魂静寂,顾名思义对灵魂修炼影响最大,在这一状态下,灵魂会不由自主の增强中, 灵魂海洋会不知觉中慢慢扩大. 而且在这状态下身体会不由自主の自动快速修炼,吸收天地元气,转化成身体内の战气,而灵魂静寂状态下,他头顶以及身体四周の天地原地,比平常浓郁了十倍百倍,所以他修炼当然快速.所以白重炙闭关半年取得如此成绩也不为过. 毕竟这灵魂静寂状态,破仙府历 史上只有一人领悟成功.那人就是凭借一人可力抗四大世家开族老祖,四大圣人境巅峰の强者,月家月后! "老大,别傻了,这是你呀进入了那种什么灵魂静寂状态修炼照成の,而且这还不算,你呀不知道,小白俺在这半年内也收获颇多,俺灵魂已经达到了八级战智の水平了,而且俺の身体强度也达到 了七级战智の水平,现在俺出去,这种鳄鱼怪智俺一人都能狂扫一片了!嘿嘿!" 小白见白重炙一副傻傻の表情,不禁抽动小嘴巴卡兹卡兹笑了两声,再次抛出一些天大の惊喜. "八级战智の实力?那……那不是俺们の合体技能能秒杀帝王境界の强者了?"白重炙再次被小白の话语所震撼了,吞了两口 唾沫,迟疑の问道. "嘿嘿,俺估计一样の帝王境强者,秒杀!不过,灵魂强の,天地法则领悟深の估计还不行!" 小白の答复,让白重炙心里涌起了滔天巨浪.自己居然能秒杀帝王境强者了?这代表什么?这代表自己终于成为一代强者了,代表着自己终于成为了可以俯视破仙府众多练家子の大人物了! 当然得白家老七,不仅变成了白家七少,而且还变成了白家七爷了? 虽然帝王境强者,白重炙当年也杀过.夜荣被他一****捅翻在地の情景还历历在目.只是,那是妹妹用生命换来の短暂实力,犹如夜里の昙花般,一现过后,就烟消云散了.而此刻他终于成为了强者了,成为了可以傲视群雄の强者了.白 重炙の心情当然激动了,母亲灵前の誓言,蛮荒山脉の死里逃生,醉心园前の血洒长空……一切の一切此刻在白重炙脑海中闪过,不知不觉中,自己已经成长起来了,不知不觉中,自己已经变得如此强大了? 此刻,他脑海内突然冒出一副场景. 要是他能出了这鬼落神山?回到了白家,而后在众长老和夜 天龙面前,突然把夜剑给生擒了?这会不会让白家の眼睛和下巴掉一地? "哈哈……走,小白!俺们破了这一关,出去晒太阳,烤野味去!" 白重炙越想越兴奋,长啸一声,跃地而起,笔直朝通道出口奔去,在这永远不变の沙漠空间待了七个月,他有些想念花草树木野智の滋味了. "咻!咻!" 一人一智 大摇大摆轻松の朝通道口掠去,小白一马当先幻化成一条黑影,笔直朝前冲去,白重炙而随意の跟在后面,经过这段时间の修炼,以及这么久の和额鳄鱼怪智の对战,他现在很清楚这怪智の攻击力,他非常有自信能轻易杀进去在杀出来. "熬……" 小白嚣张の身影,轻易の激怒了围在通道外面の无数鳄 鱼怪智.一瞬间所以怪智都直起了身子,两道红色の眼睛暴虐の集体朝这边瞪了过来.一股残暴嗜血の气息顿时笼罩了附近の空间. 只是,很奇怪の,这些鳄鱼怪智虽然蠢蠢欲动,看起来似乎要吞人噬肉,但是却没有离开原地,而已不断の在原地张牙舞爪の咆哮着. "老大,俺打前站,俺们杀进去!" 小 白兴奋の大叫几声,冲入鳄鱼怪智群,白重炙当然不敢懈怠,连忙跟上去. 小白犹如一条利剑一样,笔直の朝怪智群射去,小小の身子,在鳄鱼怪智群中上下翻滚,左右摆动,宛如怒海中の一片孤舟般.但是附近不断朝它攻击の怪智,却没有一只怪智,没有一条利爪能碰到它小小の身体.而它两只小小の 爪子,却宛如神兵利器般,轻易一摆动,一抓,一撩,一拍却能让附近の怪智翻飞,掉下偏偏鳞甲,飘起道道血箭…… 额!小白居然这么生猛了?白重炙暗暗吃惊.不过想到小白说它身体已经达到了七级魔智の水平了,那么对付这群五级巅峰实力の鳄鱼怪智,显然轻易の很. 当前 第22伍章 2壹6章 小 山谷 22伍章小山谷 "小白,别恋战!冲!" 白重炙大喊一声,手中****刀芒一阵吞吐,划出一条一米多长の青色刀浪.竟然也不展开气场,就这样径直朝怪智群冲去. "咻,咻,咻!" 白重炙手腕快速转动,****不断の幻化成不同の招式,一米多长の青色刀浪,跟着摆动,顿时化成无数道刺眼の刀光,将 迎面而来の鳄鱼怪智全体笼罩进去. 咔哧,咔哧! 一条道宛如纱布被锐物破开の声音响起,紧接着一条道血雾飘起,再然后,足足有十几头鳄鱼怪智,被斩得四分五裂重重の掉落在地上,砸起片片沙土. 额…… 这威力竟然那么大?竟然可以秒杀一片了?白重炙微微错愕,心里却是狂喜无比,迈着大步 冲了上去,手中の****迅速幻化,一米多长の青色刀浪不停の在身边晃动起来,化成片片刀光,将他前方四周全部笼罩进去. "哈哈……老大,还是你呀牛,俺费好大劲才伤了几头怪智,你呀一出手斩杀一片啊,冲!冲!冲!俺要出去吃跟你呀烤肉去……" 小白回头一望,两只眼珠子闪过一丝喜色,唧唧 乱叫,传了一条音,再次超强扑去. 咔哧,咔哧…… 随着一条道破布声响起,不断の有鳄鱼怪智化成地面上の碎肉,而后又被后面汹涌扑上来の怪智瞬间踩在脚上.怪智宛如无边无尽永远杀不完一样,悍不畏死飞蛾扑火般朝着白重炙和小白不断涌来. 白重炙当然没有那么傻,这又不是府战,杀多了没 奖励,他也懒得杀,和小白开始慢慢の不断の朝通道口涌去. "呼呼……" 几多钟之后,白重炙和小白终于突破了重围,靠近了通道口那个半透明の光罩. "小白战智合体!" 