白车身结构强度分析报告模版
某轻型载货车白车身刚度和强度试验分析
[ 关键词】白车 身; 静 刚度 ; 静强度 ; 试验分析 [ 中图分类号 ] U 4 6 3 . 8 2 [ 文献标志码 ] A [ 文章编号 ] 1 6 7 3 — 3 1 4 2 ( 2 0 1 4 ) 0 1 — 0 0 3 6 — 0 5
Te s t i n g a n d An a l y s i s o n S t i fn e s s a n d S t r e n g t h o f Li g h t Tr u c k BI W Wa n g J i n , T a n J i j i n , X u Z h a o y u n , Wu J i n g ( S c h o o l o f Me c h a n i c a l a n d A u t o mo t i v e E n g i n e e i r n g , H e f e i U n i v e r s i t y o f T e c h n o l o g y , H e f e i C i t y , A n h u i P r o v i n c e 2 3 0 0 0 9 , C h i n a )
r a t i o n a l ,l e a d i n g t o g o o d r e p r o d u c i b i l i t y o f t e s t r e s u l t s .T h e t e s t d a t a c a n b e u s e d a s t h e r e f e r e n c e t o d o t h e a n a l y s i s o f b e n c h ma r k i n g a s we l l a s t o i mp r o v e t h e d e s i g n .
白车身强度分析报告
白车身强度分析报告1. 引言白车身是指汽车的主体骨架部分,它承受着车辆的重量和各种外部力的作用。
白车身的强度是保证车辆在运行过程中能够承受各种力和压力而不发生变形或破裂的重要指标。
本文将对白车身的强度进行分析,以提供有关白车身设计和改进的参考。
2. 强度分析方法为了分析白车身的强度,我们可以采用有限元分析(FEA)方法。
有限元分析是一种工程设计和分析的常用方法,通过将结构细分为有限数量的元素,利用数值计算方法对每个元素进行分析,从而得出整个结构的行为。
以下是强度分析的步骤:2.1 几何建模首先,需要建立一个准确的白车身的几何模型。
可以利用计算机辅助设计(CAD)软件或三维扫描技术获得车身的三维模型。
2.2 材料属性定义每种材料都有其特定的力学性质,如弹性模量、屈服强度和断裂韧性等。
在分析中,需要将这些材料属性定义在模型中。
2.3 边界条件设定在分析中,需要考虑车身受到的各种外部力和约束条件。
这些外部力可以是来自引擎、悬挂系统或碰撞等。
同时,还需要考虑车身的支撑条件和连接点的约束。
2.4 网格划分为了对车身进行数值计算,需要将其细分为有限数量的元素。
这些元素可以是三角形、四边形或六边形等。
网格划分的密度和精度对分析结果的准确性有很大影响。
2.5 载荷施加在分析中,需要根据实际情况施加各种载荷,如静载荷、动载荷和碰撞载荷等。
这些载荷将作用于车身结构上,并导致应力和变形的产生。
2.6 求解和结果分析经过以上步骤的准备,可以使用有限元软件对车身进行数值计算。
通过求解有限元方程,可以得到车身在不同载荷下的应力和变形分布。
然后,可以对分析结果进行评估和比较,以了解车身的强度和刚度。
3. 强度改进措施根据强度分析结果,可以提出一些改进措施来增强白车身的强度和刚度。
以下是一些常见的改进措施:3.1 材料优化选择具有更高强度和刚度的材料,如高强度钢或铝合金,可以显著提高白车身的整体强度。
3.2 结构优化通过对车身结构进行优化设计,可以减少材料的使用量,同时提高整体的强度。
白车身强度分析
白车身强度分析高晓庆廖世辉闫立志陈建华长安汽车股份有限公司汽车工程研究总院白车身强度分析Strength Analysis for Body In White高晓庆廖世辉闫立志陈建华(长安汽车股份有限公司汽车工程研究总院CAE所,重庆,401120)摘要:研发中的试制车辆在道路试验过程中通常会出现开裂等问题。
