勾股定理几何原本中的证明
勾股定理两种主要证明方法

勾股定理两种主要证明方法勾股定理是一个基本的几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;三国时代的蒋铭祖对《蒋铭祖算经》内的勾股定理作出了详细注释,又给出了另外一个证明。
“勾三,股四,弦五”是勾股定理的一个最著名的例子。
当整数a,b,c满足a^2;+b^2;=c^2;这个条件时,(a,b,c)叫做勾股数组。
也就是说,设直角三角形两直角边为a和b,斜边为c,那么a^2;+b^2;=c^2;。
在中国数学史中同样源远流长,是中算的重中之重。
《周髀算经》中已有“勾三股四弦五”的记述,赵爽的《周髀算经》中将勾股定理表述为“勾股各自乘,并之,为弦实。
开方除之,即弦。
”勾股定理现辨认出约有种证明方法,就是数学定理中证明方法最少的定理之一。
下面我们一起来观赏其中一些证明方法:方法一:赵爽“弦图”三国时期吴国数学家赵爽在为《周髀算是经》并作注释时,编定了一幅“勾股圆方图”,也称作“弦图”,这就是我国对勾股定理最早的证明。
年世界数学家大会在北京召开,这届大会会标的中央图案正是经过艺术处理的“弦图”,标志着中国古代数学成就。
方法二:刘徽“青朱进出图”约公元年,三国时代魏国的数学家刘徽为古籍《九章算术》作注释时,用“出入相补法”证明了勾股定理。
方法三:欧几里得“公理化证明”希腊数学家欧几里得(euclid,公元前~公元前)在巨著《几何原本》给出一个公理化的证明。
年希腊为了纪念二千五百年前古希腊在勾股定理上的贡献,发售了一张邮票,图案就是由三个棋盘排序而变成。
方法四:毕达哥拉斯“拼图”毕达哥拉斯(公元前—前年),古希腊知名的哲学家、数学家、天文学家.将4个全等的直角三角形拼成边长为(a+b)的正方形abcd,使中间留下边长c的一个正方形洞.画出正方形abcd.移动三角形至图2所示的位置中,于是留下了边长分别为a与b的`两个正方形洞。
勾股定理知识点总结大全

勾股定理知识点总结大全一、勾股定理的定义勾股定理又称毕达哥拉斯定理,它是指:在直角三角形中,直角边的平方等于其他两条边的平方和。
具体表达方式是:设直角三角形的两个直角边分别为a、b,斜边为c,则有a²+b²=c²。
这就是著名的毕达哥拉斯定理,也是勾股定理的核心概念。
二、勾股定理的证明1. 几何证明勾股定理有多种证明方法,其中有几何证明是最常见的。
几何证明主要通过图形的构造和变换,利用几何形状的属性,从而证明勾股定理。
常见的几何证明方法包括利用正方形、相似三角形、垂直平分线、圆的性质等,通过构造等辅助图形,最终得到a²+b²=c²的结论。
2. 代数证明另外,勾股定理也可以通过代数方法进行证明。
代数证明主要通过变换方程、化简运算,利用数学公式和规律,从而得到a²+b²=c²的结论。
通过几何和代数两种证明方法,可以更全面地理解勾股定理的内涵和外延,为后续的学习和应用打下坚实的基础。
三、勾股定理的性质1. 勾股三元数根据勾股定理,我们可以找到很多满足a²+b²=c²的整数解组,这样的整数解组叫做勾股三元数。
例如:3²+4²=5²、5²+12²=13²、9²+40²=41²等。
勾股三元数的性质是研究勾股定理的重要方面,它们具有很多有趣的特性和规律,对于数论的研究有着重要的意义。
2. 勾股定理的逆定理对于一个三元数组(a, b, c),如果它满足a²+b²=c²,则称它是勾股三元数。
而勾股定理的逆定理表明,每个整数对(a, b),都可以构成一个勾股三元数。
这个逆定理的证明非常复杂,它涉及到模运算、费马大定理、椭圆曲线等高深的数学知识,是数论和代数学研究的重要课题之一。
3. 勾股定理的推广在直角三角形外,勾股定理也有很多推广成立的情况。
几何原本中勾股定理的证明

几何原本中勾股定理的证明在数学中,勾股定理是一个经典的几何定理,它是被广泛接受的基本原理之一。
此定理在三角形中成立:斜边的平方等于两腰的平方之和。
这个公式可以写成a² + b² = c²的形式,其中a、b、c是三条边的长度。
许多人都熟悉勾股定理,然而,少有人了解它的证明。
下面我们来看看几何原本中勾股定理的证明。
证明一证明勾股定理的其中一种方法是使用尺规法。
这个证明起源于中国古代,然后传到了印度。
之后,它被许多数学家重新证明,其中包括欧几里德、泰勒和毕达哥拉斯等人。
事实上,这种证明被称为毕达哥拉斯定理。
这种状态可以概括为:在直角三角形中,斜边的平方等于两直角边平方之和。
证明二知道勾股定理的第二种方法是通过图形证明。
这种证明包括画一张类似于大写字母"T"的图像,然后将其旋转90度,使其看起来像一个直角三角形。
当你这样做时,你将会发现在上面的线段的平方等于下面的两段线段平方之和。
这个图形证明在很大程度上是基于物理直觉推导出的,因为我们都知道垂直的线段的长度相等。
证明三还有一种证明勾股定理的方法叫做代数证明。
这个证明通常可以使用代数符号解决问题。
假设三角形的三条边分别为a、b和c。
我们可以使用勾股定理的公式c² = a² + b²,然后将其重新排列为a² = c² - b²。
当我们将b定量时,我们可以使用这个公式来代替a。
这样c² = (c - b)² +b²。
然后,我们可以将这个公式继续展开,并判断a² + b²是否等于c²。
总结勾股定理的证明方法有多种,每一种都以其独特性而广为人知。
无论是尺规法、图形证明,还是代数证明,每一种都试图使我们对勾股定理更深入地了解。
一个好的数学家应该学习多种方法来理解这个定理。
勾股定理不仅是有用的数学工具,也可以让我们凭借对数学的掌握而增强我们的思维能力。
勾股定理的证明方法

