高一数学不等式测试题

合集下载

高中数学高一上解不等式专项练习

高中数学高一上解不等式专项练习

解不等式专项练习一.选择题(共27小题)1.不等式(x+5)(1﹣x)≥8的解集是()A.{x|x≤1或x≥﹣5}B.{x|x≤﹣3或x≥﹣1}C.{x|﹣5≤x<1}D.{x|﹣3≤x≤﹣1}2.不等式x2+x﹣2≥0的解集是()A.[﹣2,1]B.[1,+∞)C.(﹣∞,﹣2]D.(﹣∞,﹣2]∪[1,+∞)3.下列不等式的解集是空集的是()A.x2﹣x+1>0 B.﹣2x2+x+1>0 C.2x﹣x2>5 D.x2+x>24.不等式(x+3)2<1的解集是()A.{x|x>﹣2}B.{x|x<﹣4}C.{x|﹣4<x<﹣2}D.{x|﹣4≤x≤﹣2} 5.不等式的解集为()A.B.C.D.6.不等式﹣x2+3x﹣2≥0的解集为()A.(﹣∞,1]∪[2,+∞)B.[1,2]C.(﹣∞,1)∪(2,+∞)D.(1,2)7.不等式2x2﹣x﹣3>0解集为()A.{x|﹣1<x<}B.{x|x>或x<﹣1}C.{x|﹣<x<1}D.{x|x>1或x<﹣}8.关于x的不等式的解集()A.(﹣∞,﹣1)B.(﹣∞,﹣1)∪(3,+∞)C.(﹣1,3)D.(3,+∞)9.不等式x2x<0的解集为()A.(﹣,) B.(﹣∞,﹣)∪(,+∞)C.(﹣,)D.(﹣∞,)∪(,+∞)10.不等式4x2﹣4x+1≥0的解集为()A.{} B.{x|x}C.R D.∅11.不等式x(1﹣2x)>0的解集为()A. B.C.R D.∅12.不等式x2>0的解集为()A.{x|x>0}B.{x|x<0}C.{x|x≠0}D.{x|x∈R}13.不等式3+5x﹣2x2>0的解集为()A.(﹣3,)B.(﹣∞,﹣3)∪(,+∞) C.(﹣,3)D.(﹣∞,﹣)∪(3,+∞)14.不等式x2﹣3x﹣10>0的解集是()A.{x|﹣2≤x≤5}B.{x|x≥5或x≤﹣2}C.{x|﹣2<x<5}D.{x|x>5或x <﹣2}15.不等式>0的解集是()A.(,+∞)B.(4,+∞)C.(﹣∞,﹣3)∪(4,+∞)D.(﹣∞,﹣3)∪(,+∞)16.不等式的解集为()A.(﹣∞,2]B.[2,+∞)C.(1,2]D.[1,2]17.不等式的解集是()A.[﹣2,2]B.(﹣∞,﹣2]∪[2,+∞)C.(﹣2,2]D.(﹣∞,﹣2)∪[2,+∞)18.不等式|x﹣2|<1的解集为()A.[1,3]B.(1,3) C.[﹣3,﹣1]D.(﹣3,﹣1)19.不等式的解集为()A.B.C.D.[2,+∞)20.不等式≥0的解集为()A.{x|0<x≤2}B.{x|﹣1<x≤2}C.{x|x>﹣1}D.RA.{x|x<﹣2}B.{x|﹣2<x<1}C.{x|x<1}D.{x|x∈R} 22.不等式的解集为()A.[﹣3,4]B.[﹣3,4)C.(﹣∞,﹣3)∪(3,+∞)D.(﹣∞,﹣3]∪(4,+∞)23.不等式>1的解集为()A.(﹣∞,1)B.(0,1) C.(1,+∞)D.(0,+∞)24.不等式的解集为()A.{x|﹣2<x<3}B.{x|x<﹣2}C.{x|x<﹣2且x<3}D.{x|x>3} 25.不等式的解集为()A. B.C. D.26.不等式的解为()A.(﹣1,0)B.(﹣∞﹣1)∪(0,+∞)C. D.27.不等式>2的解集是()A.(﹣∞,﹣1)∪(0,+∞)B.(﹣∞,﹣1)C.(﹣1,+∞)D.(﹣1,0)二.填空题(共12小题)28.不等式2x2﹣x﹣1>0的解集是.29.不等式x2﹣2x﹣3<0的解集为.30.不等式x2﹣3x>0的解集是.31.不等式﹣x2+2x+8≥0的解集为.32.不等式<0的解是.33.不等式|x﹣3|<2的解集为.35.不等式的解集为.36.不等式的解集为.37.不等式≥2的解集是:.38.不等式的解集是.39.不等式的解集为.三.解答题(共1小题)40.求下列不等式的解集:(1)3x2﹣4x+1<0;(2)﹣x2+4x+5>0.解不等式专项练习参考答案一.选择题(共27小题)1.D;2.D;3.C;4.C;5.D;6.B;7.B;8.B;9.A;10.C;11.A;12.C;13.C;14.D;15.D;16.C;17.C;18.B;19.B;20.B;21.A;22.B;23.B;24.A;25.A;26.D;27.D;二.填空题(共12小题)28.;29.{x|﹣1<x<3};30.(﹣∞,0)∪(3,+∞);31.[﹣2,4];32.(﹣1,0);33.(1,5);34.(1,+∞)∪(﹣∞,0);35.(﹣1,0];36.{x|x>﹣1};37.[0,1);38.;39.{x|﹣<x≤1};三.解答题(共1小题)40.;。

高一数学 基本不等式复习卷 试题

高一数学 基本不等式复习卷 试题

根本不等式复习卷一、 填空题:1. a ,b 是正数,那么2,2a b ab a b ++三个数的大小顺序是 〔 〕A.22a b ab a b ++ 22a b ab a b +≤≤+C.22ab a b a b ++ D.22ab a b a b +≤+ 2. 以下函数中,最小值为4的是 〔 〕 A.4y x x =+ B.4sin sin y x x=+ (0)x π<< C.e 4e x x y -=+ D.3log 4log 3x y x =+ 3. 设x >0,那么133y x x=--的最大值为 4. 设,,5,33x y x y x y ∈+=+R 且则的最小值是5. 假设x , y 是正数,且141x y+=,那么xy 有 6. :0<x <1,那么函数y =x 〔3-2x 〕的最大值是___________7. 假设x >5/4 ,那么y =4x -1+-54x 1的最小值是___________8. 设y x ,满足,404=+y x 且,,+∈R y x 那么y x lg lg +的最大值是二、 解答题: x 、y 满足811x y+=,求2x y +的最小值.a ,b ,c (0,),∈+∞且a +b +c =1,求证: 111(1)(1)(1)8.a b c---≥励志赠言经典语录精选句;挥动**,放飞梦想。

厚积薄发,一鸣惊人。

关于努力学习的语录。

自古以来就有许多文人留下如头悬梁锥刺股的经典的,而近代又有哪些经典的高中励志赠言出现呢?小编筛选了高中励志赠言句经典语录,看看是否有些帮助吧。

好男儿踌躇满志,你将如愿;真巾帼灿烂扬眉,我要成功。

含泪播种的人一定能含笑收获。

贵在坚持、难在坚持、成在坚持。

功崇惟志,业广为勤。

耕耘今天,收获明天。

成功,要靠辛勤与汗水,也要靠技巧与方法。

常说口里顺,常做手不笨。

不要自卑,你不比别人笨。

不要自满,别人不比你笨。

高一数学不等式测试题

高一数学不等式测试题

高一数学不等式测试题1. 不等式的基本性质题目:请证明对于任意实数a、b、c,不等式\( a < b \) 时,\( a + c < b + c \) 成立。

2. 解一元一次不等式题目:解不等式 \( 5x - 3 > 2x + 7 \)。

3. 解绝对值不等式题目:解绝对值不等式 \( |x - 4| < 3 \)。

4. 解二次不等式题目:解不等式 \( x^2 - 4x + 3 > 0 \)。

5. 不等式与函数题目:已知函数 \( f(x) = x^2 - 2x + 1 \),求函数值大于0的x的取值范围。

6. 不等式组的解集题目:解不等式组 \( \begin{cases} x + 2 > 0 \\ 3x - 7 < 0 \end{cases} \)。

7. 不等式的变换题目:将不等式 \( x^2 - 4x + 4 \geq 0 \) 转化为标准形式,并找出其解集。

8. 不等式的应用题目:一个矩形的长为 \( 2x + 3 \),宽为 \( x - 1 \),当x取何值时,矩形的面积最大?9. 不等式与数列题目:若数列 \( \{a_n\} \) 满足 \( a_1 = 1 \) 且 \( a_{n+1} \leq 2a_n \) 对所有正整数 n 成立,证明数列 \( \{a_n\} \) 是递增的。

10. 不等式的证明题目:证明对于所有正实数 \( x \) 和 \( y \),不等式\( \sqrt{xy} \leq \frac{x + y}{2} \) 成立。

11. 不等式与几何题目:在三角形ABC中,如果 \( a + b > c \),证明三角形ABC 是锐角三角形。

12. 不等式的综合应用题目:若 \( x, y \) 为正实数,且 \( x^2 + y^2 = 1 \),求\( x^2y + xy^2 \) 的最大值。

13. 不等式的解法题目:解不等式 \( \frac{2x}{x^2 - 1} < 1 \)。

高一数学第2章基本不等式测试题

高一数学第2章基本不等式测试题

基本不等式测试题A 组一.填空题(本大题共8小题;每小题5分;共40分)1.若xy>0;则x y y x+的最小值是 。

1.2.提示:x y y x +≥x y y x=2. 2. 已知a ;b 都是正数;则 错误!、错误!的大小关系是 。

2.错误!≤错误!。

提示:平方作差;利用a 2+b 2≥2ab 可得。

3.若x +y =4;x >0;y >0;则lg x +lg y 的最大值是 。

3.lg4.提示:lg x +lg y =lg x y ≤lg(2x y +)2=lg4. 121(0,0),m n m n+=>>则mn 的最小值是4. 121mn m n =+≥≥ 5.已知:226x y +=; 则 2x y +的最大值是___: 6 = 22x y +≥22x y ; ∴22x y ≤9 。

故2x y +的最大值是9;此时x=y=2log 3。

6 某公司租地建仓库;每月土地占用费y 1与车库到车站的距离成反比;而每月库存货物的运费y 2与到车站的距离成正比;如果在距车站10公里处建仓库;这两项费用y 1和y 2分别为2万元和8万元;那么要使这两项费用之和最小;仓库应建在离车站__________公里处由已知y 1=x20;y 2=0 8x (x 为仓库与车站距离); 费用之和y =y 1+y 2=0 8x + x 20≥2x x 208.0⋅=8;当且仅当0 8x =x 20即x =5时“=”成立。

7.已知正数x y 、满足3xy x y =++;则xy 的范围是 。

7.[9,)+∞。

提示:由0,0x y >>;则3xy x y =++3xy x y ⇒-=+≥;即230-≥解得13≤-≥(舍);当且仅当3x y xy x y ==++且即3x y ==时取“=”号;故xy 的取值范围是[9,)+∞。

8. 给出下列命题:①a ;b 都为正数时;不等式a+b ≥才成立。

高一数学具体的不等式试题

高一数学具体的不等式试题

高一数学具体的不等式试题1.不等式x2<x+2的解集为【答案】()【解析】根据题意,由于不等式x2<x+2等价于x2-x-2<0,(x+1)(x-2)<0的解集结合二次函数图像以及二次方程的根,可知不等式的解集为(),故答案为()。