在设计过程中需关注车身的强度。
CAE通过强度分析模拟路试中极限工况,找出风险区域,提供结构优化方案,提高车辆性能,避免车辆在实际使用中出现开裂的质量问题,保证车辆的正常使用。
本文针对开裂问题进行结构优化。
关键词:白车身;强度; CAEAbstract: Threr are cracks in working process usually .That is the reason why we should pay attention to the BIW strength in design. We can find the reason taht caused crack using CAE simulation. In this paper, we do the cases to solve probelem using strength analysis ofMSC.Nastran in auto structure design.Key words: body in white; strength ;CAE1引言车辆研发需要进行试制车辆的道路试验,重点考察设计车辆的性能。
设计要求在路试中车身不可以出现开裂。
CAE通过车身强度分析可模拟试制车辆在道路试验中的多种极限工况,找出风险区域,提供解决方案。
因此车身的强度分析对于整车的正常使用有非常重要的作用。
本论文主要是针对路试中开裂的问题进行白车身多种极限工况下的强度分析,进行结构优化,解决开裂问题。
2 基于Nastran的汽车车身强度分析(SOL101)本文以某项目开发为例,利用MSC.Nastran分析白车身在颠簸+制动、单轮下掉、转弯、扭转极限工况下的强度,针对开裂区域提供解决方案。
车辆白车身DFMEA分析范例
车身工程中心编制人:新严重度新频度新探测度新风险顺序数1零部件无法安装1车身数据未符合边界要求5按《白车身孔位描述书》和《零部件边界条件确认表》进行数据检查152车身无法焊装、车身运动干涉、车身异响、用户抱怨1三维数据检查未全面检查、运动校核未考虑实车精度、相关零部件未考虑到位5按《白车身自相关检查表》和《车身运动件运动校核检查表》进行数据校核6303整车外观效果差,无法满足客户需求,影响销售4设计间隙、面差不合理;装调不到位;公差分配不合理;定位方式设置不合理6参照相关车型合理设置DTS定义值,合理设置公差,合理设置定位方式6144数模校核,定位方案确定车身4增加模具费用,增加整车成本,影响利润1设计结构时未考虑后期开发车型的共用性5编制车身开发模块化说明,预先设计拓展车型结构方案6305零部件冲压起皱,翻边开裂,尖角争料,产品结构弱,易变形,尖角拉延破裂冲压负角,件拉延开裂,模具上修边刃口强度不足,影响车身性能5冲压SE分析未到位,钣金结构不合理4按《白车身SE审查报告》进行反馈及数模修改,合理设计钣金结构6120SE分析车身/制造6车身焊接操作性差,工人抱怨、生产率低,焊接效果差,影响车身性能5焊装SE分析未到位,钣金结构不合理4按《白车身SE审查报告》进行反馈及数模修改,合理设计钣金结构,合理布置焊点位置及层次2407车身电泳底漆厚度不均匀、部分区域未充分覆盖底漆、车身锈蚀、影响整车寿命5涂装SE分析未到位,钣金结构不合理4按《白车身SE审查报告》进行反馈及数模修改,合理设计钣金结构,保证涂装效果2408总装件无法安装;车身总装操作性差,工人抱怨、生产率低;零部件维修操作性差5总装SE分析未到位未分析可维修性4按《白车身SE审查报告》进行反馈及数模修改,合理设计钣金结构,合理考虑安装操作空间,进行安装虚拟验证2409影响用户乘车舒适性,影响内部载货空间,用户抱怨3未合理设计钣金结构,钣金侵占内部空间6进行CAE分析,在保证车身性能、安装结构的前提下尽量增大内部空间,可对比标杆设计7126初期确定目标值,后期按照执行,尽量加大内部空间车身/整车10影响用户乘车舒适性,影响内部装卸货方便性,用户抱怨3未合理设计钣金结构,未按人机要求设计6按人机要求设计数据,在保证车身性能、安装结构的前提下尽量改善,可对比标杆设计6108方案阶段确定各相关尺寸,保证后期数据满足要求。
(整理)k01白车身模态分析报告减重1027.
