关于极点的留数的一个定理
28.极点留数的计算
•法则2
P(z) , P ( z ) 及 Q( z ) 在 z0 都解析. 设 f (z) Q( z )
如果 P ( z0 ) 0, Q( z0 ) 0, Q( z0 ) 0, 那么 z0 为f (z) 的1级极点, 并且
P ( z0 ) Res[ f ( z ), z0 ] . Q ( z 0 )
1 d n 1 Res[f ( z ), z0 ] c1 lim n1 [( z z0 )n f ( z )]. ( n 1)! z z0 dz
例3
z 2n 求 f (z) n 在z= -1处的留数. ( z 1)
解 显然z= -1是f (z)的n级极点,所以
1 2 n ( n1) Res f ( z ), 1 lim z ( n 1)! z 1 2n(2n 1)(2n n 2) 2 n n1 lim z z 1 ( n 1)! ( 1)
syms 法则3>> 中取 n=5, z; 则
P ( z ) 1 cos z, Q( z ) z 5 .
不 1 1 >> f=(1-cos(z))/z^5; 显然 z=0 是Qlim(1 (z)的5 级零点 . 因为 级极 Res[ f ( z,),0] cos z )(4) . 4! z 0 24 >> r=limit(diff(f*z^5,z,4)/prod(1:4),z,0) P (0) P (0) 0, P (0) 1 0,
极点留数的计算
•法则1 如果 z 0 为 f ( z )的1级极点, 那么
Res[ f ( z ), z0 ] lim[( z z0 ) f ( z )].
第二节留数的计算方法
证 因为 Q(z0 ) 0, Q(z0 ) 0
所以z0为 Q(z) 的一级零点, 1
z0 为 Q(z) 的一级极点.
10
因此 1 1 (z),
Q(z) z z0
其中 (z)在 z0 解析且 (z0 ) 0,
f (z) 1 P(z) (z) . z z0 在 z0 解析且 P(z0 ) (z0 ) 0.
第二节 留 数
一、留数的引入 二、利用留数求积分 三、在无穷远点的留数 四、典型例题 五、小结与思考
一、留数的引入
设 z0 为 f (z)的一个孤立奇点;
C .z0
z0的某去心邻域 0 z z0 R C:邻域内包含z0 的任一条正向简单闭曲线
f (z) 在 0 z z0 R 内的洛朗级数: f (z) cn(z z0 )n c1(z z0 )1 c0
C
C1
C2
Cn
C
.zn
两边同时除以 2i 且
z1 . .z2
D
1 2i
C1
f
( z )dz
1 2i
C2
f
( z )dz
1 2i
Cn
f
( z )dz
Res[ f (z), z1] Res[ f (z), z2] Res[ f (z), zn]
n
Res[ f (z), zk ] 即可得.
Res[
f
(z),
z0
]limzz0(zz0
)
f
(z).
7
•规则2 如果 z0为 f (z)的 m 级极点, 那末
5.2.2留数的计算规则
1 5! z
所以
Res
z
sin z6
z
, 0
C1
1 5!
另外,在规则Ⅱ的证明过程中不难发现,如果 f (z)的极点的级数小于 m,
这时表达式
f z Cm (z z0 )m Cm1(z z0 )m1 C1(z z0 )1 C0
中的系数 Cm,Cm1, 中可能有一个或几个为零, 那么公式仍然成立,善用
由规则Ⅲ,
P zk Q zk
zk 4 zk 3
1 4zk 2
故由留数定理
c
z4
z
1
dz
2
i
1 4
1 4
1 4
1 4
0
事实上,当函数的极点的级数很高时,规则Ⅱ往往比较繁复,此时可以利用 其洛朗级数展开式来计算留数。
例4:计算
z
sin z6
z
在
z
0 的留数。
解:因为
z
sin z6
z
1 3! z3
z z0 m f z Cm Cm1 z z0 C1 z z0 m1 C0 z z0 m
d m1 dz m1
z
z0 m
f
z
m 1!C1 含有z
z0正幂的项
令 z z0, 两端求极限,得证;
规则Ⅲ
设
f
z=
Pz Qz
,其中P( z ),Q( z )
在 z0
如果 z0
是
f
(z)
的一级极点,那么
Res
f
z, z0
lim z
zz0
z0
f
z
证明: 设 z0 是 f (z) 的一级极点,那么
复变函数第六章留数理论及其应用知识点总结
注 2:条件可减弱为:f(z)连续到边界 C,且沿 C 有 f(z)≠0 4.(辅角原理):
5.(定理 鲁歇(Rouche)定理):设 C 是一条周线,函数 f(z)及 (z)满足条 件:
(1)它们在 C 的内部均解析,且连续到 C;
(2)在 C 上,|f(z)|>| (z)|
则函数 f(z)与 f(z)+ (z)在 C 内部有同样多(几阶算几个)的零点,即
§2.用留数定理计算实积分
一. 注:注意偶函数
→ 引入
二.