【考点】一元二次不等式的解集点评:主要是考查了一元二次不等式的求解,属于基础题。

2.若,则下列不等式:①;②;③;④中,正确的有( )A.1个B.2个C.3个D.4个【答案】C【解析】取,可以验证①②③都是正确的,所以正确的有3个.【考点】本小题主要考查不等式的性质的应用.点评:遇到考查不等式性质的题目时,要注意特殊值法的应用,这种方法一般情况下简单有效.3.设函数(1)当时,求不等式的解集;(2)若对恒成立,求的取值范围.【答案】(1)(2)【解析】(1) 当时, ,分段讨论可得不等式的解集为(2) 根据绝对值的几何意义可知,,由题意得, 解得【考点】本小题主要考查含绝对值的不等式的求解和应用.点评:解决含绝对值的不等式问题,最主要的是分类讨论去掉绝对值号,讨论时要做到不重不漏;而绝对值的几何意义也是经常考查的内容,要灵活应用.4.函数在上满足,则的取值范围是()A.B.C.D.【答案】D【解析】根据题意,当a=0时,显然成立,故排除答案B,C,对于当时,函数为二次函数,那么使得在实数域上函数值小于零,则判别式小于零,开口向下可知得到,解得,综上可知为,选D.【考点】不等式点评:主要是考查了函数性质的运用,属于基础题。

5.解关于不等式:【答案】当时,;当时,;当时,;当时,;当时,【解析】当时,;当时,当时,;当时,;当时,【考点】解不等式点评:本题中的不等式带有参数,在求解时需对参数做适当的分情况讨论,题目中主要讨论的方向是:不等式为一次不等式或二次不等式,解二次不等式与二次方程的根有关,进而讨论二次方程的根的大小6.不等式的解集为A.B.[-1,1]C.D.[0,1]【答案】 A【解析】即或,解得,,故选A。

高一数学不等式试题

高一数学不等式试题

高一数学不等式试题1.设则xy的最大值为 ( )A.2B.4C.D.【答案】A【解析】略2.设,且,则()A.B.C.D.【答案】D【解析】由题意,,又,则,所以,则,,由且,可得,故3.已知变量,满足则的最小值为__________.【答案】【解析】如图,当目标函数过点时,函数取得最小值,,目标函数的最小值是.【考点】线性规划4.设满足约束条件,则的最大值为()A.-8B.3C.5D.7【答案】D【解析】不等式表示的可行域为直线围成的三角形及其内部,三个顶点为,当过点时取得最大值7【考点】线性规划5.已知实数x、y满足(0<a<1),则下列关系式恒成立的是()A.B.>C.D.【答案】D【解析】,是减函数,所以当时,,所以当时,只有成立,而当时,不能确定与的大小,以及与的大小.【考点】不等式的性质6.若不等式对一切恒成立,则实数取值的集合为()A.B.C.D.【答案】D【解析】当时,恒成立,当,解得,所以【考点】含参不等式恒成立问题7.若实数,满足,则的取值范围是(用区间表示)【答案】【解析】且,设,,则,所以且,所以且.所以的取值范围是.【考点】1.基本不等式;2.三角换元求取值范围.8.设的最小值为_________.【答案】【解析】正数满足,,当且仅当时取等号,所以所求的最小值为。

【考点】基本不等式9.下列选项中,使不等式成立的x的取值范围是A.(1,+∞)B.(0,1)C.(-1,0)D.(-∞,-1)【答案】D【解析】当时,不等式为显然无解,当时,不等式为,即,所以不等式解集为(-∞,-1),故选择D【考点】解不等式10.解关于的不等式:【答案】详见解析【解析】解含参的一元二次不等式,第一步先讨论二次项前的系数,此题为,所以先不讨论,第一步,先将式子分解因式,整理为,第二步,,,讨论两根的大小关系,从而写出解集的形式.试题解析:原不等式可化为:,(1)当-1<a<0时,,所以x>-或x<1。

高一数学具体的不等式试题

高一数学具体的不等式试题

高一数学具体的不等式试题1.已知关于的不等式的解集是,则 .【答案】2【解析】化分式不等式为整式不等式,根据解集是得,,方程的两实根分别为,,所以=,a=2【考点】解分式不等式,二次方程与二次不等式之间的关系.2.不等式2x-x-1>0的解集是A.(,1)B.(1,+∞)C.(-∞,1)∪(2,+∞)D.(-∞,)∪(1,+∞)【答案】D【解析】不等式2x-x-1>0,即,所以,其解集为(-∞,)∪(1,+∞),选D。

【考点】一元二次不等式的解法点评:简单题,一元二次不等式的解法应首先考虑“因式分解法”。

3.不等式的解集是 .【答案】【解析】根据题意,由于不等式,故可知不等式的解集为【考点】一元二次不等式点评:主要是考查了一元二次不等式的求解,属于基础题。

4.若,且,则下列不等式一定成立的是()A.B.C.D.【答案】D【解析】根据题意,由于,且,那么根据不等式两边同时加上一个数不等式方向不变,不等式的可乘性可知,只有c>0选项B成立,对于C,只有c不为零时成立,对于A,由于c=0不成立,故选D.【考点】不等式的性质点评:主要是考查了不等式性质的运用,属于基础题。

5.已知是任意实数,且,则下列结论正确的是()A.B.C.D.【答案】D【解析】根据题意,由于是任意实数,且,当a=0,b=-1,选项A不成立,对于B,由于a=3,b=2,不成立,对于C,由于,只有a-b>1不等式成立,故排除发选D.【考点】不等式的性质点评:主要是考查了对数函数性质以及不等式性质的运用,属于基础题。

6.不等式的解集是;【答案】【解析】根据题意,由于不等式,等价于当x> ,x-1<1, x<2,即当x,得到1-2x-x<1,x>0,故可知0<x,综上可知满足不等式的解集为【考点】绝对值不等式点评:主要是考查了绝对值不等式的求解,属于基础题。

7.当时,不等式恒成立,则m的取值范围是__ __.【答案】【解析】,设,当时,当时【考点】不等式恒成立点评:不等式恒成立求参数范围的题目常采用分离参数法,转化为求函数最值8.(1)解关于x的不等式;(2)若关于x的不等式的解集为,解关于x的不等式【答案】(1)(2)【解析】解:(1)因为方程的两个根为1和3所以不等式的解集为(2)因为不等式的解集为所以的两个根为1和2将跟代入方程得,解得所以不等式化为因为方程的两个为和1所以不等式的解集为【考点】一元二次不等式的解法点评:若方程有两根(),则一元二次不等式的解集是(),当不等式由等号时,解集也有等号。

高一数学不等式的性质试题

高一数学不等式的性质试题

高一数学不等式的性质试题1.若则下列不等式成立的是()A.B.C.D.【答案】D【解析】由题意可得又有基本不等式可得,且,对不四个选项可得.【考点】基本不等式;不等关系与不等式.2.已知且,则下列不等式恒成立的是()A.B.C.D.【答案】C【解析】由题知,值不确定,,由于所以对,其它三项不一定对.【考点】判断不等式的大小关系.3.若,则下列不等式成立的是()A.B.C.D.【答案】D.【解析】由条件可知:A:∵,∴A错误;B:,∴B错误;C:,∴C错误;D:,∴D正确.【考点】作差法证明不等式.4.下列不等式正确的是A.若,则B.若,则C.若,则D.若,则【答案】B【解析】A.若c<0,则不等号改变,若c=0,两式相等,故A错误;B. 若,则,故,故B正确;C.若b=0,则表达是不成立故C错误;D.c=0时错误.【考点】不等式的性质.5.已知a,b为非零实数,且a<b,则下列命题一定成立的是()A.B.C.D.【解析】A.中,例如当时不成立;B.中,例如时不成立;D.中,例如时不成立;C.中,不等式两边同乘以非零正实数,不等号方向不变,得到,所以C正确【考点】不等式的简单性质6.如果a<b<0,那么( ).A.a-b>0B.ac<bc C.>D.a2<b2【答案】C【解析】根据题意,由于a<b<0,则a-b<0 故错误,对于c=0时则不等式ac<bc不成立,对于>符合倒数性质可知,成立,对于a2<b2,a=-3,b=-2不成立,故答案为C.【考点】不等式的性质点评:主要是考查了不等式的性质的运用,属于基础题。

7.设x > 0, y > 0,, , a 与b的大小关系()A.a >b B.a <b C.a b D.a b【答案】B【解析】由x>0,y>0,结合不等式的性质可得,解:∵x>0,y>0,∴x+y+1>1+x>0,1+x+y>1+y>0,则可知,,那么可知,故可知得到a <b,选B.【考点】不等式的性质点评:本题主要考查了不等式的性质的简单应用,解题的关键是熟练应用基本性质8.已知实数满足,,则的取值范围是.【答案】【解析】将代入,并化简,构造关于的一元二次方程:,该方程有解,则,解得【考点】不等式的运用点评:主要是考查了构造方程的思想,借助于判别式得到范围,属于中档题。

高一数学不等式试题

高一数学不等式试题

高一数学不等式试题1.已知,不等式的解集是,则满足的关系是( )A.B.C.D.的关系不能确定【答案】B【解析】,,则,由题意知,,故选B.2. 2010年4月14日清晨我国青海省玉树县发生里氏7.1级强震。

国家抗震救灾指挥部迅速成立并调拨一批救灾物资从距离玉树县400千米的某地A运往玉树县,这批救灾物资随17辆车以千米/小时的速度匀速直达灾区,为了安全起见,每两辆车之间的间距不得小于千米。