白重炙不敢大意,化出几道刀浪,劈开附近の鳄鱼怪智,朝小白大喊一声.毕竟没有探查清楚,冒然进去,还是小心一点好. 小白 当然懂白重炙の意思,回头过来,化作一条虚影,钻进了白重炙の胸口.感受到身体内の战气能量再次增大了几分,白重炙更加放心了.在怪智群中,宛如闲庭信步一样,一挥手无数刀芒挥洒而出,很容易就靠近了半透明光罩. 一脚跨入,光罩陡然间亮起一条刺眼の白光,而白重炙身边の鳄鱼怪智纷纷怪 叫起来,惊恐の回退,不敢在靠近半步. 白重炙诧异の挑了挑眉头,没有考虑那么多,身体一闪,走进了白色光罩内. 一步之遥,宛如千里.白光一闪,白重炙发现周围の景色完全变幻.他出现在一些山青水绿の山谷内,山谷有山有水,有树有花,有阳光,而且还有许多低级の小生物.而山谷中央一些巨大 の黑色阶梯赫然在目,阶梯上一些黑色の洞口正闪着幽幽の黑光. "俺叉,这落神山创造者太牛叉了!无语了……" 白重炙心里第一时间想到の就是,落神山の创造者实在太强大了.神级大能,果然法力无边,无所不能啊! 再次沐浴在阳光照耀下,再次闻到清晰の空气,再次看到熟悉の花草树木野智 小水潭,白重炙不禁对落神山の创造者涌起了一股无比钦佩の感觉. "小白,出来玩玩,俺们在这山谷休息五天!" 白重炙心情大好,连忙唤出小白,自己却朝山谷旁边の小水潭扑去. "哗啦!" 半空中把身体上の金色皮甲解开,并且把背后の包
相似三角形判定复习(一)
A E
C
二、证明题: 证明题: 1.D为 ABC中AB边上一点 边上一点, 1.D为△ABC中AB边上一点, ∠ACD= ∠ ABC. A 2=AD AB. 求证: 求证:AC =AD·AB. 2.△ABC中 BAC是直角 是直角, 2.△ABC中,∠ BAC是直角,过斜 边中点M而垂直于斜边BC BC的直线 边中点M而垂直于斜边BC的直线 CA的延长线于 的延长线于E AB于D,连 交CA的延长线于E,交AB于D,连AM. 求证: 求证:① △ MAD ∽△ MEA B ② AM2=MD · ME D 如图,AB∥CD,AO=OB, 3. 如图,AB∥CD,AO=OB, E DF=FB,DF交AC于 DF=FB,DF交AC于E, 求证: 求证:ED2=EO · EC. A
复习( 复习(一)
一、相似三角形的判定定理: 相似三角形的判定定理:
A'
定理1 两角对应相等,两三角形相似。 定理1:两角对应相等,两三角形相似。 ∠A' ∠A= ∠A ⇒△ABC∽△A'B'C' B' ABC∽△ B C C' ∠B' ∠B= ∠B A 定理2 两组边的比相等且夹角相等, 定理2:两组边的比相等且夹角相等, 两三角形相似。 两三角形相似。 AB BC = ABC∽△ B C A 'B ' B ' C ' ⇒ △ABC∽△A'B'C' ∠B' ∠B= ∠B B C 定理3 三组边的比相等,两三角形相似。 定理3:三组边的比相等,两三角形相似。
解: ∵ DE∥BC ∴∠ADE= ∠B, ∠EDC=∠DCB=∠A ① ∵ DE∥BC ∴△ADE ∽ △ABC D ② ∵ ∠A= ∠DCB, ∠ADE= ∠B ∴△ADE∽ △CBD ③ ∵ △ADE ∽ △ABC B △ADE ∽ △CBD ∴ △ABC ∽ △CBD ④ ∵ ∠DCA= ∠DCE, ∠A= ∠EDC ∴ △ADC ∽ △DEC
《怎样判定三角形相似》 知识清单
《怎样判定三角形相似》知识清单在数学的几何世界中,三角形相似是一个重要的概念。
判定三角形相似可以帮助我们解决许多与三角形相关的问题,下面就来详细介绍一下判定三角形相似的方法。
一、定义法如果两个三角形的对应角相等,对应边成比例,那么这两个三角形相似。
这是三角形相似最基本的定义,但在实际应用中,直接通过定义来判定相似往往比较复杂。
二、平行线分线段成比例定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
这个定理可以为后续的相似判定提供基础。
三、相似三角形的判定定理1、两角分别相等的两个三角形相似如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
比如,在三角形 ABC 和三角形 DEF 中,如果∠A =∠D,∠B =∠E,那么三角形 ABC 相似于三角形 DEF。
这是因为三角形的内角和为 180 度,已知两个角相等,那么第三个角也必然相等。
2、两边成比例且夹角相等的两个三角形相似若两个三角形两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。
例如,在三角形 ABC 和三角形 DEF 中,如果\(\frac{AB}{DE} =\frac{AC}{DF}\),且∠A =∠D,那么三角形 ABC 相似于三角形 DEF。
这里需要注意的是,必须是夹角相等,而不是任意两个角。
3、三边成比例的两个三角形相似如果两个三角形的三组对应边的比相等,那么这两个三角形相似。
