数学必修二第一章知识点总结习题

合集下载

高中数学 必修二-第一章 立体几何初步 知识点整理

高中数学 必修二-第一章  立体几何初步 知识点整理

底面为三角形、四边形、五边形„„的棱锥分别叫做三棱锥、四棱锥、五棱锥„„,
其中三棱锥又叫四面体。
4
必修二
正棱锥:如果一个棱锥的底面是正多边形,并且顶点在底面上的射影是底面的中心, 这样的棱锥叫做正棱锥。
正棱锥的性质: ①各侧棱相等,各侧面都是全等的等腰三角形; ②棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形,棱锥的高、侧棱和侧 棱在底面上的射影也组成一个直角三角形。 (4)棱台的结构特征 用一个平行于棱锥底面的平面去截棱 锥,底面与截面之间的部分叫做棱台。 原棱锥的底面和截面分别叫做棱台的 下底面和上底面;其它各面叫做棱台的侧 面;相邻侧面的公共边叫做棱台的侧棱; 底面与侧面的公共顶点叫做棱台的顶点; 当棱台的底面水平放置时,铅垂线与两底 面交点间的线段叫做棱台的高。 由正棱锥截得的棱台叫做正棱台。正棱台的性质: ①各侧棱相等,侧面是全等的等腰梯形;②两底面以及平行于底面的截面是相似多边 形;③两底面中心连线、相应的边心距和斜高组成一个直角梯形;④两底面中心连线、侧 棱和两底面外接圆相应半径组成一个直角梯形;⑤正棱台的上下底面中心的连线是棱台的 一条高;⑥正四棱台的对角面是等腰梯形。
8
必修二
②在已知图形中平行于 x 轴或 y 轴的线段,在直观图中分别画成平行于 x′轴或 y′ 轴的线段。
③在已知图形中平行于 x 轴的线段,在直观图中保持原长度不变,平行于 y 轴的线段, 长度变为原来的一半。
用斜二测法画直观图,关键是掌握水平放置的平面图形的直观图的画法,而画水平放 置的平面图形的关键是确定多边形的顶点。因为多边形顶点的位置一旦确定,依次连接这 些顶点就可画出多边形。
在一束平行光线照射下形成的投影,叫做平行投影。平行投影的投影线是平行的。在 平行投影中,投影线正对着投影面时,叫做正投影,否则叫做斜投影。

数学必修二第一章知识点总结

数学必修二第一章知识点总结

数学必修二第一章知识点总结1. 函数函数是数学中一个重要的概念,它描述了两个集合之间的关系。

在数学中,常常用字母表示函数,例如:f(x)。

函数可以由四个要素来确定:定义域、值域、对应关系和图像。

定义域是函数输入的所有可能的值,而值域是函数输出的所有可能的值。

对应关系是定义域中的每个元素与值域中的一个元素的配对关系。

函数的图像是由对应关系所决定的,通常以点的形式表示在坐标系中。

2. 函数的表示及性质函数可以通过各种方式来表示,其中最常用的方式是函数公式表示法和图表表示法。

函数的性质包括奇偶性、单调性、分段性和周期性等。

奇函数满足f(−x)=−f(x),偶函数满足f(−x)=f(x)。

单调性描述了函数图像在定义域中的变化趋势,可以分为递增和递减两种。

分段函数指的是在定义域的不同区间上具有不同的函数表达式。

周期函数则表明函数在一定的区间内具有重复的图像。

3. 直线与直线方程直线是平面上最简单的图形之一,可以通过斜率和截距来表达。

直线的斜率描述了函数图像的倾斜程度,截距则描述了与y轴的交点位置。

直线方程的一般形式为Ax+By+C=0,其中A、B和C为常数,表示了直线的性质。

斜截式方程可以表示为y=kx+b,其中k是斜率,b是截距。

点斜式方程可以表示为y−y1=k(x−x1),其中(x1,y1)为直线上的一点,k为斜率。

4. 线性函数线性函数是一种特殊的函数,其函数图像是一条直线。

线性函数的一般形式为f(x)=kx+b,其中k为斜率,b为截距。

线性函数的图像是直线,在坐标系中可以用两点确定。

知道直线上的两个点(x1,y1)和(x2,y2),可以通过斜率公式$k=\\frac{y_2-y_1}{x_2-x_1}$来求得斜率。

线性函数的图像具有一些特点,例如:与x轴的交点为$(-\\frac{b}{k},0)$,与y轴的交点为(0,b),且平行于直线y=kx的直线均是线性函数。

5. 二次函数二次函数是一种常见的非线性函数,其函数图像是抛物线。

高一数学必修二第一章知识点总结

高一数学必修二第一章知识点总结

高一数学必修二第一章知识点总结一、函数及其图像和性质1、函数的概念(考点):指自变量x与因变量y之间的一种关系,这个关系具有如下特征:( 1)是一种对应关系;( 2)表示了自变量和因变量之间的依赖与反依赖的关系。

2、二次函数及其图像和性质:(考点):其中表示第一个自变量,用x表示,表示第二个自变量,用y表示。

它们的图像叫做抛物线,其顶点坐标为( 0, 0)。

2、二次函数的图像的一般式: a、只含有正弦,余弦,正切,余切的情况(定义域)|3、抛物线与y轴交点为P的情形:|4、抛物线与y轴交点坐标为:|5、抛物线与x轴交点坐标为:|6、与y轴的交点坐标为:|7、与x轴的交点坐标为:|8、求抛物线与y轴的交点时,先把抛物线向y轴作图,看图像与y轴交点的横坐标是否为0,若是则取原点o的坐标为0,再进行计算。

1。

抛物线解析式a。

2。

二次函数解析式1。

设抛物线解析式为f(x) = kx+b其中, k为常数, b可取实数,且k>0。

2。

设抛物线解析式为f(x) = kx+b其中, k为常数, b可取实数,且k>0。

3。

设抛物线解析式为f(x) = kx+b其中, k为常数, b可取实数,且k>0。

由此得,代入解析式即得f(x)解析式的含义:将两个不等式放在同一坐标平面内,消去x得抛物线解析式。

两个不等式: y-kx>0即, a>0时, x>0,将x=0带入a中消去x得抛物线解析式。

定义域和值域在实际应用中,我们总会遇到不等式f(x) =kx+b 的求解问题,比如,求抛物线的解析式或方程f(x) =kx+b的值域。

利用两边取倒数法则直接求得答案。

对于这样的不等式,我们把不等号右边看成常数,左边当成变量,利用求导法则求导,就能够很快地求出该不等式的解。

解:注意题目条件,结合二次函数的解析式和顶点坐标,通过观察图像,并参照图像的对称轴,解得y-kx>0,即a>0,联立不等式组,解得a=0,即f(x)的解析式为a>0。

高中数学必修2知识点总结:第一章-空间几何体

高中数学必修2知识点总结:第一章-空间几何体

高中数学必修2知识点总结第一章 空间几何体1.1柱、锥、台、球的结构特征 1.2空间几何体的三视图和直观图1 三视图:正视图:从前往后 侧视图:从左往右 俯视图:从上往下 2 画三视图的原则:长对齐、高对齐、宽相等 3直观图:斜二测画法 4斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变; (3).画法要写好。

5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图1.3 空间几何体的表面积与体积 (一 )空间几何体的表面积1棱柱、棱锥的表面积: 各个面面积之和2 圆柱的表面积3 圆锥的表面积2r rl S ππ+= 4 圆台的表面积22R Rl r rl S ππππ+++= 5 球的表面积24R S π=(二)空间几何体的体积1柱体的体积 h S V ⨯=底 2锥体的体积 h S V ⨯=底313台体的体积 h S S S S V ⨯++=)31下下上上( 4球体的体积 334R V π=222r rl S ππ+=第一章空间几何体1.1 空间几何体的结构一、选择题1、下列各组几何体中是多面体的一组是()A 三棱柱四棱台球圆锥B 三棱柱四棱台正方体圆台C 三棱柱四棱台正方体六棱锥D 圆锥圆台球半球2、下列说法正确的是()A 有一个面是多边形,其余各面是三角形的多面体是棱锥B 有两个面互相平行,其余各面均为梯形的多面体是棱台C 有两个面互相平行,其余各面均为平行四边形的多面体是棱柱D 棱柱的两个底面互相平行,侧面均为平行四边形3、下面多面体是五面体的是()A 三棱锥B 三棱柱C 四棱柱D 五棱锥4、下列说法错误的是()A 一个三棱锥可以由一个三棱锥和一个四棱锥拼合而成B 一个圆台可以由两个圆台拼合而成C 一个圆锥可以由两个圆锥拼合而成D 一个四棱台可以由两个四棱台拼合而成5、下面多面体中有12条棱的是()A 四棱柱B 四棱锥C 五棱锥D 五棱柱6、在三棱锥的四个面中,直角三角形最多可有几个()A 1 个B 2 个C 3个D 4个二、填空题7、一个棱柱至少有————————个面,面数最少的棱柱有————————个顶点,有—————————个棱。