设这批救灾物资全部运送到灾区(不考虑车辆的长度)所需要的时间为小时。

求这批救灾物资全部运送到灾区所需要的最短时间,并指出此时车辆行驶的速度。

【答案】(千米/小时)时,取得最小值为8(小时)【解析】由题可得关系式为从而当且仅当,即(千米/小时)时,取得最小值为8(小时)3.已知点(3,1)和(﹣4,6)在直线3x﹣2y+m=0的两侧,则m的取值范围是()A.m<﹣7或 m>24B.﹣7<m<24C.﹣24<m<7D.m="7" 或 m=24【答案】B【解析】两点在直线的两侧,所以将点代入得到,即:,解得.【考点】不等式所表示的平面区域4.若不等式对一切恒成立,则实数a 取值范围()A.B.C.D.【答案】B【解析】当时恒成立;当时需满足,综上【考点】三个二次关系5.设x,y满足约束条件,若目标函数z=ax+by(a>0,b>0)的值是最大值为12,则的最小值为.【答案】【解析】线性约束条件表示直线围成的区域,第一象限的顶点坐标,,所以最小值为【考点】1.线性规划;2.均值不等式求最值6.(8分)关于的不等式,(1)已知不等式的解集为,求a的值;(2)解关于的不等式.【答案】(1);(2)时原不等式解集为;时原不等式解集为;时原不等式解集为;时原不等式解集为;时原不等式解集为.【解析】(1)由不等式的解集可知,2是方程的两根,由韦达定理可求得的值.(2)讨论二次项系数是否为0,由时的根为或,讨论两根的大小,并注意抛物线开口方向.结合一元二次函数图像解不等式.试题解析:解:因为的解集为,所以方程的两根为或,所以,解得.(2),当时原不等式变形为,解得;当时,的根为或.时,或,时,,时,,时,综上可得时原不等式解集为;时原不等式解集为;时原不等式解集为;时原不等式解集为;时原不等式解集为.【考点】一元二次不等式.7.在区间上,不等式有解,则的取值范围为()A.B.C.D.【答案】C【解析】(法一)因为,则可将原不等式化简为,记,那么在区间上单调递增且,原不等式有解,则有.(法二)对于方程,当即时,二次函数与轴无交点,又函数图像开口向下,那么不等式解为实数解;当即时,二次函数与轴有两个交点,记,,若在区间上不等式无解,则有解得,从而知若在区间上不等式有解则;则或得.从而选【考点】一元二次不等式定区间定轴问题8.设k>0,若关于x的不等式在(1,+∞)上恒成立,则k的最小值为.【答案】4【解析】原不等式变形为:,则问题转化成不等式在上恒成立,所以只需即可,根据均值定理可知:,当且仅当时等号成立,所以只需成立,即,所以,即.【考点】1.均值定理;2.不等式恒成立.9.已知a,b为非零实数,且a<b,则下列不等式成立的是A.B.a b<a b C.D.【答案】C【解析】为非零实数,,将两边同除以,可得.故答案选C.【考点】不等式的性质.10.不等式的解集是空集,则实数的范围为()A.B.C.D.【答案】B【解析】当时,,当时,不等式为,解集为空集,符合题意;当时,若不等式解集为空集,则应满足,解得,综上所述:【考点】一元二次不等式.11.当满足时,求函数的最值及相应的的值.【答案】当时,;当时,【解析】(1)根据不等式解得x的取值范围,采用换元法令,根据x的取值范围,解得t的范围,则转化为二次函数为,在给定区间求最值的问题,进而求得最大值试题解析:(1)因为,所以解得,函数,令,因为,所以则函数为,对称轴为,所以当即时,函数有最小值,当即时,函数有最小值,所以当时,;当时,【考点】1.解对数不等式;2.求指数范围;3.二次函数在给定区间求最值的问题12.三个数,,的大小关系为()A.B.C.D.【答案】C【解析】,所以有,故选C.【考点】指数的大小比较.13.已知,,,则,,的大小关系是()A.B.C.D.【答案】A.【解析】∵,,,∴,故选A.【考点】指对数的性质.14.若,则________.【答案】-1【解析】【考点】如何去绝对值15.(2015•北京)2﹣3,3,log25三个数中最大数的是.【答案】log25.【解析】运用指数函数和对数函数的单调性,可得0<2﹣3<1,1<3<2,log25>log24=2,即可得到最大数.解:由于0<2﹣3<1,1<3<2,log25>log24=2,则三个数中最大的数为log25.故答案为:log25.【考点】不等式比较大小.16.设0.3,则a,b,c的大小关系是()A.a>c>b B.c>a>b C.a>b>c D.b>a>c【答案】D【解析】由幂函数的性质比较a,b的大小,再由对数函数的性质可知c<0,则答案可求.解:∵0<<0.50=1,c=log50.3<log51=0,而由幂函数y=可知,∴b>a>c.故选:D.【考点】指数函数的图象与性质.17.不等式的解集为______.【答案】【解析】不等式或,即或,所以原不等式的解集为.【考点】二次不等式、分式的解.18.如果实数满足,则有()A.最小值和最大值B.最大值和最小值C.最小值而无最大值D.最大值而无最小值【答案】B【解析】由于,所以设,则,所以当时,取得最大值,当时,取得最大值,故选B.【考点】二倍角公式及函数的最值问题.【方法点晴】本题主要考查了二倍角公式及函数的最值问题,属于基础题.解答时关键是用好条件“实数满足”,由此可联想同角三角函数基本关系式进行三角代换,把求的最值问题转化为求三角函数的值域问题,利用二倍角公式进行化简求得三角函数的值域.19.已知实数满足,设,则的取值范围是()A.B.C.D.【答案】D【解析】设且,则,令,所以,当时上述不等式中的等号成立,所以.【考点】基本不等式的应用.【方法点晴】本题主要考查了基本不等式的应用,其中正确构造基本不等式的应用条件是使用基本不等式的基础和关键,试题思维量大,运算繁琐,属于难题,着重考查了构造思想和转化与化归思想的应用,本题的解答中,设且,得,即可利用基本不等式,可求得的值,即可求解取值范围.20.下列四个不等式中,解集为的是()A.B.C.D.【答案】B【解析】对于A.,得,判别式,所以此不等式的解集不为;对于B.,判别式,所以此不等式的解集为;对于C.,判别式,所以此不等式的解集为,不为;对于D.,得:判别式,所以此不等式的解集不为;故选B.【考点】一元二次不等式.21.设,,是与的等比中项,则的最小值是()A.B.C.4D.3【答案】B【解析】是与的等比中项,,,当且仅当时,等号成立,即的最小值是.故选B.【考点】1、正弦定理;2、和差角公式.【思路点睛】先根据等比中项的概念得出,再将转化为,最后利用基本不等式求的最值.利用基本不等式求最值时,要注意①各项皆为正数,②和或积为定值,③注意等号成立的条件.可概括为:一“正”,二“定”,三“相等”.本题主要考查基本不等式求最值,考查转化与化归思想,特别要注意的灵活运用,属于基础题.22.已知不等式的解集为.(Ⅰ)求、的值;(Ⅱ)解不等式.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)由已知不等式的解集得到一元二次方程的解,再由韦达定理求出、的值;(Ⅱ)由(Ⅰ)中求出的、的值代入所求的不等式中, 解不等式即可.试题解析:(Ⅰ)由的解集为知,且方程的两根为.由根与系数的关系得,由此得.(Ⅱ)不等式可化为,解得.所以不等式的解集为.【考点】1.一元二次不等式与一元二次方程之间的关系;2.韦达定理;3.一元二次不等式的解法. 23.如果a<b<0,那么下列不等式成立的是()A.-<-B.ab<b2C.-ab<-a2D.|a|<|b|【答案】A【解析】由题意得,因为,所以,所以,即,故选A.【考点】不等关系与不等式.24.已知为非零实数,且,则下列命题成立的是()A.B.C.D.【答案】D【解析】由题意得,因为函数是单调递减函数,因为,所以,故选D.【考点】不等式的性质.25.不等式的解集为,则a,c的值为()A.a=6,c=1B.a=-6,c=-1C.a=1,c=6D.a=-1,c=-6【答案】B【解析】由题可知:,是对应方程的两根,根据韦达定理:,解得:,选择B。

高一数学不等式试题

高一数学不等式试题

高一数学不等式试题1.下列命题不正确的是A.B.C.D.【答案】D【解析】略2.已知实数x,y满足,则z=4x+y的最大值为()A.10B.8C.2D.0【答案】B【解析】根据条件,可知,因为,所以两不等式相减得到,所以最大值为8【考点】函数最大最小值3.已知,.(1)当时,①解关于的不等式;②若关于的不等式在上有解,求的取值范围;(2)若,证明不等式.【答案】(1)①时,时,,时,②(2)详见解析【解析】(1)代入转化为关于的一元二次不等式,结合二次不等式的解法求解时需要对参数分情况讨论,从而确定方程的两根大小关系;不等式在上有解中将不等式变形分离出,转化为的形式,转化为函数求值域;(2)首先将代入化简转化为用表示的函数式,利用求得的范围,进而求得函数的最小值试题解析:(1)①不等式代入整理为,当时,时,,时,;②整理得有解,当时最大值为5,取值范围是(2),所以,即【考点】1.一元二次不等式解法;2.不等式与函数的转化;3.函数求最值4.若是正实数,且则的最小值为.【答案】【解析】将化简得,令,则。

