函数的值域求法练习题

合集下载

函数值域的求法及例题

函数值域的求法及例题

函数值域的求法在函数概念的三要素中,定义域和对应法则是最基本的,值域是由定义域和对应法则所确定,因此,研究值域仍应注重函数对应法则的作用和定义域对值域的制约,以下试举例说明常用方法.[例1]:求下列函数的值域 (1)y =1-2x (x ∈R ) (2)y =|x |-1 x ∈{-2,-1,0,1,2} (3)y =x 2+4x +3 (-3≤x ≤1) (4)y =|x +1|-|x -2|(5)y =2x -3+134-x(6)y =2224)1(5+++x x x(7)y =521+-x x(8)y =1223222++--x x x x(9)y =3-2x -x 2x ∈[-3,1](10)y =21322+-x x分析:求函数的值域应确定相应的定义域后再根据函数的具体形式及运算确定其值域. 对于(1)(2)可用“直接法”根据它们的定义域及对应法则得到(1)(2)的值域. 对于(3)(4)可借助数形结合思想利用它们的图象得到值域,即“图象法”. 对于(5)(6)可借用整体思想利用“换元法”求得值域.对于(7)可将其分离出一个常数,即利用“分离常数法”求得它的值域. 对于(8)可通过对“Δ”的分析,即利用“判别式”法求得其值域.对于(9)(10)可“通过中间函数的值域去求所求函数的值域”这一方法即“中间媒介法”求得其值域.解:(1)y ∈R(2)y ∈{1,0,-1}(3)画出y =x 2+4x +3(-3≤x ≤1)的图象,如图所示,当x ∈[-3,1]时,得y ∈[-1,8](4)对于y =|x +1|-|x -2|的理解,从几何意义入手,即利用绝对值的几何意义可知,|x +1|表示在数轴上表示x 的点到点-1的距离,|x -2|表示在数轴上表示x 的点到点2的距离,在数轴上任取三个点x A ≤-1,-1<x B <2,x C ≥c ,如图所示,可以看出|x A +1|-|x A -2|=-3-3<|x B +1|-|x B -2|<3,|x C +1|-|x C -2|=3,由此可知,对于任意实数x ,都有-3≤|x +1|-|x -2|≤3所以函数y =|x +1|-|x -2|的值域为y ∈[-3,3](5)对于没有给定自变量的函数,应先考查函数的定义域,再求其值域.∵4x -13≥0 ∴x ∈[413,+∞)令t =134-x 则得:x =4132+t∴y =21t 2+t +27∴y =21(t +1)2+3∵x ≥413∴t ≥0根据二次函数图象可得y ∈[27,+∞)(6)∵函数定义域为x ∈R 由原函数可化得:y =22222224)1(5)1()1(5+++=+++x x x x x x=2222222222)1(11)1(5)1()1(5+-+++=+++x x x x x x =111)1(5222++-+x x 令t =112+x∵x ∈R ∴t ∈(0,1] ∴y =5t 2-t +1=5(t -101)2+2019根据二次函数的图象得当t =101时y min =2019当t =1时,y max =5 ∴函数的值域为y ∈[2019,5](7)∵y =-21+5227+x∵5227+x ≠0 ∴y ≠-21∴函数y 的值域为y ∈(-∞,-21)∪(-21,+∞) (8)由y =1223222++--x x x x 得x ∈R 且可化为:(2y -1)x 2+2(y +1)x +(y +3)=0 ∴当y ≠21时,Δ=[2(y +1)]2-4(2y -1)(y +3)≥0 ∴y 2+3y -4≤0 ∴-4≤y ≤1且y ≠21 又当y =21时,2(1+21)x +(21+3)=0 得:x =-67,满足条件∴函数的值域为y ∈[-4,1] (9)∵-3≤x ≤1 ∴-2≤x +1≤2∴|x +1|≤2即(x +1)2≤4∴y =3-2x -x 2=-(x +1)2+4∈[0,4] ∴函数值域为y ∈[0,4](10)由y =21322+-x x 可知,x ∈R 且yx 2+2y =3x 2-1即(3-y )x 2=2y +1若y =3时,则有0=7,这是不可能的. ∴y ≠3 得:x 2=y y -+312 ∵x 2≥0 ∴yy -+312≥0 解得:-21≤y <3 ∴函数值域为y ∈[-21,3) 评述:(1)求函数的值域是一个相当复杂的问题,它没有现成的方法可套用,要结合函数表达式的特征,以及与所学知识联系,灵活地选择恰当的方法.(2)对于以上例题也可以采取不同的方法求解每一个值域,请读者不妨试一试.(3)除以上介绍的方法求函数值域外,随着学生的继续学习,我们今后还会有“反函数”法、“单调性”法、“三角换元”法、“不等式”法及“导数法”等.二、二次函数(含参数)在区间上的值域问题 [例2]、求下列函数的值域 (1)]1,0(1222∈-++=x a ax x y(2)]1,[142+∈++=t t x x x y三、含参数的其他值域问题[例3]已知函数f (x )=xax x ++22,x ∈[1,+∞)(1)当a =21时,求函数f (x )的最小值.(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.知识依托:本题主要通过求f (x )的最值问题来求a 的取值范围,体现了转化的思想与分类讨论的思想.错解分析:考生不易考虑把求a 的取值范围的问题转化为函数的最值问题来解决.技巧与方法:解法一运用转化思想把f (x )>0转化为关于x 的二次不等式;解法二运用分类讨论思想解得.(1)解:当a =21时,f (x )=x +x21+2∵f (x )在区间[1,+∞)上为增函数,∴f (x )在区间[1,+∞)上的最小值为f (1)=27.(2)解法一:在区间[1,+∞)上,f (x )=xax x ++22 >0恒成立⇔x 2+2x +a >0恒成立.设y =x 2+2x +a ,x ∈[1,+∞)∵y =x 2+2x +a =(x +1)2+a -1递增,∴当x =1时,y min =3+a ,当且仅当y min =3+a >0时,函数f (x )>0恒成立,故a >-3.解法二:f (x )=x +xa+2,x ∈[1,+∞)当a ≥0时,函数f (x )的值恒为正;当a <0时,函数f (x )递增,故当x =1时,f (x )min =3+a ,当且仅当f (x )min =3+a >0时,函数f (x )>0恒成立,故a >-3.练习一、选择题1.函数y =x 2+x1(x ≤-21)的值域是( )A.(-∞,-47]B.[-47,+∞)C.[2233,+∞)D.(-∞,-3223]2.函数y =x +x 21-的值域是( )A.(-∞,1] B.(-∞,-1]C.RD.[1,+∞)一、1.解析:∵m 1=x 2在(-∞,-21)上是减函数,m 2=x1在(-∞,-21)上是减函数, ∴y =x 2+x1在x ∈(-∞,-21)上为减函数,∴y =x 2+x1(x ≤-21)的值域为[-47,+∞).答案:B2.解析:令x 21-=t (t ≥0),则x =212t -.∵y =212t -+t =-21 (t -1)2+1≤1∴值域为(-∞,1].。