型积分
1.(引理 大弧引理): 上
则
2.(定理)设
为互质多项式,且符合条件: (1)n-m≥2; (2)Q(z)没有实零点 于是有
注:
可记为
三.
型积分
3.(引理 若尔当引理):设函数 g(z)沿半圆周 上连续,且
在 上一致成立。则
2
4.(定理):设 (1)Q 的次数比 P 高; (2)Q 无实数解; (3)m>0 则有
(2)设 b 为 f(z)的 m 阶极点,则 b 必为函数 的一阶极点,并且
3
3.(定理 对数留数定理):设 C 是一条周线,f(z)满足条件: (1)f(z)在 C 的内部是亚纯的; (2)f(z)在 C 上解析且不为零。 则有
注 1:当条件更改为:(1)f 在 Int(C)+C 上解析;(2)C 上有 f≠0,有 ,即
,其中 P(z)及 Q(z)为互质多项式,且符合条件:
特别的,上式可拆分成: 及
四.计算积分路径上有奇点的积分 5.(引理 小弧引理):
于 上一致成立,则有
五.杂例 六.应用多值函数的积分
§3.辐角原理及其应用 即为:求解析函数零点个数 1.对数留数:
留数的定义留数定理留数的计算规则无穷远点的留数
( g ( z ) ( z ) p( z ) 在z0解析, 且 g ( z0 ) 0 )
则z0为f ( z)的一级极点,由规则
Re s[ f ( z ), z0 ] lim ( z z0 ) f ( z )
z z0
Re s[ f ( z ), z0 ] lim ( z z0 ) f ( z )
(5)
事实上,由条件
f ( z ) cm ( z z0 ) m c2 ( z z0 ) 2 c1 ( z z0 ) 1 c0 c1 ( z z0 ) , (cm 0)
以( z z0 )m 乘上式两边 ,得
( z z0 ) m f ( z ) cm cm1 ( z z0 ) c1 ( z z0 ) m1 c0 ( z z0 ) m
当 m = 1时,式(5)即为式(4).
p( z ) , Q( z ) p( z ), Q( z )在z0 处解析,
规则III 设f ( z )
p( z0 ) 0 , Q( z0 ) 0 , Q' ( z0 ) 0,则
z0 是f ( z )的一级极点 ,且 p( z0 ) Re s[ f ( z ), z0 ] Q' ( z 0 ) ( 6)
c k 1
n
k
]
(3)
证明
用互不包含 , 互不相交的正向简单闭 曲线ck (k 1,2,n),将 c内的弧立奇点zk 围绕,
由复合闭路定理得:
f ( z)dz
c
c1
f ( z )dz f ( z )dz f ( z )dz
c2 cn
留数定理及应用
留数定理及应用留数及其应用摘 要 数定理得知,计算函数)(z f 沿C 的积分,可归结为计算围线C 内各孤立奇点处的留数之和.而留数又是该奇点处的罗朗级数的负一次幂的系数,因此我们只关心该奇点处罗朗留数理论是复积分和复级数理论相结合的产物,利用留数定理可以把沿闭路的积分转化为计算孤立点处的留数.此外,在数学分析及实际问题中,往往一些被积函数的原函数不能用初等函数表示,有时即便可以,计算也非常复杂.我们利用留数定理可以把要求的积分转化为复变函数沿闭曲线的积分,从而把待求积分转化为留数计算.本文首先介绍留数定义及留数定理,然后针对具体不同的积分类型有不同的计算方法以及留数理论在定积分中的一些应用. 关键词 留数定理;留数计算;应用引 言 对留数理论的学习不仅是前面知识的延伸,更为对原函数不易直接求得的定积分和反常积分的求法提供了一个较为方便的方法.一. 预备知识 孤立奇点1.设()f z 在点a 的把计算闭曲线上的积分值的问题转化为计算各个孤立奇点上的留数的问题,即计算在每一个孤立奇点处的罗朗展式中负幂一次项的系数1-C .在一般情况下,求罗朗展式也是比较麻烦的,因此,根据孤立奇点的不同类型,分别建立留数计算的一些简便方法是十分必要的. 