①,因为是正实数,所以,则对于①式当时有最小值.【考点】1.换元法;2.二次函数最值;5.关于x的不等式的解集是,则关于x的不等式的解集是()A.B.C.D.【答案】D【解析】关于x的不等式的解集是,所以,所以不等式可化为,从而确定解集;【考点】1.一元二次不等式的解法;2.一元一次不等式的解集与系数的关系;6.已知变量,满足则的最小值为__________.【答案】【解析】如图,当目标函数过点时,函数取得最小值,,目标函数的最小值是.【考点】线性规划7.若实数x,y满足则z=的取值范围是()A.B.C.D.【答案】D【解析】作出可行域如图.,表示可行域内的点与点连线的斜率.图中,所以,由图分析可知或.所以或.故D正确.【考点】1线性规划;2直线的斜率.8.(8分)关于的不等式,(1)已知不等式的解集为,求a的值;(2)解关于的不等式.【答案】(1);(2)时原不等式解集为;时原不等式解集为;时原不等式解集为;时原不等式解集为;时原不等式解集为.【解析】(1)由不等式的解集可知,2是方程的两根,由韦达定理可求得的值.(2)讨论二次项系数是否为0,由时的根为或,讨论两根的大小,并注意抛物线开口方向.结合一元二次函数图像解不等式.试题解析:解:因为的解集为,所以方程的两根为或,所以,解得.(2),当时原不等式变形为,解得;当时,的根为或.时,或,时,,时,,时,综上可得时原不等式解集为;时原不等式解集为;时原不等式解集为;时原不等式解集为;时原不等式解集为.【考点】一元二次不等式.9.(12分)已知函数,(1)当时,解不等式;(2)比较的大小;(3)解关于x的不等式.【答案】(1);(2)详见解析;(3)详见解析【解析】(1)当时,将不等式分解因式,得到解集;(2)比较大小,可以做差,然后通分,分解因式,然后讨论的范围,比较两数的大小;(3)第一步,先分解因式,第二步,根据上一问的结果得到与的大小关系,得到解集.试题解析:解:(1)当时,有不等式,∴,∴不等式的解集为:;(2)∵且∴当时,有当时,有当时,;(3)∵不等式当时,有,∴不等式的解集为;当时,有,∴不等式的解集为;当时,不等式的解集为.【考点】1.解二次不等式;2.比较大小.10.已知不等式的解集为,那么=()A.3B.C.-1D.1【答案】B【解析】因为不等式的解集为,所以,,故选B.【考点】分式不等式的解法11.如果,那么下面不等式一定成立的是()A.B.C.D.【答案】D【解析】取a=-2,b=-1,c=1,代入选项进行逐一验证得选项D正确,故选D.【考点】不等式的基本性质12.已知,则_______【答案】23【解析】,两边平方得【考点】代数式求值13.已知实数满足,则的最大值是 .【答案】13【解析】作出二元一次不等式组所表示的可行域如图所示:根据图像可知当经过直线与直线的交点时,取最大值时,最大值为【考点】二元一次不等式的线性规划问题;14.(本小题满分16分)设函数f(x)=x2-2tx+2,其中t∈R.(1)若t=1,求函数f(x)在区间[0,4]上的取值范围;(2)若t=1,且对任意的x∈[a,a+2],都有f(x)≤5,求实数a的取值范围.(3)若对任意的x1,x2∈[0,4],都有|f(x1)-f(x2)|≤8,求t的取值范围.【答案】(1) [1,10] (2) [-1,1] (3) [4-2 ,2 ]【解析】(1)若t=1,则f(x)=x2-2tx+2,根据二次函数在[0,4]上的单调性可求函数的值域(2)由题意可得函数在区间[a,a+2]上,[f(x)]max≤5,分别讨论对称轴x=t与区间[a,a+2]的位置关系,进而判断函数在该区间上的单调性,可求最大值,进而可求a的范围(3)设函数f(x)在区间[0,4]上的最大值为M,最小值为m,对任意的x1,x2∈[0,4],都有|f(x1)-f(x2)|≤8等价于M-m≤8,结合二次函数的性质可求试题解析:因为f(x)=x2-2tx+2=(x-t)2+2-t2,所以f(x)在区间(-∞,t]上单调减,在区间[t,∞)上单调增,且对任意的x∈R,都有f(t+x)=f(t-x),(1)若t=1,则f(x)=(x-1)2+1.①当x∈[0,1]时.f(x)单调减,从而最大值f(0)=2,最小值f(1)=1.所以f(x)的取值范围为[1,2];②当x∈[1,4]时.f(x)单调增,从而最大值f(4)=10,最小值f(1)=1.所以f(x)的取值范围为[1,10];所以f(x)在区间[0,4]上的取值范围为[1,10].(2)“对任意的x∈[a,a+2],都有f(x)≤5”等价于“在区间[a,a+2]上,[f(x)]max≤5”.若t=1,则f(x)=(x-1)2+1,所以f(x)在区间(-∞,1]上单调减,在区间[1,∞)上单调增.当1≤a+1,即a≥0时,由[f(x)]max=f(a+2)=(a+1)2+1≤5,得-3≤a≤1,从而0≤a≤1.当1>a+1,即a<0时,由[f(x)]max=f(a)=(a-1)2+1≤5,得-1≤a≤3,从而-1≤a<0.综上,a的取值范围为区间[-1,1].(3)设函数f(x)在区间[0,4]上的最大值为M,最小值为m,所以“对任意的x1,x2∈[0,4],都有|f(x1)-f(x2)|≤8”等价于“M-m≤8”.①当t≤0时,M=f(4)=18-8t,m=f(0)=2.由M-m=18-8t-2=16-8t≤8,得t≥1.从而t∈Æ.②当0<t≤2时,M=f(4)=18-8t,m=f(t)=2-t2.由M-m=18-8t-(2-t2)=t2-8t+16=(t-4)2≤8,得4-2≤t≤4+2.从而4-2≤t≤2.③当2<t≤4时,M=f(0)=2,m=f(t)=2-t2.由M-m=2-(2-t2)=t2≤8,得-2≤t≤2.从而2<t≤2.④当t>4时,M=f(0)=2,m=f(4)=18-8t.由M-m=2-(18-8t)=8t-16≤8,得t≤3.从而t∈Æ.综上,a的取值范围为区间[4-2 ,2 ].【考点】1.二次函数在闭区间上的最值;2.二次函数的性质15.已知,关于的一元二次不等式的解集中有且仅有个整数,则实数的取值范围为.【答案】【解析】二次函数的对称轴为,所以个整数为:,,.所以,解得.【考点】一元二次不等式整数解16.若关于的不等式在区间上恒成立,则实数的取值范围是.【答案】【解析】关于的不等式在区间上恒成立等价于在时,函数的图像恒在函数的图像的下方.从上图易知且,即,解得.【考点】恒成立问题求参数范围.【方法点睛】恒成立问题求参数范围,常常把参数移到一边转化为求最值,但是本题将参数移到一边比较困难,就是移到一边了,另一边的最值也难于计算,所以考虑数形结合.如上图,从图中能直接看出满足题意的条件且,从而求出参数范围.本题使我们感受到数形结合的魅力所在.17.(2015秋•宝山区期末)解不等式组:.【答案】原不等式组的解集为(1,2).【解析】由条件利用分式不等式、绝对值不等式的解法,等价转化,求得x的范围.解:不等式组,即,即,求得 1<x<2,即原不等式组的解集为(1,2).【考点】其他不等式的解法.,b=a sinα,c=a cosα,则()18.(2015秋•黄山期末)已知α∈(0,),a=logaA.c>a>b B.b>a>c C.a>c>b D.b>c>a【答案】D【解析】根据指数函数对数函数三角图象和性质即可判断解:∵α∈(0,),∴0<sinα<cosα<1,∴a=log<0,a∵y=a x为减函数,∴a sinα>a cosα>0,∴b>c>a,故选:D【考点】指数函数的图象与性质.19.设实数,满足则的取值范围是.【答案】.【解析】作出可行域,令,则由的几何意义可知取点时,取得最大值,取点时,取得最小值,则,又,由及单调递增,可知单调递增,故,,所以的取值范围是.【考点】1、线性规划;2、函数单调性求最值.【思路点睛】本题主要考查目标函数求取最值(范围)问题,属困难题.由题给不等式组作出相应可行域,取目标函数中,由的几何意义:可行域中的点与原点的连线斜率,可知,取得最大值和最小值的最优解分别为点和点,从而,此时目标函数为,结合函数单调性可求.20.若关于x的不等式(2x-1)2<ax2的解集中整数恰好有3个,则实数a的取值范围是__________.【答案】【解析】关于x的不等式(2x-1)2<ax2等价于,其中且有,故有,不等式的解集为,所以解集中一定含有1,2,3,可得,所以,解得.【考点】含参数的一元二次方程的解法.21.下列四个不等式中,解集为的是()A.B.C.D.【答案】B【解析】对于A.,得,判别式,所以此不等式的解集不为;对于B.,判别式,所以此不等式的解集为;对于C.,判别式,所以此不等式的解集为,不为;对于D.,得:判别式,所以此不等式的解集不为;故选B.【考点】一元二次不等式.22.对任意实数,不等式恒成立,则实数的取值范围是()A.-24<k<0B.-24<k≤0C.0<k≤24D.k≥24【答案】B【解析】当时不等式即为,不等式恒成立,当时,若不等式恒成立,则,即,即,综合知,故选择B.【考点】二次函数与二次不等式.23.已知c<d,a>b>0,下列不等式中必成立的一个是()A.a+c>b+d B.a﹣c>b﹣d C.ad<bc D.>【答案】B【解析】由题意可得﹣c>﹣d,且 a>b,相加可得 a﹣c>b﹣d,从而得出结论.解:∵c<d,a>b>0,∴﹣c>﹣d,且 a>b,相加可得a﹣c>b﹣d,故选:B24.若x>0,y>0,且+=1,则xy有()A.最大值64B.最小值C.最小值D.最小值64【答案】D【解析】因为,所以(当且仅当,即时取等号),即;故选D.【考点】基本不等式.【方法点睛】本题考查利用基本不等式求最值,属于基础题;在利用基本不等式求最值时,要注意其适用条件(一正,二定,三相等)的验证,陪凑“定和或定积”的解题的关键,也是难点,而验证“相等”是学生易忽视的问题,如“由判定的最小值为2”是错误的,因为是不成立的.25.如果a<b<0,那么下面一定成立的是( )A.ac<bc B.a﹣b>0C.a2>b2D.【答案】C【解析】利用不等式的性质即可得出.∵a<b<0,∴-a>-b>0,∴a2>b2.故选C.【考点】不等式比较大小.26.已知,且,若恒成立,则实数的取值范围为__________.【答案】【解析】,∴∵恒成立,∴,求得-4<m<2【考点】函数恒成立问题27.以下列函数中,最小值为的是()A.B.C.D.【答案】A【解析】由不等式性质可知,当且仅当即时等号成立,取得最小值2【考点】不等式性质28.已知,且,则的值是()A.20B.C.D.400【答案】B【解析】由已知可得【考点】指数式对数式化简及化简29.解关于的不等式:.【答案】当时,原不等式的集为,当时,原不等式的集为,当时,原不等式的集为或,当时,原不等式的集为.【解析】不等式中含有参数,对分和两种情况讨论,当时,原不等式为,解得即可,当时,原不等式化为一元二次不等式,再对分和两种情况分别求解.试题解析:原不等式整理得.当时,原不等式为,∴;当时,原不等式为,∴当时,原不等式可化为,当时,原不等式可化为,当时,原不等式为,原不等式的集为或,若,则,原不等式的集为或,当时,原不等式的集为.综上,当时,原不等式的集为,当时,原不等式的集为,当时,原不等式的集为或,当时,原不等式的集为.【考点】不等式的解法.30.已知,,,则A.B.C.D.【答案】D【解析】【考点】比较大小31.已知函数满足,且.(Ⅰ)求实数,的值;(Ⅱ)若不等式的解集为,求实数的值.【答案】(Ⅰ),;(Ⅱ)【解析】(Ⅰ)由可得到关于的关系式,由可得到关于的另一关系式,解方程组得到的值;(Ⅱ)将不等式变形,从而得到关于的方程,求解其值试题解析:(Ⅰ)∵满足.∴,即,则=0,即,∵,∴,得,即实数,的值为,;…………6分(Ⅱ)∵,,∴不等式的解集为(0,2),则>0,由得,由,得.…………12分【考点】抽象函数运算及不等式解法32.不等式对任意实数恒成立,则实数的取值范围是()A.B.C.D.【答案】A【解析】因,故,解之得或,故选A.33.设,且b>0,则下列不等式正确的是()A.B.C.D.【答案】C【解析】解答:∵a+b<0,且b>0,∴−a>b>0,∴a2>b2.本题选择C选项.34.在平面直角坐标系xOy中,与原点位于直线3x+2y+5=0同一侧的点是()A.(-3,4)B.(-3,-2)C.(-3,-4)D.(0,-3)【答案】A【解析】当时,,对于当时,,故满足,对于当时,,故不满足,对于,故不满足,对于时,,故不满足,故选A.35.若,则下列不等式正确的是()A.B.C.D.【答案】B【解析】因为,所以,因此A错,B对;取,可得,故错误;.取,可得,故错误,故选B.36.不等式的解集是_____________.【答案】【解析】由,得,解得或,故不等式的解集是,故答案为.37.(2015年苏州B14)若,,,则的取值范围为________.【答案】【解析】因为,解得,当时等号成立。

高一数学不等式试题答案及解析

高一数学不等式试题答案及解析

高一数学不等式试题答案及解析1.定义,设实数满足约束条件则的取值范围是()A.[-5,8]B.[-5,6]C.[-3,6]D.[-8,8]【答案】A【解析】分析:由题意可得约束条件所满足的可行域如图所示的正方形ABCD,由Z=当x+2y<0时的可行域即为图中的四边形MCDN,Z=2x-y在N(-2,1)处取得最小值-5,在B (2,-2)处取得最大值6;当x+2y≥0时的可行域为图中的四边形ABMN,Z=3x+y在C(2,2)处取得最小值8,从而可求Z的取值范围解答:解:由题意可得约束条件所满足的可行域如图所示的正方形ABCD由Z=当x+2y<0时的可行域即为图中的四边形MCDN,Z=2x-y在N(-2,1)处取得最小值-5,在B (2,-2)处取得最大值6当x+2y≥0时的可行域为图中的四边形ABMN,Z=3x+y在C(2,2)处取得最小值8∴-5≤Z≤8故选:A点评:本题主要考查了简单的线性规划,解题的关键是要根据题目中的定义确定目标函数及可行域的条件以及,属于知识的综合应用题.2.设则xy的最大值为 ( )A.2B.4C.D.【答案】A【解析】略3.目标函数,变量满足,则有()A.B.C.无最大值D.既无最大值,也无最小值K^S*5U.C#O【解析】略4.二次函数的部分对应值如下表:x-3-2-101234则不等式的解集是。