人教版数学高一必修二

人教版数学高一必修二

人教版数学高一必修二
人教版数学高一必修二第一章第二节的笔记可以包括以下几个部分:
1. 基础知识:
定义:包括平面角、直线与平面的位置关系等的基本定义。

性质:理解并掌握平面几何的基本性质,例如平行线性质、垂直线性质等。

2. 重点公式:
平面角公式:计算两个平面之间的夹角。

直线与平面位置关系公式:判断直线与平面是平行、相交还是垂直。

3. 解题方法:
解析法:通过建立坐标系,将几何问题转化为代数问题,进而求解。

综合法:根据已知的定理、性质等,通过逻辑推理得出结论。

4. 注意事项:
注意图形的绘制,理解图形与公式的对应关系。

注意公式的适用范围和限制条件。

5. 典型例题:
选择题和填空题:针对本节知识的理解和应用进行练习。

解答题:通过实际问题的解答,加深对知识的理解和应用。

6. 课后习题:
对应本节知识,选取有代表性的题目进行练习。

7. 归纳总结:
对本节知识进行总结,梳理知识点之间的联系,形成知识体系。

请注意,这只是一种可能的笔记结构,具体内容应根据个人的学习情况和需求进行调整和补充。

北师大版高中数学选择性必修第二册课后习题 第一章 1.1 数列的概念

北师大版高中数学选择性必修第二册课后习题 第一章 1.1 数列的概念

第一章数列§1 数列的概念及其函数特性1.1 数列的概念 课后篇巩固提升必备知识基础练1.已知数列{a n }的通项公式为a n =1+(-1)n+12,n ∈N +,则该数列的前4项依次为( )A.1,0,1,0B.0,1,0,1C.12,0,12,0D.2,0,2,0n 分别等于1,2,3,4时,a 1=1,a 2=0,a 3=1,a 4=0. 2.数列1,3,6,10,…的一个通项公式是( ) A.a n =n 2-n+1 B.a n =n (n -1)2C.a n =n (n+1)2D.a n =n 2+1n=1,2,3,4,代入A,B,C,D 检验,即可排除A,B,D,故选C. 3.已知数列{a n }的通项公式为a n =n 2-n-50,n ∈N +,则-8是该数列的( )A.第5项B.第6项C.第7项D.非任何一项n 2-n-50=-8,得n=7或n=-6(舍去). 4.数列23,45,67,89,…的第10项是( )A.1617B.1819C.2021D.22234项可知,数列的一个通项公式为a n =2n 2n+1,n ∈N +,当n=10时,a 10=2×102×10+1=2021.5.(浙江湖州期中)在数列0,14,…,n -12n,…中,第3项是 ;37是它的第项.7,设该数列为{a n },则数列的通项公式为a n =n -12n,则其第3项a 3=3-12×3=13,若a n =n -12n=37,可解得n=7.6.数列3,5,9,17,33,…的一个通项公式是 .n =2n +1,n ∈N +7.根据数列的前几项,写出下列各数列的一个通项公式.(1)-1,7,-13,19,…; (2)0.8,0.88,0.888,….符号问题可通过(-1)n 或(-1)n+1表示,其各项的绝对值的排列规律为:后面的数的绝对值总比前面数的绝对值大6,故通项公式为a n =(-1)n (6n-5).(2)将数列变形为89(1-0.1),89(1-0.01),89(1-0.001),…,∴a n =891-110n.8.已知数列{a n }的通项公式为a n =-n 2+n+110. (1)20是不是{a n }中的一项? (2)当n 取何值时,a n =0.令a n =-n 2+n+110=20,即n 2-n-90=0,∴(n+9)(n-10)=0, ∴n=10或n=-9(舍). ∴20是数列{a n }的第10项. (2)令a n =-n 2+n+110=0, 即n 2-n-110=0, ∴(n-11)(n+10)=0, ∴n=11或n=-10(舍),∴当n=11时,a n =0.关键能力提升练9.数列12,14,-58,1316,-2932,6164,…的一个通项公式是( )A.2n -32nB.-2n -32nC.(-1)n 2n -32nD.(-1)n+12n -32n21,22,23,24,…,易看出第2,3,4项的分子分别比分母少3.把第1项变为-2-32,因此原数列可化为-21-321,22-322,-23-323,24-324,….故原数列的一个通项公式为a n =(-1)n·2n -32n.10.设a n =1n+1+1n+2+1n+3+…+12n(n ∈N +),那么a n+1-a n 等于( )A.12n+1B.12n+2C.12n+1+12n+2D.12n+1−12n+2a n =1n+1+1n+2+1n+3+…+12n ,∴a n+1=1n+2+1n+3+…+12n+12n+1+12n+2,∴a n+1-a n =12n+1+12n+2−1n+1=12n+1−12n+2.11.如图是由7个有公共顶点O的直角三角形构成的图案,其中OA1=A1A2=A2A3=…=A7A8=1,如果把图中的直角三角形继续作下去,记OA1,OA2,…,OA n,…的长度构成数列{a n},则此数列的通项公式为( )A.a n=n,n∈N+B.a n=√n+1,n∈N+C.a n=√n,n∈N+D.a n=n2,n∈N+OA1=1,OA2=√2,OA3=√3,…,OA n=√n,…,∴a1=1,a2=√2,a3=√3,…,a n=√n,….12.(多选题)已知数列0,2,0,2,0,2,…,则前六项适合的通项公式为( )A.a n=1+(-1)nB.a n=2cos nπ2C.a n=2sin(n+1)π2D.a n=1-cos(n-1)π+(n-1)(n-2)解析对于选项A,由a n =1+(-1)n 得前六项为0,2,0,2,0,2,满足条件;对于选项B,由a n =2cos nπ2得前六项为0,-2,0,2,0,-2,不满足条件;对于选项C,由a n =2sin(n+1)π2得前六项为0,2,0,2,0,2,满足条件;对于选项D,由a n =1-cos(n-1)π+(n -1)(n-2)得前六项为0,2,2,8,12,22,不满足条件. 13.(多选题)下列选项中能满足数列1,0,1,0,1,0,…的通项公式的有( ) A.a n =1+(-1)n+12B.a n =sin 2nπ2C.a n =cos 2(n -1)π2D.a n ={1,n 是奇数0,n 是偶数,当n 为奇数时,选项ABCD 中的通项公式均得出1,当n 为偶数时,选项ABCD 中的通项公式均得出0. 14.已知数列{a n }的通项公式a n =(-1)n -1·n2n -1,n ∈N +,则a 1= ;a n+1= .(-1)n·(n+1)2n+11=(-1)1-1×12×1-1=1,a n+1=(-1)n+1-1·(n+1)2(n+1)-1=(-1)n·(n+1)2n+1.15.323是数列{n(n+2)}的第 项.a n =n 2+2n=323,解得n=17,或n=-19(舍去).∴323是数列{n(n+2)}的第17项.16.在数列{a n }中,a 1=2,a 17=66,通项公式a n =kn+b,其中k≠0. (1)求{a n }的通项公式;(2)判断88是不是数列{a n }中的项?∵a 1=2,a 17=66,a n =kn+b,k≠0,∴{k +b =2,17k +b =66, 解得{k =4,b =-2.∴a n =4n-2,n ∈N +. (2)令a n =88,即4n-2=88, 解得n=22.5∉N +.∴88不是数列{a n }中的项.学科素养创新练17.已知数列{a n }的通项公式是a n ={2-n ,n 是奇数,11+2-n,n 是偶数(n ∈N +),则a 3+1a 4= .3=2-3=18,a 4=11+2-4=1617, ∴1a 4=1716,∴a 3+1a 4=1916.18.已知数列9n 2-9n+29n 2-1,n ∈N +.请问在区间13,23内有无数列中的项?若有,有几项;若没有,请说明理由.a n =9n 2-9n+29n 2-1=(3n -1)(3n -2)(3n+1)(3n -1)=3n -23n+1,令13<3n -23n+1<23,∴{3n +1<9n -6,9n -6<6n +2,∴{n >76,n <83.∴76<n<83, ∴当且仅当n=2时,上式成立, 故区间13,23内有数列中的项,且只有一项为a 2=47.。