1.1 若0z 为)(z f 的可去奇点则)(z f 在R z z <-<00某去心邻域内解析,但在点a 不解析,则称a 为f 的孤立奇点.例如sin zz,1z e 以0=z 为孤立奇点.z 0=z 为奇点,但不是孤立奇点,是支点.11sinz 以0=z 为奇点(又由1sin0=z ,得1(1, 2...,)π==±±z k k 故0=z 不是孤立奇点) 2.设a 为()f z 的孤立奇点,则()f z 在a 的某去心邻域内,有1()()(),∞∞-===+-∑∑-nnnnn n f z c z a c z a 称()n=1∞-∑-nnc z a 为()f z 在点a 的主要部分,称()∞=-∑nnn z a c 为()f z 在点a 的正则部分,当主要部分为0时,称a 为()f z 的可去奇点; 当主要部分为有限项时,设为(1)11(0)()()------+++≠---m mm m m c c c c z a z a z a称a 为()f z 的m 级极点;当主要部分为无限项时,称a 为本性奇点.二. 留数的概念及留数定理 1. 留数的定义设函数()f z 以有限点a 为孤立点,即()f z 在点a 的某个去心邻域0z a R <⋅<内解析,则积分()()1:,02f z dz z a R i ρρπΓΓ⋅=<<⎰为()f z 在点a 的留数,记为:()Re z as f z =.2. 留数定理介绍留数定理之前,我们先来介绍复周线的柯西积分定理:设D 是由复周线012C C C C --=+++…nC -所围成的有界连通区域,函数()f z 在D 内解析,在_D D C =+上连续,则()0Cf z dz =⎰.定理1[]1(留数定理) 设()f z 在周线或复周线C 所范围的区域D 内,除12,,a a …,n a 外解析,在闭域_D D C =+上除12,,a a …,n a 外连续,则( “大范围”积分) ()()12Re k nz a k Cf z dz i s f z π===∑⎰. (1)证明 以k a 为心,充分小的正数k ρ为半径画圆周:k k z a ρΓ⋅=(1,2,k =…,n )使这些圆周及内部均含于D ,并且彼此相互隔离,应用复周线的柯西定理得()()1knk Cf z dz f z dz =Γ=∑⎰⎰,由留数的定义,有()()2Re kkz a f z dz i s f z π=Γ=⎰.特别地,由定义得 ()2Re kkz a f z dz i s π=Γ=⎰,代入(1)式得 ()()12Re knz a k Cf z dz i s f z π===∑⎰.定理2 设a 为()f z 的n 阶极点,()()()nz f z z a ϕ=-,其中()z ϕ在点a 解析,()0a ϕ≠,则()()()()11!n z aa Res f z n ϕ-==-.这里符号()()0a ϕ代表()a ϕ,且有()()()()11limn n z aa z ϕϕ--→=. 推论3 设a 为()f z 的一阶极点,()()()z z a f z ϕ=-, 则 ()()z aRes f z a ϕ==.推论4 设a 为()f z 的二阶极点,()()()2z z a f z ϕ=-, 则 ()()'z aRes f z a ϕ==.3. 留数的引理引理1 设()f z 沿圆弧:i R S z Re θ= (12θθθ≤≤,R 充分大)上连续,且()lim R zf z λ→+∞=于R S 上一致成立(即与12θθθ≤≤中的θ无关),则()()21limRS R f z dz i θθλ→+∞=-⎰.引理2(若尔当引理) 设函数()g z 沿半圆周:i R z Re θΓ= (0θπ≤≤,R 充分大)上连续,且()lim 0R g z →+∞=在R Γ上一致成立,则()()lim00Rimz R g z e dz m Γ→+∞=>⎰.