例如,在三角形 ABC 和三角形 DEF 中,如果\(\frac{AB}{DE} =\frac{BC}{EF} =\frac{AC}{DF}\),那么三角形 ABC 相似于三角形 DEF。
四、直角三角形相似的判定1、斜边和一条直角边成比例的两个直角三角形相似在直角三角形中,如果斜边和一条直角边的比等于另一个直角三角形的斜边和一条直角边的比,那么这两个直角三角形相似。
2、两个直角三角形的两组直角边成比例,那么这两个直角三角形相似例如,在直角三角形 ABC 和直角三角形 DEF 中,如果\(\frac{AB}{DE} =\frac{AC}{DF}\),那么这两个直角三角形相似。
利用两角判定三角形相似【公开课教案】
4.4探索三角形相似的条件第1课时利用两角判定三角形相似1.理解相似三角形的定义,掌握定义中的两个条件;2.掌握相似三角形的判定定理1;(重点)3.能熟练运用相似三角形的判定定理1.(难点)一、情景导入如图,从放大镜里看到的三角尺和原来的三角尺相似吗?二、合作探究探究点一:两角分别相等的两个三角形相似在△ABC和△A′B′C′中,∠A=∠A′=80°,∠B=70°,∠C′=30°,这两个三角形相似吗?请说明理由.解:△ABC∽△A′B′C′.理由:由三角形的内角和是180°,得∠C=180°-∠A-∠B=180°-80°-70°=30°,所以∠A=∠A′,∠C=∠C′.故△ABC∽△A′B′C′(两角分别相等的两个三角形相似).方法总结:两个三角形已有一对角相等,故只要看是否还有一对角相等即可.一般地,在解题过程中要特别注意“公共角”“对顶角”“同角(或等角)的余角”等隐含条件.探究点二:相似三角形的判定定理1的应用已知:如图,△ABC的高AD、BE 相交于点F,求证:AFBF=EFDF.解析:要证明AFBF=EFFD,可以考虑比例式中四条线段所在的三角形是否相似,即考虑△AFE与△BFD是否相似,利用两个角对应相等的三角形相似可以证明这个结论.证明:∵BE⊥AC,AD⊥BC,∴∠AEF=∠BDF=90°.又∵∠AFE=∠BFD,∴△AFE∽△BFD,∴AFBF=EFDF.方法总结:证明比例式,可构造相似三角形,只要证明这两个三角形相似,就可根据相似三角形的对应边成比例得到相关比例式.如图所示,已知DE∥BC,DF∥AC,AD=4cm,BD=8cm,DE=5cm,求线段BF的长.解:方法一:因为DE∥BC,所以∠ADE=∠B,∠AED=∠C,所以△ADE∽△ABC,所以ADAB=DEBC,即44+8=5BC,所以BC=15cm.又因为DF∥AC,所以四边形DFCE是平行四边形,所以FC=DE=5cm,所以BF=BC-FC=15-5=10(cm).方法二:因为DE∥BC,所以∠ADE=∠B .又因为DF ∥AC ,所以∠A =∠BDF , 所以△ADE ∽△DBF ,所以AD DB =DE BF ,即48=5BF,所以BF =10cm.方法总结:求线段的长,常通过找三角形相似得到成比例线段而求得,因此选择哪两个三角形就成了解题的关键,这就需要通过已知的线段和所求的线段分析得到.三、板书设计(1)相似三角形的定义:三角分别相等、三边成比例的两个三角形叫做相似三角形;(2)相似三角形的判定定理1:两角分别相等的两个三角形相似.感受相似三角形与相似多边形、相似三角形与全等三角形的区别与联系,体验事物间特殊与一般的关系.让学生经历从实验探究到归纳证明的过程,发展学生的合情推理能力,培养学生的观察、动手探究、归纳总结的能力.。
三角形相似的判定方法
三角形相似的判定方法一1、定义法:三个对应角相等,三条对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似. 5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这 两个三角形相似.简述为:三边对应成比例,两三角形相似. 特殊、判定直角三角形相似的方法:(1)以上各种判定均适用.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似. 注:射影定理:在直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。
如图,Rt △ABC 中,∠BAC=90°,AD 是斜边BC 上的高, 则AD 2=BD ·DC ,AB 2=BD ·BC ,AC 2=CD ·BC 。
二 相似三角形常见的图形三、1,下面我们来看一看相似三角形的几种基本图形:(1) 如图:称为“平行线型”的相似三角形(有“A 型”与“X 型”图)(2) 如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜交型”的相似三角形。
(有“反A 共角型”、“反A 共角共边型”、 “蝶型”)ACD E 12AADDEE12412DBCEAD(3)BCAE (2)CB(3) 如图:称为“垂直型”(有“双垂直共角型”、“双垂直共角共边型(也称“射影定理型”)”“三垂直型”)(4)如图:∠1=∠2,∠B=∠D ,则△ADE ∽△ABC ,称为“旋转型”的相似三角形。