K01设计开发项目白车身模态分析报告(□初版/☑更改)重庆迪科汽车研究有限公司二〇一五年十月1.数据记录✧初始模型白车身(BIW)✧更改情况减重(最终)2.分析内容白车身自由模态分析。
3.模型简述✧使用软件前处理:Hypermesh;求解器:Radioss✧建模过程网格划分白车身结构可分为五个总成:顶盖、地板、侧围、后围和前围,依次对各总成进行有限元模型的建立,再将其焊接为一整体。
建立白车身有限元模型的步骤包括几何模型分析、几何清理、模型简化、网格划分、单元质量检查、设置材料和单元属性、各部件焊接等。
由于白车身主要是由大的钢板覆盖件组成,其厚度尺寸远远小于其他尺寸,故白车身网格选用PSHELL的壳单元形式。
采用各总成逐个划分、连接,再总装的方式进行整车的有限元建模。
据工程实践和硬件条件,选取有限元网格的大小为8mm。
根据前面所述的几何清理原则,选用8mm的壳单元网格对各总成进行离散化,建立各总成对应的有限元模型如图3.1——图3.5所示:图3.1 车顶总成的有限元模型图3.2侧围总成的有限元模型图3.3后围总成有限元模型图3.4地板的几何及有限元模型图3.5前围的几何及有限元模型白车身各部件连接白车身大部分零部件是薄板冲压件,各零部件之间主要是通过焊接工艺实现连接,本次运用了点焊、缝焊等。
根据所提供的焊点图,在Hypermesh中通过运用spot-weld单元来把各板件焊点位置的节点连接起来,以此来模拟实际的焊点。
焊点材料选用08AL,焊点直径为7mm。
焊接完成后,焊点周围单元的质量可能会变差,通常需要对这些单元进行重新划分。
有限元焊接结果如图3.6所示图3.6 有限元焊接效果图由于工艺和部件性能的要求,在顶盖与顶盖横梁处,运用了粘胶连接。
本次分析采用了软件的粘胶连接来实现这些有限元部件的连接,通过这样的处理能更好的模拟结构的实际性能。
有限元粘接效果如图3.7所示。
图3.7有限元粘胶连接效果图在前围总成中还采用了螺栓连接,这主要是一些不需永久连接、进行更换的部件。
某商用车驾驶室白车身模态分析
某商用车驾驶室白车身模态分析一、绪论随着经济的发展和人们对生活品质的要求越来越高,商用车在物流、运输、旅游等领域的需求也越来越大。
商用车驾驶室作为商用车的重要组成部分,对驾驶员的舒适性、安全性以及工作效率都有着重要的影响。
本文将对商用车驾驶室的白车身模态进行分析,以便更好地了解其特点和优势。
二、商用车驾驶室的设计特点1.舒适性该商用车驾驶室采用了人性化设计,座椅可进行多向调节,以适应不同体型的驾驶员。
此外,驾驶室还设置了调节空调、音响等功能,为驾驶员提供了一个舒适的工作环境。
2.安全性商用车驾驶室采用了高强度材料制作,能有效抵御外部撞击和振动,提供更高的安全性。
同时,驾驶室还设置了气囊等安全设施,增加了驾驶员的被动安全防护。
3.工作效率商用车驾驶室设计了合理的布局,使驾驶员可以方便地操作各种控制设备,提高了工作效率。
另外,驾驶室还配备了多媒体设备和导航系统,方便驾驶员的工作和生活。
白车身模态是指车辆行驶过程中由于外部激励造成的车辆结构振动。
白车身模态分析可以通过有限元分析方法来实现。
在商用车驾驶室的白车身模态分析中,需要进行以下步骤:1.建立有限元模型首先,需要通过CAD软件建立商用车驾驶室的三维模型。
然后,利用有限元软件对模型进行离散化,将驾驶室划分为多个小单元,以便进行数值计算。
最后,根据材料特性和实际工况对各个单元进行材料属性和边界条件的设定。
2.求解模态信息根据有限元模型,可以求解其模态信息,包括自由振动频率和振动模态形态。
通过分析模态信息,可以得到驾驶室在不同振动模态下的应力、应变和振动特性,为后续的设计和优化提供参考。
3.分析结果评价根据白车身模态分析的结果,可以对驾驶室的结构强度、振动特性和噪声辐射等进行评价。
如果一些模态频率接近激励频率,可能会导致共振现象,需要进行优化设计,提高驾驶室的抗振能力。
四、结论通过商用车驾驶室的白车身模态分析,可以更全面地了解驾驶室的结构特点、振动特性和工作环境等方面的信息。
某微客白车身强度薄弱区域结构优化分析
MANUFACTURING AND PROCESS | 制造与工艺时代汽车 某微客白车身强度薄弱区域结构优化分析陈璇中工工程机械成套有限公司 北京市 100070摘 要: 本文以某微客白车身为研究对象,利用CAE 建立有限元模型,模拟路试中的极限工况,对强度薄弱区域的优化整改方案进行验证。