勾股定理的证明方法勾股定理是初等几何中的一个基本定理.这个定理有十分悠久的历史,两千多年来,人们对勾股定理的证明颇感兴趣,因为这个定理太贴近人们的生活实际,以至于古往今来,下至平民百姓,上至帝王总统都愿意探讨和研究它的证明.下面结合几种图形来进行证明。
一、传说中毕达哥拉斯的证法(图1)左边的正方形是由1个边长为的正方形和1个边长为的正方形以及4个直角边分别为、,斜边为的直角三角形拼成的.右边的正方形是由1个边长为的正方形和4个直角边分别为、,斜边为的直角三角形拼成的。
因为这两个正方形的面积相等(边长都是),所以可以列出等式,化简得。
在西方,人们认为是毕达哥拉斯最早发现并证明这一定理的,但遗憾的是,他的证明方法已经失传,这是传说中的证明方法,这种证明方法简单、直观、易懂.二、赵爽弦图的证法(图2)第一种方法:边长为的正方形可以看作是由4个直角边分别为、,斜边为的直角三角形围在外面形成的。
因为边长为的正方形面积加上4个直角三角形的面积等于外围正方形的面积,所以可以列出等式,化简得。
第二种方法:边长为的正方形可以看作是由4个直角边分别为、,斜边为的角三角形拼接形成的(虚线表示),不过中间缺出一个边长为的正方形“小洞”.因为边长为的正方形面积等于4个直角三角形的面积加上正方形“小洞”的面积,所以可以列出等式,化简得.这种证明方法很简明,很直观,它表现了我国古代数学家赵爽高超的证题思想和对数学的钻研精神,是我们中华民族的骄傲。
三、美国第20任总统茄菲尔德的证法(图3)这个直角梯形是由2个直角边分别为、,斜边为的直角三角形和1个直角边为的等腰直角三角形拼成的。
因为3个直角三角形的面积之和等于梯形的面积,所以可以列出等式,化简得.这种证明方法由于用了梯形面积公式和三角形面积公式,从而使证明更加简洁,它在数学史上被传为佳话。
古希腊数学的伟大成就:1、使数学成为抽象性的一门科学;2、建立了演绎证明体系,希腊成为论证数学发祥地;3、创立了几何学、三角学,奠定了数论基础等;4、萌芽了一些高等数学,如数论、极限等;5、希腊人发现定理及证明,逻辑结构严密,论证认真细致,为后世树立了样板等;不足:如,重几何轻代数,认为几何方法是数学证明唯一方法,畏于无理数的存在,而不将算术应用于几何;几何作图严格限制规尺.古希腊的数学方法论泰勒斯最先提出数学方法论,数学命题要加以演绎证明,在数学中要建立一般的原理好人规则,数学命题的证明就是要借助一些公理或真实性已经确定的命题来论证某一命题真实性的思想过程.演绎证明的方法即演绎推理的方法,指从一般到特殊的推理方法,其核心是三段论法,即有两个已知判断,推出第三个判断,例如,平行四边形的对角线互相平分(第一个已知一般判断成为大前提),矩形是平行四边形(另一个已知较特殊的判断,成为小前提),则矩形的对角线互相平分(推出新判断,即结论).用演绎法证明命题使几何由实验阶段,过渡到一门抽象的理论科学,使人类对自然的认识由感性(或经验)认识上升到理性认识,因此这是一个划时代的贡献。
几何原本中的勾股定理及其逆定理的现代数学证明

几何原本中的勾股定理及其逆定理的现代数学证明作者:张胜持来源:《科学与财富》2020年第20期摘要:本文对《几何原本》中欧几里得关于勾股定理及其逆定理的证明方法运用现代数学的公式进行了详细证明,简明扼要,简单直观,非常符合于现代人的书写和阅读习惯。
关键词:勾股定理;证明;欧几里得;初等数论。
0引言:勾股定理是一个古老的数学定理,其勾股数计算历来受到人们的重视。
古希腊著名数学家欧几里得在他所著的《几何原本》予以了证明,是人类历史上最早的一种证明方法。
但是在这本书中,其证明几乎是文字叙述性的,现代人阅读起来非常困难,甚至困惑不解。
本人试将这些文字叙述转换为现代数学公式,然后进行推导证明。
其中勾股定理证明是第一卷1.47命题,逆定理是1.48命题。
下面分别予以详细讨论。
1;;;;;; 勾股定理证明:1.47命题对勾股定理的描述:在直角三角形中,直角所对的边上的正方形的面积等于夹直角两边上的正方形面积的和。
为了证明这个命题,他还画了一个图,如图1所示,图中的 R 点是本人为叙述方便所加的,它是位于 BC 和 AL 的交点处。
该图为书中的图1.47。
证明如下所述。
求证:BC2= BA2+ AC2。
证明:在△FBC 和△ABD 中,∠FBC = ∠FBA + ∠ABC ,∠ABD = ∠CBD + ∠ABC ,∵∠FBA = ∠CBD =90°,∴∠FBC = ∠ABD .∵FA = AB, BC = BD ,∴△FBC ≌△ABD (两条边及一个角相等)。
即SFBC = SABD (面积相等)。
∵SFBC = SABFG÷2,亦即 SABFG =2SFBC (同底同高三角形的面积等于其上正方形面积的一半【*】)。
(因为∠BAC 和∠BAG 同为直角,故 CA 与 AG 在同一条直线上,这样有BF∥CG,使三角形同底同高条件成立)。
另有 SABD = SBDLR/2,亦即 SBDLR =2SFBC (原因同【*】)。
勾股定理的证明方法和相关故事