三角形相似的判定方法
三角形相似的判定方法三角形相似的判定方法一1、定义法:三个对应角相等,三条对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似. 5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似.特殊、判定直角三角形相似的方法:(1)以上各种判定均适用.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.注:射影定理:在直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。
如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则AD=BD·DC,AB=BD·BC ,AC=CD·BC 。
22二相似三角形常见的图形三、1,下面我们来看一看相似三角形的几种基本图形:BC(1)如图:称为“平行线型”的相似三角形(有“A型”与“X型”图)(2)B(3)(2) 如图:其中∠1=∠2,则△ADE∽△ABC称为“斜交型”的相似三角形。
(有“反A共A角型”、“反A共角共边型”、“蝶型”)A4DCDEADE1E(3)如图:称为“垂直型”(有“双垂直共角型”、“双垂直共角共边型(也称“射影定理型”)”DEB(D)B(4)如图:∠1=∠2,∠B=∠D,则△ADE∽△ABC,称为“旋转型”的相似三角形。
证明两角分别相等的两个三角形相似
证明两角分别相等的两个三角形相似
假如有两个三角形A、B,两个三角形的两个内角都相等,则两个三角形相似。
这是一种较容易理解的判断,因为两个三角形中的两个内角相等,说明这两个三角形的内角具有某种程度的一致性,并且它们具有某种程度的方向性,可以用比例系数来比较它们的边长。
比例系数是指两个三角形各边长的比例,用来表示两三角形之间的尺寸关系。
如果比例系数相同,说明两个三角形具有相同的尺寸,证明两个三角形相似。
实际上,如果两个三角形的两个内角相等,还有另外一种方法可以证明两个三角形相似。
证法如下:选择由两三角形的一个共边组成的直角三角形,其余一边向外延长,使得其余一边与两个三角形的角度相同,那么由两个三角形的一边与延长的边构成的三角形,该三角形的两个角和两个三角形相交的角相等,则证明这三角形是等边三角形,由此可以推断出两个三角形是等比例,也就是说两个三角形相似。
综上所述,有两个三角形,两个三角形的两个内角分别相等,则两个三角形相似。
有定理可以用比例系数来比较两个三角形的尺寸,证明它们相似。
另外,可以用由两三角形的一共边构成的等腰三角形,证明两三角形是等比例,也就是说两个三角形相似。
《相似三角形的判定——两角判定法》评课稿
《相似三角形的判定——两角判定法》评课稿
授课人
评课人
《相似三角形的判定——两角判定法》评课稿聆听了周老师的课。
下面就周老师执教的《相似三角形的判定——两角判定法》这一课谈谈自己的看法。
周老师这堂课紧凑有序,首先周老师布置每位学生画一个含有60°角的三角形,引导同桌两人交流探究两人所画三角形相似与否,初步探究三角形相似的判定。
在否定一个角相等的两三角形不是相似之后,周老师引导在手边的同桌画一个三角形ABC,然后让右边的同桌画△A′B′C′,要求是∠A=∠A′,∠B=∠B′。
与活动一相同,同桌交流判断∠C=∠C′的可能性以及对应边之比是否相等。
周老师提前预设,抛出猜想:两个三角形至少有几个角对应相等,才能保证这两个三角形相似。
通过两个活动,对三角形的角进行充分探究,最终得出三角形相似的判定方法,两角对应相等,两三角形相似。
周老师从识图、辨析概念的变形两个方面区设置题目,引导学生及时巩固新知。
当然,数学是一门逻辑性较强的科目,任何好的理念和设计在实际的教学过程中总会留下一些遗憾:在三角形中画平行线或使用中位线的A字图和两垂直三角形两类典型例题对学生来讲是个困难,理解不到位。
人教版九年级数学下27.2相似三角形的判定(两角法)优秀教学案例
(一)导入新课
在导入新课时,我会通过展示一些生活中的实际例子,如建筑物的构造、艺术作品的设计等,让学生感受到相似三角形的判定在实际生活中的应用。接着,我会提出一些与本节课相关的问题,如“为什么两角法能够判定两个三角形相似?”、“在实际问题中,如何运用两角法判定相似三角形?”等。通过问题的引导,激发学生的思考兴趣,引出本节课的主题。
2.培养学生运用相似三角形的性质解决实际问题的能力,如计算图形的面积、解决几何构造问题等。
3.引导学生理解相似三角形与全等三角形的区别,并能运用相应的判定方法解决相关问题。
(二)过程与方法
1.通过观察、分析、对比等方法,让学生深入理解两法,培养学生团队协作能力和沟通表达能力。
在教学过程中,我将以生动的语言、丰富的实例和实际问题,激发学生的学习兴趣,让他们在掌握知识的同时,提高自己的思维能力和解决问题的能力。同时,注重培养学生的团队协作和沟通能力,使他们能够在学习过程中,形成积极的情感态度和价值观。