值域_求值域的方法大全及习题加详解

值域_求值域的方法大全及习题加详解

求值域方法函数值域的求法方法有好多,主要是题目不同,或者说稍微有一个数字出现问题,对我们来说,解题的思路可能就会出现非常大的区别.这里我主要弄几个出来,大家一起看一下吧. 函数的值域取决于定义域和对应法则,求函数的值域要注意优先考虑定义域常用求值域方法(1)、直接观察法:利用已有的基本函数的值域观察直接得出所求函数的值域 对于一些比较简单的函数,如正比例,反比例,一次函数,指数函数,对数函数,等等, 其值域可通过观察直接得到。

例1、求函数1,[1,2]y x x =∈的值域。

(★★)例2、求函数x 3y -=的值域。

(★★) 答案:值域是:]3,[-∞ 【同步练习1】函数221xy+=的值域. (★★)解:}210{≤<y y(2)、配方法:二次函数或可转化为形如c x bf x f a x F ++=)()]([)(2类的函数的值域问题,均可用配方法,而后一情况要注意)(x f 的X 围;配方法是求二次函数值域最基本的方法之一。

例1、求函数225,y x x x R =-+∈的值域。

(★★)例2、求函数]2,1[x ,5x 2x y 2-∈+-=的值域。

(★★★) 解:将函数配方得:4)1x (y 2+-=∵]2,1[x -∈ 由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max = 故函数的值域是:[4,8]例3、求()()22log 26log 62log 222222-+=++=x x x y 。

(★★★★)(配方法、换元法)解:………所以当41=x 时,y 有最小值-2。

故所求函数值域为[-2,+∞)。

例4、设02x ≤≤,求函数1()4321xx f x +=-+的值域.解:12()4321(23)8xx x f x +=-+=--,02x ∵≤≤,24x 1∴≤≤.∴当23x =时,函数取得最小值8-;当21x =时,函数取得最大值4-,∴函数的值域为[84]--,. 评注:配方法往往需结合函数图象求值域. 例5、求函数13432-+-=x x y 的值域。

高中函数值域的经典例题12种求法

高中函数值域的经典例题12种求法

一.观察法通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。

例1求函数y=3+√(根据算术平方根的性质,先求出√(2-3x) 的值域。

解:由算术平方根的性质,知√(2-3x)≥0,故3+√知域为. 点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。

本题质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。

练习:求函数y=[x](0≤x≤5{0,1,2,3,4,5})二.反函数法当函数的反函数存在时,则其反函数的定义域就是原函数的值域。

的值域。

点拨:先求出原函数的反函数,再求出其定义域。

解:显然函数y=(x+1)/(x+2)的反函数为:x=( y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。

点评:利用反函数法求原函数的定义域的前提条件是原函逆向思维的思想,是数学解题的重要方法之一。

练习:求函数y=(10x+10-x)/(10x-10-x)的值域。

(答案:函或y&gt;1})三.配方法当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值x2+x+2)的值域。

点拨:将被开方数配方成完全平方数,利用二次函数的最值求。

解:由-x2+x+2≥0,可2]。

此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4] ∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2] 点评:关系的应用,而且要特别注意定义域对值域的制约作用。

配方法是数学的一种重要的思想方法。

练习:求函数y=案:值域为{y∣y≤3})四.判别式法若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法函数y=(2x2-2x+3)/(x2-x+1)的值域。

点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式解:将上式化为(y-2)x2-(y-2)x+(y-3)=0 (*)当y≠2时,由Δ=(y-2)2-4(<x≤10/3当y=2时,方程(*)无解。

函数的值域求法练习题(含答案)

函数的值域求法练习题(含答案)

函数的值域求法练习题(一)基本知识点1、直接观察法:2、配方法3、换元法。

4、反函数法(或反表示法)。

5、反比例函数法。

6、数形结合法。

7、判别式法。

8、不等式法。

9、单调性法(二)经典例题1、(配方法)求下列函数的值域求下列函数的值域(1)当(0,2]x Î时,函数2()4(1)3f x ax a x =++-在2x =时取得最大值,则a 的取值范围是___(2)设函数2()2()g x x x R =-Î,()4,(),()(),().g x x x g x f x g x x x g x ++<ì=í-³î则()f x 值域是( )A.9,0(1,)4éù-+¥êúëûB.[)0,+¥C.9,4éö-+¥÷êëøD.9,0(2,)4éù-+¥êúëû(3),x y 是关于m 的方程2260m am a -++=的根的根,,则()()2211x y -+-的最小值是(小值是()A.-1241 B.18 C.8 D.432、(换元法)求下列函数的值域求下列函数的值域(1)211y x x =++- (2)249y x x =++-(3)21y x x =-- (4)11y x x =+--(5)24y x x =-+-3、(反函数法或反反解函数法)求下列函数的值域求下列函数的值域(1)313xxy =+ (2)2sin 11cos y q q-=+4、(数形结合法)求下列函数的值域求下列函数的值域 (1)已知点(,)P x y 在圆221x y +=上,求2y x +及2y x -的取值范围的取值范围(2)|1||4|y x x =-++ (3)2261345y x x x x =-++++(4)求4242()36131f x x x x x x =--+--+的最大值。