04
勾股定理的故事和传说
毕达哥拉斯与勾股定理的故事
毕达哥拉斯是古希腊著名的数学家和哲学 家,被认为是勾股定理的创始人。传说他 通过观察铁匠铺打铁的声音,发现了音符 与数的关系,进一步推导出勾股定理。
毕达哥拉斯学派认为,数是万物的本原, 自然界的秩序和原理都可以用数来解释。 他们通过大量的实践和证明,不断完善勾 股定理,并将其广泛应用于各个领域。
勾股定理的推广和变种
勾股定理的推广包括勾股定理的逆定理、勾股定理的推广 形式等。这些推广形式可以用于解决更广泛的问题,如确 定三角形的形状、计算三角形的面积等。
勾股定理的变种包括勾股定理的特殊形式、勾股定理的变 形等。这些变种形式可以用于解决一些特殊问题,如确定 特殊三角形的各边长度、计算特殊三角形的面积等。
证明方法基于数论和音乐理论,将数 学与哲学、音乐相结合,展现了毕达 哥拉斯学派的独特思想。
赵爽证明方法
赵爽是中国古代数学家,他在《周髀算经》中给出了勾股定理的证明,使用了“ 出入相补”原理。
赵爽的证明方法简单易懂,适合初学者理解,对中国古代数学的发展产生了重要 影响。
反证法证明方法
反证法是一种间接证明方法,通过否定结论来推导出矛盾, 从而证明原命题成立。
使用反证法证明勾股定理时,首先假设三角形不是直角三角 形,然后推导出矛盾,从而证明原命题成立。
03
勾股定理的应用和推广
勾股定理在几何学中的应用
勾股定理在平面几何中有着广 泛的应用,如确定直角三角形 各边的长度、计算直角三角形 的面积等。
在三维几何中,勾股定理可以 用于确定空间直角三角形的各 边长度,以及计算其体积和表 面积。
《几何原本》对后世的数学发展 产生了深远的影响,成为数学教
关于“勾股定理”的60种证法

关于“勾股定理”的60种证法1.(面积法证明)1 证法1.1:证明:在直角三角形ABC 中,分别作以AB 、AC 、BC 为边的正方形ABED,正方形ACJI 和正方形BCHG ,连接线段IB 、CD 、AG 、CE 。
过点C 作DE 的垂线CK ,交DE 于点K ,交AB 于点L 。
90,,CAI BAD CAB CADCAB CAD AC AI AD AB ACD AIB∠=∠=∴∠=∠∠=∠==∴∆≅∆线段AI 平行于线段BJ ∴AIB ∆的面积等于AIC ∆ACD AIB ∆≅∆AIC ∴∆的面积等于ACD ∆ 线段AD 平行于线段CK∴矩形ADKL 的面积等于ACD ∆面积的两倍正方形ACJI 的面积等于AIC ∆的两倍,AIC ∆的面积等于ACD ∆ ∴矩形ADKL 的面积等于正方形ACJI 的面积同理,有:矩形BEKL 的面积等于正方形BCHG 的面积。
正方形ABED 的面积等于矩形ADKL 的面积加上矩形BEKL 的面积∴正方形ABED 的面积等于正方形ACJI 的面积与正方形BCHG 的面积之和即222AC BC AB +=.Remark :此为欧几里得(Euclid,约公元前330年-公元前275年)在几何原本中的证明方法。
2 证法1.2:证明:在上图中,整个正方形的面积为2()a b +,又等于四个直角三角形的面积加上里面的小正方形的面积,等于22ab c +。
因此,22()2a b ab c +=+,此即:222a b c +=。
Remark :此证法据Bretschneider 和Hankel 的推测,为毕达哥拉斯(Pythagoras ,约公元前580~约前500)的证法。
3 证法1.3(总统证明法)如图,三角形ABC 与三角形BDE 完全相等,易证三角形ABE 为等腰直角三角形。
整个直角梯形ACDE 的面积为21()2a b +,又等于两个直角三角形的面积加上等腰直角三角形ABE 的面积,等于212ab c +,故2211()22a b ab c +=+。
巧妙证明勾股定理

巧妙证明勾股定理勾股定理的证明,在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。
首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。
1.中国方法:画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。
这两个正方形全等,故面积相等。
左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。
从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。
左图剩下两个正方形,分别以a、b为边。
右图剩下以c为边的正方形。
于是a^2+b^2=c^2。
这就是我们几何教科书中所介绍的方法。
既直观又简单,任何人都看得懂。
2.希腊方法:直接在直角三角形三边上画正方形,如图。
容易看出,△ABA’≌△AA'C 。
过C向A’’B’’引垂线,交AB于C’,交A’’B’’于C’’。
△ABA’与正方形AC DA’同底等高,前者面积为后者面积的一半,△AA’’C与矩形AA’’C’’C’同底等高,前者的面积也是后者的一半。
由△ABA’≌△AA’’C,知正方形ACDA’的面积等于矩形AA’’C’’C’的面积。
同理可得正方形BB’EC的面积等于矩形B’’BC’C’’的面积。
于是,S正方形AA’’B’’B=S正方形ACDA’+S正方形BB’EC,即a2+b2=c2。
至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。
这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。
这就是希腊古代数学家欧几里得在其《几何原本》中的证法。
以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念:⑴全等形的面积相等;⑵一个图形分割成几部分,各部分面积之和等于原图形的面积。
这是完全可以接受的朴素观念,任何人都能理解。
我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。
勾股定理的十六种证明方法