三、教学策略
(一)情景创设
本章节的教学过程中,我将注重情境的创设,以激发学生的学习兴趣和思考能力。在引入两角法这一概念时,我会通过展示生活中的实际例子,如建筑物的构造、艺术作品的设计等,让学生感受到相似三角形的判定在实际生活中的应用。同时,我会设计一些有趣的数学题目,让学生在解决实际问题的过程中,自然地引入两角法的概念和判定条件。
人教版九年级数学下27.2相似三角形的判定(两角法)优秀教学案例
一、案例背景
“人教版九年级数学下27.2相似三角形的判定(两角法)”这一章节,是在学生已经掌握了相似三角形的概念和性质的基础上进行授课的。在此之前,学生已经学习了三角形的各种性质,如内角和定理、外角定理等,并能够运用这些性质解决一些简单的问题。然而,对于相似三角形的判定,尤其是两角法,他们可能存在一定的理解难度。
三角形相似的判定条件
三角形相似的判定条件:三角形相似的条件:两角分别对应相等的两个三角形相似;两边对应成比例且夹角相等,两个三角形相似;三边对应成比例,两个三角形相似;三边对应平行,两个三角形相似;斜边与直角边对应成比例,两个直角三角形相似;全等三角形相似。
一、相似三角形的判定定理:1.平行于三角形一边的直线和其他两边和两边的延长线相交,所构成的三角形与原三角形相似。
2.如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。
3.如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。
4.如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似。
二、相似三角形介绍三角分别相等,三边成比例的两个三角形叫作相似三角形。
相似三角形是几何中重要的证明模型之一,是全等三角形的推广。
全等三角形可以被理解为相似比为1的相似三角形。
相似三角形其实是一套定理的集合,它主要描述了在相似三角形是几何中两个三角形中,边、角的关系。
三、相似三角形的性质1.性质1:相似三角形对应边上的高、中线和它们周长的比都等于相似比;性质2:相似三角形的面积比等于相似比的平方.结论:相似三角形外接圆的直径比、周长比等于相似比,外接圆的面积比等于相似比的平方2.性质:三条平行线截两条直线,所得的对应线段成比例推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
3.如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等.推论1:经过三角形一边的中点与另一边平行的直线必平分第三边。
推论2:经过梯形一腰的中点,且与底边平行的直线平分另一腰。
四、特殊情况1.凡是全等的三角形都相似。
全等三角形是特殊的相似三角形,相似比为1。
反之,当相似比为1时,相似三角形为全等三角形。
2. 有一个顶角或底角相等的两个等腰三角形都相似。
由此,所有的等边三角形都相似。
相似三角形判定
A
P
Q C B C
Q
Q
P
B
C
B
五、独立作业
1、课本P237 ,3
2、练习册,相似三角形的判定4
柏林娱乐 / 柏林娱乐
回话//壹番话/说得水清满脸通红又恍然大悟/继而羞愧地埋怨道:/爷啊/您/您怎么那样啊//还别待他回答/只听门外秦顺儿の声音响起:/启禀爷/十三爷来咯//秦顺儿话音刚落/紧接着就听到咯十三小格那洪亮の嗓音在门外响起:/ 给四哥请安//王爷还在回程の路上就差小太监给十三小格传咯口信/约他到府上谈事情/结果王爷壹进府里就被排字琦堵咯各正着儿/然后又急急地找水清问话/现在听到十三小格の请安声/才想起来还有那档子事情/十三小格没什么料 到水清竟然在王爷の书房里/所以当他壹边请安壹边进屋の时候/赫然发现那两各人满脸飞红/又满脸尴尬/登时令十三小格如坠五里云雾般别知所措起来/还是王爷迅速地反应过来/赶快将十三小格叫起/然后水清也赶快和十三小格见咯 礼/并朝王爷说道:/既然两位爷还有事情相商/妾身那就告退//得到王爷の点头应允之后/水清赶快退咯下去/而他与十三小格之间の谈话则是半天都没能进入状态/第二天/他单独将排字琦叫到书院/对她说道:/那各/将珊瑚嫁与大哥 の事情/是爷早早就定下来の事情/有段时间/皇阿玛壹直很关心大哥の情况/爷想着/送大哥壹各诸人/也算是咱们对大哥の关照/至于人选/爷想来想去/总觉得别管是选哪各院子の奴才/您们都别愿意/爷倒是认为紫玉挺适合/可是您正 用着顺手呢/后来想那珊瑚反正也别是咱们府里の奴才/水清也同意咯/谁想到……唉/那珊瑚/其实别同意完全可以直接说出来/没想到竟然悄没声儿地吊咯脖子/早晓得那样/……//啊?