求函数值域典型例题

求函数值域典型例题

求函数值域典型例题一、函数点调性法对于一些比较简单的函数,通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。

利用函数在给定的区间上的单调递增或单调递减求值域。

例1. 求函数1y x=的值域。

解:∵0x ≠ ∴ 显然函数的值域是:),0()0,(+∞-∞例2. 求函数x 3y -=的值域。

解:∵0x ≥ 3x 3,0x ≤-≤-∴ 故函数的值域是:]3,[-∞ 练习1:求函数, 故。

∴函数的值域为[ 3 ,+∞) 点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。

练习2:求函数y=[x](0≤x≤5)的值域。

(答案:值域为:{0,1,2,3,4,5}) 练习3:① y=3x+2(-1≤x ≤1) ②x x f -+=42)( ③1+=x x y ④xx y += 解:①∵-1≤x ≤1,∴-3≤3x ≤3,∴-1≤3x+2≤5,即-1≤y ≤5,∴值域是[-1,5]②∵),0[4+∞∈-x ∴,2[)(+∞∈x f 即函数x x f -+=42)(的值域是 { y| y ≥2}③1111111+-=+-+=+=x x x x x y ∵011≠+x ∴1≠y即函数的值域是 { y| y ∈R 且y ≠1}(此法亦称分离常数法) ④当x>0,∴x x y 1+==2)1(2+-xx 2≥, 当x<0时,)1(x x y -+--==-2)1(2----xx -≤ ∴值域是 ]2,(--∞[2,+∞).(此法也称为配方法)函数xx y 1+=的图像为:例3 求函数y =+-25x log31-x (2≤x ≤10)的值域解:令y 1=25-x ,2y =log31-x ,则 y 1 , 2y 在[ 2, 10 ]上都是增函数。

所以y= y 1 +2y 在[ 2 ,10 ]上是增函数。

当x = 2 时,y m in = 32-+log 312-=81, 当x = 10 时,m ax y = 52+log 39=33。

值域的求法典型习题及解析

值域的求法典型习题及解析

值域的求法习题一.解答题(共10小题)1.已知函数的定义域为集合A,函数的值域为集合B,求A∩B和(C R A)∩(C R B).2.已知函数f(x)=x2﹣bx+3,且f(0)=f(4).(1)求函数y=f(x)的零点,写出满足条件f(x)<0的x的集合;(2)求函数y=f(x)在区间(0,3]上的值域.3.求函数的值域:.4.求下列函数的值域:(1)y=3x2﹣x+2;(2);(3);(4);(5)(6);5.求下列函数的值域(1);(2);(3)x∈[0,3]且x≠1;(4).6.求函数的值域:y=|x﹣1|+|x+4|.7.求下列函数的值域.(1)y=﹣x2+x+2;(2)y=3﹣2x,x∈[﹣2,9];(3)y=x2﹣2x﹣3,x∈(﹣1,2];(4)y=.8.已知函数f(x)=22x+2x+1+3,求f(x)的值域.9.已知f(x)的值域为,求y=的值域.10.设的值域为[﹣1,4],求a、b的值.参考答案与试题解析一.解答题(共10小题)1.已知函数的定义域为集合A,函数的值域为集合B,求A∩B和(C R A)∩(C R B).可求可求2.已知函数f(x)=x2﹣bx+3,且f(0)=f(4).(1)求函数y=f(x)的零点,写出满足条件f(x)<0的x的集合;(2)求函数y=f(x)在区间(0,3]上的值域.x==23.求函数的值域:.得:34.求下列函数的值域:(1)y=3x 2﹣x+2;(2);(3);(4);(5)(6) ﹣+y=的范围,可得==3+,再利用反比例函数求解.t==+)≥,∴,y=y=y===3+,∵≠3+≠的值域为t=型值域,或+b+sin)+∈[,]+﹣,sin)∈,]得:5.求下列函数的值域(1);(2);(3)x∈[0,3]且x≠1;(4).2+t=y=的值域.=1+=5++5,=sin=sin)﹣,]﹣﹣,])∈,的值域为﹣y==2+,则其函数图象如下的值域为(﹣∝,﹣﹣+2||≥y=的值域为56.求函数的值域:y=|x﹣1|+|x+4|.1|+|x+4|=7.求下列函数的值域.(1)y=﹣x2+x+2;(2)y=3﹣2x,x∈[﹣2,9];(3)y=x2﹣2x﹣3,x∈(﹣1,2];(4)y=.,当x=时,7y=; 8.已知函数f (x )=22x +2x+1+3,求f (x )的值域.9.已知f (x )的值域为,求y=的值域.≤,﹣≤≤≤≤,]10.设的值域为[﹣1,4],求a 、b 的值.∈,4。

高中函数值域的经典例题 12种求法

高中函数值域的经典例题 12种求法

一.观察法通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。

例1求函数y=3+√(2-3x) 的值域。

点拨:根据算术平方根的性质,先求出√(2-3x) 的值域。

解:由算术平方根的性质,知√(2-3x)≥0,故3+√(2-3x)≥3。

∴函数的知域为.点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。

本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧练习:求函数y=[x](0≤x≤5)的值域。

(答案:值域为:{0,1,2,3,4,5})二.反函数法当函数的反函数存在时,则其反函数的定义域就是原函数的值域。

例2求函数y=(x+1)/(x+2)的值域。

点拨:先求出原函数的反函数,再求出其定义域。

解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y 点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。