勾股定理的证明【证法1】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即ab c ab b a 214214222⨯+=⨯++, 整理得 222c b a =+.【证法2】(邹元治证明)以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等于ab 21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上.∵ Rt ΔHAE ≌ Rt ΔEBF ,∴ ∠AHE = ∠BEF .∵ ∠AEH + ∠AHE = 90º, ∴ ∠AEH + ∠BEF = 90º. ∴ ∠HEF = 180º―90º= 90º.∴ 四边形EFGH 是一个边长为c 的正方形. 它的面积等于c 2. ∵ Rt ΔGDH ≌ Rt ΔHAE , ∴ ∠HGD = ∠EHA . ∵ ∠HGD + ∠GHD = 90º, ∴ ∠EHA + ∠GHD = 90º. 又∵ ∠GHE = 90º,∴ ∠DHA = 90º+ 90º= 180º.∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2b a +.∴()22214c ab b a +⨯=+. ∴ 222c b a =+.【证法3】(赵爽证明) 以a 、b 为直角边(b>a ), 以c 为斜边作四个全等的直角三角形,则每个直角三角形的面积等于ab 21. 把这四个直角三角形拼成如图所示形状. ∵ Rt ΔDAH ≌ Rt ΔABE,∴ ∠HDA = ∠EAB .∵ ∠HAD + ∠HAD = 90º, ∴ ∠EAB + ∠HAD = 90º, ∴ ABCD 是一个边长为c 的正方形,它的面积等于c 2. ∵ EF = FG =GH =HE = b ―a , ∠HEF = 90º.∴ EFGH 是一个边长为b ―a 的正方形,它的面积等于()2a b -.∴ ()22214c a b ab =-+⨯.∴ 222c b a =+. 【证法4】(1876年美国总统Garfield 证明)以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于ab21. 把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上.∵ Rt ΔEAD ≌ Rt ΔCBE ,∴ ∠ADE = ∠BEC .∵ ∠AED + ∠ADE = 90º, ∴ ∠AED + ∠BEC = 90º. ∴ ∠D EC = 180º―90º= 90º. ∴ ΔDEC 是一个等腰直角三角形,它的面积等于221c .又∵ ∠DAE = 90º, ∠EBC = 90º, ∴ AD ∥BC .∴ ABCD 是一个直角梯形,它的面积等于()221b a +.∴ ()222121221c ab b a +⨯=+. ∴ 222c b a =+.【证法5】(梅文鼎证明)做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c . 把它们拼成如图那样的一个多边形,使D 、E 、F 在一条直线上. 过C 作AC 的延长线交DF 于点P .∵ D 、E 、F 在一条直线上, 且Rt ΔGEF ≌ Rt ΔEBD , ∴ ∠EGF = ∠BED ,∵ ∠EGF + ∠GEF = 90°,∴ ∠BED + ∠GEF = 90°,∴ ∠BEG =180º―90º= 90º. 又∵ AB = BE = EG = GA = c ,∴ ABEG 是一个边长为c 的正方形. ∴ ∠ABC + ∠CBE = 90º.∵ Rt ΔABC ≌ Rt ΔEBD , ∴ ∠ABC = ∠EBD . ∴ ∠EBD + ∠CBE = 90º. 即 ∠CBD= 90º. 又∵ ∠BDE = 90º,∠BCP = 90º,BC = BD = a .∴ BDPC 是一个边长为a 的正方形. 同理,HPFG 是一个边长为b 的正方形. 设多边形GHCBE 的面积为S ,则,21222ab S b a ⨯+=+ab S c 2122⨯+=, ∴ 222c b a =+.【证法6】(项明达证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ) ,斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形,使E 、A 、C 三点在一条直线上. 过点Q 作QP ∥BC ,交AC 于点P .过点B 作BM ⊥PQ ,垂足为M ;再过点F 作FN ⊥PQ ,垂足为N . ∵ ∠BCA = 90º,QP ∥BC , ∴ ∠MPC = 90º, ∵ BM ⊥PQ , ∴ ∠BMP = 90º, ∴ BCPM 是一个矩形,即∠MBC = 90º.∵ ∠QBM + ∠MBA = ∠QBA = 90º,∠ABC + ∠MBA = ∠MBC = 90º, ∴ ∠QBM = ∠ABC ,又∵ ∠BMP = 90º,∠BCA = 90º,BQ = BA = c , ∴ Rt ΔBMQ ≌ Rt ΔBCA .同理可证Rt ΔQNF ≌ Rt ΔAEF . 从而将问题转化为【证法4】(梅文鼎证明).【证法7】(欧几里得证明)做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使H 、C 、B 三点在一条直线上,连结 BF 、CD . 过C 作CL ⊥DE ,交AB 于点M ,交DE 于点L .∵ AF = AC ,AB = AD , ∠FAB = ∠GAD , ∴ ΔFAB ≌ ΔGAD , ∵ ΔFAB 的面积等于221a , ΔGAD 的面积等于矩形ADLM 的面积的一半,∴ 矩形ADLM 的面积 =2a . 同理可证,矩形MLEB 的面积 =2b .∵ 正方形ADEB 的面积 = 矩形ADLM 的面积 + 矩形MLEB 的面积 ∴ 222b a c += ,即 222c b a =+.【证法8】(利用相似三角形性质证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D .在ΔADC 和ΔACB 中, ∵ ∠ADC = ∠ACB = 90º, ∠CAD = ∠BAC , ∴ ΔADC ∽ ΔACB .AD ∶AC = AC ∶AB ,即 AB AD AC ∙=2. 同理可证,ΔCDB ∽ ΔACB ,从而有 AB BD BC ∙=2.∴ ()222AB AB DB AD BC AC =∙+=+,即 222c b a =+.【证法9】(杨作玫证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ),斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形. 过A 作AF ⊥AC ,AF 交GT 于F ,AF 交DT 于R . 过B 作BP ⊥AF ,垂足为P . 过D 作DE 与CB 的延长线垂直,垂足为E ,DE 交AF 于H .∵ ∠BAD = 90º,∠P AC = 90º, ∴ ∠DAH = ∠BAC . 又∵ ∠DHA = 90º,∠BCA = 90º, AD = AB = c ,∴ Rt ΔDHA ≌ Rt ΔBCA .∴ DH = BC = a ,AH = AC = b .K由作法可知, PBCA 是一个矩形, 所以 Rt ΔAPB ≌ Rt ΔBCA . 即PB = CA = b ,AP= a ,从而PH = b ―a .∵ Rt ΔDGT ≌ Rt ΔBCA ,Rt ΔDHA ≌ Rt ΔBCA . ∴ Rt ΔDGT ≌ Rt ΔDHA .∴ DH = DG = a ,∠GDT = ∠HDA . 又∵ ∠DGT = 90º,∠DHF = 90º,∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90º, ∴ DGFH 是一个边长为a 的正方形.∴ GF = FH = a . T F ⊥AF ,TF = GT ―GF = b ―a .∴ TFPB 是一个直角梯形,上底TF=b ―a ,下底BP= b ,高FP=a +(b ―a ). 用数字表示面积的编号(如图),则以c 为边长的正方形的面积为543212S S S S S c ++++= ①∵()[]()[]a b a a b b S S S -+∙-+=++21438 = ab b 212-, 985S S S +=, ∴824321S ab b S S --=+= 812S S b -- . ②把②代入①,得98812212S S S S b S S c ++--++== 922S S b ++ = 22a b +. ∴ 222c b a =+.【证法10】(李锐证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c . 做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使A 、E 、G 三点在一条直线上. 用数字表示面积的编号(如图).∵ ∠TBE = ∠ABH = 90º, ∴ ∠TBH = ∠ABE .又∵ ∠BTH = ∠BEA = 90º,BT = BE = b ,∴ Rt ΔHBT ≌ Rt ΔABE . ∴ HT = AE = a . ∴ GH = GT ―HT = b ―a .又∵ ∠GHF + ∠BHT = 90º,∠DBC + ∠BHT = ∠TBH + ∠∴ ∠GHF = ∠DBC .∵ DB = EB ―ED = b ―a ,∠HGF = ∠BDC = 90º,∴ Rt ΔHGF ≌ Rt ΔBDC . 即 27S S =.过Q 作QM ⊥AG ,垂足是M . 由∠BAQ = ∠BEA = 90º,可知 ∠ABER= ∠QAM ,而AB = AQ = c ,所以Rt ΔABE ≌ Rt ΔQAM . 又Rt ΔHBT ≌ Rt ΔABE . 所以Rt ΔHBT ≌ Rt ΔQAM . 即 58S S =.由Rt ΔABE ≌ Rt ΔQAM ,又得QM = AE = a ,∠AQM = ∠BAE .∵ ∠AQM + ∠FQM = 90º,∠BAE + ∠CAR = 90º,∠AQM = ∠BAE , ∴ ∠FQM = ∠CAR .又∵ ∠QMF = ∠ARC = 90º,QM = AR = a , ∴ Rt ΔQMF ≌ Rt ΔARC . 即64S S =.∵ 543212S S S S S c ++++=,612S S a +=,8732S S S b ++=, 又∵ 27S S =,58S S =,64S S =,∴8736122S S S S S b a ++++=+ =52341S S S S S ++++=2c ,即 222c b a =+.【证法11】(利用切割线定理证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c . 如图,以B 为圆心a 为半径作圆,交AB 及AB 的延长线分别于D 、E ,则BD = BE = BC = a . 因为∠BCA = 90º,点C 在⊙B 上,所以AC 是⊙B 的切线. 由切割线定理,得AD AE AC ∙=2=()()BD AB BE AB -+ =()()a c a c -+= 22a c -,即222a c b -=, ∴ 222c b a =+.【证法12】(利用多列米定理证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c (如图). 过点A 作AD ∥CB ,过点B 作BD ∥CA ,则ACBD 为矩形,矩形ACBD 内接于一个圆. 根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有BD AC BC AD DC AB ∙+∙=∙, ∵ AB = DC = c ,AD = BC = a ,AC = BD = b ,∴ 222AC BC AB +=,即 222b a c +=,∴ 222c b a =+.【证法13】(作直角三角形的内切圆证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c . 作Rt ΔABC 的内切圆⊙O ,切点分别为D 、E 、F (如图),设⊙O 的半径为r .∵ AE = AF ,BF = BD ,CD = CE ,∴ ()()()BF AF CD BD CE AE AB BC AC +-+++=-+= CD CE += r + r = 2r,即 r c b a 2=-+, ∴ c r b a +=+2.∴ ()()222c r b a +=+,即 ()222242c rc r ab b a ++=++,∵ab S ABC 21=∆,∴ ABC S ab ∆=42,又∵ AO C BO CAO B ABC S S S S ∆∆∆∆++= = brar cr 212121++ = ()r c b a ++21= ()r c c r ++221= rc r +2,∴()ABC S rc r ∆=+442, ∴ ()ab rc r242=+,∴ 22222c ab ab b a +=++, ∴ 222c b a =+. 【证法14】(利用反证法证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D .假设222c b a ≠+,即假设 222AB BC AC ≠+,则由AB AB AB ∙=2=()BD AD AB +=BD AB AD AB ∙+∙可知 AD AB AC ∙≠2,或者 BD AB BC ∙≠2. 即 AD :AC ≠AC :AB ,或者 BD :BC ≠BC :AB .在ΔADC 和ΔACB 中, ∵ ∠A = ∠A , ∴ 若 AD :AC ≠AC :AB ,则 ∠ADC ≠∠ACB . 在ΔCDB 和ΔACB 中, ∵ ∠B = ∠B ,∴ 若BD :BC ≠BC :AB ,则 ∠CDB ≠∠ACB . 又∵ ∠ACB = 90º,∴ ∠ADC ≠90º,∠CDB ≠90º.这与作法CD ⊥AB 矛盾. 所以,222AB BC AC ≠+的假设不能成立.∴ 222c b a =+.【证法15】(辛卜松证明)E设直角三角形两直角边的长分别为a 、b ,斜边的长为c . 作边长是a+b 的正方形ABCD . 把正方形ABCD 划分成上方左图所示的几个部分,则正方形ABCD的面积为()ab b a b a 2222++=+;把正方形ABCD 划分成上方右图所示的几个部分,则正方形ABCD 的面积为()22214c ab b a +⨯=+ =22c ab +.∴ 22222c ab ab b a +=++,∴ 222c b a =+.【证法16】(陈杰证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c . 做两个边长分别为a 、b 的正方形(b>a ),把它们拼成如图所示形状,使E 、H 、M 三点在一条直线上. 用数字表示面积的编号(如图).在EH = b 上截取ED = a ,连结DA 、DC ,则 AD = c .∵ EM = EH + HM = b + a , ED = a ,∴ DM = EM ―ED = ()a b +―a = b . 又∵ ∠CMD = 90º,CM = a , ∠AED = 90º, AE = b ,∴ Rt ΔAED ≌ Rt ΔDMC . ∴ ∠EAD = ∠MDC ,DC = AD = c . ∵ ∠ADE + ∠ADC+ ∠MDC =180º, ∠ADE + ∠MDC = ∠ADE + ∠EAD = 90º,∴ ∠ADC = 90º.∴ 作AB ∥DC ,CB ∥DA ,则ABCD 是一个边长为c 的正方形. ∵ ∠BAF + ∠FAD = ∠DAE + ∠FAD = 90º, ∴ ∠BAF=∠DAE .连结FB ,在ΔABF 和ΔADE 中,∵ AB =AD = c ,AE = AF = b ,∠BAF=∠DAE , ∴ ΔABF ≌ ΔADE .∴ ∠AFB = ∠AED = 90º,BF = DE = a . ∴ 点B 、F 、G 、H 在一条直线上. 在Rt ΔABF 和Rt ΔBCG 中, ∵ AB = BC = c ,BF = CG = a , ∴ Rt ΔABF ≌ Rt ΔBCG .∵ 54322S S S S c +++=, 6212S S S b ++=, 732S S a +=,D DC M76451S S S S S +===, ∴6217322S S S S S b a ++++=+ =()76132S S S S S ++++=5432S S S S +++=2c ∴ 222c b a =+.勾股定理有367种证明方法,最著名的有5种:梅文鼎证明、项明达证明、赵浩杰证明、欧几里得证明、欧几里得的证法。
勾股定理逆定理八种证明方法