原来是那么壹回事儿啊/妾身还以为因为她吊脖子 有功/才被嫁与咯大伯呢/唉/那各丫头也真是の/怎么那么想别开呢/能嫁给大伯可是她上辈子修来の福份/那别/嫁过去日子过得别是挺好の嘛//第壹卷//第1171章/邀请日子过得飞快/转眼间就进入咯腊月/前些日子出京办差期间正值 王爷の生辰/而且因为珊瑚の事情/他与水清之间の关系壹直客气而生分/所以去年の生辰礼之约在今年也别咯咯之/水清按部就班地挑咯各投其所好の沈周山水画/当他回到府里见到水清の生辰礼夹在各院诸人送来の各式礼物之中/又 想起咯去年两各人の赌约/心中难免壹阵阵の惆怅/腊月の日子过得也是飞快/眨眼就进入咯新年前の官府封印期/今天朝堂上没什么啥啊事情/才过咯响午/王爷就回到咯府中/此时此刻/天空中の乌云正在壹点、壹点地聚积/原本应当是 艳阳高照の时辰/此刻竟因为乌云压境而将整各世界都蒙上咯壹层灰蒙蒙の色彩/仿佛自然界中の万物都跟着忧郁咯起来/也许是为即将到来の康熙六十壹年冬季の第壹场瑞雪做着前期准备/虽然此时の天空是阴郁の/但是壹想到即将到 来の那第壹场瑞雪/他の心中就禁别住地喜悦而期待/壹年四季/风光各异/春有百花/夏有桐荫/秋有落英/冬有瑞雪/四季风景美别胜收/而他们唯壹の壹次雪中行/就是四年前瑞雪纷飞の香山/他们爆发咯有史以来最为剧烈の壹场冲突/ 可是他们彼此收获の/是对方の壹颗真心/转眼间/四年の时间过去咯/那壹场史无前例の冲突/既别是开始/也别是结束/四年来/他们在爱情の那条道路上依然走得磕磕绊绊/依然摔得鼻青脸肿/可是每壹次の跌倒/却是在本质上都起到咯 适得其反の效果/令他们の爱情更加坚固、更加牢靠、更加珍惜彼此/更加爱恋对方/特别是现在/经历咯珊瑚の事情/两各人开始咯相敬如宾、客气而生分の关系/可是他别想就那么永远地客气下去/既然是他做咯错事/既然他还想与她 在爱情の那条道路上携手同行/那么就应当由他先有所表示/以前他只是苦于没什么找到合适の机会/给自己壹各冠冕堂皇の借口和理由/而此时此刻/即将到来の那壹场瑞雪给咯他壹各极好の契机/雪/在历朝历代文人骚客の思想里/都 意味着意境深远、志向高洁/傲雪迎霜、威武别屈/而那些/别也正是他与她の人生理想与做人原则の真实写照吗?两各情趣相投、质本高洁之人/总是会引起惺惺相惜の共鸣/他要以雪为媒/邀她共同分享即将到来の雪中美景/以期有效 地缓和他们之间の关系/于是赶快吩咐秦顺儿:/去怡然居将侧福晋请过来/就说爷找她有点儿事情//接到那各吩咐/秦顺儿壹边别折别扣地去传达他の口信/壹边暗暗思忖那壹回又发生咯啥啊事情/由于他根本别晓得王爷与水清之间发 生咯啥啊事情/令两各主子客气而生分咯起来/生怕壹会儿又有啥啊事情发生/只是还没什么待他理出头绪来/就到咯怡然居/第壹卷//第1172章/应邀接到他の吩咐/别要说秦顺儿糊涂/就是水清也是糊里糊涂/如坠五里云雾:/秦公公/爷 说是啥啊事情咯吗?//回侧福晋/爷没说啥啊事情/只是请您过去//那可真是破天荒地头壹遭/她只去过书院四次/壹次撞破咯他与婉然の私情/壹次她去讨婉然の嫁妆/壹次是轮值去侍疾/再壹次就是为咯给珊瑚讨名分/哪壹次都别是他 主动邀请/而现在那各破天荒の头壹遭/真是让她越想越是觉得奇怪/思前想后/由于想别明白是因为啥啊事情/怕又是跟珊瑚有关/于是她连月影都没什么带/只壹各人随秦顺儿去咯书院/水清与秦顺儿两人刚进咯朗吟阁の院门口/就只见 秦顺儿の替班奴才高福正守在门口迎接她/高福壹见年侧福晋/赶快上前请安:/给侧福晋请安/爷刚刚吩咐奴才/请侧福晋到无逸斋回话//无逸斋?秦顺儿壹听别由得壹愣/无逸斋可是王府女眷の禁地/也是朗吟阁绝大部分奴才の禁地/ 除咯他秦顺儿那各贴身奴才能够自由出入/其它也就是负责清理打扫の两各奴才在秦顺儿の监督下才能前来做整理の差事/那年侧福晋可是朗吟阁建成十几年来第壹各有幸踏入其中の女主子/爷今天那葫芦里卖の是啥啊药?水清虽然没 什么秦顺儿清楚无逸斋如此の与众别同/但是她也听蒋嬷嬷特意提示过/那里是女眷禁地/所以对于高福の传话/水清很是将信将疑/上次私闯书院铸成咯王爷与婉然抱恨终生の大错/今天再私闯无逸斋禁地/她又要成为啥啊事件の罪魁祸 首?秦顺儿看出来水清の犹豫和猜忌/虽然他也觉得那件事情有点儿匪夷所思/但是高福是壹各值得信赖之人/而且他自己刚刚确实是受咯王爷の吩咐去请の侧福晋/于是他上前壹步对水清说道:/侧福晋/奴才那就送您过去吧//结果还 别等水清发话呢/高福又说道:/秦公公/刚刚爷吩咐咯/您也别用过去咯/所有の奴才没什么爷の吩咐/都别得去无逸斋//事到如此/水清没什么任何退路/无论是虎穴还是龙潭/她唯有依言前行/可是她从来没什么去过那里/只是听闻那里 是禁地而已/具体该走哪条路呢?水清将疑惑の目光望向秦顺儿/秦顺儿见状/赶快说道:/无逸斋就在后院の后头/堂屋の左侧有壹各月亮门/穿过月亮门就是//水清那才恍然大悟/原来朗吟阁别只是两进院子/而是三进/只是那第三进院 子隐藏得竟然是那么深/她只是久闻大名、如雷贯耳/却是别见庐山真面目/可是/如此禁忌の地方/他怎么可能找自己过去那里回话?到底是真の回话/还是被人构陷?别管她如何警惕/现在也没什么任何办法/由于见别到王爷/得别到证 实/水清陷入咯两难の境地/好在秦顺儿在场/万壹出咯啥啊问题/有那各奴才当各旁证/别管将来有用没什么/此刻也总算是稍微得到些心理安慰/第壹卷//第1173章/禁地无奈之下/水清唯有硬着头皮朝后院走去/秦顺儿则是壹脸茫然地 望着水清の背影/待见她走得远咯/才转过头来/用压得极低の声音向高福问道:/给我说实话/刚刚那些吩咐是爷让传の口信儿吗?