【答案】【解析】略5.已知实数x,y满足,则z=4x+y的最大值为()A.10B.8C.2D.0【答案】B【解析】根据条件,可知,因为,所以两不等式相减得到,所以最大值为8【考点】函数最大最小值6.设,且,,则下列结论正确的是()A.B.C.D.【答案】A【解析】根据不等式的性质,知成立,,当就不成立,,当就不成立,同时也不成立.【考点】不等式的性质7.如果,则下列不等式中成立的只有()A.B.C.D.【答案】C【解析】令,可得,故不正确,正确.再根据,可得不正确,只有选项成立,故选.【考点】不等式关系与不等式8.实数,满足不等式组,则目标函数的最小值是()A.B.C.D.【解析】如图,先画可行域,,当目标函数过点时,函数取得最小值,所以.【考点】线性规划9.设a>0,b>0,若是与的等比中项,则的最小值为()A.4B.8C.1D.【答案】A【解析】,所以,所以:,等号成立的条件是.【考点】1.等差数列的性质;2.基本不等式求最值.10.不等式对一切恒成立,则实数的取值范围为.【答案】【解析】当时,或,代入,只有使不等式恒成立,当时,,即,解得,所以最后的取值范围是【考点】二次不等式恒成立11.已知,,,则的最小值是_________.【答案】【解析】∵,,,∴由基本不等式可得≥2=2当且仅当时,取最小值2.故答案为:2【考点】基本不等式12.若实数x,y,且x+y=5,则的最小值是()A.10B.C.D.【答案】D【解析】,,当且仅当即时取得.故D正确.【考点】基本不等式.13.不等式的解集为()A.或B.或C.或D.{或【答案】A【解析】,由数轴穿根法知,或【考点】•分式不等式的解法分式——不等式化整式不等式 数轴穿根法求不等式的解14.下列函数的最小值为2的是()A.B.C.D.【答案】D【解析】,在其定义域上没有最小值,因为自变量的区间右端点是开的而导致取不到最小值,利用均值不等式取不到最小值,故只能选D.【考点】对勾函数与均值不等式.15.二次函数的零点为2和3,那么不等式的解集为A.B.C.D.【答案】B【解析】因为二次函数的零点为2和3,所以,进而函数,又因为,所以不等式的解集为,故选择B【考点】一元二次不等式解集16.若不等式对一切恒成立,则实数取值的集合为()A.B.C.D.【答案】D【解析】当时,恒成立,当,解得,所以【考点】含参不等式恒成立问题17.若点的坐标满足约束条件:,则的最大值为A.B.C.D.11【答案】C【解析】如图,先画可行域,先设目标函数,当目标函数过点时,,最后除以得最小值是.【考点】线性规划18.不等式的解集为_______________.【答案】【解析】解:,所以不等式的解集是.【考点】一元二次不等式的解法19.(本题满分10分)已知关于的不等式的解集为.(1)求实数的值;(2)解关于的不等式:(为常数).【答案】(1)(2)当时解集为;当时解集为;当时解集为【解析】(1)本题考察的是一元二次不等式与一元二次方程关系,由题意知是关于的方程的两个根,再由韦达定理可得方程组,解方程组即可得到答案.(2)不等式等价于,按照对应方程的根的大小关系分三种情况进行讨论即可解出分式方程的解集.试题解析:(1)由题知为关于的方程的两根,即∴.(2)不等式等价于,所以:当时解集为;当时解集为;当时解集为.【考点】一元二次不等式的解法20.不等式的解集是()A.B.C.D.【答案】D【解析】不等式可得,所以解集为:,故选择D 【考点】解一元二次不等式21.已知实数满足,则的最大值是 .【答案】13【解析】作出二元一次不等式组所表示的可行域如图所示:根据图像可知当经过直线与直线的交点时,取最大值时,最大值为【考点】二元一次不等式的线性规划问题;22.解关于x的不等式:【答案】当a=0时,;当a﹥0时,;当a﹤0时,【解析】移项,通分,将分式不等式转化为一元二次不等式,分解因式后比较两根的大小即可求解不等式.试题解析:解:所以,当a=0时,当a﹥0时,当a﹤0时,【考点】分式不等式.23.如果实数x,y满足约束条件,那么2x-y的最大值为A.2B.1C.-2D.-3【答案】B【解析】将不等式组中不等式看成方程.两两结合解出交点坐标分别为,代入可得值最大为.故答案选B.也可结合图形分析得出答案.【考点】线性规划24.不等式的解集是空集,则实数的范围为()A.B.C.D.【答案】B【解析】当时,,当时,不等式为,解集为空集,符合题意;当时,若不等式解集为空集,则应满足,解得,综上所述:【考点】一元二次不等式.25.(本小题满分12分)已知函数.(Ⅰ)若,解不等式;(Ⅱ)若,任意,求实数的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)当,,由两个数将轴分为三个区间,去绝对值,将函数表示成分段函数形式,分别解不等式即可;(Ⅱ)等价于,分,,三种情况去绝对值,研究恒成立时的实数的范围,再求并集即可.试题解析:(Ⅰ)若,由解得或;所以原不等式的解集为.(Ⅱ)由可得当时,只要恒成立即可,此时只要当时,只要恒成立即可,此时只要当时,只要恒成立即可,此时只要综上.【考点】1.绝对值的意义;2.分段函数的表示;3.函数与解不等式.【方法点睛】本题主要考查绝对值的意义、分段函数的表示的方法、函数与解不等式的知识,属中档题.在解决含有绝对值不等式有关问题时,通常是利用绝对值的意义去掉绝对值符号变为分段函数,利用分段函数的性质求解,在去绝对值符号量一定要注意自变量的取值范围.26.解关于的不等式:.【答案】见解析【解析】解分式不等式,一般移项、通分、再讨论有无根及根的大小:由得只有一根-1; 比较大小试题解析:解:【考点】解分式不等式【名师】解含参数的一元二次不等式,要把握好分类讨论的层次,一般按下面次序进行讨论:首先根据二次项系数的符号进行分类,其次根据根是否存在,即Δ的符号进行分类,最后在根存在时,根据根的大小进行分类.27.已知f(x)是二次函数,不等式f(x)<0的解集是(0,5),且f(x)在区间[-1,4]上的最大值是12.(Ⅰ)求f(x)的解析式;(Ⅱ)求f(x)在区间上的最小值.【答案】(Ⅰ) f(x) =2x2-10x (Ⅱ)【解析】(Ⅰ)求二次函数解析式常采用待定系数法,设出解析式,由已知条件得到参数值,从而得到解析式;(Ⅱ)求二次函数最值首先判断其单调性,本题中要分情况讨论区间与对称轴的位置关系试题解析:(Ⅰ)∵f(x)是二次函数,且f(x)<0的解集是(0,5)∴可设f(x)=ax(x-5)(a>0)∴f(x)的对称轴为x=且开口向上∴f(x)在区间[-1,4]上的最大值是f(-1)=6a=12.∴a=2∴f(x)=2x(x-5)=2x2-10x.(Ⅱ)由题意,,①当时,在区间上单调递增,∴的最小值为;②当时,∴的最小值为;③当时,在区间上单调递减,∴的最小值为;综上所述:【考点】1.待定系数法求解析式;2.二次函数单调性与最值28.比较的大小关系是()A.B.C.D.【答案】D【解析】∵,,又幂函数在上是增函数,,∴,故选D.【考点】1、指数式;2、比较大小.29.设0.3,则a,b,c的大小关系是()A.a>c>b B.c>a>b C.a>b>c D.b>a>c【答案】D【解析】由幂函数的性质比较a,b的大小,再由对数函数的性质可知c<0,则答案可求.解:∵0<<0.50=1,c=log50.3<log51=0,而由幂函数y=可知,∴b>a>c.故选:D.【考点】指数函数的图象与性质.30.若0<a<1,且logba<1,则()A.0<b<a B.0<a<b C.0<a<b<1D.0<b<a或b>1【答案】D【解析】利用对数函数的单调性和特殊点,分b>1和0<b<1两种情况,分别求得a、b的关系,从而得出结论.解:当b>1时,∵logb a<1=logbb,∴a<b,即b>1成立.当0<b<1时,∵logb a<1=logbb,∴0<b<a<1,即0<b<a,故选D.【考点】对数函数的单调性与特殊点.31.下列各函数中,最小值为2的是()A.B.,C.D.【答案】A【解析】对于A.,当且仅当即取等号正确;对于B.,,则当且仅当即取等号,等号取不到所以错误;对于C.,当且仅当即取等号,等号取不到所以错误,D.,当不满足题意,所以应选A.【考点】基本不等式的应用.【易错点睛】利用基本不等式求最值必须满足一正,二定,三相等三个条件,并且和为定值时,积有最大值,积为定值时,和有最小值,特别是等号成立的条件是否满足,必须进行验证,否则易错;基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,常常用于比较数的大小或证明不等式,解决问题的关键是分析不等式两边的结构特点,选择好利用基本不等式的切入点.32.下列不等式中,解集为的是()A.B.C.D.【答案】D【解析】A.,解集为;B.解集为;C.解集为;解集为,选D【考点】不等式的解集33.已知正项等比数列满足,若存在两项使得,则的的最小值为()A.B.C.D.【答案】B【解析】将代入中,可求得(数列为正向数列,舍去负值),则,代入有,所以,当且仅当,显然是整数,所以不能取得最小值,单可取相邻整数的值,即时的值,可求得最小值为,股本题正确选项为B.【考点】等比数列的公比与重要不等式的运用.【思路点睛】因为,所以只要求得公比,便可通过求得的和,将等比数列通项代入,化简解方程便可求得公比,从而进一步求得,对乘以,化简整理后,再利用重要不等式求最值,最后要注意,取最值时,看能否满足取等号的条件,如果不能满足,则可取的相邻两个整数值,从中取最小的代数值即可.34.若,则下列结论中正确的是()A.B.C.D.【答案】C【解析】由题意得,,因为,所以,所以,所以,【考点】不等式的性质.35.已知实数满足.(1)若,求的最小值;(2)解关于的不等式:.【答案】(1);(2).【解析】(1)根据条件将二元代数式的最值问题转化为一元代数式的最值问题,再结合基本不等式,即可求出的最小值;(2)根据条件将不等式转化为关于的分式不等式,进而可得到其解集.试题解析:(1)由及得,因为,所以当且仅当,即时取等号,此时所以的最小值为(2)由(1),且原不等式可化为,即所以,即且所以原不等式的解集为【考点】1、基本不等式;2、分式不等式.36.若x>0,y>0,且+=1,则xy有()A.最大值64B.最小值C.最小值D.最小值64【答案】D【解析】因为,所以(当且仅当,即时取等号),即;故选D.【考点】基本不等式.【方法点睛】本题考查利用基本不等式求最值,属于基础题;在利用基本不等式求最值时,要注意其适用条件(一正,二定,三相等)的验证,陪凑“定和或定积”的解题的关键,也是难点,而验证“相等”是学生易忽视的问题,如“由判定的最小值为2”是错误的,因为是不成立的.37.如果不等式对一切实数均成立,则实数的取值范围是()A.B.C.D.【解析】不等式对一切实数均成立,等价于对一切实数均成立,所以,解得,故选A.【考点】函数的恒成立问题.【方法点晴】本题主要考查了不等式的恒成立问题的求解及一元二次函数的图象与性质的综合应用,对于函数的恒成立问题,一般选用参变量分离法、转化为对一切实数均成立,进行求解,其中正确运用一元二次函数的图形与性质是解答本题的关键,着重考查了分析问题和解答问题的能力,属于中档题.38.若满足约束条件则的最大值为【答案】7【解析】如图,画出可行域,令,画出初始目标函数,,当初始目标函数向上平移时,函数取值越来越大,当多点时,函数取得最大值,最大值为,故填:7.【考点】线性规划39.已知a>0,则的最小值是【答案】【解析】,当且仅当时等号成立取得最小值【考点】不等式性质40.二次不等式的解集为或,则关于的不等式的解集为_________.【答案】【解析】由题意可知所以所以不等式为,又,所以,解得.所以答案应填:.【考点】一元二次不等式的解法.【方法点睛】根据二次不等式的解集得出,求出,采用消元的思想,将和消去,再将不等式转化为具体的一元二次不等式来求解即可.本题考查了一元二次不等式与一元二次方程之间的应用问题,解题时应利用一元二次方程根与系数的关系进行求解即可.属于基础题.41.解关于的不等式:.【答案】当时,原不等式的集为,当时,原不等式的集为,当时,原不等式的集为或,当时,原不等式的集为.【解析】不等式中含有参数,对分和两种情况讨论,当时,原不等式为,解得即可,当时,原不等式化为一元二次不等式,再对分和两种情况分别求解.试题解析:原不等式整理得.当时,原不等式为,∴;当时,原不等式为,∴当时,原不等式可化为,当时,原不等式可化为,当时,原不等式为,原不等式的集为或,若,则,原不等式的集为或,当时,原不等式的集为.综上,当时,原不等式的集为,当时,原不等式的集为,当时,原不等式的集为或,当时,原不等式的集为.【考点】不等式的解法.42.不等式的解集是空集,则实数的范围为()A.B.C.D.【答案】B【解析】由题意得,不等式的解集是空集,当,解得或,(1)当时,不等式可化为,所以解集不是空集,不符合题意(舍去);(2)当时,不等式可化为不成立,所以解集为空集;当,要使的不等式的解集为空集,则,解得,综上所述,实数的范围为,故选B.【考点】一元二次不等式问题.43.设,则的大小关系是()A.B.C.D.【答案】D【解析】【考点】比较大小44.三个数的大小关系是().A.B.C.D.【答案】C【解析】,,,所以,故选C.【考点】指数,对数45.已知,则的大小关系为()A.B.C.D.【答案】C【解析】由指数函数是单调递减函数,所以,又,所以,故选C.【考点】指数函数与对数函数图象与性质.46.设,则()A.B.C.D.【答案】C【解析】,函数在上单调递增,故,又,而.综上知【考点】指数函数,对数函数的性质47.已知命题:;:.(1)若“”为真命题,求实数的取值范围;(2)若“”为真命题,求实数的取值范围.【答案】(1);(2).【解析】(1)先分别求出命题为真命题时的取值范围,再由已知“”为真命题进行分类讨论即可求解;(2)由(1)可知,当同时为真时,即可求出的范围.试题解析:若为真,则,所以,则若为真,则,即.(1)若“”为真,则或,则.(2)若“”为真,则且,则.48.设,且b>0,则下列不等式正确的是()A.B.C.D.【答案】C【解析】解答:∵a+b<0,且b>0,∴−a>b>0,∴a 2>b2.本题选择C选项.49.关于x的不等式ax-b>0的解集是(1,+),则关于x的不等式(ax+b)(x-2)>0的解集是()A.(1,2)B.(-1,2)C.(-,-1)(2,+)D.(-,1)(2,+)【答案】C【解析】由已知,不等式为,所以或,故选C.50.设,给出下列结论:①;②;③;④.其中正确的结论有()A.①④B.②④C.②③D.③④【答案】B【解析】①;②;③;;④.所以选B.51.已知.(1)当时,解不等式;(2)若,解关于的不等式.【答案】(1)(2)见解析【解析】(1),结合图像可得不等式解集(2),所以根据根的大小进行分类讨论:时,为;,为;时,为试题解析:(1)当时,不等式,即,解得.故原不等式的解集为.(2)因为不等式,当时,有,所以原不等式的解集为;当时,有,所以原不等式的解集为;当时,原不等式的解集为52.已知,那么下列命题中正确的是( )A.若则B.若,则C.若且,则D.若且,则【答案】C【解析】当时,,选项A是假命题;若,则由可得,选项B是假命题;若a3>b3且ab<0,则 (对),若a3>b3且ab<0,则若a2>b2且ab>0,则 (错),若,则D不成立。