证法1作四个全等的直角三角形,把它们拼成如图那样的一个多边形,使D、E、F在一条直线上(设它们的两条直角边长分别为a、b ,斜边长为c.)。
过点C作AC 的延长线交DF于点P.∵ D、E、F在一条直线上,且RtΔGEF ≌ RtΔEBD,∴∠EGF = ∠BED,∵ ∠EGF + ∠GEF = 90°,∴ ∠BED + ∠GEF = 90°,∴ ∠BEG =180°―90°= 90°又∵ AB = BE = EG = GA = c,∴ ABEG是一个边长为c的正方形。
∴ ∠ABC + ∠CBE = 90°∵ RtΔABC ≌ RtΔEBD,∴ ∠ABC = ∠EBD.∴ ∠EBD + ∠CBE = 90° 即∠CBD= 90°又∵ ∠BDE = 90°,∠BCP = 90°,BC = BD = a.∴ BDPC是一个边长为a的正方形。
同理,HPFG是一个边长为b的正方形. 设多边形GHCBE的面积为S,则证法2作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),做一个边长为c的正方形。
斜边长为c. 再把它们拼成如图所示的多边形,使E、A、C三点在一条直线上. 过点Q作QP∥BC,交AC于点P. 过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N.∵ ∠BCA = 90°,QP∥BC,∴ ∠MPC = 90°,∵ BM⊥PQ,∴ ∠BMP = 90°,∴ BCPM是一个矩形,即∠MBC = 90°。
∵ ∠QBM + ∠MBA = ∠QBA = 90°,∠ABC + ∠MBA = ∠MBC = 90°,∴ ∠,又∵ ∠BMP = 90°,∠BCA = 90°,BQ = BA = c,∴ RtΔBMQ ≌ RtΔBCA. 同理可证RtΔQNF ≌ RtΔAEF.即证法3作两个全等的直角三角形,同证法2,再作一个边长为c的正方形。
欧几里得证明勾股定理的详细步骤