数学必修二第一章知识点总结

数学必修二第一章知识点总结

数学必修二第一章知识点总结数学必修二第一章知识1一、集合(一)集合有关概念1.集合的含义2.集合的中元素的三个特性:确定性、互异性、无序性3.集合的表示: (1)常用数集及其记法 (2)列举法 (3)描述法4、集合的分类:有限集、无限集、空集5.常见集合的符号表示(二)集合间的基本关系1.子集、真子集、空集;2.有n个元素的集合,含有2n个子集,2n-1个真子集;3.空集是任何集合的子集,是任何非空集合的真子集.(三)集合的运算二、函数(一)函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x 叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.定义域:能使函数式有意义的实数x的集合称为函数的定义域.2.常用的函数表示法及各自的优点:解析法:必须注明函数的定义域;图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;列表法:选取的自变量要有代表性,应能反映定义域的特征.优点:解析法:便于算出函数值.列表法:便于查出函数值.图象法:便于量出函数值.相同函数的判断方法:(以下两点必须同时具备)(1)表达式相同(与表示自变量和函数值的字母无关);(2)定义域一致.求函数值域方法:(先考虑其定义域)(1)函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域.(2)应熟练掌握一次函数、二次函数、指数函数、对数函数的值域,它是求解复杂函数值域的基础.(3)求函数值域的常用方法有:直接法、换元法、配方法、分离常数法、判别式法、单调性法等.2. 函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据.(2) 画法:描点法;图象变换法常用变换方法有三种:平移变换;对称变换;3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.4.映射对于映射f:A→B来说,则应满足:(1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中对应的象可以是同一个;(3)不要求集合B中的每一个元素在集合A中都有原象.5.分段函数(1)在定义域的不同部分上有不同的解析表达式的函数;(2)各部分的自变量的取值情况;(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.(二)函数的性质1.函数的单调性(局部性质)(1)定义设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间d上是增函数.区间d称为y=f(x)的单调增区间.< p="">如果对于区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.注意:函数的单调性是函数的局部性质.(2)图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.数学必修二第一章知识2函数单调区间与单调性的判定方法(A) 定义法:任取x1,x2∈D,且x1<x2;< p="">作差f(x1)-f(x2);变形(通常是因式分解和配方);定号(即判断差f(x1)-f(x2)的正负);下结论(指出函数f(x)在给定的区间D上的单调性).(B)图象法(从图象上看升降)(C)复合函数的单调性复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.2.函数的奇偶性(整体性质)(1)偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(2)奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.(3)具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称.数学必修二第一章知识3利用定义判断函数奇偶性的步骤:首先确定函数的定义域,并判断其是否关于原点对称;确定f(-x)与f(x)的关系;作出相应结论:若f(-x) = f(x) 或f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x)或f(-x)+f(x) = 0,则f(x)是奇函数.注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)由f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定.3.函数的解析表达式(1)函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2)求函数的解析式的主要方法有:凑配法; 待定系数法;换元法;消参法.如果已知函数解析式的构造时,可用待定系数法;已知复合函数f[g(x)]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;若已知抽象函数表达式,则常用解方程组消参的方法求出f(x)4.函数最大(小)值(1)利用二次函数的性质(配方法)求函数的最大(小)值;(2)利用图象求函数的最大(小)值;(3)利用函数单调性的判断函数的最大(小)值:函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b).数学必修二第一章知识点。

高一数学必修二各章知识点总结

高一数学必修二各章知识点总结

【导语】如果把⾼中三年去挑战⾼考看作⼀次越野长跑的话,那么⾼中⼆年级是这个长跑的中段。

与起点相⽐,它少了许多的⿎励、期待,与终点相⽐,它少了许多的掌声、加油声。

它是孤⾝奋⽃的阶段,是⼀个耐⼒、意志、⾃控⼒⽐拚的阶段。

但它同时是⼀个厚实庄重的阶段,这个时期形成的优势有实⼒。

⾼⼆频道为你整理了《⾼⼀数学必修⼆各章知识点总结》,学习路上,为你加油! 【第⼀章空间⼏何体】 1.1空间⼏何体的结构 1.2空间⼏何体的三视图和直观图 阅读与思考画法⼏何与蒙⽇ 1.3空间⼏何体的表⾯积与体积 探究与发现祖暅原理与柱体、椎体、球体的体积 实习作业 ⼩结 复习参考题 【第⼆章点、直线、平⾯之间的位置关系】 2.1空间点、直线、平⾯之间的位置关系 2.2直线、平⾯平⾏的判定及其性质 2.3直线、平⾯垂直的判定及其性质 阅读与思考欧⼏⾥得《原本》与公理化⽅法 ⼩结 复习参考题 【第三章直线与⽅程】 3.1直线的倾斜⾓与斜率 探究与发现魔术师的地毯 3.2直线的⽅程 3.3直线的交点坐标与距离公式 阅读与思考笛卡⼉与解析⼏何 ⼩结 复习参考题 【第四章圆与⽅程】 4.1圆的⽅程 阅读与思考坐标法与机器证明 4.2直线、圆的位置关系 4.3空间直⾓坐标系 信息技术应⽤⽤《⼏何画板》探究点的轨迹:圆 ⼩结 复习参考题 【函数知识点】 ⼀、定义与定义式: ⾃变量x和因变量y有如下关系: y=kx+b 则此时称y是x的⼀次函数。

特别地,当b=0时,y是x的正⽐例函数。

即:y=kx(k为常数,k≠0) ⼆、⼀次函数的性质: 1.y的变化值与对应的x的变化值成正⽐例,⽐值为k 即:y=kx+b(k为任意不为零的实数b取任何实数) 2.当x=0时,b为函数在y轴上的截距。