这种方法体现逆向思维的思想,是数练习:求函数y=(10x+10-x)/(10x-10-x)的值域。

(答案:函数的值域为{y∣y&lt;-1或y&gt;1})三.配方法当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域例3:求函数y=√(-x2+x+2)的值域。

点拨:将被开方数配方成完全平方数,利用二次函数的最值求。

解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。

此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4] ∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2]点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。

配方法是数学的一练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3})四.判别式法若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。

最全函数值域的12种求法(附例题,习题)

最全函数值域的12种求法(附例题,习题)
+x+2=-(x-)2+∈[0,∴0≤√-x2
+x+2≤函数的值域是
点评:
求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。配方法是数学的一种重要的思想方法。
练习:
求函数y=2x-5+√15-4x的值域.(
答案:
值域为{y∣y≤3})
四.判别式法
若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。
练习:
求函数y=(10x+10-x)/(10x-10-x)的值域。(
答案:
函数的值域为{y∣y<-1或y>1})
三.配方法
当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域
例3:求函数y=√(-x+x+2)的值域。
点拨:
将被开方数配方成完全平方数,利用二次函数的最值求。
解:
由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。此时-x2
例4求函数y=(2x2
-2x+3)/(x2
-x+1)的值域。
点拨:
将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。
解:
将上式化为(y-2)x2
-(y-2)x+(y-3)=0(*)
当y≠2时,由Δ=(y-2)2
-4(y-2)x+(y-3)≥0,解得:2<x≤2当y=2时,方程(*)无解。∴函数的值域为2<y≤。
点拨:
先求出原函数的反函数,再求出其定义域。
解:
显然函数y=(x+1)/(x+2)的反函数为:
x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。

函数值域的求法及例题

函数值域的求法及例题

函数值域的求法及例题
函数值域是一个重要的概念。

它指函数的定义域中的所有可能函数值的集合。

了解函数值域的求法,可以帮助我们更有效地使用函数,对解决实际问题也很有帮助。

函数值域的求法有两种:直接和间接。

直接求法:如果可以确定函数的解析式,则可以直接求出函数值域。

具体步骤如下:
(1) 求函数定义域:即可以使用此函数的所有自变量x的取值范围
(2)求函数值域:即当自变量x在定义域内任意取值时,函数的值的取值范围。

例子:若函数:y=3x+2,
它的定义域为x∈R
那么,函数值域就是y∈R
间接求法:当不能确定函数的解析式时,可以采用间接的求法,即分情况求解。

即将函数定义域上的所有取值情况分类讨论,将其分解为一些能求出函数值域的子问题。

例子:若函数:y=x²,
它的定义域为x∈R
这里分情况讨论:
当x ≥ 0 时,y ≥ 0;
当 x<0 时,y<0;
即函数值域为y∈[0,+∞) ∪ (-∞,0],
总之,了解函数值域的求法是有必要的,有助于我们理解函数的概念,也有助于解决各种函数问题。

函数的定义域与值域求法典型例题(解析版)

函数的定义域与值域求法典型例题(解析版)

专题13:函数的定义域与值域求法典型例题(解析版)函数定义域的常见其一、已知函数解析式型即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。

例1、求函数yx 2 2x 15的定义域。

x 3 82 x 5或x3 x 2x 15 0解:要使函数有意义,则必须满足即 x 5且x 11 x 3 8 0解得x 5或x 3且x 11即函数的定义域为x x 5或x 3且x 11 。

二、抽象函数型抽象函数是指没有给出解析式的函数,不能用常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的定义域,一般有两种情况。

(一)已知f (x )的定义域,求f g (x ) 的定义域。

其解法是:已知f (x )的定义域是[a ,b ]求f g (x ) 的定义域是解a g (x ) b ,即为所求的定义域。

例2、已知f (x )的定义域为[ 2,2],求f (x 1)的定义域。

2解: 2 x 2, 2 x 1 2,解得 3 x 23即函数f (x 1)的定义域为x 3 x 3(二)已知fg (x ) 的定义域,求f (x )的定义域。

2其解法是:已知f g (x ) 的定义域是[a ,b ]求f (x )的定义域的方法是:a x b ,求g (x )的值域,即所求f (x )的定义域。

例3、已知f (2x 1)的定义域为[1,2],求f (x )的定义域。

解: 1 x 2, 2 2x 4, 3 2x 1 5。

即函数f (x )的定义域是x |3 x 5 。

三、逆向思维型即已知所给函数的定义域求解析式中参数的取值范围。

特别是对于已知定义域为R ,求参数的范围问题通常是转化为恒成立问题来解决。

例4、已知函数ymx 2 6mx m 8的定义域为R 求实数m 的取值范围。

22分析:函数的定义域为R ,表明mx 6mx m 8 0,使一切x R 都成立,由x 项的系数是m ,所以应分m 0或m 0进行讨论。

求函数值域练习附答案解析

求函数值域练习附答案解析

求函数值域——快速练习一.选择题1.(2006•陕西)函数f(x)=(x∈R)的值域是()A.(0,1)B.(0,1] C. [0,1)D. [0,1]考点:函数的值域。

811365分析:本题为一道基础题,只要注意利用x2的范围就可以.解答:解:∵函数f(x)=(x∈R),∴1+x2≥1,所以原函数的值域是(0,1],点评:注意利用x2≥0(x∈R).2.函数y=(x∈[2,6])的值域是( D )A. R B.(﹣∞,0)∪(0,+∞)C.D.考点:函数的值域。