从而保证了白车身的强度,避免车身在实际使用中出现开裂问题。
关键词:白车身 强度 CAE1 引言当一个汽车企业发展到一定阶段,产品会逐渐系列化,后期的产品相对于前期的产品有一定的继承性[1]。
在某些成熟产品的基础上,开发新的产品,而利用在概念阶段的 CAE 分析可以很快速的分析出新产品的各种特性。
这样,不仅大大提高了工作效率,缩短了开发周期,而且提高了产品的精度和质量,降低了生产成本[2]。
本论文通过采用Hypermesh 划分网格并建立有限元模型,利用 MSC Nastran 的惯性释放方法计算出车身在这九个工况下的静强度。
通过总结分析结果对强度薄弱区域D 的整改优化方案进行验证,为改善汽车结构提供关键的现实参考价值。
2 有限元模型的建立根据车身中心提供的微客白车身数模进行有限元离散,采用Hypermesh 划分网格。
白车身所有零件均采用板壳单元进行离散,以四边形板壳单元模拟为主,少量三角形单元以满足高质量网格过渡要求。
焊点采用ACM 格式,焊缝为RBE2刚性连接,螺栓采用BAR 单元。
各部件之间的连接不考虑铆钉、焊接及其周围区域的损害,且未考虑螺栓预紧力。
模型图如图1所示。
本次静强度计算涉及六个极限工况:冲击工况、极限左转、极限右转、极限加速、复合极限加速加冲击、极限制动。
3 白车身强度薄弱区域优化方案分析分析结果表明,白车身的强度薄弱区域为:前地板和后地板焊接区域、前缓冲块附近的前围板和鼓风机安装支架焊接区域、后地板的座椅安装区域。
其他纵梁、横梁、前后悬架与车架的连接件、承重支架、侧围顶盖等均满足强度要求。
轿车白车身模态分析及试验验证
元 尺 寸 对 白车 身进 行 网格 划 分 ,在 H E ME H 中 YP R S
进 行前 处 理 ,最 后 白车 身共 离散成 134 3个 节 点 , 5 1 165 6个 单 元 ,其 中共 有 焊 点 486个 。最 后 建 立 4 3 2
表 3中 车 身扭 转 是 指绕 z 扭 转 ;弯 曲是 指绕 Y 轴
限元软 件 中得到 广泛 地应 用 。 白车 身模 态分 析属 于基 轴 弯 曲;侧 向弯 曲是 指绕 轴 弯 曲。通 过 有 限元分 析 本振动 问题 ,模 型规 模 比较大 。对 车身 振动 贡献 主要 在 样 车试 制前 即可 预 知 白车 身 结构振 动特 性 ,根据 实
1 2 :3 5:9 4
0 0 2 5 4 17 .2 O .6 34 8 .9 52 6 . 3 6.7 94 O 8 5 2 6 9 .9l4 8 .2 43 7 .6 6.0 7 8 3 15 .4
测 点连线 应 能显 示 白车 身形 状 ,反 映 出振动 形态 『。 3 ]
开 来 自路面 和发 动机 怠速 运行 的激 励频 率 。有 限元分
地板 、 顶盖 弯 曲 侧 向 弯 曲 阶 弯 曲 前部扭转 顶盖 和 行 李 箱 隔板 振 动
一
析 结果模 态振 型 图 ,如 图 2所示 。
465 4 .0
49 7 3
..
48 . .
4 白车身模态试验验证
.
2 88 8 1 1 6 7 3 .9 2 3 5 .6 353 4 7 2 . 4 .0 061 4 17 l . 2 1 6 .8 29 9 .4 4 1 8 . 1 52 7 .8
白车身刚度强度测定
i.选择前、后座椅中的4点加载。
试验对象载荷条件
(2)弯曲加载载荷 弯曲刚度测试的加载力值无通用做法,但加载力值中 一般要考虑发动机总成及附件、变速器总成、空调系 统、乘员质量、行李质量。 中央1点加载其弯曲载荷值可以取F=1.8 X乘员舱最 大荷重 或按1 000、2 000、3 000 N等梯级载荷加 载 。 按乘员载荷加载,以一定顺序和大小分别施加在发动 机舱、乘员舱、行李箱中,加载大小考虑如下方面。
(1)弯曲加载位置 在弯曲工况时,普通乘用车车身的弯曲刚度测量的加载位置通 常有中央1点加载和按乘员、载荷加载2种方式 。 中央1点加载易于获得普通乘用车车身的弯曲刚度值,在简化情 况下可假定车身整体是一根具有均匀弯曲刚度的简支梁,用中 央1点集中加载的方法求得前后轴间的弯曲刚度值。该点可以是 前后轴中点连线的中间点、自车身质心、前座椅后横梁支承点 连线的中点。普通乘用车车身弯曲刚度中央1点测量约束见图2。