引理3 (1)设a 为()f z 的n 阶零点,则a 必为函数()()'f z f z 的一阶极点,并且 ()()'z af z Res n f z =⎡⎤=⎢⎥⎣⎦; (2)设b 为()f z 的m 阶极点,则b 必为函数()()'f z f z 的一阶极点,并且 ()()'z bf z Res m f z =⎡⎤=-⎢⎥⎣⎦.三. 留数的计算1. 函数在极点的留数法则1:如果0z 为)(z f 的简单极点,则)()(lim ]),([Re 000z f z z z z f s z z -=-法则2:设)()()(z Q z P z f =,其中)(,)(z Q z P 在0z 处解析,如果0)(≠z P ,0z 为)(z Q 的一阶零点,则0z 为)(z f 的一阶极点,且)()(]),([Re 0z Q z P z z f s '=. 法则3:如果0z 为)(z f 的m 阶极点,则)]()[(lim !11]),([Re 01100z f z z dzd m z z f s m m m z z --=---)(. 2. 函数在无穷远点的留数定理 1 如果)(z f 在扩充复平面上只有有限个孤立奇点(包括无穷远点在内)为∞,,,21n z z z ,则)(z f 在各点的留数总和为零.关于在无穷远点的留数计算,我们有以下的规则.法则 4: 211Re [,]Re [(),0]s f z s f z z∞=-⋅(). 例 1 求函数2()1ize f z z =+在奇点处的留数.解 ()f z 有两个一阶极点z i =±,于是根据(6.5)得2()Re (,)()22i P i e is f i Q i i e===-'2()Re (,)()22i P i e is f i e Q i i ---==='--例 2 求函数3cos ()zf z z =在奇点处的留数. 解 ()f z 有一个三阶极点0z =,故由(6.7)得33001cos 11Re (,0)lim()lim(cos )222z z z s f z z z →→''=⋅=-=-四. 留数定理在定积分中的应用利用留数计算定积分活反常积分没有普遍的实用通法,我们只考虑几种特殊类型的积分.1. 形如()20cos ,sin f x x dx π⎰型的积分这里()cos ,sin f x x 表示cos ,sin x x 的有理函数,并且在[]0,2π上连续,把握此类积分要注意,第一:积分上下限之差为2π,这样当作定积分时x 从0经历变到2π,对应的复变函数积分正好沿闭曲线绕行一周.第二:被积函数是以正弦和余弦函数为自变量。
第四章 留数定理及其应用
第四章 留数定理及其应用
本章主要内容:
1. 留数的定义 2. 留数定理、留数的计算 留数定理、 3. 利用留数定理计算围线积分 4. 利用留数定理计算实积分
1 f (z) = , Res f (∞) = −1 z
※ 回顾:无穷远点奇点类型的判定。
定理4.2 如果 f (z)在扩充了的复平面上只有有限 个奇点,则 f (z)在所有奇点(包括无穷远点在内) 的留数之和为零。 如何证明? 例4.6
ez f (z) = ,求 Res f (∞) 1+ z
若 f (z)= tan z,是否能求出Res f (∞) ?
§4.1 留数定理 一. 留数的定义
设z0为 f (z)的孤立奇点, f (z) 在z0的去心邻域
0 < | z − z0 | < R 内有洛朗展式 :
f (z) = ∑ an (z − z0 )
n=−∞ ∞ n
称 a−1 为 f (z)在 z0点的留数,记作 Res f (z0)。 即,留数是 (洛朗展式中) 负一次幂的系数。 Question: 为什么强调 z0 孤立奇点?
z→z0
如何证明?
从右往左,利用留数的定义和洛朗展开证明.