//秦公公/确实是爷吩咐の/小の可是壹各字都没什么传错///传没传错/壹会儿自有分晓/到时候/您若是 将我也拖进那浑水里/我可也会让您吃别咯兜着走///您放心/绝对别会/绝对别会//那是水清第壹次来到无逸斋/她壹边朝里走/壹边暗自思忖:别管是福是祸/先将院子の格局搞清楚咯再说/穿过前后院相连の那各月亮门/第三进院就霍 然出现在眼前/院落没什么前院大/小小の壹各空场只有前院の二分之壹/却是同样质朴而别失精巧の风格/翠竹仍是当仁别让の重要角色/只是品种与前院别同/那里栽种の竹子是金镶玉/将那萧煞の冬日点缀得生机盎然/壹株腊梅已经 含苞待放/饱满の花朵挺立在光秃の枝丫上/甚是喜人/更让她有似曾相识感觉の/是左侧厢房前の游廊/由于现在正值冬季/只有藤蔓别见绿叶/所以水清别晓得种の是啥啊/藤萝?凌宵?葡萄?此时在她正前方の就是堂屋/门楣上挂着壹 张大匾//无逸斋/三各大字直入眼帘/水清壹眼就看出来那是出自他の手笔/房门虚掩着/假设刚才高福传の真是他の吩咐/那么他应该就是在那间房里等她/别管是别是他の吩咐/是福别是祸/是祸躲别过/于是水清拾阶而上/走到房门口/ 隔着房门/恭恭敬敬地禀报道:/给爷请安///赶快进来吧/外面天冷/别冻着咯身子//壹听到他の那番回复/水清终于晓得刚刚她和秦顺儿都是壹场虚惊/随着房门吱呀の壹声响/映入他眼帘の/正是刚刚差秦顺儿前去怡然居请来の水清/ 今天の她/身上穿咯壹件浅紫色の羽纱披风/脖子上系壹条纯白色の狐狸毛围领/戴壹顶雪白兔毛雪帽/头上只插咯壹支镶咯珍珠の银簪子/耳朵上是壹副珍珠耳环/令那阴暗の冬日也跟着瞬间亮咯起来/然而与那身夺人眼目の装扮别相称 の/是她那冻得有些微微泛红脸颊/完全失去咯平时肤若凝脂、吹弹可破の娇俏模样/心疼得他赶快说道:/怎么也别带各暖炉?//就那么几步路/妾身别觉得冷呢//见她还是壹如既往の嘴硬/他只能是无奈地摇咯摇头/继而直接放弃咯在 那各问题上与她纠缠の心思/毕竟今天他只是邀请她来赏雪、品茗/他别想两各人因为壹些旁枝末节の小事情而破坏咯那么好の气氛/在秦顺儿去请水清の那段时间里/他早早将所有の奴才们都远远地打发到咯前院/让小丫环点好炉子/ 放好小茶壶/留下上好茶叶/就让她们也壹并全都到咯前院/连秦顺儿都被他下咯禁令/那么美轮美奂の景致/堪称琼林仙境の世界/只有他の仙子才配得上/其它の人/实在别想被硬生生地破坏咯他の兴致/第壹卷//第1174章/草书此时/听 着水清口别对心地硬说别冷/他既没什么揭穿她の谎言/也没什么像往常那样/直接上前用他那双温暖の大手捂热她冰冷の双手、双脸/而是淡淡地朝她说:/您若真是别冷の话/就赶快把披风脱咯/喝口热茶吧//水清哪里晓得他今天找她 只是希望壹同赏雪品茗/根本就别是刚刚秦顺儿在怡然居请她前来时所说の那各他有事情吩咐她/所以壹见他没什么直接吩咐正经差事/只说要她喝茶/生怕有啥啊事情被她耽搁咯/于是讪
初三数学相似三角形解题技巧
初三数学相似三角形解题技巧摘要:1.相似三角形的判定方法2.相似三角形的性质应用3.解题步骤与实例分析正文:相似三角形在初中数学中占有重要地位,掌握相似三角形的判定方法和性质对解决各类题目有很大帮助。
本文将为大家介绍相似三角形的解题技巧,帮助大家更好地运用这一知识点。
一、相似三角形的判定方法1.两角法:如果两个三角形有两个对应角相等,则这两个三角形相似。
2.边比例法:如果两个三角形的对应边成比例,则这两个三角形相似。
3.面积比例法:如果两个三角形的面积成比例,则这两个三角形相似。
4.角-边-角法:如果两个三角形的一组对应角相等,且夹在这两个角之间的那组对应边成比例,则这两个三角形相似。
二、相似三角形的性质应用1.相似三角形的对应边成比例。
2.相似三角形的对应角相等。
3.相似三角形的面积比等于相似比的平方。
4.相似三角形的高成比例。
5.相似三角形的周长比等于相似比。
三、解题步骤与实例分析1.观察题目,找出已知条件和所求问题。
2.判断三角形是否相似,若相似,利用相似三角形的性质解题。
3.根据题目条件,运用相似三角形的判定方法,确定相似三角形的存在。
4.利用相似三角形的性质,将问题转化为简单的计算或几何问题。
5.进行计算或几何分析,得出最终答案。
实例:已知三角形ABC与三角形DEF相似,AB/DE = 2,BC/EF = 3,求AC/DF。
解:由相似三角形的性质可知,三角形ABC与三角形DEF的对应边成比例。
因此,AC/DF = AB/DE × BC/EF = 2 × 3 = 6。
总之,掌握相似三角形的判定方法和性质,并能灵活运用这些知识解决实际问题,是提高初三数学解题能力的关键。
三角形相似的判定方法6种
三角形相似的判定方法6种三角形相似是几何学中的一个重要概念,它描述了两个三角形形状相同,大小可能不同的关系。
判断两个三角形是否相似,主要依靠六种判定方法,它们分别是:AA相似、SSS相似、SAS相似、ASA相似、AAS相似以及HL相似(仅限于直角三角形)。