三、⼀次函数的图像及性质: 1.作法与图形:通过如下3个步骤 (1)列表; (2)描点; (3)连线,可以作出⼀次函数的图像——⼀条直线。

因此,作⼀次函数的图像只需知道2点,并连成直线即可。

高中数学必修2(人教A版)第一章几何空间体1.1知识点总结含同步练习及答案

高中数学必修2(人教A版)第一章几何空间体1.1知识点总结含同步练习及答案

描述:例题:描述:高中数学必修2(人教A版)知识点总结含同步练习题及答案第一章 空间几何体 1.1 空间几何体的结构一、学习任务认识柱、锥、台、球及其简单组合体的结构特征,能运用这些结构特征描述现实生活中简单物体的结构.二、知识清单典型空间几何体空间几何体的结构特征 组合体展开图 截面分析三、知识讲解1.典型空间几何体空间几何体的概念只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.2.空间几何体的结构特征多面体由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点;连接不在同一个面上的两个顶点的线段叫做多面体的对角线.按多面体的面数可把多面体分为四面体、五面体、六面体.其中,四个面均为全等的正三角形的四面体叫做正四面体.旋转体由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.这条定直线叫做旋转体的轴.棱柱的结构特征一般地,有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱(prism).棱柱中,两个互相平行的面叫做底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的用一个平行于棱锥底面的平面去截棱锥,得到两个几何体,一个是______,另一个是______.解:棱锥;棱台.⋯⋯余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的顶点.底面是三角形、四边形、五边形的棱柱分别叫做三棱柱、四棱柱、五棱柱,可以用表示底面各顶点的字母或一条对角线端点的字母表示棱柱,如下图的六棱柱可以表示为棱柱或棱柱 .侧棱与底面不垂直的棱柱叫做斜棱柱;侧棱与底面垂直的棱柱叫做直棱柱;底面是正多边形的直棱柱叫做正棱柱;底面是平行四边形的棱柱叫做平行六面体;侧棱与底面垂直的平行六面体叫做直平行六面体.棱锥的结构特征一般地,有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥(pyramid).这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱.底面是三角形、四边形、五边形的棱锥分别叫做三棱锥、四棱锥、五棱锥其中三棱锥又叫四面体.棱锥也用表示顶点和底面各顶点的字母或者用表示顶点和底面一条对角线端点的字母来表示,如下图的四棱锥表示为棱锥 或者棱锥 .棱锥的底面是正多边形,且它的顶点在过底面中心且与底面垂直的直线上,这个棱锥叫做正棱锥.正棱锥各侧面都是全等的等腰三角形,这些等腰三角形底边上的高都相等,叫做棱锥的斜高.⋯⋯⋯⋯ABCDEF−A′B′C′D′E′F′DA′⋯⋯⋯⋯S−ABCD S−AC棱台的结构特征用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台(frustum of a pyramid).原棱锥的底面和截面分别叫做棱台的下底面和上底面;其他各面叫做棱台的侧面;相邻两侧面的公共边叫做棱台的侧棱;两底面的距离叫做棱台的高.由正棱锥截得的棱台叫做正棱台,正棱台的各个侧面都是全等的等腰梯形,这些等腰梯形的高叫做棱台的斜高.圆柱的结构特征以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱(circular cylinder).旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线.圆锥的结构特征以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥(circular cone).圆台的结构特征例题:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台(frustum of a cone).棱台与圆台统称为台体.球的结构特征以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球(solid sphere).半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径.球常用表示球心的字母 表示.O下列命题中,正确的是( )A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱B.棱柱中互相平行的两个面叫做棱柱的底面C.棱柱的侧面是平行四边形,而底面不是平行四边形D.棱柱的侧棱长相等,侧面是平行四边形解:D如图(1),满足 A 选项条件,但不是棱柱;对于 B 选项,如图(2),构造四棱柱,令四边形 是梯形,可知 ,但这两个面不能作为棱柱的底面;C选项中,若棱柱是平行六面体,则它的底面是平行四边形.ABCD−A1B1C1D1ABCD面AB∥面DCB1A1C1D1若正棱锥的底面边长与侧棱长相等,则该棱锥一定不是( )A.三棱锥 B.四棱锥 C.五棱锥 D.六棱锥解:D如下图,正六边形 中,,那么正六棱锥中,,即侧棱长大于底面边长.ABCDEF OA=OB=⋯=AB S−ABCDEF SA>OA=AB描述:3.组合体简单组合体的构成有两种基本形式:一种是由简单几何体拼接而成,一种是由简单几何体截去或挖去一部分而成.如图所示的几何体中,是台体的是( )A.①② B.①③ C.③ D.②③解:C利用棱台的定义求解.①中各侧棱的延长线不能交于一点;②中的截面不平行于底面;③中各侧棱的延长线能交于一点且截面与底面平行.有下列四种说法:①圆柱是将矩形旋转一周所得的几何体;②以直角三角形的一直角边为旋转轴,旋转所得几何体是圆锥;③圆台的任意两条母线的延长线,可能相交也可能不相交;④半圆绕其直径所在直线旋转一周形成球.其中错误的有( )A.个 B. 个 C. 个 D. 个解:D圆柱是矩形绕其一条边所在直线旋转形成的几何体,故①错;以直角三角形的一条直角边所在直线为轴,旋转一周,才能构成圆锥,②错;圆台是由圆锥截得,故其任意两条母线延长后一定交于一点,③错;半圆绕其直径所在直线旋转一周形成的是球面,故④错误.1234例题:描述:4.展开图空间形体的表面在平面上摊平后得到的图形,是画法几何研究的一项内容.描述图中几何体的结构特征.解:图(1)所示的几何体是由两个圆台拼接而成的组合体;图(2)所示的几何体是由一个圆台挖去一个圆锥得到的组合体;图(3)所示的几何体是在一个圆柱中间挖去一个三棱柱后得到的组合体.下图中的几何体是由哪个平面图形旋转得到的( )解:D)不在同一平面内的有______对.3内.解:C描述:例题:5.截面分析截面用平面截立体图形所得的封闭平面几何图形称为截面.平行截面、中截面与立体图形底面平行的截面称为平行截面,等分立体图形的高的平行截面称为中截面.轴截面包含立体图形的轴线的截面称为轴截面.球截面球的截面称为球截面.球的任意截面都是圆,其中通过球心的截面称为球的大圆,不过球心的截面称为球的小圆.球心与球的截面的圆心连线垂直于截面,并且有 ,其中 为球的半径, 为截面圆的半径, 为球心到截面的距离.+=r 2d 2R 2R r d 下面几何体的截面一定是圆面的是( )A.圆台 B.球 C.圆柱 D.棱柱解:B如图所示,是一个三棱台 ,试用两个平面把这个三棱台分成三部分,使每一部分都是一个三棱锥.解:如图,过 ,, 三点作一个平面,再过 ,, 作一个平面,就把三棱台分成三部分,形成的三个三棱锥分别是 ,,.ABC −A ′B ′C ′A ′B C A ′B C ′ABC −A ′B ′C ′−ABC A ′−B B ′A ′C ′−BC A ′C ′如图,正方体 中,,, 分别是 ,, 的中点,那么正方体中过点 ,, 的截面形状是( )A.三角形 B.四边形 C.五边形 D.六边形ABCD −A 1B 1C 1D 1P Q R AB AD B 1C 1P QR作截面图如图所示,可知是六边形.ii)若两平行截面在球心的两侧,如图(2)所示,则 解:四、课后作业 (查看更多本章节同步练习题,请到快乐学)答案:1.如图,能推断这个几何体可能是三棱台的是 .A .B .C .D .C ()=2,AB =3,=3,BC =4A 1B 1B 1C 1=1,AB =2,=1.5,BC =3,=2,AC =3A 1B 1B 1C 1A 1C 1=1,AB =2,=1.5,BC =3,=2,AC =4A 1B 1B 1C 1A 1C 1AB =,BC =,CA =A 1B 1B 1C 1C 1A 1答案:2. 纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标" "的面的方位是 .A .南B .北C .西D .下B △()3. 向高为 的水瓶中注水,注满为止,如果注水量 与水深 的函数关系的图象如图所示,那么水瓶的形状是.A .H V h ()高考不提分,赔付1万元,关注快乐学了解详情。

高一数学必修二第一章小结与练习题(带答案)

高一数学必修二第一章小结与练习题(带答案)

(A)
(B视图
6. 一个锐角为30的直角三角形, 其斜边长为4, 以斜边为轴旋转一周所得的几何体的体积等于 .
7. 若一个底面是正三角形的三棱柱的正视图如图所示, 则其侧面积等于 ( )
(A) 3
(B) 2
(C) 2 3 (D) 6
8. 一个几何体的三视图如图所示, 它的表面积等于 .
锥体体积:
V锥
=
1 3
Sh
台体体积:
V台
=
1 3
h(
S
+
SS + S).
15. 球的体积
V球
=
4 3
pR3
.
16. 球的表面积
S表球面 = 4pR2.
返回目录
例 1. 将正方体 (如图 1 ) 截去两个三棱锥, 得到
图 2 所示的几何体, 则该几何体的左视图为 ( B )
D1 A1
C1
B1
点和底面的圆周都在同一个圆面上, 若两圆锥的体积
之和为 6,
且底面积是这个球面面积的 3 16
,
则这个球
的体积为 16 .
P
解: 根据题设画出直观图. 两圆锥的体积之和
O r A
6= 13p r2OP + 13p r2OQ
OR
= 13p
又 S锥底
r2(OP +OQ)
=
3 16
(A)
(B)
(C)
(D)
3. 在一个几何体的三视图中, 正视图和俯视图如图, 则相应的侧视图可以为 ( )
(A)
(B)
(C)
(D)
4. 将长方体截去一个四棱锥, 得到的几何体如图所示, 则该几何体 的左视图为 ( )