811365分析:由函数的定义域可先求x﹣1的范围,进一步求解函数的值域.解答:解:∵2≤x≤6则1≤x﹣1≤5,∴点评:本题主要考查了直接法求解函数的值域,属于基础试题.3.f(x)的定义域为[﹣2,3],值域是[a,b],则y=f(x+4)的值域是()A.[2,7] B.[﹣6,﹣1] C.[a,b] D.[a+4,b+4] 考点:函数的值域。

811365分析:因为从f(x)到y=f(x+4),其函数图象只是向左平移了4个单位;利用左右平移的函数只是自变量发生了变化,而函数值不变,可以直接求出答案.解答:解:因为从f(x)到y=f(x+4),其函数图象只是向左平移了4个单位,自变量发生了变化,而函数值不变,所以y=f(x+4)的值域仍为[a,b].点评:本题借助于图象平移来研究函数的值域.函数的平移变化分为两种:一:左右平移的函数只是自变量发生了变化,而函数值不变;二:上下平移的函数只是函数值发生了变化,而自变量不变.4.函数y=的值域是( B )A.[﹣1,1] B.(﹣1,1] C.[﹣1,1)D.(﹣1,1)考点:函数的值域。

811365进行变量分离y==﹣1,若令t=1+x2则可变形为y=(t≥1)利用反比例函数图象求出函数的值域.解法一:y==﹣1.∵1+x2≥1,∴0<≤2.∴﹣1<y≤1.解法二:由y=,得x2=.∵x2≥0,∴≥0,解得﹣1<y≤1.解法三:令x=tanθ(﹣<θ<),则y==cos2θ.C由在区间(1,+∞)上是增函数,故排除B.由于函数在区间(1,+∞)上是增函数,故在区间(1,+∞)上是增函数,故排由于二次函数y=2x2﹣6x的对称轴为x=,开口向上,故函数在[,+∞)上是增函数,在(﹣∞,]由于二次函数y=2x2﹣2x的对称轴为x=,故函数在[,+∞)上是增函数,在(﹣∞,]上是减函6.函数的值域为(﹣∞,1] .分析:先确定函数的定义域,再考查函数在定义域内的单调性,根据函数的单调性来确定函数的值域.解答:解:函数的定义域是(﹣∞,1],且在此定义域内是减函数,∴x=1时,函数有最大值为1,x→﹣∞时,函数值y→﹣∞,∴函数的值域是(﹣∞,1].点评:先利用偶次根式的被开方数大于或等于0求出函数的定义域,再判断函数的单调性,由函数的单调性确定函数的值域.7.函数的值域是(﹣∞,1)∪(1,+∞),的值域是(0,5] .分析:(1)把原函数化为y=1﹣,根据反比例函数的性质即可求解;(2)先把函数化为:2yx2﹣4yx+3y﹣5=0,根据判别式△≥0即可得出函数的值域.解答:解:(1)∵函数=1﹣,∴函数的值域为(﹣∞,1)∪(1,+∞);(2)原式可化为:2yx2﹣4yx+3y﹣5=0,∴△=16y2﹣8y(3y﹣5)≥0,∴y(y﹣5)≤0,∴0≤y≤5,,又y=0不可能取到故答案为:(0,5].点评:本题考查了函数的值域,属于基础题,关键是掌握函数值域的两种不同求法.8.求函数y=x+的值域[,+∞).考点:函数的值域。

函数值域的求法(精选例题)

函数值域的求法(精选例题)

函数值域的求法(精选例题)函数值域的求法1.观察法1) 求函数 $y_1=\dfrac{1}{x^2+1}$ 的值域为 $(0,1]$。

2) 求函数 $y_1=2-x$ 的值域为 $(-\infty,2]$。

2.配方法1) 求函数 $y=x^2-2x+5$,其中 $x\in[-1,2]$ 的值域为$[4,8]$。

2) 求函数 $y=-x^2-6x-5$ 的值域为 $[-\dfrac{23}{4},2]$。

3) 已知 $x,y$ 是关于 $m$ 的方程 $m^2-2am+a+6=0$ 的根,则 $(x-1)^2+(y-1)^2$ 的最小值为 $-\dfrac{12}{4}$。

3.换元法1) 求函数 $y=2x+1+\dfrac{1}{x-1}$ 的值域为 $[3,+\infty)$。

2) 求函数 $y=\dfrac{x+2}{x+3}$ 的值域为 $[1,2)$。

3) 求函数 $y=x^3-x$ 的值域为 $[0,+\infty)$。

4) 求函数 $y=x+1-x$ 的值域为 $(-\infty,+\infty)$。

5) 求函数 $y=\dfrac{x^3-x}{x^4+2x^2+1}$ 的值域为$[0,1]$。

4.分离常数法1) 求函数 $y=\dfrac{x-1}{x+2}$,其中 $x\geq -4$,的值域为 $(-\infty,1]\cup[\dfrac{5}{2},+\infty)$。

2) 求函数 $y=\dfrac{x^2-x+1}{x^2+1}$ 的值域为 $[-\dfrac{1}{3},1]$。

5.判别式法1) 求函数 $y=\dfrac{2x^2-x+2}{x^2+x+1}$ 的值域为$[1,5]$。

2) 求函数 $y=\dfrac{2x^2+4x-7}{x^2+2x-9}$ 的值域为 $[-\dfrac{9}{32},2)$。

3) 已知函数$f(x)=\dfrac{x+a}{x^2+1}$ 的值域为$[1,3]$,求实数 $a,b$ 的值,其中 $a=2$ 或 $a=-2$,$b=6$。