欧几里得证明勾股定理的详细步骤1. 引言1.1 欧几里得简介欧几里得(Euclid)是古代希腊数学家,被誉为几何学之父。
他生活在公元前四世纪,是亚历山大大帝时期的一位杰出数学家和几何学家。
欧几里得的作品《几何原本》是古代数学史上最著名且最具影响力的著作之一,被称为几何学的权威经典。
欧几里得的几何学理论体系被认为是严密而完整的,并且具有很高的逻辑性和条理性。
他所提出的公理化方法为后世的数学发展奠定了基础。
在《几何原本》中,欧几里得系统地讨论了几何学的基本理论,包括点、直线、平面、角等概念,以及各种几何定理和命题的证明方法。
欧几里得的贡献不仅在于他建立了几何学的公理化体系,还在于他证明了许多重要的几何定理,其中包括著名的勾股定理。
他的严密推理和清晰的逻辑思维使他成为古代数学史上的一个巨匠,对数学的发展产生了深远的影响。
欧几里得的成就不仅在于他本人的杰出才华,更在于他为世人展示了数学思维的力量和美妙。
1.2 勾股定理简介欧几里得在古希腊时期被认为是几何学的奠基人,他的《几何原本》是古代几何学重要的著作之一。
在这部著作中,欧几里得证明了许多几何定理,其中最著名的是勾股定理。
勾股定理是指直角三角形的斜边的平方等于两直角边的平方和。
这个定理在几何学和数学中有着广泛的应用,被认为是最基本的几何定理之一。
欧几里得证明勾股定理的方法被称为几何证明,通过构造图形、运用几何性质和推理来证明。
这个证明方法展示了欧几里得在数学推理方面的才华和严密性。
勾股定理可以帮助我们计算直角三角形的各边长,解决实际问题中的三角形计算等。
勾股定理也为其他几何定理的证明提供了参考和启发。
欧几里得在证明勾股定理的过程中展现了他在几何学和数学领域的才华和贡献。
这个定理也成为了他在数学史上的重要里程碑,被后人广泛传颂和应用。
1.3 欧几里得证明勾股定理的重要性欧几里得证明勾股定理的重要性在数学史上具有非常重要的意义。
勾股定理是古希腊数学中最著名的定理之一,被广泛运用于解决各种数学和几何问题。
直角三角形勾股定理以及与它的逆定理的证明