【最新】高一数学必修二各章知识点总结

【最新】高一数学必修二各章知识点总结

【最新】高一数学必修二各章知识点总结高一数学必修二各章知识点总结如下:第一章:函数与二次函数1. 函数的概念及性质:定义域、值域、奇偶性、单调性等。

2. 二次函数的基本性质:顶点、对称轴、单调性、零点、图像的开口方向。

3. 一次函数与二次函数的比较与关系:求解一次函数与二次函数的交点等。

4. 二次函数的图像与方程:画出给定二次函数的图像,根据图像确定二次函数的方程等。

5. 二次函数与根式、指数、对数的应用。

第二章:三角函数1. 角度制与弧度制的转换。

2. 弧度制下的任意角的三角函数值的计算。

3. 三角函数的简单性质及其关系:同角三角函数的相互关系、倒数三角函数的相互关系等。

4. 三角函数的图像与性质:正弦函数、余弦函数、正切函数的图像与性质等。

5. 三角函数的应用:三角函数在几何、物理、工程等领域的应用。

第三章:指数与对数函数1. 指数的定义、性质及运算规律:指数与乘法、除法、乘方运算规律等。

2. 对数的定义、性质及运算规律:对数与指数的关系、对数运算法则等。

3. 指数函数与对数函数的简单性质与图像:指数函数与对数函数的基本性质、图像和性质等。

4. 指数函数与对数函数的应用:指数与对数在增长与衰减、微积分、金融等领域的应用。

第四章:数列1. 数列的概念与性质:等差数列、等比数列、通项公式、前n 项和等。

2. 数列的运算:数列的加减乘除等。

3. 等差数列与等差中项:等差数列的通项公式、等差数列的求和公式、等差数列的奇数项和、以及奇数和与偶数和等。

4. 等比数列与等比中项:等比数列的通项公式、等比数列的求和公式、等比数列的前n项和、无穷等比级数等。

5. 等差数列与等差中项的应用:等差数列在等价代换、简化形式、利润计算等方面的应用。

第五章:排列与组合1. 排列与组合的基本概念:排列、组合的定义与计算方法等。

2. 排列与组合的计算:排列与组合的计算公式、乘法原理、加法原理等。

3. 排列与组合的应用:排列与组合在概率、几何、数学问题解法等领域的应用。

高二数学必修二第一章知识点+习题+答案

高二数学必修二第一章知识点+习题+答案

第一章空间几何体1.1柱、锥、台、球的结构特征1.棱柱:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

2.棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似。

3.棱台:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分几何特征:上下底面是相似的平行多边形;侧面是梯形;侧棱交于原棱锥的顶点4.圆柱:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:底面是全等的圆;母线与轴平行;轴与底面圆的半径垂直;侧面展开图是一个矩形。

5.圆锥:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:底面是一个圆;母线交于圆锥的顶点;侧面展开图是一个扇形。

6.圆台:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:上下底面是两个圆;侧面母线交于原圆锥的顶点;侧面展开图是一个弓形。

7.球体:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:球的截面是圆;球面上任意一点到球心的距离等于半径。

1.2空间几何体的三视图和直观图 1.画三视图的原则:长对齐、高对齐、宽相等2.斜二测画法的基本步骤:①建立适当直角坐标系xOy (尽可能使更多的点在坐标轴上)②建立斜坐标系'''x O y ∠,使'''x O y ∠=450(或1350),注意它们确定的平面表示水平平面;③画对应图形,在已知图形平行于X 轴的线段,在直观图中画成平行于X‘轴,且长度保持不变;在已知图形平行于Y 轴的线段,在直观图中画成平行于Y ‘轴,且长度变为原来的一半 1.3 空间几何体的表面积与体积 (一)空间几何体的表面积1.棱柱、棱锥的表面积: 各个面的面积之和2. 圆柱的表面积3. 圆锥的表面积2r rl S ππ+=4.圆台的表面积22R Rl r rl S ππππ+++=5.球的表面积24R S π=(二)空间几何体的体积1.柱体的体积 h S V ⨯=底2.锥体的体积 h S V ⨯=底313.台体的体积 h S S S S V ⨯++=)31下下上上( 4.球体的体积334R V π=222r rl S ππ+=第一章空间几何体一、选择题1.下图是由哪个平面图形旋转得到的( A )A B C D2.如图是一个物体的三视图,则此物体的直观图是( D ).3.有一个几何体的三视图如下图所示,这个几何体可能是一个( A ).主视图左视图俯视图A.棱台B.棱锥C.棱柱D.正八面体4.图(1)为长方体积木块堆成的几何体的三视图,此几何体共由____4___块木块堆成图(1)5.如果一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( A ).A .2+2B .221+ C .22+2 D .2+16.棱长都是1的三棱锥的表面积为( A ). A .3B .23C .33D .437.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( B ).A .25πB .50πC .125πD .都不对 8.正方体的棱长和外接球的半径之比为( C ). A .3∶1B .3∶2C .2∶3D .3∶39.在△ABC 中,AB =2,BC =1.5,∠ABC =120°,若使△ABC 绕直线BC 旋转一周,则所形成的几何体的体积是( D ).A .29π B .27π C .25π D .23π 10.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( D ).A .130B .140C .150D .160 11.如图,在多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,EF ∥AB ,EF =23,且EF 与平面ABCD 的距离为2,则该多面体的体积为( D ).A .29 B .5 C .6 D .21512.下列关于用斜二测画法画直观图的说法中,错误..的是( B ). A .用斜二测画法画出的直观图是在平行投影下画出的空间图形 B .几何体的直观图的长、宽、高与其几何体的长、宽、高的比例相同 C .水平放置的矩形的直观图是平行四边形 D .水平放置的圆的直观图是椭圆二、填空题1.一个棱柱至少有___5___个面,面数最少的一个棱锥有____4____个顶点,顶点最少的一个棱台有___3_____条侧棱.2.若三个球的表面积之比是1∶2∶3,则它们的体积之比是___ _1∶22∶33___.3.正方体ABCD -A 1B 1C 1D 1 中,O 是上底面ABCD 的中心,若正方体的棱长为a ,则三棱锥O -AB 1D 1的体积为_________361a____.4.如图,E ,F 分别为正方体的面ADD 1A 1、面BCC 1B 1的中心,则四边形BFD 1E 在该正方体的面上的射影可能是_平行四边形或线段.5.已知一个长方体共一顶点的三个面的面积分别是2、3、6,则这个长方体的对角线长是_____6______,它的体积为___6________.6.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米则此球的半径为__12_______厘米.三、解答题1.如图,在四边形ABCD 中,∠DAB =90°,∠ADC =135°,AB =5,CD =22,AD =2,求四边形ABCD 绕AD 旋转一周所成几何体的表面积及体积.S 表面=S 下底面+S 台侧面+S 锥侧面=π×52+π×(2+5)×5+π×2×22 =(60+42)π.V =V 台-V 锥=31π(21r +r 1r 2+22r )h -31πr 2h 1 =3148π.2.如图所示是一个四棱柱铁块,画出它的三视图.3.依所给实物图的形状,画出所给组合体的三视图.。

人教版高中数学必修二 第一章:空间几何体_总结 学案(无答案)

人教版高中数学必修二 第一章:空间几何体_总结 学案(无答案)

高中二年级数学必修2第一章:空间几何体——总结一:考点考点1:三视图1. 主要考查:1) 由三视图中的部分视图确定其他视图;2) 由三视图还原成直观图;3) 三视图中相关量的计算;4) 三视图与其知识(如几何体的表面积、体积等)的综合。

1. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则此几何体的体积为( )A. 6B. 9C. 12D. 152. 如图,网格纸上小正方形的边长为1,粗实线画出的是一个凸多面体的三视图,则这个几何体的表面积为( )A. 65340+B. 65361+C. 58440+D. 58461+3. 如图是一个体积为10的空间几何体的三视图,则图中x 的值为( )A. 2B. 3C. 4D. 54. 如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是()A. ()π52+B. π4C. ()π222+D. π65. 某三棱锥的三视图如图所示,则该三棱锥的体积是( )A. 31B. 21C. 1D. 236. 某圆柱的高为2,底面周长为16,其三视图如图。

圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A. 172B. 52C. 3D. 27. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将以圆柱截去一部分后所得,则该几何体的体积为( )A. 90πB. 63πC. 42πD. 36π8. 某三棱锥的三视图如图所示,则该三棱锥的体积为( )A. 60B. 30C. 20D. 109.将一长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为( )A. B. C. D.10.某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A. 1B. 2C. 3D. 211.如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A. 三棱锥B. 三棱柱C. 四棱锥D. 四棱柱12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( )A. 26B. 6C. 24D. 413. 由一个长方体和两个41圆柱体构成的几何体的三视图如下图,则该几何体的体积为 。