高一数学不等式试题

高一数学不等式试题

高一数学不等式试题1.(2014•重庆)若log4(3a+4b)=log2,则a+b的最小值是()A.6+2B.7+2C.6+4D.7+4【答案】D【解析】利用对数的运算法则可得>0,a>4,再利用基本不等式即可得出解:∵3a+4b>0,ab>0,∴a>0.b>0∵log4(3a+4b)=log2,∴log4(3a+4b)=log4(ab)∴3a+4b=ab,a≠4,a>0.b>0∴>0,∴a>4,则a+b=a+=a+=(a﹣4)++7+7=4+7,当且仅当a=4+2取等号.故选:D.点评:本题考查了对数的运算法则、基本不等式的性质,属于中档题.2.(2014•榆林模拟)已知各项均为正数的等比数列{an }满足a7=a6+2a5,若存在两项am,an使得的最小值为()A.B.C.D.【答案】A【解析】由a7=a6+2a5求得q=2,代入求得m+n=6,利用基本不等式求出它的最小值.解:由各项均为正数的等比数列{an }满足 a7=a6+2a5,可得,∴q2﹣q﹣2=0,∴q=2.∵,∴q m+n﹣2=16,∴2m+n﹣2=24,∴m+n=6,∴,当且仅当=时,等号成立.故的最小值等于,故选A.点评:本题主要考查等比数列的通项公式,基本不等式的应用,属于基础题.3.(2014•咸阳二模)若正实数a,b满足a+b=1,则()A.有最大值4B.ab有最小值C.有最大值D.a2+b2有最小值【答案】C【解析】由于==2+≥4,故A不正确.由基本不等式可得a+b=1≥2,可得ab≤,故B不正确.由于=1+2≤2,故≤,故 C 正确.由a2+b2 =(a+b)2﹣2ab≥1﹣=,故D不正确.解:∵正实数a ,b 满足a+b=1, ∴==2+≥2+2=4,故有最小值4,故A 不正确.由基本不等式可得 a+b=1≥2,∴ab≤,故ab 有最大值,故B 不正确. 由于=a+b+2=1+2≤2,∴≤,故有最大值为,故C 正确.∵a 2+b 2 =(a+b )2﹣2ab=1﹣2ab≥1﹣=,故a 2+b 2有最小值,故D 不正确.故选:C .点评:本题考查基本不等式的应用,注意检验等号成立的条件,式子的变形是解题的关键,属于基础题.4. (2014•鹤城区二模)已知a ,b 为正实数,函数y=2ae x +b 的图象经过点(O ,1),则的最小值为( ) A .3+2B .3﹣2C .4D .2【答案】A【解析】将点(O ,1)的坐标代入y=2ae x +b ,得到a ,b 的关系式,再应用基本不等式即可. 解:∵函数y=2ae x +b 的图象经过点(O ,1), ∴1=2a•e 0+b ,即2a+b=1(a >0,b >0). ∴=()•1=()•(2a+b )=(2+1++)≥3+2(当且仅当b=a=﹣1时取到“=”). 故选A .点评:本题考查基本不等式,将点(O ,1)的坐标代入y=2ae x +b ,得到a ,b 的关系式是关键,属于基础题.5. (2014•郑州模拟)已知正项等比数列{a n }满足:a 7=a 6+2a 5,若存在两项a m ,a n ,使得a m a n =16a 12,则+的最小值为( ) A .B .C .D .不存在【答案】A【解析】应先从等比数列入手,利用通项公式求出公比q ,然后代入到a m a n =16a 12中,可得到关于m ,n 的关系式,再利用基本不等式的知识解决问题. 解:设正项等比数列{a n }的公比为q ,易知q≠1,由a 7=a 6+2a 5得,解得q=﹣1(舍),或q=2,因为a m a n =16a 12,所以,所以m+n=6,(m >0,n >0),所以≥,当且仅当m+n=6,即m=2,n=4时等号成立.故选A点评:对等比数列的考查一定要突出基本量思想,常规思路一般利用同项、求和公式,利用首项,公比表示已知,进一步推出我们需要的隐含条件或结论;基本不等式要重视其适用条件的判断,这里容易在取“=”时出错.6. (2014•南昌模拟)若正数x ,y 满足x 2+3xy ﹣1=0,则x+y 的最小值是( ) A .B .C .D .【解析】先根据题中等式将y用x表示出来,然后将x+y中的y消去,然后利用基本不等式可求出最值,注意等号成立的条件.解:∵正数x,y满足x2+3xy﹣1=0,∴3xy=1﹣x2,则y=,∴x+y=x+=+≥2=当且仅当=即x=时取等号,故x+y的最小值是.故选:B.点评:本题主要考查了消元法的应用,以及基本不等式的应用,同时考查了分析问题的能力和运算求解的能力,属于中档题.7.若x<1,则y=的最大值.【答案】﹣1【解析】变形利用基本不等式的性质即可得出.解:∵x<1,∴y===2x+=+3=﹣1.当且仅当x=0时取等号.故答案为﹣1.点评:熟练掌握基本不等式的性质是解题的关键.8.若实数x,y,z满足x+2y+3z=a(a为常数),则x2+y2+z2的最小值为.【答案】【解析】利用题中条件:“x+2y+3z=a”构造柯西不等式:(x2+y2+z2)(12+22+32)≥(x+2y+3z)2=a2这个条件进行计算即可.解:∵(x2+y2+z2)(12+22+32)≥(x+2y+3z)2=a2,…(5分)∴(x2+y2+z2)≥,当且仅当时取等号,…(8分)则x2+y2+z2的最小值为.…(10分)故答案为:.点评:本题考查用综合法证明不等式,关键是利用:(x2+y2+z2)(12+22+32)≥(x+2y+3z)29.设x>3,则x= 时,的最小值是.【答案】3+2,.【解析】根据x+=(x﹣3)++3,注意x﹣3与的积为定值,利用基本不等式求出它的最小值及相应的x的值即可.解:∵x>3,∴x+=( x﹣3)++3≥2 +3=,当且仅当( x﹣3)=即x=3+2时,等号成立,故答案为:3+2,.点评:本题考查基本不等式的应用,注意检验等号成立的条件,式子的变形使得x﹣3与的积为定值是解题的关键.10.已知二次函数f(x)=ax2﹣4x+c+1的值域是[1,+∞),则+的最小值是.【解析】由已知可得a>0且,然后利用基本不等式即可求解最值解:∵f(x)=ax2﹣4x+c+1的值域是[1,+∞),∴a>0且即ac=4∴c>0∴=3当且仅当且ac=4,则a=时取等号∴的最小值为3故答案为:3点评:本题主要考查了二次函数的性质的应用,基本不等式求解函数的最值等知识的综合应用.。

高一数学第二章不等式测试题

高一数学第二章不等式测试题

一、 选择题,每小题3分,共36分。

1、下列实数比较大小,错误的是()A 、2a ≥0B 、-3<C 、2)3.0(->D 、-21>-31 2、设P=x(x-1),Q=(x+2)(x-3),则P 与Q 的大小关系为()A 、P <QB 、P ≤QC 、P >QD 、P ≥Q3、下列不等式正确的是()A 、5-a >3-aB 、5a >3aC 、a 5 >a2 D 、5+a >3-a 4、集合{x|x ≤-1}的区间表示为()A 、(-1,+∞)B 、[-1,+∞ )C 、(-∞,-1)D 、(-∞,-1]5、已知a >b ,则下列式子中错误的是()A 、2a >2bB 、-5a <-5bC 、a+10>b+9D 、b-a <06、下列不等式组无解的是()A 、x-2<0B 、x-2<0C 、x-2>0D 、x-2>0X+1<0 X+1>0 X+1<0 X+1>07、不等式24-3x ≥0的解集是()A 、{x|x ≤-8}B 、{x|x ≥-8}C 、{x|x ≤8}D 、{x|x ≤0}8、不等式(x-2)(x+3)<0的解集是()A 、{x|2<x <3}B 、{x|x <2或x >3}C 、{x|x <-3或x >2}D 、{x|-3<x <2}9、不等式2)3-x (>0的解集是() A 、空集 B 、R C 、{3} D 、{x|x ≠3}10、解集为R 的不等式是()A 、|x|>0B 、|2x|<0C 、|2x-1|≥0D 、|2x-1|>011、不等式|x-3|<5的解集是()A 、{x |x <-2或x >8}B 、{x |x <-8或x >2}C 、{x |-2<x <8}D 、{x |-8<x <2}12、某商店进了一批价值1,53万元的MP3,每只卖612元,若商店至少要出售x 只后才获利,则x 应满足的关系式是()A 、612x ≥B 、612x ≥153C 、612x ≥1530D 、612≥x15300二、填空题、每小题3分,共24分。