利用相似三角形的性质证明
总结词
通过证明两个直角三角形相似,利用相似三角形的性质来证明勾股定理的逆定理。
详细描述
首先,根据勾股定理,直角三角形的两条直角边平方和等于斜边的平方。如果一个三角形的三边满足 这个条件,那么这个三角形必定是直角三角形。因此,如果一个三角形的一边满足勾股定理的条件, 那么这个三角形必定是直角三角形。
毕达哥拉斯证明法
毕达哥拉斯学派给出了勾股定理的一个证明方法,主要利用了三角形的面积和勾 股定理的关系。
毕达哥拉斯学派首先证明了直角三角形的面积等于两个直角边长的乘积的一半, 然后利用勾股定理证明了直角三角形的斜边长等于两个直角边长的平方和的平方 根。
勾股定理的代数证明法
代数证明法是利用代数方法来证明勾 股定理的一种方法。
物理学
在研究地球或其他天体的运动时,可以利用勾股 定理来计算距离和角度。
三角函数
在计算三角函数时,可以利用勾股定理来求解一 些未知数。
02
勾股定理的证明
欧几里得证明法
欧几里得在《几何原本》中给出了勾 股定理的证明,主要利用了相似三角 形的性质和等腰直角三角形的性质。
欧几里得首先构造了两个直角三角形 ,一个直角在直角顶点,另一个直角 在斜边的中点。然后利用相似三角形 的性质证明了勾股定理。
首先,代数证明法通过构造一个方程 来表达勾股定理,然后通过解方程来 证明勾股定理。这种方法比较抽象, 但是可以适用于任何形式的勾股定理, 包括非直角的三角形。
03定理逆定理定义
如果一个三角形的三边满足$a^2 + b^2 = c^2$,则这个三角形是直角三角形。
直角三角形勾股定理以及与 它的逆定理的证明
目 录
• 勾股定理的介绍 • 勾股定理的证明 • 勾股定理逆定理的介绍 • 勾股定理逆定理的证明 • 勾股定理与逆定理的扩展
勾股定理的8种证明方法

勾股定理的8种证明方法这个定理有许多证明的方法,其证明的方法可能是数学众多定理中最多的。
路明思(Elisha Scott Loomis)的Pythagorean Proposition(《毕达哥拉斯命题》)一书中总共提到367种证明方式。
有人会尝试以三角恒等式(例如:正弦和余弦函数的泰勒级数)来证明勾股定理,但是,因为所有的基本三角恒等式都是建基于勾股定理,所以不能作为勾股定理的证明(参见循环论证)。
证法1作四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上. 过点C作AC的延长线交DF于点P.∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD,∴ ∠EGF = ∠BED,∵ ∠EGF + ∠GEF = 90°,∴ ∠BED + ∠GEF = 90°,∴ ∠BEG =180°―90°= 90°又∵ AB = BE = EG = GA = c,∴ ABEG是一个边长为c的正方形.∴ ∠ABC + ∠CBE = 90°∵ RtΔABC ≌ RtΔEBD,∴ ∠ABC = ∠EBD.∴ ∠EBD + ∠CBE = 90°即∠CBD= 90°又∵ ∠BDE = 90°,∠BCP = 90°,BC = BD = a.∴ BDPC是一个边长为a的正方形.同理,HPFG是一个边长为b的正方形.设多边形GHCBE的面积为S,则a^2+b^2=c^2证法2作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.过点Q作QP∥BC,交AC于点P.过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N.∵ ∠BCA = 90°,QP∥BC,∴ ∠MPC = 90°,∵ BM⊥PQ,∴ ∠BMP = 90°,∴ BCPM是一个矩形,即∠MBC = 90°.∵ ∠QBM + ∠MBA = ∠QBA = 90°,∠ABC + ∠MBA = ∠MBC = 90°,∴ ∠QBM = ∠ABC,又∵ ∠BMP = 90°,∠BCA = 90°,BQ = BA = c,∴ RtΔBMQ ≌ RtΔBCA.同理可证RtΔQNF ≌ RtΔAEF.即a^2+b^2=c^2证法3作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c. 再作一个边长为c的正方形. 把它们拼成如图所示的多边形.分别以CF,AE为边长做正方形FCJI和AEIG,∵EF=DF-DE=b-a,EI=b,∴FI=a,∴G,I,J在同一直线上,∵CJ=CF=a,CB=CD=c,∠CJB = ∠CFD = 90°,∴RtΔCJB ≌ RtΔCFD ,同理,RtΔABG ≌ RtΔADE,∴RtΔCJB ≌ RtΔCFD ≌ RtΔABG ≌ RtΔADE∴∠ABG = ∠BCJ,∵∠BCJ +∠CBJ= 90°,∴∠ABG +∠CBJ= 90°,∵∠ABC= 90°,∴G,B,I,J在同一直线上,a^2+b^2=c^2证法4作三个边长分别为a、b、c的三角形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结BF、CD. 过C作CL⊥DE,交AB于点M,交DE于点L.∵ AF = AC,AB = AD,∠FAB = ∠GAD,∴ ΔFAB ≌ ΔGAD,∵ ΔFAB的面积等于,ΔGAD的面积等于矩形ADLM的面积的一半,∴ 矩形ADLM的面积 =.同理可证,矩形MLEB的面积 =.∵ 正方形ADEB的面积= 矩形ADLM的面积 + 矩形MLEB的面积∴ 即a^2+b^2=c^2证法5(欧几里得的证法)《几何原本》中的证明在欧几里得的《几何原本》一书中提出勾股定理由以下证明后可成立。
从《几何原本》中勾股定理的证明说起……