2024年高二数学必修一到五知识点总结

2024年高二数学必修一到五知识点总结

2024年高二数学必修一到五知识点总结第一章算法与方程1.算式的计算规则(加减乘除)。

2.带括号的算式的计算。

3.一次方程的解法(倒数法、交换法、消元法)。

4.含有单变元一次方程组的解法。

5.二次方程的解法(配方法、公式法、因式分解法)。

第二章函数与图像1.函数的概念及表示方法。

2.函数的性质(奇偶性、周期性)。

3.函数的平移、伸缩、翻折及其对图像的影响。

4.简单函数的图像绘制。

5.函数与方程的关系。

第三章三角函数1.角度与弧度的转换及相关公式。

2.常用角的正弦、余弦、正切关系。

3.三角函数的周期性及图像特点。

4.三角函数的性质及相关公式。

5.简单三角方程的解法。

第四章指数与对数1.指数的性质及相关公式。

2.对数的概念及表示方法。

3.反函数的概念及性质。

4.指数与对数的基本运算。

5.常用指数与对数函数的图像绘制。

第五章排列与组合1.排列与组合的概念及表示方法。

2.排列与组合的性质及相关公式。

3.简单的排列与组合问题的解法。

4.二项式定理及其应用。

5.容斥原理的概念及应用。

第六章统计与概率1.统计学的基本概念及方法。

2.频数分布表及其应用。

3.描述性统计量(均值、中位数、众数、标准差)的计算及应用。

4.概率的概念及计算方法。

5.事件的互斥与独立性。

第七章线性函数1.函数的定义及性质。

2.线性函数的概念及表示方法。

3.线性函数与方程的关系。

4.线性函数的性质及相关公式。

5.简单线性方程组的解法。

第八章二次函数1.二次函数的定义及表示方法。

2.二次函数的图像特点及其与一次函数的比较。

3.二次函数图像的平移、伸缩、翻折及其对图像的影响。

4.二次函数的性质及相关公式。

5.简单二次方程的解法。

第九章平面向量1.向量的定义及表示方法。

2.向量的加减法及数量积、向量积的计算方法。

3.向量的线性相关与线性无关的概念及判定条件。

4.向量在平面几何中的应用。

5.平面向量和空间向量的相互转化及应用。

第十章立体几何1.立体几何的基本概念(点、线、面、体)及表示方法。

高中数学人教版A必修二第一章知识点总结

高中数学人教版A必修二第一章知识点总结

高中数学人教版A必修二数学必修二第一章知识总结一、空间几何体(一)空间几何体的结构1、棱柱的结构特征:一般地,有两个面互相平行,其余各面都是四边形并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。

注意:①两底面是多边形平行且全等;②侧面是平行四边形;③侧棱互相平行且相等。

补充:①平行六面体:底面是平行四边形的棱柱。

②直平行六面体:侧棱和地面垂直的平行六面体。

③直棱柱:侧棱垂直于底面的棱柱。

④正棱柱:底面为正多边形的直棱柱。

例题1 下列四个命题中,假命题为( A )A、棱柱中两个互相平行的平面一定是棱柱的底面(正方体、长方体)B、棱柱的各个侧面都是平行四边形C、棱柱的两底面是全等的多边形D、棱柱的面中,至少有两个面互相平行例题2 下列说法正确的是(D)P8A.有两个面平行,其余各面都是四边形的几何体叫棱柱B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱C.各侧面都是正方形的四棱柱一定是正方体D.九棱柱有9条侧棱,9个侧面,侧面为平行四边形2、棱锥的结构特征:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。

注意:①底面是多边形;②侧面是三角形;③侧棱交于顶点。

补充:正棱锥:如果一个棱锥的底面是正多边形,并且顶点在底面上的射影是底面的中心,这样的棱锥叫做正棱锥。

特征:①底面是正多边形②侧面是全等等腰三角形,斜高都相等③正棱锥的高、斜高和斜高在底面上的投影组成一个直角三角形,正棱锥的高、侧棱和侧棱在底面上的投影也组成一个直角三角形。

如Rt∆SOM和Rt∆SOC。

例题3 三棱锥P - ABC,PA =PB = CA = CB = 5,AB = 6,PC长度的取值范围是(D )。

A、(0,4)B、(0,5)C(0,6)D(0,8)解析:3、棱台的结构特征:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台。

注意:①两底面平行且相似;②侧面是梯形;③侧棱延长并交于一点。

高中数学必修一必修二知识点总结

高中数学必修一必修二知识点总结

高中数学 必修1知识点 第一章 集合与函数概念【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N*或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅). (6)子集、真子集、集合相等名称记号意义性质示意图子集B A ⊆(或)A B ⊇A 中的任一元素都属于B(1)A ⊆A(2)A ∅⊆(3)若B A ⊆且B C ⊆,则A C ⊆ (4)若B A ⊆且B A ⊆,则A B =A(B)或B A真子集A ≠⊂B(或B ≠⊃A )B A ⊆,且B 中至少有一元素不属于A(1)A ≠∅⊂(A 为非空子集)(2)若A B ≠⊂且B C ≠⊂,则A C ≠⊂B A集合 相等A B =A 中的任一元素都属于B ,B 中的任一元素都属于A(1)A ⊆B (2)B ⊆AA(B)(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n −个真子集,有21n −个非空子集,它有22n −非空真子集.(8)交集、并集、补集 名称记号意义性质示意图交集A B{|,x x A ∈且}x B ∈ (1)AA A = (2)A ∅=∅ (3)AB A ⊆ A B B ⊆ BA并集A B{|,x x A ∈或}x B ∈(1)A A A = (2)A A ∅= (3)A B A ⊇ AB B ⊇BA补集U A{|,}x x U x A ∈∉且1()U A A =∅ 2()U AA U =逻辑语言1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句.假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、原命题:“若p ,则q ” 逆命题: “若q ,则p ” 否命题:“若p ⌝,则q ⌝” 逆否命题:“若q ⌝,则p ⌝”4、四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系. 5、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).利用集合间的包含关系: 例如:若B A ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件;6、逻辑联结词:⑴且(and ) :命题形式p q ∧;⑵或(or ):命题形式p q ∨; ⑶非(not ):命题形式p ⌝.pqp q ∧p q ∨p ⌝真 真 真 真 假 真 假 假 真 假 假 真 假 真 真 假假假假真7、⑴全称量词——“所有的”、“任意一个”等,用“∀”表示;全称命题p :)(,x p M x ∈∀; 全称命题p 的否定⌝p :)(,x p M x ⌝∈∃。