高一数学基本不等式试题答案及解析

高一数学基本不等式试题答案及解析

高一数学基本不等式试题答案及解析1.设且,则的最小值为________.【答案】4【解析】由,当且仅当时等号成立.故答案为4.【考点】均值不等式的应用.2.长为4,宽为3的矩形,当长增加,且宽减少时的面积最大,则此时=_______,最大面积=________.【答案】.【解析】由题意,得所得矩形面积;则,即当时,矩形面积有最大值.【考点】一元二次函数模型的应用.3.已知x,y均为正数且x+2y=xy,则().A.xy+有最小值4B.xy+有最小值3C.x+2y+有最小值11D.xy﹣7+有最小值11【答案】C【解析】由,得,由得,则(当且仅当,即时取等号),;令,则在上为增函数,,排除A,B;而选项D:;选项C:(当且仅当,即或时取等号;故选C.【考点】基本不等式.4.若,则下列不等式正确的是().A.B.C.D.【答案】C【解析】由基本不等式得,则;又,.【考点】基本不等式.5.已知正数满足,则的最小值为.【答案】【解析】.【考点】基本不等式.6.设a>0,b>0,若是和的等比中项,则的最小值为()A.6B.C.8D.9【答案】A【解析】由题意a>0,b>0,且是和的等比中项,即,则,当且仅当时,即时取等号.【考点】重要不等式,等比中项7.(1)阅读理解:①对于任意正实数,只有当时,等号成立.②结论:在(均为正实数)中,若为定值,则,只有当时,有最小值.(2)结论运用:根据上述内容,回答下列问题:(提示:在答题卡上作答)①若,只有当__________时,有最小值__________.②若,只有当__________时,有最小值__________.(3)探索应用:学校要建一个面积为392的长方形游泳池,并且在四周要修建出宽为2m和4 m的小路(如图所示)。

问游泳池的长和宽分别为多少米时,共占地面积最小?并求出占地面积的最小值。

【答案】(2)①1 ,2:②3,10(3)游泳池的长为28m,宽14m时,占地面积最小,占地面积的最小值是648【解析】(2)①利用阅读材料,可知当时,有最小值2,②,当时,有最小值10.(3)设游泳池的长为m,则游泳池的宽为m,又设占地面积为,依题意,得,整理运用所给结论,可求面积的最值.(2)①利用阅读材料,可知当时,有最小值2,②,当时,有最小值10.(3)设游泳池的长为m,则游泳池的宽为m,又设占地面积为,依题意,得,整理.当且仅当即取“=”.此时所以游泳池的长为28m,宽14m时,占地面积最小,占地面积的最小值是648【考点】基本不等式在最值问题中的应用;进行简单的合情推理8.已知且若恒成立,则的范围是【答案】【解析】原式恒成立等价于,,所以解得.【考点】基本不等式求最值9.已知向量=(x,2),=(1,y),其中x>0,y>0.若•=4,则+的最小值为.【答案】【解析】因为所以当且仅当时取等号.【考点】基本不等式求最值10.现要用一段长为的篱笆围成一边靠墙的矩形菜园(如图所示),则围成的菜园最大面积是___________________.【答案】【解析】依题意可知,其中,由基本不等式可知即(当且仅当时等号成立),所以,所以围成的菜园最大面积是.【考点】基本不等式的应用.11.若x>0,则函数的最小值是________.【答案】2【解析】因为,x>0,所以,函数当且仅当时,函数取得最小值2.【考点】均值定理的应用点评:简单题,应用均值定理,要注意“一正,二定,三相等”,缺一不可。

高一数学不等式练习题及答案

高一数学不等式练习题及答案

高一数学不等式练习题及答案一、填空题1. 若x < 3,则x²的取值范围是________。

2. 解不等式x² + 4x - 5 > 0,得到的解集是________。

3. 若x - 1 ≤ 2 - x,则x的取值范围是________。

4. 若2x - 3 < 5 + x,则x的取值范围是________。

5. 解不等式3(x - 2) + 4 > 2(x + 1),得到的解集是________。

二、选择题1. 下列不等式中,解集为(-∞, -4)的是:A. x + 5 > -10B. x² - 6x - 16 < 0C. 3x - 2 ≤ 5x + 4D. x(x - 3) > 02. 若a > 3,下列不等式中,解集为(3, 5)的是:A. x² - 2ax + a² < 0B. x² + 8x + 15 > 0C. 2x - a < 3xD. x² - 5x + a > 0三、解答题1. 解不等式2x - 3 < 5 + 3x,并表示解集。

2. 解不等式(x + 2)(x + 3) > 0,并表示解集。

3. 解不等式x² - 6x + 8 ≤ 0,并表示解集。

四、解答题1. 解方程组:{ 2x - y ≤ 1{ x + y > 32. 解方程组:{ x + 2y ≤ 4{ x - y > 1答案:一、填空题1. (-∞, 3)2. (-∞, -5)∪(1, +∞)3. (-∞, +∞)4. (-∞, +∞)5. (-∞, -3)二、选择题1. B2. D三、解答题1. 将不等式进行整理得到:2x - 3x < 5 + 3,再化简得到:x > -2。

所以解集为(-2, +∞)。

2. 将不等式进行整理得到:(x + 2)(x + 3) > 0。

高一数学不等式试题

高一数学不等式试题

高一数学不等式试题1.设常数,若对一切正实数成立,则的取值范围为 .【答案】【解析】【考点】1.不等式与函数的转化;2.均值不等式求最值2.(1)已知x<,求函数y=4x-2+的最大值;(2)已知x>0,y>0且=1,求x+y的最小值.【答案】(1)1;(2)16【解析】本题主要考察函数万能公式的运用,在第一小问中函数化简须与分式分母相对应,在运用万能公式时,要注意不要将符号弄反,解不等式即可求出最大值。

在第二小问中,将条件乘入到所求结果中去,再将式子进行展开,利用万能公式,解不等式即可求出最小值。

试题解析:(1)x<,∴4x-5<0.∴y=4x-5++3=-[(5-4x)+]+3=1.≤-2+3=1,ymax(2)∵x>0,y>0且=1,∴x+y=(x+y)=10+≥10+2=16,即x+y的最小值为16【考点】函数万能关系不等式3.设,,则的大小关系为.【答案】【解析】,【考点】函数求最值4.(12分)已知函数y=的定义域为R.(1)求a的取值范围.(2)若函数的最小值为,解关于x的不等式x2﹣x﹣a2﹣a<0.【答案】(1);(2)【解析】(1)定义域为,指被开方数恒大于等于0,讨论两种情况当或是两种情况;(2)函数的最小值,指被开方数为抛物线时的顶点函数值是,所以先根据顶点坐标求参数,然后将参数代入二次不等式,解不等式.试题解析:(1)∵函数y=的定义域为R,∴a=0时,满足题意;a>0时,△=4a2﹣4a≤0,解得0<a≤1;∴a的取值范围是{a|0≤a≤1};(2)∵函数y的最小值为,∴≥, a∈[0,1];∴ax2+2ax+1≥;当a=0时,不满足条件;当1≥a>0时,ax2+2ax+1的最小值是=,∴a=;∴不等式x2﹣x﹣a2﹣a<0可化为x2﹣x﹣<0,解得﹣<x<;∴不等式的解集是{x|﹣<x<}.【考点】1.二次函数;2.二次函数的性质;3.解二次不等式.5.实数,满足不等式组,则目标函数的最小值是()A.B.C.D.【答案】C【解析】如图,先画可行域,,当目标函数过点时,函数取得最小值,所以.【考点】线性规划6.若不等式(a-2)x2+2(a-2)x-4<0的解集为R,则实数a的取值范围是________.【答案】【解析】当时,恒成立,等,解得:,所以,实数的取值范围是.【考点】1.二次函数的图像;2.二次不等式恒成立.7.二次函数的零点为2和3,那么不等式的解集为A.B.C.D.【答案】B【解析】因为二次函数的零点为2和3,所以,进而函数,又因为,所以不等式的解集为,故选择B【考点】一元二次不等式解集8.(本题满分12分)解下列不等式:(1)(2)【答案】(1);(2)【解析】(1)先将二次项系数化为正数,然后分解因式得,利用一元二次不等式其解法口诀“大于取两边,小于去中间”可得解集;(2)移项整理为,分解因式得,即可求得试题解析:(1)将不等式化为标准形式为分解因式得所以原不等式的解集为(2)将不等式化为标准形式为分解因式得所以原不等式的解集为【考点】解一元二次不等式9.不等式的解集是____________________.【答案】【解析】不等式变形为:,分解因式可得:,所以解集为【考点】解一元二次不等式10.已知,满足条件,则的最小值()A.B.C.D.4【答案】B【解析】不等式组表示的平面区域如图所示,为边界及其内部。

高一数学不等式试题

高一数学不等式试题

高一数学不等式试题1.(本题满分12分)已知函数(1)当时,求不等式的解集(2)若关于的不等式的解集为R,求实数的取值范围(3)当时,若在内恒成立,求实数b的取值范围。

【答案】,,【解析】2.(文)若,则的最大值为.【答案】文 -4【解析】(文),当且仅当时等号成立,所以最小值为【考点】1.线性规划;2.均值不等式求最值3.对于任意实数x,一元二次不等式恒成立,则实数a取值范围是()A.B.C.(-2,2)D.【答案】C【解析】试题分析因为一元二次不等式,所以a-2≠0,a-2<04(a-2)2+16(a-2)<0解得-2<a<2。

故选C【考点】函数不等式的运用4.设满足约束条件,则的最大值为()A.-8B.3C.5D.7【答案】D【解析】不等式表示的可行域为直线围成的三角形及其内部,三个顶点为,当过点时取得最大值7【考点】线性规划5.(本题满分10分)解关于的不等式【答案】当或时,不等式解集为;当或时,不等式的解集为;当或时, 不等式解集为.【解析】首先将原不等式通过十字相乘法分解因式得,然后得到两根与相同时参量的值,再根据与的大小分情况讨论进而借助一元二次函数解不等式.试题解析:原不等式可化为:,令,可得:∴当或时,,;当或时,,不等式无解;当或时, ,综上所述,当或时,不等式解集为;当或时,不等式的解集为;当或时, 不等式解集为.【考点】(1)含参量一元二次不等式的解法;(2)不等式的基本性质.6.设变量x,y满足约束条件则z=3x-2y的最大值为A.0B.2C.4D.6【答案】C【解析】约束条件对应的可行域为直线围成的三角形区域,,当直线过交点时取得最大值4【考点】线性规划问题7.已知,则的最小值是()A.10B.C.12D.20【解析】,,当且仅当时取得等号.【考点】基本不等式.8.不等式的解集是____________________.【答案】【解析】不等式变形为:,分解因式可得:,所以解集为【考点】解一元二次不等式9.在约束条件下,目标函数取最大值时的最优解为_______.【答案】【解析】根据约束条件画出可行域,再由目标函数可得,平移直线可知在点处目标函数取得最大值.【考点】线性规划问题.10.已知满足且,则下列选项中一定成立的是()A.B.C.D.【答案】D【解析】因为满足,所以.又因为,所以,故选D.【考点】不等式的性质.【一题多解】根据题意令,代入A、B、C、D中,易知只有D成立,故选D.11.比较的大小关系是()A.B.C.D.【答案】D【解析】∵,,又幂函数在上是增函数,,∴,故选D.【考点】1、指数式;2、比较大小.12.已知,,则下列不等式中成立的是()A.B.C.D.【解析】,【考点】不等式的性质13.三个数的大小顺序是()A.B.C.D.【答案】D【解析】由,,则大小顺序可知为:【考点】指数和对数函数性质的应用。