白车身弯扭特性对普通乘用车的重要性
对车身NVH(噪声、振动与声振粗糙度)性能的影响
白车身弯扭特性对普通乘用车的重要性
车身是一个多自由度的弹性系统,在外界的激励作用下将 产生振动和无限多的固有振型,如果车身的整车刚度和局 部刚度不合适,将会产生共振,使人体不适应,还会带来 噪声和部件的疲劳损坏,破坏车身表面的保护层和车身的 密封性,从而削弱抗腐蚀性能。
对车身结构功能可靠性的影响
白车身弯扭特性对普通乘用车的重要性
普通乘用车车身刚度直接影响普通乘用车车身的 功能:整体刚度低,直接降低普通乘用车的承载 使用性能;局部刚度低,使车身局部变形增加, 降低局部安装能力:车身刚度低还会使窗口部分 变形增大,造成车门、车窗、发动机舱、行李舱 开关困难,还会降低防尘、防雨的密封性。
白车身结构强度分析报告
白车身结构强度分析报告项目名称:编制:日期:校对:日期:审核:日期:批准:日期:XX汽车有限公司2013年04月错误! 未定义书签 错误! 未定义书签 错误! 未定义书签 错误! 未定义书签 错误! 未定义书签 错误! 未定义书签目录1. 分析目的 ..2. 使用软件说明3. 模型建立 .. 4 边界条件 ... 5. 分析结果 .. 6. 结 论 .....1.分析目的白车身结构的静强度不足则会引起构件在使用过程中出现失效。
本报告采用有限元方法对**白车身分别进行了满载、1g制动、转弯、右前轮抬高150mm左后轮抬高150mm 右前轮左后轮同时抬高150mm,6中工况的强度分析,观察整车受力状况,找出高应力区,考察其零部件的强度是否满足要求,定性地评价**白车身的结构设计,并提出相应建议。
2.使用软件说明本次分析采用HyperMesh作前处理,Altair optistruct 求解。
HyperMesh是世界领先的、功能强大的CAE应用软件包,也是一个创新、开放的企业级CAE平台,它集成了设计与分析所需的各种工具,具有无与伦比的性能以及高度的开放性、灵活性和友好的用户界面,与多种CA环口CAE软件有良好的接口并具有高效的网格划分功能;Altair Optistruct 是一个综和隐式和显示求解器与一体的大规模有限元计算软件,几乎所有的线性和非线性问题都可以通过其进行求解。
通过Altair Optistruct 可以进行任何形状、尺寸、拓扑结构的优化,采用固定的内存分配技术,具有很高的计算精度和效率。
3.模型建立对车身设计部门提供的**白车身CAD模型进行有限单元离散,CAD模型以及有限元模型如图所示。
白车身所有零部件均采用板壳单元进行离散,并尽量采用四边形板壳单元模拟,少量三角形单元以满足高质量网格的过渡需要,网格描述见表。
图**白车身CAD以及有限元模型强度分析模型质量按整车满载质量计算,其中的白车身附加质量(见表)用质量点单元CONM单元模拟。
某商用车白车身结构静强度分析
某商用车白车身结构静强度分析本论文依据有限元的基本理论,建立某型商用车白车身有限元模型,并在通用有限元分析系统MSC.Patran/Nastran中进行白车身结构的弯曲、单边扭曲、全扭曲三种工况的静态强度分析。
0 前言从2000年法兰克福国际商用车展到2009年第37届美国中部卡车展,商用车(尤其是重型卡车)在国际主流车市上凸显强劲的增长势头和市场占有率。
驾驶室作为商用车辆的一个主要产品总成,由于它是造型和结构功能的有机结合体,同时也是驾驶员和乘员工作和休息的空间,因此它在整车中体现出共性的技术应用和独有的发展特征。
本论文某型商用车驾驶室白车身作为研究对象,首先对白车身结构几何进行网格划分,检查网格划分质量,建立精确的有限元分析模型;进而基于此模型,施加适当约束,使用MSC.Patran/Nastran对白车身结构进行弯曲、单边扭曲、全扭曲等不同工况的静态强度仿真分析。
1 白车身有限元模型的建立驾驶室白车身含有零件数目众多,并且常含有复杂的曲面,用网格准确描述其几何特征的难度较高,复杂的曲面会产生许多网格上的问题,如单元畸变、网格细小、网格失真等诸多问题。
对数目繁多、曲面复杂的零部件划分高质量的网格工作量大、难度高。
除此之外,白车身各个部件之间是通过焊接连接起来的,两部件在焊接处具有完全相同的自由度,为刚性连接,可用一维rigid单元模拟表示。