P(z) 公式 II 若 f (z) = ,其中P(z)和Q(z)均在z0 Q(z) 点解析,且 P(z ) ≠ 0, Q(z ) = 0, Q'(z ) ≠ 0
0 0 0
则
P(z0 ) Res f (z0 ) = Q'(z0 )
第四篇留数定理
数值积分
留数定理也可用于提高数值积分的精度 和收敛速度。通过分析被积函数的奇点 并计算留数,可以优化数值积分算法并 得到更准确的结果。
留数定理在电路分析中的应用
频域分析
留数定理可用于求解复变函数 在极点附近的积分,从而分析 电路中的频域特性,如振荡频 率、带宽等。
极点和零点分析
留数定理可用于确定电路系统 的极点和零点,从而预测系统 的动态特性和稳定性。
统中复杂的数学模型,分析 系统的安全性和稳定性。
。
3 抗攻击设计
4 信号处理应用
利用留数定理的特性,可以 设计出更加抗攻击的密码学
留数定理在数字信号处理中 的应用,可用于加解密数字
算法和协议。
信号的分析和处理。
留数定理在神经网络中的应用
系统参数分析
通过运用留数定理,可以分 析动力系统对参数的敏感 性,从而优化系统的性能和 稳定性。这在工程设计中 有广泛应用。
混沌理论研究
留数定理为动力系统混沌 行为的研究提供了理论基 础,有助于更好地理解和预 测复杂非线性系统的行为 。
留数定理在量子计算中的应用
量子位编码
留数定理在确定量子位编码时发挥重要作用,用于分析复杂的量子态波函数。
留数定理在代数几何中的应用
曲线积分计算
留数定理可用于计算复平面上闭合 曲线的复积分,在代数几何中广泛应 用于求解各种代数曲线的面积、长 度等几何量。
奇点分析
利用留数定理可以确定代数曲线上 的奇点位置和性质,有助于描述代数 曲线的几何特性。
复平面映射
留数定理可应用于研究复平面上的 解析函数对域的映射,在代数几何中 具有重要的理论意义。
留数定理在微分几何中的应用
1 曲面拓扑
2 曲率计算
留数的定义留数定理留数的计算规则无穷远点的留数
当 m = 1时,式(5)即为式(4).
p( z ) , Q( z ) p( z ), Q( z )在z0 处解析,
规则III 设f ( z )
p( z0 ) 0 , Q( z0 ) 0 , Q' ( z0 ) 0,则
z0 是f ( z )的一级极点 ,且 p( z0 ) Re s[ f ( z ), z0 ] Q' ( z 0 ) ( 6)
邻域内的洛朗级数中负幂次项z的留数residue记作resf由留数定义resf在其内部包含的弧立奇点除此以外限个弧立奇点内有有围绕内的弧立奇点曲线互不相交的正向简单闭用互不包含re求沿闭曲线c的积分归之为求在c中各孤立奇点的留数
§2
留数(Residue)
1. 留数的定义
2. 留数定理
3. 留数的计算规则
z 故 4 dz 2i{Re s[ f ( z ),1] Re s[ f ( z ),1] c z 1 Re s[ f ( z ), i ] Re s[ f ( z ), i ]}
1 1 1 1 2i [ ] 0 4 4 4 4
cos z 例3 计 算 dz 3 z 1 z cos z 解 f ( z ) 3 有 一 个z 0 的 三 级 奇 点 , z
1 故 Re s[ f ( z ), z0 ] c1 f ( z )dz 2i c ( 2)
2. 留数定理
定理 设c是一条简单闭曲线, f ( z )在 c内有有
限个弧立奇点 z1 , z 2 , , z n , 除此以外, f ( z )在 c内及c上解析 ,则
f ( z )dz 2i Re s[ f ( z ), z
复变函数第六章留数理论及其应用知识点总结
第六章留数理论及其应用§1.留数1.(定理6.1 柯西留数定理):2.(定理6.2):设a为f(z)的m阶极点,其中在点a解析,,则3.(推论6.3):设a为f(z)的一阶极点,则4.(推论6.4):设a为f(z)的二阶极点则5.本质奇点处的留数:可以利用洛朗展式6.无穷远点的留数:即,等于f(z)在点的洛朗展式中这一项系数的反号7.(定理6.6)如果函数f(z)在扩充z平面上只有有限个孤立奇点(包括无穷远点在内),设为,则f(z)在各点的留数总和为零。
注:虽然f(z)在有限可去奇点a处,必有,但是,如果点为f(z)的可去奇点(或解析点),则可以不为零。