新人教版数学八年级下册《勾股定理》延伸综合课模 型 的 全 等 延 伸 ---从《几何原本》中勾股定理的证明说起……学习目标:1.从熟悉的勾股定理的证明图中抽象出图形模型,并能在此基础上进行多变;2.能善于发现问题,大胆猜测结论,并且加以证明,培养猜测与验证的推理能力;3.通过抽象图形—类比探究—操作发现-灵活应用,提高逻辑思维能力,体验变中不变,动静结合的几何处理方法和类比转化的数学思想;4.了解《几何原本》这一伟大数学史料,激发对数学的探索欲望.学习重点: 经历一图多变的过程,培养推理证明能力.学习难点:体验变中不变,动静结合的几何处理方法和类比转化的数学思想.学习过程:一、创设情境 初步感知微课欣赏:从《几何原本》中勾股定理的证明说起……(一)抽象图形:若△ABC 由直角三角形变成一般三角形,以三角形的两边为边作正方形............,会得到这样一个图形:如图1,分别以锐角△ABC 的两边AB 、AC 为边向外作正方形ABDE 和正方形ACFG. 问题1:(1)还有类似的全等吗?如何构造?(2)你还有什么发现?并说明理由.” “ 图许昌市二中 张书阳 数学(二)类比探究:已知△ABC ,如图2,分别以AB 、AC 为边向△ABC 外侧作等边△ABD 和等边△ACE,连接BE,CD,请自己完成作图过程,并说明BE 与CD 的数量关系.思考反思:一个一般三角形,取任两边向外作正方形、等边三角形,均可借助图形性质,构造全等三角形,其依据为(三)操作发现:你还有怎样的创作,能得出类似的结论?请在图3上试一试。
提炼本质:一个一般三角形,取任两边向外作图,只要满足 ,即可构造全等三角形.(四)灵活应用:如图4,已知在△ABC 中,AB=22,BC=3,ABC =45°,过点A 作EA ⊥AC,且满足EA=AC.求BE.图2图3三、归纳总结 思维升华回顾这节课的学习过程,结合学习目标,你在知识、思想方法、实际运用及情感态度方面都有哪些感悟?谈一谈你的收获和体会.四、拓展应用 挑战自我(2013湘潭)在数学探究课中,小刚同学将边长为2和3的2个正方形放置在直线l 上,如图1,连接AD ,CF,经测量发现AD=CF.(1)他将正方形ODEF 绕O 点逆时针旋转一定的角度,如图2,试判断AD 与CF 还相等吗?说明你的理由;(2)他将正方形ODEF 绕O 点逆时针旋转,使点E 旋转至直线l 上,如图3,请你求出CF 的长.。
勾股定理史话及证明

勾股定理史话在我国最古老的数学经典著作《周髀算经》上记载着如下一段历史:西周开国之初(约公元前一千多年)有一个叫商高的数学家对周公(周武王的弟弟,封在鲁国当诸侯)说:把一根直尺折成直角,两端联结起来构成一个直角三形。
它的短直角边称为勾,长直角边称为股,斜边称为弦。
发现勾为3,股为4,那么弦必为5. 《周髀算经》记载了勾股定理的公式与证明相传在夏禹王治水时,就已发现这一定理,并已把它应用于简易的水利测量,这当然知识传说,当时的历史文献并无确切的记载,但是这一定理的发现在两千多年前则是毫无疑问的。
在公元前六世纪到公元前五世纪希腊数学家毕达哥拉斯也发现这一定理,并给出了证明,但他的证明也已失传。
后来欧几里得写《几何原本时》,给出一个证明留传至今。
因而西方称这一定理为毕达哥拉斯定理。
这一定理在数学上有广泛的应用,而且在工程技术、测量中也有许多应用。
它在人类文明史上有重要的地位。
有人设想,把勾股定理的图形与内容发射到外星球去,如果外星球上有高级智慧动物,一定会向地球作出反馈信息,以此作为与外星人交流的“语言”。
由此可见它在人类文明史中的地位。
勾股定理的证明现在大概有400多种。
在我国古代多用割补、拼图方法。
我国古代数学家赵爽在他的《勾股圆方图》中,用四个斜边为,两直角边分别为,的全等的三角形拼成边长为的正方形如图1.因为△ABE≌△BCF≌△CDG≌△DAH,所以∠EAB=∠FBC=∠GCD=∠HAD,∠ABE=∠BCF=∠CDG=∠DAH,因为 ∠ABE+∠EAB=90°,所以 ∠ABC=∠ABE+∠FBC=90°,又 AB=BC=CD=DA=c,同理 ∠BCD=∠CDA=∠DAB=90°,所以ABCD、EFGH都是正方形,边长分别为c和a-b.从而有.所以,从而,可得 .这就是勾股定理的一种古老的证明。
据传,达·芬奇曾设计出一种奇妙的证明,如图2,△ABC是直角三角形,其中∠ACB=90°,在两直角边BC、AC上向外作正方形BCDE、CAFG,再在斜边AB上向外作正方形ABHK。
几何原本勾股定理证明

几何原本勾股定理证明1. 基本图形构建- 分别以 AB、BC、AC 为边向外作正方形 ABDE、BCFG、ACHK。
2. 证明三角形全等- 连接 CD、BK。
- 因为∠ ACB=∠ ACH = 90^∘,所以∠ BCK=∠ ACH+∠ ACB = 180^∘,这表明 C、A、K 三点共线。
- 同理,C、B、D 三点共线。
- 在 AKB 和 ACB 中,AK = AC(正方形 ACHK 的边),AB = AB(公共边),∠ KAB=∠ KAC+∠ CAB=∠ BAC + 90^∘,∠ CAB + 90^∘=∠ CAE,而在正方形 ABDE 中∠ CAE=∠ DAB,∠ DAB=∠ ABC + 90^∘,所以∠ KAB=∠ ABC。
- 根据 SAS(边角边)判定定理, AKB≅ ACB。
- 同理可证 BCD≅ BCA。
3. 面积关系推导- 因为 AKB 和矩形 AKNL(N 在 AB 上,L 在 DE 上,且 AN⊥ KL)有相同的底 AK,并且在相同的平行线 AK 和 BL 之间,所以 S_{ AKB}=(1)/(2)S_{矩形AKNL}。
- 由于 AKB≅ ACB,所以 S_{ ACB}=(1)/(2)S_{矩形AKNL}。
- 同理,S_{ BCD}=(1)/(2)S_{矩形CDLM},又因为 BCD≅ BCA,所以S_{ BCA}=(1)/(2)S_{矩形CDLM}。
- 正方形 ACHK 的面积 S_{ACHK}=AC^2,正方形 BCFG 的面积S_{BCFG}=BC^2,正方形 ABDE 的面积 S_{ABDE}=AB^2。
- 而 S_{ABDE}=S_{矩形AKNL}+S_{矩形CDLM},即 AB^2=AC^2+BC^2,从而证明了勾股定理。