在整个白车身模型中焊点多达上万个,需利用rigid 面板在焊点位置逐个施加。
并且焊点与焊点、焊点与约束之间很容易出现过约束的情况。
文中将网格的检查标准设为Jacobin=0.6、aspect ratio=5、warpage=15°、skew=40°、min-angle=30°、max angle=120°,经检查后,不合格网格数为162个,网格失效百分比为0.0%,整体上网格的形状较为理想,网格质量较高,为计算结果的准确性提供了一个必要条件。
关于白车身强度分析及优化设计
关于白车身强度分析及优化设计摘要:先谈一谈车身强度分析的方法,而后提出基于强度要求的白车身设计方法,指出当悬架、副车架安装位置不同时,强度设计要点与方法有所不同,最后提出白车身强度优化技巧。
关键词:汽车;强度;应力;设计对于汽车来说,车身强度可以直接影响和决定汽车的结构强度,若车身强度不够,则容易导致汽车的整体结构受到影响。
在汽车行驶过程中,车身结构需要承受不同的荷载,且不能出现裂纹、塑性变形、损坏的问题。
如果在设计过程中存在车身强度不足的问题,则汽车行驶过程中较容易出现塑性变形,汽车的行驶安全与使用寿命随之受到影响。
也正是因为如此,在汽车设计中,必须高度重视车身强度分析及优化设计,充分确保汽车车身的强度。
本文较系统的探究了白车身强度及优化设计,现作如下的论述。
一、车身强度分析的方法车身强度分析十分重要和必要,必须始终视为车身结构优化设计的重点。
汽车的白车身可以承载多种工况下的整车重力与加速度,主要有右转、静止起步、垂直冲击、制动、左转。
在行驶过程中,各个零部件因为受力和大小的不同,为避免出现车身结构开裂、变形等风险,在早期的设计过程中便需要确保每一个零部件有足够的强度。
就车身强度分析的目的来说,最根本的目的是精准评估每白车身每一个零部件的运行情况,确保在各种工况下均可以安全平稳的运行。
若是评估结果低于零部件本身的强度,则表明车身强度不足,必须进行针对性的加强处理[1]。
目前来看,在车身强度分析中,主要是分析五种工况下车身零部件的受力大小,包括静止起步、垂直冲击、右转、制动、左转。
车身强度分析时,可以在ADAMS(机械系统动力学自动分析)里面计算并提取相关信息,关键信息是不同工况下前后悬架与减震器连接点的荷载。
考虑到重力场的作用,对轮心做好约束,并且要释放约束惯性。
在判断与分析白车身强度结果时,有最为基本和重要的一条准则,即白车身的最大应力不能超过其零件的屈服强度。
二、基于强度要求的白车身设计方法在分析白车身强度时,无论是哪一种工况,白车身所受到的力均是由悬架、副车架安装点向周边件传递的,所以悬架、副车架的安装部位受力最大,这一种力可以朝着焊接点向周边的零部件传递。
××车型白车身模态CAE分析报告模板
项目名称
××
数据版本
M0/2012.02.25
1/3
文件编号
项目 -CAE-NVH-
分析内容
所属部门
××车型白车身模态CAE分析报告模板
CAE部
1、分析目的 对× × 车型白车身模态进行校核。 2、使用软件 ① 前处理:HyperMesh v10.0 ② 求解器 NASTRAN2010 ③ 后处理:Hypermesh 10.0
3、模型及边界条件
图1:白车身有限元模型
3.1模型说明—白车身NVH焊接模型
3.2 车身材料说明
部件
钣金件 减震胶
材料
steel glue
弹性模量 泊松比 密度
210000 10
0.3 7.89E-9 0.49 1.10E-9
分析版次
REV1秘密级别源自绝密秘密对外保密
原件保管部门
资料室
审核
校对
制作
朱志峰 年-月-日
3.3工况说明—自由状态 , 频率范围 0----200Hz 4、计算结果—模态阵型云图
2 /3
3 /3
5、分析结论—分析结果是否满足设计要求 XX白车身模态频率是否满足设计要求。
6、优化方向—如分析结果不满足设计要求,对优化方案提供方向性建议
备注:
NVH仿真分析输入规范
●分析所需完整3D数模,含各部件数据,各总成焊点,螺栓连接,粘胶以及装配关系等; ●分析所需完整BOM表,含各部件材料料厚信息; ●如分析为非典型工况,则需提供分析所需载荷及边界条件。
××车型白车身刚度CAE分析报告模板
图3 考核点分布图
4.2绘制白车身弯曲刚度变形曲线(见下图):
3 /3
图4 白车身弯曲刚度曲线
4.3刚度计算公式K=F/δ(F为加载力,δ为位移) 4.4刚度云图