2019_2020学年高中数学第一章立体几何初步1.1.3.1圆柱、圆锥、圆台练习(含解析)新人教B版必修2

2019_2020学年高中数学第一章立体几何初步1.1.3.1圆柱、圆锥、圆台练习(含解析)新人教B版必修2

第1课时圆柱、圆锥、圆台A.直线绕定直线旋转形成柱面B.半圆绕定直线旋转形成球体C.有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台D.圆柱的任意两条母线所在的直线是相互平行的答案 D解析两直线平行时,直线绕定直线旋转才形成柱面,故A错误;半圆以直径所在直线为轴旋转才形成球体,故B错误;C不符合棱台的定义.所以应选D.2.下列命题正确的是( )A.梯形绕一边所在直线旋转得到的旋转体是圆台B.夹在圆柱的两个平行截面间的几何体是圆柱C.棱锥截去一个小棱锥后剩余部分是棱台D.圆锥截去一个小圆锥后剩余部分是圆台答案 D解析绕梯形的一边所在直线旋转得到的旋转体也可能是组合体.当夹在圆柱的两个平行截面不与圆柱的底面平行时,不是圆柱.用与棱锥的底面不平行的平面截去一个小棱锥后,剩余部分不是棱台.圆锥是直角三角形绕其一条直角边所在的直线旋转而成的,圆锥截去一个小圆锥后剩余部分是圆台.A.10 B.20C.30 D.40答案 B解析如图轴截面为矩形,所以面积为(2+2)×5=20.4.下列说法中,不正确的是 ( ) A .圆桂的侧面展开图是一个矩形 B .圆锥中过轴的截面是一个等腰三角形C .等腰直角三角形绕它的一条边所在的直线旋转一周形成的曲面围成的几何体是圆锥D .圆台中平行于底面的截面是圆面 答案 C解析 等腰直角三角形绕它的一条直角边所在的直线旋转一周才能形成圆锥,此处必须说明是绕它的一条直角边所在的直线.若换成直角三角形的斜边,则旋转后产生的几何体不是圆锥,而是两个圆锥的组合体,且这两个圆锥同底.5.圆台的一个底面周长是另一个底面周长的3倍,轴截面的面积为392 cm 2,母线与轴的夹角为45°,求这个圆台的高、母线长和底面半径.解 圆台的轴截面如图所示,根据题意可设圆台的上、下底面半径分别为x cm 和3x cm ,即A′O′=x cm ,AO =3x cm(O′,O 分别为上、下底面圆心),过A′作AB 的垂线,垂足为点D .在Rt△AA′D 中,∠AA′D=45°,AD =AO -A′O′=2x cm , 所以A′D=AD =2x cm ,又S 轴截面=12(A′B′+AB)·A′D=12×(2x+6x)×2x=392 (cm 2),所以x =7.综上,圆台的高OO′=14 cm ,母线长AA′=2OO′=14 2 cm ,上、下底面的半径分别为7 cm 和21 cm .一、选择题1.下列命题正确的个数为( )①圆柱的轴是过圆柱上、下底面圆的圆心的直线;②圆柱的母线是连接圆柱上底面上一点和下底面上一点的直线;③矩形的任意一条边所在直线都可以作为轴,其他边绕其旋转形成圆柱;④矩形绕任何一条直线旋转,都可以围成圆柱.A .1B .2C .3D .4 答案 B解析 根据圆柱的定义可知命题①③正确,命题②④错误.2.一个圆锥的母线长为2,圆锥的轴截面的面积为3,则母线与轴的夹角为( ) A .30° B.60°C .30°或60° D.60°或75° 答案 C解析 设圆锥的高为h ,则底面圆的半径为4-h 2,由题意,得S =12h×24-h 2=3,平方整理得h 4-4h 2+3=0,解得h 2=1或h 2=3,∴h=1或h =3.母线与轴的夹角为30°或60°.3.上、下底面面积分别为36π和49π,母线长为5的圆台,其两底面之间的距离为( ) A .4 B .3 2 C .2 3 D .2 6 答案 D解析 设圆台的母线为l ,高为h ,上、下两底面圆的半径分别为r ,R ,则满足关系式l 2=h 2+(R -r)2,根据题意可得h =26,即两底面之间的距离为26.4.“两底面直径之差等于母线长”的圆台( ) A .是不存在的B .其母线与高线必成60°角C .其母线与高线必成30°角D .其母线与高线所成的角不是定值 答案 C解析 设圆台上、下底面半径分别为r 1,r 2,母线长为l ,则由题意可得2r 2-2r 1=l ,∴r 2-r 1l =12, 再设母线与高线所成的角为θ,∴sinθ=12,θ=30°.5.用平行于圆锥底面的平面截圆锥,所得截面面积与底面面积的比为1∶3,则截面把圆锥的母线分为上下两段的比是( )A .1∶3B .1∶9C .1∶ 3D .(1+3)∶2 答案 D解析 圆锥的上底面半径与下底面半径之比为1∶3,故截去小圆锥的母线与大圆锥的母线之比为1∶3,截面把圆锥的母线分为上下两段的比是1∶(3-1)=(1+3)∶2.二、填空题6.圆锥轴截面的顶角为120°,过顶点的截面三角形的最大面积为2,则圆锥的母线长为________.答案 2解析 对于该圆锥,过顶点的截面三角形中面积最大的三角形为等腰直角三角形,其腰为母线,所以母线长为2.7.用一张(6×10) cm 2的矩形硬纸卷成圆柱的侧面,则圆柱轴截面的面积等于________,轴截面的周长等于________.答案60π cm 212+20π cm 或20+12πcm 解析 若圆柱的母线长为6,则底面直径为10π,轴截面的面积为60π cm 2,周长为⎝ ⎛⎭⎪⎫12+20πcm ;若圆柱的母线长为10,则底面直径为6π,轴截面的面积为60π cm 2,周长为⎝⎛⎭⎪⎫20+12π cm .8.给出下列命题:①圆柱的母线与它的轴可以不平行;②圆锥的顶点、圆锥底面圆周上任意一点及底面圆的圆心三点的连线都可以构成直角三角形;③在圆台的上、下两底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在的直线是互相平行的.其中正确的是________.答案②④解析由圆柱、圆锥、圆台的定义及母线的性质可知②④正确,①③错误.三、解答题9.轴截面为正方形的圆柱叫做等边圆柱,已知某等边圆柱的轴截面面积为16 cm2,求其底面周长和高.解如图所示,作出等边圆柱的轴截面ABCD,由题意知,四边形ABCD为正方形,设圆柱的底面半径为r,则AB=AD=2r.由题意可得轴截面的面积S=AB×AD=2r×2r=4r2=16,解得r=2.所以其底面周长C=2πr=2π×2=4π(cm),高h=2r=4(cm).10.如图所示,已知圆锥SO中,底面半径r=1,母线长l=4,M为母线SA上的一个点,且SM=x,从点M拉一根绳子,围绕圆锥侧面转到点A.求:(1)绳子的最短长度的平方f(x);(2)绳子最短时,顶点到绳子的最短距离;(3)f(x)的最大值.解将圆锥的侧面沿SA展开在平面上,如图所示,则该图为扇形,且弧AA′的长度L 就是圆O的周长,∴L=2πr=2π.∴∠ASM=L2πl×360°=2π2π×4×360°=90°.(1)由题意知绳子长度的最小值为展开图中的AM,其值为AM=x2+16(0≤x≤4).∴f(x)=AM 2=x 2+16(0≤x≤4).(2)绳子最短时,在展开图中作SR⊥AM,垂足为R ,则SR 的长度为顶点S 到绳子的最短距离,在△SAM 中,∵S △SAM =12SA·SM=12AM·SR,∴SR=SA·SM AM =4xx 2+16(0≤x≤4),即绳子最短时,顶点到绳子的最短距离为4xx 2+16(0≤x≤4). (3)∵f(x)=x 2+16(0≤x≤4)是增函数, ∴f(x)的最大值为f(4)=32.。

(完整版)高一数学必修2_第一章空间几何体知识点

(完整版)高一数学必修2_第一章空间几何体知识点

第一章空间几何体1.1 空间几何体的结构1. 多面体与旋转体:(1)由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面.相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.(2)由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体,叫做旋转体,这条定直线叫做旋转体的轴.2. 棱柱:(1)有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱.棱柱中,两个互相平行的面叫做棱柱的底面(简称底),其余各面叫做棱柱的侧面,相邻侧面的公共边叫做棱柱的侧棱,侧面与底面的公共顶点叫做棱柱的顶点.(2)侧棱垂直于底面的棱柱叫直棱柱,否则斜棱柱;底面是正多边形的直棱柱叫正棱柱。

(3)棱柱的分类:按底面的多边形的边数分,有三棱柱、四棱柱、五棱柱等.按侧棱与底面的关系分为直棱柱和斜棱柱。

(4)底面是平行四边形的四棱柱叫平行六面体;侧棱与底面垂直的平行六面体叫直平行六面体;底面为矩形的直平行六面体叫长方体;底面为正方形的长方体叫正四棱柱;棱长都相等的正四棱柱叫正方体。

(5)棱柱的性质:①两底面是对应边平行的全等多边形;②侧面、对角面都是平行四边形;③侧棱平行且相等;④平行于底面的截面是与底面全等的多边形。

3. 棱锥:(1)有一个面是多边形,其余各面都是有一公共点的三角形,由这些面所围成的几何体叫做棱锥.棱锥中,这个多边形面叫做棱锥的底面或底,有公共顶点的各个三角形面叫做棱锥的侧面,各侧面的公共顶点叫做棱锥的顶点,相邻侧面的公共边叫做棱锥的侧棱.(2)底面是正多边形,顶点在底面的射影是正多边形的中心的棱锥叫正棱柱。

正棱柱顶点与底面中心的连线段叫正棱锥的高;正棱锥侧面等腰三角形底边上的高叫正棱锥的斜高。

(3)棱锥的分类:按底面的多边形的边数分,有三棱锥、四棱锥、五棱锥等.(4)棱锥的性质:①侧面、对角面都是三角形;②平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.(5)正棱锥的性质:①正棱锥各侧棱都相等,各侧面都是全等的等腰三角形。

高中数学必修2知识点总结归纳(人教版最全)

高中数学必修2知识点总结归纳(人教版最全)