8.计算留数的另一公式:.§2.用留数定理计算实积分一.型积分→引入注:注意偶函数二.型积分1.(引理6.1 大弧引理):上则2.(定理6.7)设为有理分式,其中为互质多项式,且符合条件:(1)n-m≥2;(2)Q(z)没有实零点于是有注:可记为三.型积分3.(引理6.2 若尔当引理):设函数g(z)沿半圆周,充分大上连续,且在上一致成立。
则4.(定理6.8):设,其中P(z)及Q(z)为互质多项式,且符合条件:(1)Q的次数比P高;(2)Q无实数解;(3)m>0则有特别的,上式可拆分成:及四.计算积分路径上有奇点的积分5.(引理6.3 小弧引理):于上一致成立,则有五.杂例六.应用多值函数的积分§3.辐角原理及其应用即为:求解析函数零点个数1.对数留数:2.(引理6.4):(1)设a为f(z)的n阶零点,则a必为函数的一阶极点,并且(2)设b为f(z)的m阶极点,则b必为函数的一阶极点,并且3.(定理6.9 对数留数定理):设C是一条周线,f(z)满足条件:(1)f(z)在C的内部是亚纯的;(2)f(z)在C上解析且不为零。
则有内零点个数极点个数注1:当条件更改为:(1)f在Int(C)+C上解析;(2)C上有f≠0,有,即注2:条件可减弱为:f(z)连续到边界C,且沿C有f(z)≠04.(辅角原理):5.(定理6.10 鲁歇(Rouche)定理):设C是一条周线,函数f(z)及(z)满足条件:(1)它们在C的内部均解析,且连续到C;(2)在C上,|f(z)|>|(z)|则函数f(z)与f(z)+(z)在C内部有同样多(几阶算几个)的零点,即N(,C)=N(f,C)6.(定理6.11):若函数f(z)在区域D内但也解析,则在D内f’(z)≠0.。
数学物理方法留数定理
[( z z 0 ) P( z )]' P( z 0 ) = lim = . z z0 Q( z )' Q( z 0 )
12
三、在无穷远点的留数
1.定义 设函数 f (z )在圆环域 R z +内解析,
C为圆环域内绕原点的任何一条正向简单闭曲线,
1 则称此定值 那末积分 1 f ( z)dz 的值与C无关, 2 i C
1 z z = 6[ + L], z 3! 5!
1 z sin z Res ,0 = c1 = . 6 5! z
3
5
19
说明:在实际计算中应灵活运用计算规则. 如 z0 为 m 级极点,当 m 较大而导数又难以计算时, 可直接展开罗朗级数求 c1 来计算留数 .
23
z dz , C为正向圆周: z = 2 . 例5 计算积分 4 z 1 C z 在 z = 2 的外部, 除 点外没有 解 函数 4 z 1
其他奇点. z z 4 1 dz = 2iRes f ( z ), C
z z 1
4
=z
3
1 1 1 4 z
=z
3
+ a0 ( z z0 )m + a1 ( z z0 )m +1 + L
9
两边求 m 1 阶导数,
d m 1 m 得 m 1 [( z z0 ) f ( z )] dz
= ( m 1)!a1 +(含有 z z0 正幂的项) d lim m 1 [( z z0 )m f ( z )] = ( m 1)!a1 , z z0 dz 所以 Res[ f ( z ), z0 ] = a1
数学物理方法 第4章 留数定理
e
ma
2 ia
0
cos ma x a
2 2
dx i
e
ma
e
ma
2 ia
2a
y
例:
0
sin x x
dx
Cε
CR
解:如图4.9所示,
图4.9
0
x
sin x x
dx lim
R 0
R
sin x x
R e imx dx lim dx R 2i 0 x 1
1
z 1
1 2
z z 2
1
2
iz
dz
z 1
z (1 ) z
2 2
i
f (z)
dz
z 1
( z 1)( z )
1
记:
z
( z 1)( z )
它在复平面上有2个单极点
和
1
其中 z 在单位圆内,其留数为:
CR
x 图4.7
f ( x ) dx 2 i
{
f (z)
在上半平面所有奇点的留数之和}
例:
dx 1 x
2
解: 记:
z i
f (z)
1 1 z
2
,它在上半平面有单极点
其留数为:
1 zi 1 2i
Re sf ( i ) lim ( z i ) f ( z ) lim
1 z ( z 2i)
3
并求函数在这些极点的留数。
留数定理
求出函数在
这些极点的留数.