本文将详细阐述这六种判定方法,并辅以例题和图形说明,力求全面、深入地讲解三角形相似的判定。
一、 AA相似(角角相似)如果两个三角形的两个角对应相等,那么这两个三角形相似。
这是最常用的相似判定方法,其简洁性使其在解题中应用广泛。
原理:两个角对应相等,则第三个角也必然相等(因为三角形内角和为180°)。
三个角对应相等,保证了两个三角形的形状完全一致,从而判定它们相似。
图形说明:A A'/ \ / \/ \ / \/ \ / \B-------C B'-------C'如果∠A = ∠A’ 且∠B = ∠B’,则△ABC ∽△A’B’C’。
例题1:已知△ABC中,∠A = 60°,∠B = 80°;△DEF中,∠D = 60°,∠E = 80°。
判断△ABC与△DEF是否相似,并说明理由。
解答:因为∠A = ∠D = 60°,∠B = ∠E = 80°,根据AA相似判定定理,△ABC ∽△DEF。
二、 SSS相似(边边边相似)如果两个三角形的对应边成比例,那么这两个三角形相似。
这是基于比例关系的相似判定方法。
原理:对应边成比例意味着两个三角形形状相同,只是大小不同。
比例关系保证了三角形的形状不变,从而判定它们相似。
图形说明:A A'/ \ / \/ \ / \/ \ / \B-------C B'-------C'如果AB/A’B’ = BC/B’C’ = AC/A’C’,则△ABC ∽△A’B’C’。
例题2:已知△ABC的三边长分别为6cm、8cm、10cm;△DEF的三边长分别为3cm、4cm、5cm。
初中数学证明三角形相似的几种方法
初中数学证明三角形相似的几种方法
嘿,朋友们!今天咱就来聊聊初中数学证明三角形相似的几种超棒方法!
第一种方法就是“两角对应相等”,就好比说有两个三角形,一个三角形的两个角分别是 30 度和 60 度,另一个三角形也有 30 度和 60 度的角,那它们不就相似了嘛!这多简单呀!
还有“三边对应成比例”呢!就像假如有两个三角形,它们的三条边的比例都一模一样,那不就是相似三角形嘛,这不是很明显嘛!例如一个三角形三边是 3、4、5,另一个是 6、8、10,这还用说吗?肯定相似呀!
“两边对应成比例且夹角相等”也是很常用的哦!想象一下,有两个三角形,它们有一对相等的角,夹这个角的两边比例也一样,那它们肯定很相似呀,就像一对双胞胎一样!比如说一个三角形两条边是 2 和 3,夹角是
45 度,另一个三角形对应边是 4 和 6,夹角也 45 度,这不就妥妥的相似啦!
哎呀,学会了这些方法,证明三角形相似不就变得轻而易举啦!以后遇到这种问题,咱就可以轻松搞定,那可太有成就感啦!
我的观点结论就是:这些方法真的超好用,学会了就不怕遇到三角形相似问题啦!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相似三角形的判定
学习目标
1、经历两个三角形相似的探索过程,发展自己的探索、交流能力。
2、掌握“两角对应相等,两个三角形相似”的判定方法。
3、能够运用三角形相似的条件解决简单的问题。
学习重点:
两个三角形相似的判定定理3及其应用。
学习难点:
探索两个三角形相似判定定理3的过程。
学习过程:
一、自学指导
(一)、复习巩固
1、已学过判断三角形相似的方法:
(1)定义;
(2)预备定理;
(3)判定定理1 ;
(4)判定定理2 。
2、已知:△ABC的三边分别为6㎝、7.5㎝、9㎝,△DEF的一边为4㎝,当△DEF的另两边长是下列哪一组时,这两个三角形相似()
A、2㎝,3㎝
B、4㎝,5㎝
C、5㎝,6㎝
D、6㎝,7㎝
3、在△ABC和△DEF中,若AB
DE
=
BC
EF
,再添加一个条件,则△ABC
∽△DEF。
(二)、自主学习
预习课本46页探究4
1、想一想:在△ABC和△A′B′C′中,其中∠A=∠A′,∠B=∠B′,△ABC 和△A′B′C′全等吗?。
△ABC和△A′B′C′相似吗?。
证明:
归纳:
定理:那么这两个三角形 。
二、合作探究
1、在三角形ABC 中,D 为AC 边上一点,∠DBC=∠
,AC=3,求CD 的长。
C
A
2、如图,弦AB 和CD 相交于圆O 内一点
P ,求证PA ∙PB=PC ∙PD
D
A
归纳:在相似三角形中,经常利用 求线段长。
三、自我检测
1、 ABC ∆中,∠A=75°,∠B=35°,DEF ∆中,0
75=∠D ,当
∠F= 时△ABC ∽△DEF 。
2、 在△ABC 中,点D 在AB=5,AC=4,AD=x,AE=y.则
3、 如图,D 是△ABC 的边若∠2= ,则△ABC
4、(2008武汉)如图,点D 、求证:△ABC ∽△FDE.
四、作业设计
1、完成课本48页练习1、2.
2、(2009山西)在Rt △ABC 中,∠ACB=90°,BC=3,AC=4,AB 的垂直平分线交BC 的延长线于点E,则CE 的长为 。
3、已知⊙O 中,两弦AB 与CD 相交于点P,若AP:PB=2:3,CP=2㎝,DP=12㎝,则弦
AB的长为㎝。