高中数学必修2知识点总结归纳(人教版最全)高中数学必修二知识点汇总第一章:立体几何初步1、柱、锥、台、球的结构特征1) 棱柱:是由两个平行的多边形底面和若干个侧面组成的几何体。

根据底面多边形的边数不同,可以分为三棱柱、四棱柱、五棱柱等。

棱柱的侧面和对角面都是平行四边形,侧棱平行且相等,平行于底面的截面是与底面全等的多边形。

2) 棱锥:是由一个多边形底面和若干个三角形侧面组成的几何体。

根据底面多边形的边数不同,可以分为三棱锥、四棱锥、五棱锥等。

棱锥的侧面和对角面都是三角形,平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

3) 棱台:是由一个平行于棱锥底面的平面截取棱锥,截面和底面之间的部分组成的几何体。

根据底面多边形的边数不同,可以分为三棱台、四棱台、五棱台等。

棱台的上下底面是相似的平行多边形,侧面是梯形,侧棱交于原棱锥的顶点。

4) 圆柱:是由一个圆形底面和一个平行于底面的圆柱面组成的几何体。

底面是全等的圆,母线与轴平行,轴与底面圆的半径垂直,侧面展开图是一个矩形。

5) 圆锥:是由一个圆形底面和一个以底面圆心为顶点的锥面组成的几何体。

底面是一个圆,母线交于圆锥的顶点,侧面展开图是一个扇形。

6) 圆台:是由一个圆形底面和一个平行于底面的圆台面组成的几何体。

上下底面是两个圆,侧面母线交于原圆锥的顶点,侧面展开图是一个弓形。

7) 球体:是由一个半圆面绕其直径旋转一周所形成的几何体。

球的截面是圆,球面上任意一点到球心的距离等于半径。

2、空间几何体的三视图三视图是指正视图(光线从几何体的前面向后面正投影)、侧视图(从左向右)和俯视图(从上向下)组成的视图。

正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度。

俯视图和侧视图是用来反映物体在不同方向上的位置关系的,前者反映长度和宽度,后者反映高度和宽度。

斜二测画法是一种直观的图示方法,它的特点是原来与x轴平行的线段仍然与x轴平行且长度不变,原来与y轴平行的线段仍然与y轴平行,但长度为原来的一半。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章空间几何体
1、空间几何体的结构:空间几何体分为多面体和旋转体和简单组合体
⑴常见的多面体有:棱柱、棱锥、棱台;
常见的旋转体有:圆柱、圆锥、圆台、球。

(2)简单组合体的构成形式:
一种是由简单几何体拼接而成,例如课本图1.1-11中(1)(2)物体表示的几何体;
一种是由简单几何体截去或挖去一部分而成,例如课本图1.1-11中(3)(4)物体表示的几何体。

练习1.下图是由哪个平面图形旋转得到的()
2、柱、锥、台、球的结构特征
(1)棱柱:
定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱'
'
'
'
'E
D
C
B
A
ABCDE 或用对角线的端点字母,如五棱柱'
AD
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥
定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体
分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等
简单组合体
表示:用各顶点字母,如五棱锥'
''''E D C B A P - 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似。

(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等
表示:用各顶点字母,如五棱台'
'
'
'
'
E D C B A P -
几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点
练习2.一个棱柱至少有 _____
个面,面数最少的一个棱锥有 ________个顶点,
顶点最少的一个棱台有 ________条侧棱。

3.空间几何体的三视图和直观图
把光由一点向外散射形成的投影叫中心投影,中心投影的投影线交于一点;把在一束平行光线照射下的投影叫平行投影,平行投影的投影线是平行的。

(1)定义:
正视图:光线从几何体的前面向后面正投影得到的投影图; 侧视图:光线从几何体的左面向右面正投影得到的投影图; 俯视图:光线从几何体的上面向下面正投影得到的投影图。

几何体的正视图、侧视图和俯视图统称为几何体的三视图。

注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度; 俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;
侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

(2)三视图中反应的长、宽、高的特点:“长对正”,“高平齐”,“宽相等”
练习3.有一个几何体的三视图如下图所示,这个几何体应是一个( )
A.棱台
B.棱锥
C.棱柱
D.都不对
练习4.如图是一个物体的三视图,则此物体的直观图是( ).
主视图 左视图 俯视图
练习5. 图(1)为长方体积木块堆成的几何体的三视图,此几何体共由________块木块堆成;
图(2)中的三视图表示的实物为_____________。

练习6.有一个几何体的三视图及其尺寸如下(单位cm ),则该几何体的表面积及体积为:
A. 2
24cm π,2
12cm π B. 2
15cm π,2
12cm π C. 2
24cm π,2
36cm π 4、空间几何体的直观图(表示空间图形的平面图). 观察者站在某一点观察几何体,画出的图形.
斜二测画法的基本步骤:①建立适当直角坐标系xOy (尽可能使更多的点在坐标轴上) ②建立斜坐标系'''x O y ∠,使'''x O y ∠=450
(或1350
),注意它们确定的平面表示水平平面;
③画对应图形,在已知图形平行于X 轴的线段,在直观图中画成平行于X ‘
轴,且长度保持
不变;在已知图形平行于Y 轴的线段,在直观图中画成平行于Y ‘
轴,且长度变为原来的一半;
用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图
练习7.下列关于用斜二测画法画直观图的说法中,错误..的是( ). A .用斜二测画法画出的直观图是在平行投影下画出的空间图形 B .几何体的直观图的长、宽、高与其几何体的长、宽、高的比例相同 C .水平放置的矩形的直观图是平行四边形 D .水平放置的圆的直观图是椭圆
练习8.如果一个水平放置的图形的斜二测直观图是一个底面为0
45,腰和上底均为1的等腰梯形,那么原平面图形的面积是( )
A . 22+
B .
221+ C . 2
2
2+ D . 21+ 5、空间几何体的表面积与体积
6
5
图(1) 图(2)
⑴圆柱侧面积;l r S ⋅⋅=π2侧面 S 侧=2πr ∙l
AB=2πr
r
r
l
l
A
B
⑵圆锥侧面积:l r S ⋅⋅=π侧面 A L θ∙l (注:扇形的弧长等于圆心角乘以半径.提醒圆心角
为弧度角,例如60° π
3
弧度,
45° π4弧度,90° π2
弧度等等)
扇形面积S 扇形 12 弧长 半径
的长
图中:扇形的半径长为l ,圆心角为θ,弧AB θl
l l h r
B
V
⑶圆台侧面积:l R l r S ⋅⋅+⋅⋅=ππ侧面 O 2
O 1h l
r
R
练习9.棱长都是1的三棱锥的表面积为( ) A. 3 B. 23 C. 33 D. 43
说明: 正三棱锥是锥体中底面是等边三角形,三个侧面是全等的等腰三角形的三棱锥。

正三棱锥不等同于正四面体,正四面体必须每个面都是全等的等边三角形。

正三棱锥的性质:1. 底面是等边三角形。

2. 侧面是三个全等的等腰三角形。

3. 顶点在底面的射影是底面三角形的中心(也是重心、垂心、外心、内心)。

6体积公式:
h S V ⋅=柱体h S V ⋅=
31
锥体()
1
3
V h S S S S =+⋅+下下
台体上上
练习10.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为1V 和2V ,则12:V V =
C A. 1:3 B. 1:1 C. 2:1 D. 3:1
练习11.在△ABC 中,0
2, 1.5,120AB BC ABC ==∠=,若使绕直线BC 旋转一周,则所形
成的几何体的体积是( )
A. 92π
B.
72π C. 52π D. 32
π
练习
12.半径为R 的半圆卷成一个圆锥,则它的体积为( )
A
3R B
3R C
3R D 3R 练习13.如图,在多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,
//EF AB ,3
2
EF =
,且EF 与平面ABCD 的距离为2,则该多面体的体积为( )
A .
92 B.5 C.6 D.152
练习14.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,
圆台的侧面积为84π,则圆台较小底面的半径为( ) A .7 B.6 C.5 D.3 7.球的表面积和体积 32
3
44R V R S ππ=
=球球,. 练习15.若三个球的表面积之比是1:2:3,则它们的体积之比是_____________。

练习16.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( )
A .25π
B .50π
C .125π
D .都不对
练习17.正方体的内切球和外接球的半径之比为( )
A
B
2 C
.2
3
练习18(如图)在底半径为2,母线长为4
求圆柱的表面积。

相关文档
最新文档