解
f (z) = z + 2i z5 + 4z3
=
z + 2i z3 (z2 + 4)
=
z3(z
z + 2i + 2i)(z
− 2i)
=
1 z3 (z − 2i)
(1)、当z→2i时,f(z) →∞,所以z=2i是f(z)的极点,
lim ( z
z→2i
− 2i)
f
(z)
=
lim
∫l f (z)dz = −2π ia−1
Re sf (∞) = −a−1
二、全平面的留数和为零
∞
∑ f (z) = ak z k k =−∞ (R < z < ∞)
函数f(z)在全平面上所有各点的留数之和为0。 这里的所有各点包括无限远点和有限远的奇点。
{ f (z)在所有有限远奇点上的留数和 + Re sf (∞)} = 0
n
∫ ∑ l
f
( z )dz
=
2π i
Re sf
j =1
(bj )
注意: 左边的积分是沿l 的正向进行的;
右边的奇点是指l 所围区域内的,并非是f(z)所有
的奇点。
7
留数定理对于无限远点也成立:
∞
∞
∫ ∫ ∑ ∑ ∫ f (z)dz = l
l k =−∞ ak z k dz = k =−∞ ak
l zk dz = 2π ia−1
∫ dz
z =1 ε z2 + 2z + ε
(0 < ε < 1)
∫ dz = πi
z =1 ε z2 + 2z + ε 1− ε 2
《数学物理方法》3留数定理及其应用
1)
z0 1 是f(z)的单极点
Re s f(1) lim( z 1)f(z) 1
z1
n
[解2]
Re
s
f(1)
lzim1( zn
1 1)
lzim1
1 nz n1
1 n
[例3] 求 f(z) 1 的极点及其留数
sin z
[解] z n(n 0, 1, 2, )
z0
z0 z 2i 2i 2
z0 0 是f(z)的三阶极点
Re
s
f(0)
lim
z0
1 2!
d2 dz 2
z3 f(z)
1 d2
lim
z0
2!
dz
2
1
z
2i
lim
z0
1 2!(z
2 2i)3
1 i
8i 8
[例2] [解1]
求
f(z)
1 zn 1
f(z)(z 1)(z
在z0=1的留数
f(z)
z n 是f(z)的单极点
Re
s
f(n)
zlimn( z
n) 1
sin
z
lim
zn
( z n)
(sin z)
lim
zn
1 cos
z
(
1)n
[例] 求
f(z)(szin
2z 1)3
ez 的极点及其留数
z1
[解] z0 1是f(z)的单极点
z0 1 是f(z)的三阶极点
zkdz (re i)kd(re i)
C
C
ir
k
1
2
e
《高等数学教学资料》第二节 留数与留数定理
z
z4
dz 1
,
其中C
为正向圆周 z
解: ( z 1 )4 sin 1
z 1
(
z
1 )4 [
z
1 1
3!(
1 z 1 )3
5!(
1 z 1 )5
L
]
( z 1 )3 1 ( z 1 ) 1 L
3!
5!( z 1 )
Re
s[(
z
1 )4
sin
z
1 1
,1]
c1
1 5!
1 120
。
练习: 求下列函数在有限奇点处的留数。 1 e2z
f(z)
f(1
)(记作 (
)
), (
)
在原点
的邻域 0
1
R 解析,它的
Laurent
展开式为
(
)
f(1
) cn n
n
定义:
L
cm m
L
c1
c0
c1
L
cn
n
L
义:
1
2
f( 1 )L
cm m2 L
c1
c0
2
L
cn
n2
L
义: 它在 0 的留数恰好是c1 ,故
11
定义: Re s[ f ( z ),] c1 Re s[ f ( ) 2 ,0].