高一数学不等式练习题

高一数学不等式练习题

高一数学不等式练习题1、不等式112x <的解集是( )A .(,2)-∞B .(2,)+∞C .(0,2)D .()0,∞-⋃(2,)+∞2、不等式201x x -+≤的解集是( )A .(1)(12]-∞--,,B .[12]-,C .(1)[2)-∞-+∞,,D .(12]-,3、已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =( )(A ){x |x <-2} (B ){x |x >3} (C ){x |-1<x <2} (D ){x |2<x <3}4( )A. D.5、不等式203x x ->+的解集是( )(A)(-3,2) (B)(2,+∞) (C) (-∞,-3)∪(2,+∞) (D) (-∞,-2)∪(3,+∞)6、若不等式210x ax ++≥对一切102x ⎛⎤∈ ⎥⎝⎦,成立,则a 的最小值为( )A.0 B.2- C.52- D.3-7、设x 、y 为正数,则有(x+y)(1x +4y )的最小值为( )A .15B .12C .9D .68、.若对任意∈x R ,不等式x ≥ax 恒成立,则实数a 的取值范围是( )(A)a <-1 (B)a ≤1 (C) a <1 (D )a ≥19、下面给出的四个点中,位于⎩⎨⎧>+-<-+01,01y x y x 表示的平面区域内的点是( )(A )(0,2) (B)(-2,0) (C)(0,-2) (D)(2,0)10、已知函数()⎩⎨⎧≥-<+-=0101x x x x x f ,则不等式()()111≤+++x f x x 的解集是()(A) {}121|-≤≤-x x (B) {}1|≤x x(C) {}12|-≤x x (D) {}1212|-≤≤--x x11、求函数f(x)=3+lgx+4/(lgx)的最大值 其中(0<x<1)12、不等式224122x x +-≤的解集为 _________ .13、已知532,(0,0)x y x y+=>>,则xy 的最小值是_____________14、当(12)x ∈,时,不等式240x mx ++<恒成立,则m 的取值范围是 ______ .15、已知实数x 、y 满足⎪⎩⎪⎨⎧≤≤≤-≥+,30,2,2y y x y x 则z =2x -y 的取值范围是 ___________ .16、设,x y 满足约束条件5,3212,03,0 4.x y x y x y +≤⎧⎪+≤⎪⎨≤≤⎪⎪≤≤⎩则使得目标函数65z x y =+的值最大的点(,)x y 是_______。

高一数学基本不等式试题

高一数学基本不等式试题

高一数学基本不等式试题1.已知x,y均为正数且x+2y=xy,则().A.xy+有最小值4B.xy+有最小值3C.x+2y+有最小值11D.xy﹣7+有最小值11【答案】C【解析】由,得,由得,则(当且仅当,即时取等号),;令,则在上为增函数,,排除A,B; 而选项D:;选项C:(当且仅当,即或时取等号;故选C.【考点】基本不等式.2.已知,则x + y的最小值为.【答案】【解析】,,由,可得,当且仅当时等号成立,故,故答案为.【考点】对数的性质运算;均值不等式的应用.3.若,则下列不等式正确的是().A.B.C.D.【答案】C【解析】由基本不等式得,则;又,.【考点】基本不等式.4.若正数满足,则的取值范围是________________.【答案】【解析】,;可化为,,即,,即.【考点】基本不等式.5.在下列函数中,最小值为2的是( )A.B.C.D.【答案】D【解析】A中不满足x>0;B中,因为0<sinx<1,故“=”取不到;C中,因为0<lgx<1,故“=”取不到;D中 y=3x+3-x≥2,当且仅当 3x=3-x时取等号,此时x存在;故选D.【考点】基本不等式.6.对任意正数x,y不等式恒成立,则实数的最小值是 ()A.1B.2C.3D.4【答案】【解析】根据选项可知,所以此时不等式左边两项都是正数.根据基本不等式有,因为恒成立,所以,消掉,解得.所以.【考点】不等式恒成立;基本不等式.7.已知正数满足,则的最小值为.【答案】【解析】.【考点】基本不等式.8.在分别是角A、B、C的对边,若,则的周长的取值范围是()A. B. C. D.【答案】C【解析】∵,∴,化简后可得:,∴,又∵,∴,即周长的范围为.【考点】1、余弦定理;2、基本不等式.9.设实数满足:,则取得最小值时,.【答案】121【解析】∵,∴,上述等号成立的条件依次为:,∴a=1,b=c=10,d=100,a+b+c+d=121.【考点】1、基本不等式;2、不等式的放缩.10.下列各函数中,最小值为2的是 ().A.y=x+B.y=sin x+,x∈C.y=D.y=+【答案】D【解析】(1)函数:当时,,当且仅当即时取;当时,,此时,即,当且仅当即时取。

高一数学不等式试题答案及解析

高一数学不等式试题答案及解析

高一数学不等式试题答案及解析1.下列函数中,最小值为2的是----------------------------------------()A.B.C.D.【答案】B【解析】略2.(本题满分10分)已知正数满足,求的最小值有如下解法:解:∵且.∴∴. 判断以上解法是否正确?说明理由;若不正确,请给出正确解法【答案】不正确【解析】∵且.∴∴. 判断以上解法是否正确?说明理由;若不正确,请给出正确解法解:以上解法错误------1分理由:∵,当且仅当x=y时取到等号,3.已知则的最小值为()A.2B.C.4D.5【答案】C【解析】【考点】均值不等式求最值4.设常数,若对一切正实数成立,则的取值范围为 .【答案】【解析】【考点】1.不等式与函数的转化;2.均值不等式求最值5.已知点满足约束条件,为坐标原点,则的最小值为_______________.【答案】【解析】将约束条件中任意俩条件进行联立,若想满足三个不等式,则解出y=,将y值带入不等式,解出,所以的最小值为。

【考点】函数不等式6.如果,则下列不等式中成立的只有()A.B.C.D.【答案】C【解析】令,可得,故不正确,正确.再根据,可得不正确,只有选项成立,故选.【考点】不等式关系与不等式7.如果,那么下列不等式成立的是()A.B.C.D.【答案】A【解析】因为,则,所以,A正确;因为,则,B错;因为,则,所以,C错;因为,则,D错;【考点】不等式的基本性质;8.关于x的不等式的解集是,则关于x的不等式的解集是()A.B.C.D.【答案】D【解析】关于x的不等式的解集是,所以,所以不等式可化为,从而确定解集;【考点】1.一元二次不等式的解法;2.一元一次不等式的解集与系数的关系;9.若,且,则的最小值等于_______.【答案】【解析】约束条件对应的平面区域如上图所示,当直线过点时取得最小值3.【考点】线性规划10.(本小题16分)已知函数(1)时,解关于的不等式;(2)当时,若对任意的,不等式恒成立,求实数的取值范围;(3)若,求的取值范围.【答案】(1)(2)(3)【解析】(1)将不等式系数整理可得到二次不等式,结合二次函数图像即可求解;(2)将不等式恒成立问题采用分离参数的方法转化为求函数最值问题,本题中首先将不等式变形为进而利用均值不等式求解的最小值;(3)将不等式化简得到关于的不等式,进而求得范围,将所求式子的绝对值去掉,结合值及线性规划求式子的范围试题解析:(1)化为因此解集为;(2)原不等式化为:,因为所以原不等式化为恒成立,,当且仅当时等号成立,所以(3)题目条件化为,作图可知,去绝一个绝对值z=,对讨论再去掉一个绝对值.当时,由线性规划得;当时,,综上可得【考点】1.不等式解法;2.函数最值;3.线性规划问题11.不等式组所表示的平面区域的面积是 ____________.【答案】25【解析】由已知条件可计算出,不等式表示的平面区域为,易得【考点】线性规划不等式组表示的平面区域及三角形的面积计算12.二次不等式的解集是全体实数的条件是()A.B.C.D.【答案】B【解析】当时,原不等式换位对任意的都成立,要使二次不等式的解集是全体实数,只需,综上,故选B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学不等式测试题
一、选择题(本大题共10小题,每小题5分,共50分)
1.若a <b <0,则 ( )A .
b 11<a B . 0<b a <1 C . a b >b 2 D . b
b a a > 2.若|a +c|<b ,则 ( )A . |a |<|b|-|c| B . |a |>|c|
-|b| C . |a |>|b|-|c| D . |a |<|c|-|b|
3.设a =26c ,37b ,2-=-=,则a ,b,c 的大小顺序是 ( )
A . a >b >c
B . a >c >b
C . c >a >b
D . b >c >a
4. 设b <0<a ,d <c <0,则下列各不等式中必成立的是 ( )A . a c >bd B . d
b >
c a C . a +c >b +
d D . a -c >b -d
5.下列命题中正确的一个是 ( )
A .b
a a
b +≥2成立当且仅当a ,b 均为正数 B .2
222b a b a +≥+成立当且仅当a ,b 均为正数 C .log a b +log a b ≥2成立当且仅当a ,b ∈(1,+∞)
D .|a +a
1|≥2成立当且仅当a ≠0 6.函数y =log ⎪⎭
⎫ ⎝⎛-+⋅
+-2134223x x x x 的定义域是 ( ) A .x ≤1或x ≥3 B .x <-2或x >1 C .x <-2或x ≥3 D .x <-2或x >3
7.已知x,y ∈R ,命题甲: |x -1|<5,命题乙: ||x |-1|<5,那么 ( )
A .甲是乙的充分条件,但不是乙的必要条件
B .甲是乙的必要条件,但不是乙的充要条件
C .甲是乙的充要条件
D .甲不是乙的充分条件,也不是乙的必要条件
8.已知实数x ,y 满足x 2+y 2=1,则代数式(1-x y)(1+x y)有 ( )
A .最小值21和最大值1
B .最小值43和最大值1
C .最小值21和最大值43
D .最小值1
9.关于x 的方程ax 2+2x -1=0至少有一个正的实根的充要条件是 ( )
A .a ≥0
B .-1≤a <0
C .a >0或-1<a <0
D .a ≥-1
10.函数y =x
x x +++132
(x >0)的最小值是 ( ) A .23 B .-1+23 C .1+23 D .-2+23
二、填空题(本大题共4小题,每小题6分,共24分)
11.关于x 的不等式a x 2+b x +2>0的解集是}3
121|{<<-x x ,则a +b=_____________。

12.实数=+=+>x y x y x y x ,此时的最大值是,那么,且,______log log 42022_________,y=_________。

13.方程()
02lg 222=-+-a a x x 又一正根一负根,则实数a 的取值范围是 。

14.建造一个容积83m ,深为m 2长的游泳池,若池底和池壁的造价每平方米分别为120元和80元,则游泳池的最低总造
价为__________元。

三、解答题(本大题共6题,共76分)
15.已知.))((,1,0,xy bx ay by ax b a b a ≥++=+>求证:
且(12分)
16.解关于x 的不等式1)0( )1(log )4(log 14
121≠>-≥-+a a a a x x 且.
(12分)
17.已知: x > y >0 , 且x y=1, 若)(2
2y x a y x -≥+恒成立,求实数a 的取值范围。

(12分)
18.解关于)0(1
1)1(2>>+-+a x ax x a x 的不等式。

(12分)
19.设f(x)是定义在上]1,1[-的奇函数,g(x)的图象与f(x)的图象关于直线x =1对称,而当]3,2[∈x 时,44)(2-+-=x x x g 。

(1)求f(x)的解析式;
(2)对于任意的,]1,0[,2121x x x x ≠∈且求证:;2)()(1212x x x f x f -<-
(3)对于任意的,]1,0[,2121x x x x ≠∈且求证:.1)()(12≤-x f x f (14分)
20.某单位用木料制作如图所示的框架, 框架的下部是边长分别为x、y(单位:m)的矩形.上部是等腰直角三角形. 要求框架围成的总面积8cm2. 问x、y分别为多少(精确到0.001m) 时用料最省?(14分)。

相关文档
最新文档