图5 白车身弯曲刚度云图
5、分析结论—分析结果是否满足设计要求 XX车型白车身弯曲刚度是否满足目标要求。
6、优化方向—如分析结果不满足设计要求,对优化方案提供方向性建议
项目名称
××
数据版本
M0/2012.02.25
分析内容
××车型白车身刚度CAE分析报告模板
1、分析目的 对× × 车型白车身弯曲刚度进行校核。 2、使用软件 ① 前处理:HyperMesh v10.0 ② 求解器 NASTRAN2010 ③ 后处理:Hypermesh 10.0
1/3
文件编号
项目 -CAE-NVH-
审核
校对
制作
朱志峰 年-月-日
3.3工况说明—
2 /3
约束条件:在前、后悬架与车身连接处,约束X、Y、Z移动自由度;(见图2) 加载条件:在前排左右座椅质心处各施加1000N的垂向力,后排座椅质心处施加 2000N的垂向力
4、计算结果
图2 白车身弯曲刚度加载工况
4.1分析数据处理 在车身纵梁下部和门槛梁下部分布了一系列考核点,通过考核点的X坐标值和ቤተ መጻሕፍቲ ባይዱ向变形 量绘制弯曲刚度曲线(见下图)。
所属部门
CAE部
3、模型及边界条件
图1:白车身有限元模型
3.1模型说明—白车身NVH焊接模型
3.2 车身材料说明
部件
钣金件 减震胶
材料
steel glue
弹性模量 泊松比 密度
210000 10
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录
1.分析目的 (1)
2.使用软件说明 (1)
3.模型建立 (1)
4 边界条件 (3)
5.分析结果 (3)
6.结论 (21)
1.分析目的
白车身结构的静强度不足则会引起构件在使用过程中出现失效。
本报告采用有限元方法对Q11白车身分别进行了满载、1g制动、0.8g转弯、右前轮抬高150mm、左后轮抬高150mm、右前轮左后轮同时抬高150mm,6种工况的强度分析,观察整车受力状况,找出高应力区,考察其零部件的强度是否满足要求,定性地评价Q11白车身的结构设计,并提出相应建议。
2.使用软件说明
本次分析采用HyperMesh作前处理,Altair optistruct求解。
HyperMesh是世界领先的、功能强大的CAE应用软件包,也是一个创新、开放的企业级CAE平台,它集成了设计与分析所需的各种工具,具有无与伦比的性能以及高度的开放性、灵活性和友好的用户界面,与多种CAD和CAE软件有良好的接口并具有高效的网格划分功能;Altair Optistruct是一个综和隐式和显示求解器与一体的大规模有限元计算软件,几乎所有的线性和非线性问题都可以通过其进行求解。
通过Altair Optistruct可以进行任何形状、尺寸、拓扑结构的优化,采用固定的存分配技术,具有很高的计算精度和效率。
3.模型建立
对车身设计部门提供的Q11白车身CAD模型进行有限单元离散,CAD模型以及有限元模型如图3.1所示。
白车身所有零部件均采用板壳单元进行离散,并尽量采用四边形板壳
图3.1 Q11白车身CAD以及有限元模型
单元类型四边形单元三角形单元
单元数目46970015543
三角形单元比例 3.4%
焊接模拟Rbe单元及实体单元
涂胶模拟实体单元
单元质量良好
强度分析模型质量按整车满载质量计算,其中的白车身附加质量(见表 3.2)用质量点单元CONM2单元模拟。
发动机和变速箱、油箱、备胎、冷凝器、前门总成、滑移门总成、后背门总成、发动机罩总成、前排座椅及乘员等使用RBE刚性单元加载到相应总成的安装处。
由于额定载货质心的不可确定性,无法给定具体质心位置,因此本次分析在经验基础上确定质心位置,并将额定载货分布于后地板多处主要受力点处进行模拟。
具体质量点分布情况可参考图3.2。
表3.2 Q11白车身附加质量及质心
序
部件质心坐标(X,Y,Z),mm 质量,kg 号
1发动机和变速箱1036.0,-24.0,187.7130
2燃油箱1958.9,258.4,54.034
3备胎3525.8,94.8,22.212
4散热器-64.2,0.70,350.4 2.5
5蓄电池1061.903,-456.199,270.09410
6前门总成813,±731,671.323/23
7中门总成1763.3,±733.8,649.725/25