2 i
m
j1
Re s[
f ( z ),bj
],
f ( z )dz 2i{
Re s[ f ( z ),bj ] Re s[ f ( z ),]},
j1
m
义: 或 f ( z )dz 2i{ Re s[ f ( z ),bj ] Re s[ f ( z ),]}. j1
§1留数定理
=
nπ
+
π 2
是
1 cos
z
的单极点。
由推论 1:
Re s
1
=
lim
z
−
1 2
(2n
+ 1) π
洛毕达法则
=−
lim
1 = ( ) −1 n+1 。
( ) cos 1 2n +1 π
z→ 1 (2n+1)π
2
cos z
z→1(2n s
1
=1
=− 1
= ( ) −1 n+1 。
域 0 < z − z0 < R 内,将 f ( z) 作罗朗展开
f (z) =
+
(z
a−2
− z0 )2
+
a−1 z − z0
+
a0
+
a1
(z
−
z0
)
+
a2
(z
−
z0
)2
+
,将 f ( z) 沿着完全在
0 < z − z0 < R 内且包围 z0 的围线 l 的积分,得 ∫l f ( z) dz = a−12π i ,
∫lk f ( z) dz = 2π i Re sf ( zk ) ,
n
∴
∫l
f
( z) dz
=
2π i∑ Re sf k =1
( zk
)
(留数定理)
复变函数的围线积分等于被积函数在围线所围区域内各孤立奇点处的留数
之和的 2πi 倍。 以上的留数均是对有限远的奇点而言的,对于无穷远点处也可同样定义它
留数及留数定理
22
e Re s [ f 2 ( z ), i ] lim[(z i ) 2 2 ] z i z ( z 1) e sin z 1 sin(-i) - i -ish1 lim[ 2 ] e e z i z ( z i ) 2i 2
最后由留数定理得其积分值为
sin z
4
积分 f ( z )dz
c n ( z z 0 ) n d z c 1 ( z z 0 ) 1 d z
C C
C
0 (高阶导数公式)
C C C
2i
c0dz c1 ( z z0 )dz cn ( z z0 )n dz
mn
1 dm-1 Res f(z), z 0 = lim m-1 [(z - z 0 )m f(z)] (m -1)! z z0 dz ( z) 由于f(z)= ,由高阶导数定理可得 n (z z 0 )
(n-1)
有
φ (z0 ) 1 φ(z) Res[ f(z), z0 ] = dz = n 2πi C (z - z 0 ) (n - 1)!
3.求c1
1
留数和留数定理
一Δ、留数的定义和计算 二、 留数定理 三*、函数在无穷远点的留数
2
Байду номын сангаас
一Δ 、留数的定义和计算
设 z 0 为 f ( z ) 的一个孤立奇点;
C
.z
0
z0 的某去心邻域 0 z z0 R
包含 z0 的任一条正向简单闭曲线C.
定义 若f(z)在z0的去心邻域0<|z-z0 |<R内解析
1 d 1 z Re s [ f1 ( z ),0] lim 4 (e 1) 4! z 0 dz 4!
极点留数定理推论二
极点留数定理推论二
【实用版】
目录
1.极点留数定理的概念
2.极点留数定理的推论二
3.极点留数定理推论二的应用
4.总结
正文
一、极点留数定理的概念
极点留数定理是复分析中的一个重要定理,主要用于研究复平面上的函数。
它指出,一个在复平面上的函数,如果它在某一点处有极点,那么在这个极点处,函数的留数存在且唯一。
二、极点留数定理的推论二
极点留数定理的推论二是指,如果一个函数在某一点处有极点,那么在这个极点处的留数等于该函数在这个点处的洛朗兹展开式的常数项的相反数。
三、极点留数定理推论二的应用
极点留数定理推论二在复分析中有广泛的应用,它可以用来求解许多复杂的问题。
例如,它可以用来求解级数的收敛性,也可以用来求解函数的解析性等。
四、总结
总的来说,极点留数定理推论二是复分析中的一个重要工具,它为我们提供了求解复杂问题的一种方法。
第1页共1页。