函数的定义域与值域计算练习题

函数的定义域与值域计算练习题

函数的定义域与值域计算练习题函数是数学中的一个重要概念,它描述了一种关系,将一个集合中的每个元素映射到另一个集合中的唯一元素。

在函数的定义中,一个关键的要素就是定义域和值域。

定义域指的是函数接受输入的所有可能值的集合,值域则是函数所能取到的所有输出值的集合。

在本文中,我们将探讨函数的定义域和值域的计算方法,并通过练习题加深理解。

练习题 1:考虑函数f(x) = √(x-2)。

1. 计算函数 f(x) 的定义域。

2. 计算函数 f(x) 的值域。

解答:1. 函数 f(x) 为平方根函数,要使得函数有实数解,必须满足 x-2 ≥ 0,即x ≥ 2。

因此,函数 f(x) 的定义域为[2, +∞)。

2. 对于定义域内的任意 x 值,我们可以计算出对应的函数值。

由于平方根函数的性质,函数值必须大于等于 0。

因此,函数 f(x) 的值域为[0, +∞)。

练习题 2:考虑函数 g(x) = 1 / (x+3)。

1. 计算函数 g(x) 的定义域。

2. 计算函数 g(x) 的值域。

解答:1. 函数 g(x) 中分母为 x+3,因此要使得函数有意义,分母不能为零。

即 x+3 ≠ 0,解得x ≠ -3。

因此,函数 g(x) 的定义域为 R - {-3},即全体实数集去掉 -3 所在的点。

2. 对于定义域内的任意 x 值,我们可以计算出对应的函数值。

由于分母为 x+3,当 x 趋近于无穷大时,分母趋近于无穷大,函数值趋近于0。

同理,当 x 趋近于负无穷大时,函数值也趋近于 0。

因此,函数 g(x) 的值域为 (-∞, 0) 与(0, +∞)。

通过以上两个练习题的解答,我们可以看出函数的定义域和值域的计算方法:1. 对于定义域,需要考虑函数中存在的限制条件,如根号函数中的非负性,分数函数中的分母不为零等。

根据这些限制条件,我们可以求解出定义域的范围。

2. 对于值域,可以通过将函数中的变量逐渐趋近于无穷大或负无穷大,观察函数的取值变化趋势。

求值域的方法,带例题

求值域的方法,带例题

F o r p e s n a u s e o n y s u d y a n d r e s a c h n o f r c m me r c a u s e 1.直接观察法:利用常见函数的值域来求值域或者通过对函数定义域、性质或者图像的观察,结合函数的解析式,求得函数的值域。

一次函数y=ax+b(a ≠0)的定义域为R ,值域为R ; 反比例函数)0(≠=k xky 的定义域为{x|x ≠0},值域为{y|y ≠0}; 二次函数)0()(2≠++=a c bx ax x f 的定义域为R ,当a>0时,值域为{a b ac y y 44|2-≥};当a<0时,值域为{ab ac y y 44|2-≤}. 练习1.求下列函数的值域① y=3x+2 (-1≤x ≤1) ②x x f -+=42)( ③1+=x xy2.分离常数法:分离常数法在含有两个量(一个常量和一个变量)的关系式(不等式或方程)中,要求变量的取值范围,可以将变量和常量分离(即变量和常量各在式子的一端),从而求出变量的取值范围。

练习2.求函数11)(+-=x xe e xf 的值域。

3.有解判别法:有解判别法一般用于分式函数,其分子或分母只能为二次式,并且分子、分母,没有公因式,解题中要注意二次项系数是否为0的讨论例1.求函数y=1122+++-x x x x 值域解:原式可化为1)1(22+-=++x x x x y , 整理得2(1)(1)10y x y x y -+++-=, 若y=1,即2x=0,则x=0;若y ≠1,由题∆≥0, 即0)14(-)1(22≥+y-y ,解得331≤≤y 且 y ≠1.综上:值域{y|331≤≤y }.例2.求函数66522-++-=x x x x y 的值域(注意此题分子、分母有公因式,怎么求解呢?)解:把已知函数化为(2)(3)361(2)(3)33x x x y x x x x ---===--+++ (x ≠2且 x ≠-3) 由此可得 y ≠1∵ x=2时 51-=y ∴ 51-≠y∴函数66522-++-=x x x x y 的值域为 { y| y ≠1且 y ≠51-}练习3(1)31(1)2x y x x +=≤- (2)221x xy x x -=-+4.二次函数在给定区间上的值域。

函数值域的求法大全

函数值域的求法大全

函数值域的求法大全题型一 求函数值:特别是分段函数求值例1 已知f (x )=11+x (x ∈R ,且x ≠-1),g (x )=x 2+2(x ∈R ).(1)求f (2),g (2)的值; (2)求f [g (3)]的值.解 (1)∵f (x )=11+x ,∴f (2)=11+2=13.又∵g (x )=x 2+2, ∴g (2)=22+2=6. (2)∵g (3)=32+2=11, ∴f [g (3)]=f (11)=11+11=112.反思与感悟 求函数值时,首先要确定出函数的对应关系f 的具体含义,然后将变量代入解析式计算,对于f [g (x )]型的求值,按“由内到外”的顺序进行,要注意f [g (x )]与g [f (x )]的区别. 跟踪训练4 已知函数f (x )=x +1x +2. (1)求f (2);(2)求f [f (1)].解 (1)∵f (x )=x +1x +2,∴f (2)=2+12+2=34.(2)f (1)=1+11+2=23,f [f (1)]=f (23)=23+123+2=58.5.已知函数f (x )=x 2+x -1. (1)求f (2),f (1x );(2)若f (x )=5,求x 的值. 解 (1)f (2)=22+2-1=5, f (1x )=1x 2+1x -1=1+x -x 2x 2. (2)∵f (x )=x 2+x -1=5,∴x 2+x -6=0, ∴x =2,或x =-3. (3)4.函数f (x )对任意自然数x 满足f (x +1)=f (x )+1,f (0)=1,则f (5)=________. 答案 6解析 f (1)=f (0)+1=1+1=2,f (2)=f (1)+1=3,f (3)=f (2)+1=4,f (4)=f (3)+1=5,f (5)=f (4)+1=6.二、值域是函数y=f(x)中y 的取值范围。