8后背门总成3627.1,0,918.727
9发动机罩总成-66.9,0,787 6.5
10主、副驾驶座椅及乘员1195,-295/320,61687.5/87.5
11二排座椅及乘员质量、质心2048.457,-166.498,589.908164
12三排座椅及乘员质量、质心2896.054,0,617.012243
13仪表台质量、质心475.8,13.3,813.85
14行3341.6,0,421225
15白车身质量1769.404,-0.7,552.975309
16整车满载状态质量参数1858.4,-3.7,497.81810
图3.2 Q11白车身附加质量分布
4 边界条件
以满载状态下计算车身在以下工况下的强度应力。
计算工况包括满载工况(工况1)、制动工况(工况2)、转弯工况(工况3)、右前轮抬高150mm工况(工况4)、左后轮抬高150mm工况(工况5)、右前轮左后轮同时抬高150mm(工况6)。
载荷如表4.1所示。
工况载荷(加速度)
满载-Z向1g 满载
制动-X向1g;-Z向1g 满载
转向-Y向0.8g;-Z向1g 满载
右前轮抬高150mm -Z向1g 满载
左后轮抬高150mm -Z向1g 满载
右前轮左后轮同时抬高150mm -Z向1g 满载
5.分析结果
5.1满载工况:
车身应力
云图
Q11前轮壳和前地
板
Q11后轮
罩
Q11顶盖和后背门
框
Q11后地
板
Q11横梁
Q11纵梁
5.2制动工况
车身受力
云图
Q11前轮壳和前地
板
Q11后轮
罩
Q11顶盖和后背门
框
Q11后地
板
Q11横梁
Q11纵梁
5.3转弯工况
0.8g转弯工况下,车身和主要零部件应力云图如下所示。
车身受力
云图
Q11前轮壳和前地
板
Q11后轮
罩
Q11顶盖和后背门
框
Q11后地
板
Q11横梁
Q11纵梁
5.4右前轮抬高150mm
车身受力
云图
Q11前轮壳和前地
板
Q11后轮
罩
Q11顶盖和后背门
框
Q11后地
板
Q11横梁Q11纵梁
5.5左后轮抬高150mm
左后轮抬高150mm工况下,车身和主要零部件应力云图如下所示。
车身受力
云图
Q11前轮
壳和前地
板
Q11后轮
罩
Q11顶盖和后背门
框
Q11后地
板
Q11横梁
Q11纵梁
5.6右前轮左后轮同时抬高150mm
车身受力
云图
Q11前轮壳和前地
板
Q11后轮
罩
Q11顶盖和后背门
框
Q11后地
板
Q11横梁
Q11纵梁
通过以上6中工况的计算,综合Q11所用材料的屈服强度值(见表5.1),下面列出各种工况下主要零部件的应力值,见表5. 2。
表5.1 Q11车身所用部分材料及其强度参数
材料名称屈服强度(MPa) 抗拉强度(MPa)
DC01 130-260 ≥270
DC03 120-240 ≥270
DC04 140-210 ≥270
DC06 100-180 ≥250
08F 175 295
20 245 410
表5.2 主要零部件的应力值及其安全系数统计表
零件名满载工况制动工况转弯工况右前轮抬
高150mm
左后轮抬
高150mm
右前轮左
后轮同时
抬高
150mm
前轮壳48.77 201.3 151.0 384.3 300.0 275.8 后轮罩24.25 30.37 42.71 38.66 57.32 66.07 顶盖37.49 41.20 125.2 133.6 289.3 302.1 后地板186.1 350.2 307.7 188.7 204.3 201.0 横梁112.6 211.8 173.4 113.3 113.5 112.3 纵梁81.91 79.87 99.19 105.4 138.8 119.3
6.结论
①六个典型工况下,白车身绝大部分零部件应力较小;
②一些部件出现应力集中区域,分析结果显示超过材料的屈服极限;
③前轮壳高应力集中区域为前轮壳与前地板连接处附近区域,可以考虑对此附近区域进
行加强;
④后地板高应力集中区域为座椅安装点附近区域,由于座椅及人采用集中质量单元,并
用rbe3单元加载的方法模拟,此处存在模拟不精确产生的虚假应力集中现象;
⑤制动、转向均按路面最大附着系数0.8计算(参见《汽车理论》),在实际汽车行驶中几
乎不会出现这些工况,所以在汽车实际运行时,其强度安全系数会高于仿真分析的安全系数。