中学数学 值域 练习题(含答案)

中学数学  值域  练习题(含答案)

求函数值域的十种方法一.直接法(观察法):对于一些比较简单的函数,其值域可通过观察得到。

例 1 .求函数的值域。

【解析】∵ ,∴ ,∴函数的值域为。

【练习】1 .求下列函数的值域:① ;② ;③ ;,。

【参考答案】① ;② ;③ ;。

二.配方法:适用于二次函数及能通过换元法等转化为二次函数的题型。

形如的函数的值域问题,均可使用配方法。

例 2 .求函数()的值域。

【解析】。

∵ ,∴ ,∴ ,∴ ,∴ 。

∴函数()的值域为。

例 3 .求函数的值域。

【解析】本题中含有二次函数可利用配方法求解,为便于计算不妨设:配方得:利用二次函数的相关知识得,从而得出:。

说明:在求解值域 ( 最值 ) 时,遇到分式、根式、对数式等类型时要注意函数本身定义域的限制,本题为:。

例 4 .若,试求的最大值。

【分析与解】本题可看成第一象限内动点在直线上滑动时函数的最大值。

利用两点,确定一条直线,作出图象易得:, y=1 时,取最大值。

【练习】2 .求下列函数的最大值、最小值与值域:① ;② ;③ ;④ ;,;。

【参考答案】① ;② ;③ ;④ ;;三.反函数法:反函数的定义域就是原函数的值域,利用反函数与原函数的关系,求原函数的值域。

适用类型:分子、分母只含有一次项的函数 ( 即有理分式一次型 ) ,也可用于其它易反解出自变量的函数类型。

例 5 .求函数的值域。

分析与解:由于本题中分子、分母均只含有自变量的一次型,易反解出,从而便于求出反函数。

反解得,故函数的值域为。

【练习】1 .求函数的值域。

2 .求函数,的值域。

【参考答案】 1 .;。

四.分离变量法:适用类型 1 :分子、分母是一次函数的有理函数,可用分离常数法,此类问题一般也可以利用反函数法。

例 6 :求函数的值域。

解:∵ ,∵ ,∴ ,∴函数的值域为。

适用类型 2 :分式且分子、分母中有相似的项,通过该方法可将原函数转化为为( 常数 ) 的形式。

例 7 :求函数的值域。

高一数学函数求值域专项训练(含答案)

高一数学函数求值域专项训练(含答案)

函数求值域专项训练一、求值域(共23题;共62分)1.(2020高一上·呼和浩特期中)函数f(x)= 的值域是()A. [0,+∞)B. [3,+∞)C. [ ,+∞)D. [0,]2.(2020高一上·江西月考)的值域为()A. B. C. D.3.(2020高一上·吉安月考)函数的值域是()A. B. C. D.4.(2020高一上·南昌月考)函数的值域是()A. B. C. D.5.(2020高一上·南昌月考)函数的值域为()A. B. (-∞,2)∪(2,+∞) C. R D.6.(2020高一上·福州期中)函数的值域是()A. RB.C.D.7.(2020高一上·遵义期中)函数的值域为()A. B. C. D.8.(2020高一上·江西月考)函数的值域为()A. B. C. D.9.(2020高一上·邵阳期中)函数在区间上的值域为()A. B. C. D.10.(2020高一上·榆树期中)函数y=x2+1 (-1≤x<2)的值域是( )A. B. C. D.11.(2020高一上·蚌埠期末)函数的值域为()A. B. C. D.12.(2020高三上·哈尔滨月考)函数的值域为()A. B. C. D.13.(2020高一上·洛阳期中)已知函数,则的值域为()A. B. C. D.14.(2019高一上·河南月考)若的定义域为R,值域为,则的值域为()A. B. C. D.15.(2019高一上·邵东月考)已知函数的定义域为,值域是,则的值域是()A. B. C. D.16.(2020高一上·南昌月考)已知定义在上的函数的值域为,则函数的值域为()A. B. C. D.17.(2020高一上·磐安月考)若函数的值域是,则函数的值域是()A. B. C. D.18.(2020高三上·高密月考)函数的值域为________.19.(2020高一上·浦东期末)已知函数,,则此函数的值域是________.20.(2020高一上·兖州期中)函数的值域是________.21.(2020高一上·利辛期中)求下列函数的值域.(1);(2).22.(2020高一上·宜春月考)求下列函数的值域.(1),x∈[3,5];(2).23.(2020高一上·南昌期中)求函数y=2x-的值域.答案解析部分一、求值域1.【答案】C【解析】【解答】,,函数的值域是.故答案为:C【分析】首先计算的范围,再计算函数的值域。

史上最全面的函数定义域值域求法好题集含详解

史上最全面的函数定义域值域求法好题集含详解

史上最全面的函数定义域、值域的求法好题集一、单选题1 .函数y = ∕(x+l )的值域是[-2,3],则函数y = "x-2)的值域是( )A. [-1,4]B. [1,6]C. [-2,3]D. [-3,2]2 .己知函数/(1)=1。

82(--+6工+ 7)的值域记为集合4,函数g (χ) = Ji6-0的值域为B ,则有(),・/、 sin4x + √3cos4x 八函数∕(x) == ----------- - ------- 的值域为()sin2x-√3 cos 2xg(x) + x+4,x< g(x)、 :、,则函数/(幻的值域 g(x)-x,x≥g(x)—Q.CUC + 3cι +1, x < 1,, , 的值域为R,则实数。

的取值范围是()A. (一2,2)B. (-U )C. [-M]D. [-2,2]6. 函数∕∙(χ)二工-2+2-』在区间(0,4]上的值域为(A.xc / 15η B∙ (-∞,-]4C∙ [|,2] D. (—8,2]A.9、[一:,+8)4 B. 9 —,0(1,÷∞)4C. 97一二,。

(二,+8)4 4 D∙ 9—,0 D (2,+”5) 4 A. β⊂QΛB. A ⊂ C κBC. Au83∙ 若函数V= ∕(Λ)的值域为则函数 ∕7(.v)∕(.v) +的值域为() /(二)A.B. C.5 1() 2 ’ 3D.4.已知函数∕(x) = lnx-0r 2+(4z-l)x + 6z(4z > 0)的值域与函数∕(∕(x))的值域相同,则。

的取值范围为(A. (0』B.(L+8)C.D. 4一,+835. 7. 8. 已知∕(x) =lnx,x≥∖A. (-00,-1]B. (-1,0)C. [-1,0)D. [-1,09.己知函数 ∕(x) = ------ --- 2sinx + 3x'在区间[-2,2]的值域为, ∣jiιj m+n =3Λ +1 ()取值范围是()A. (l,+∞)B. (2,+∞)cosx. x<a,11.若函数∕(x) = { 1 的值域为[T1],则实数4的取值范围是(),x a x A. [l,+oo) B. (―00,—1]C. (0, 1] D∙ (—1,0)12 .已知函数八力的定义域A ,值域是3 = {y ∣Q<y≤M' g(x)定义域C,值域是 3 = {y c≤ y≤d^.甲:如果任意再wA,存在々£0,使得/(5)二g(毛),那么4口。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的值域求法练习题
(一)基本知识点
1、直接观察法:
2、配方法
3、换元法。

4、反函数法(或反表示法)。

5、反比例函数法。

6、数形结合法。

7、判别式法。

8、不等式法。

9、单调性法
(二)经典例题 1、(配方法)求下列函数的值域
(1)当(0,2]x ∈时,函数2
()4(1)3f x ax a x =++-在2x =时取得最大值,则a 的取值范围是___
(2)设函数2
()2()g x x x R =-∈,()4,(),
()(),().
g x x x g x f x g x x x g x ++<⎧=⎨
-≥⎩则()f x 值域是( )
A.9,0(1,)4⎡⎤
-+∞⎢⎥⎣⎦ B.[)0,+∞ C.9,4⎡⎫
-+∞⎪⎢⎣⎭
D.9,0(2,)4⎡⎤
-
+∞⎢⎥⎣⎦
(3),x y 是关于m 的方程2
260m am a -++=的根,则()()22
11x y -+-的最小值是( )A.-12
4
1
B.18
C.8
D.
4
3 2、(换元法)求下列函数的值域
(1)21y x =++
(2)4y x =+
(3)y x = (4)y =(5)y =
3、(反函数法或反反解函数法)求下列函数的值域
(1)313x x
y =+ (2)2sin 1
1cos y θθ
-=+
4、(数形结合法)求下列函数的值域 (1)已知点(,)P x y 在圆2
2
1x y +=上,求2
y
x +及2y x -的取值范围
(2)|1||4|y x x =-++ (3)y =
(4)求
()f x =
(4)对,a b R ∈,记{}()
min ,()
a a
b a b b a b <⎧=⎨
≥⎩,按如下方式定义函数()f x :对于每个实数
x ,{}
2()min ,6,28f x x x x =-+.则函数()f x 最大值为______.
5、(判别式法)
(1
)求函数y x =--的值域
(2)已知函数232
8log 1
mx x n
y x ++=+的定义域为R ,值域为[0,2],求常数,m n 的值
6、(不等式法)求下列函数的值域
(1)已知0t >,则函数241t t y t -+=的最小值为____________ (形如:b
y ax x
=+的值域)
(2)设1
2
,,,x a a y 成等差数列,1
2
,,,x b b y 成等比数列,则
()2
1212
a a
b b +的取值范围是_____
(3)已知231x y +=,求2
2
(,)f x y x y =+的最小值,并求出取得最小值时,x y 的值。

(3)设,,x y z 是三个不全为0的实数,求222
2xy yz
x y z +++的最大值
7、(单调性法)求下列函数的值域 (1)(1)1
(19)y x x x
=-
<<
(2)若关于x 的方程|3|2
(22)3x a ---=+有实数根,求实数a 的取值范围.
(3)求函数3
2()2440f x x x x =+-,[3,3]x ∈-的最小值。

(4)求函数()f x =
8、已知函数1
)(2
++=
x b ax x f 的值域是[-1,4 ],则b a 2
的值是_____________
9、已知函数12
||4
)(-+=
x x f 的定义域是[]b a ,(,)a b ∈Z ,值域是[]1,0,那么满足条件的
整数数对),(b a 共有 ( )
(A )2个 (B )3个 (C ) 5个 (D )无数个
10、设()0,0A ,()4,0B ,()4,4C t +,()(),4D t t R ∈.记()N t 为平行四边形ABCD 内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则函数()N t 的值域为( ) A.{}9,10,11 B.{}
9,10,12
C.{}9,11,12
D.{}10,11,12
(三)巩固与提高
1、求函数2
25,[1,2]y x x x =-+∈-的值域
2、(1)已知()f x 的值域是34,89⎡⎤⎢⎥⎣⎦
,试求函数()y f x =的值域。

(2)求函数y =
3、求值域(1)1(4)2x y x x -=≥-+ (2)2sin 1
1sin y θθ
-=+ (3)22
4321x x y x x -+=--
4、(1)若(0x y =,求x y -的最大、最小值
(2)求y = (3)求y 的最值
5、(1)求2
1
1
x y x x +=++的值域
(2)已知函数2
()1
ax b
f x x +=+的值域是[]1,4-,求实数,a b 的值
6、求值域
(1
)y =(2)21
1
x x y x ++=+
(3)设实数,x y 满足2245+45x xy y -=,设22
S x y =+,则max
min
11S S +
=____
7、求下列函数的值域 (1)125
x
y -= (2)2
29
sin
1sin y x x
=+
+。

相关文档
最新文档