平衡式波纹管补偿器的安装结构及工作原理

合集下载

补偿器安装原则

补偿器安装原则

记住以下几条原则:1.两个固定支架之间只能设置一个补偿器,补偿器的补偿能力应符合该管段的热伸长;2.两固定支架之间的管道应严格保证在一条直线上,不允许有折角;3.两相临固定支架的间距应根据所选用的补偿方式确定,应能承受管道的推力;4.补偿器应贴近固定支架设置;5.导向支架应根据补偿器的要求设置;6.滑动支架在两固定支架之间部分设置,间距根据管道刚性、强度条件确定。

基本同意3楼的意见。

但对第一和第二条有如下补充:关于第一条:两个固定支架之间应职能设置一个或一组膨胀节,........;关于第二条:一般来说,应严格保证两固定支架之间的管道在一条直线上;但在实际设计或施工过程中是很难保证的;不过可以采用一些补救措施,也即在管道的拐点应设置定向固定支架,用以承受膨胀节的轴向推力。

波纹补偿器的安装目的应该是吸收管道膨胀量而设置,就像pi型节一样。

补偿器两端应该各设一个固定支架,但固定支架之间的距离,应以膨胀节能吸收两固定支架之间管道的膨胀为宜。

固定支架微小位移中对波纹补偿器(波纹管)的影响:不少管系甚至直埋管系均布置成固定支架(固定支墩)有微小热位移的可动设计,在自然补偿管系中,整个管系都参与补偿变形,管道变形较为均匀,这种布置方式使管系整体性好,可靠性高,并且可以减少应力集中。

在波纹补偿器(波纹管)管系中情况则大为不同,如果处理不当对波纹补偿器(波纹管)的安全影响很大。

一种微小热位移的可动设计形式是管道与支架连接处不是焊死而是紧靠限位挡板在根部焊接固定。

相国标图集403.022-02挡板式固定支架对于自然补偿管系(角向、复式拉杆补偿情况类似)是否焊接现在争论较大,另外蒸汽直埋管道现多采用钢套钢内固定方式,这种结构方式是为减少热桥的传热,固定环在内外环板之间增加橡胶板等隔热材料,内外环板通常不焊接,可以自由活动,当固定支架受较大力或水击振动会产生一定量位移,有时还发生纵向微量位移,对补偿器(波纹管)产生扭矩作用,这种位移对波纹补偿器(波纹管)有一定影响。

关于波纹补偿器使用的原理2

关于波纹补偿器使用的原理2

关于波纹补偿器使用的原理江苏省工业设备安装公司第五分公司钱程一、简介1、用途:波纹补偿器是现代柔性管系设计中的重要部位,它对整个管系的安全、正常运转至关重要。

补偿器本身的质量由制造商保证,但更重要的是在整个运输、安装、试压过程中都必须按照一定的要求进行,以免不必要的损失。

2、优势:因许多管道在运行过程中存在位移,其位移量的消除需靠一定的补偿手段,在过去的做法中,通常采用自然补偿的方法。

随着技术的不断发展,波纹补偿器逐步代替原用的自然补偿方法广泛使用。

在南京新港开发区的蒸汽管道中,波纹补偿器被大量使用。

波纹补偿器和自然补偿相比,有补偿量大、占地面积小、美观等优势。

3、种类:常用补偿器有以下几种:横向大拉杆波纹补偿器、旋转式补偿器、轴向套桶式补偿器等。

横向大拉杆波纹补偿器一般用于同一直线段的管道补偿,在两个固定支架中间,垂直或水平安装两只横向大拉杆波纹补偿器,管道位移由两端固定支架向中间越来越大,到中间通过横向大拉杆波纹补偿器将位移消除,两个补偿器中间设立一个固定支架;旋转式补偿器一般用于不同轴线管道间或同一轴线间大位移量的补偿;轴向套桶式补偿器一般用于直管线间补偿,但该管线不便于登高或水平拐弯。

后两种补偿器的补偿原理同横向大拉杆波纹补偿器。

在本文中将以蒸汽管道为依据,重点介绍横向大拉杆波纹补偿器。

4、安装图:a、DN300左右横向波纹补偿器补偿量一般为20mm,安装时可采用垂直安装或水平安装,安装简图见下图:(垂直装法)(水平装法)b、DN300左右旋转补偿器补偿量一般为40mm,安装时有Ω型补偿器及π型补偿器两种,Ω型补偿器一般用于补偿量较大管线,π型补偿器一般用于不在同一轴线管线,安装简图见下图:(Ω型补偿器)(π型补偿器)c、轴向套筒式补偿器一般用于补偿量不太大,且管段为直线,安装简图见下图:(轴向套筒式补偿器)二、横向大拉杆波纹补偿器简图三、横向大拉杆波纹补偿器安装前的准备工作1、补偿器到货后,需对以下内容进行开箱检查:a、文档资料:需检查补偿器标牌、合格证上所列型号、规格及技术参数是否与订货合同一致,其它所需的附属技术文件是否齐全。

波纹管补偿器

波纹管补偿器

波纹管补偿器一.概述波纹管习惯上也叫波纹管补偿器、膨胀节,伸缩节,是用以利用波纹管的弹性元件的有效伸缩变形来吸收管线、导管或容器由热胀冷缩等原因而产生的尺寸变化的一种补偿装置,属于一种补偿元件。

补偿器由波纹元件及接管(筒节)、导流筒、外护管、端板等相关结构件构成。

可对轴向,横向,和角向位移的的吸收,用于在管道、设备及系统的加热位移、机械位移吸收振动、降低噪音等。

二.主要技术参数和设计制造标准主要技术参数:压力、温度、补偿量、刚度、使用寿命、工作介质、连接形式。

目前国家认可并执行的标准有美国膨胀节制造商协会EJMA标准,国家标准GB/T 12777-1999《金属波纹管膨胀节通用技术条件》。

三.波纹补偿器的型式和工作原理波纹管按位移形式分类,基本可分为轴向型、横向型、角向型及压力平衡型波纹管。

按是否能吸收管道内介质压力所产生的压力推力(盲板力)分类,可分为无约束型波纹管和有约束型波纹管。

按波纹管的波形结构参数分类,可分为U形、Ω形、S形、V形波纹管(当前国内外的金属波纹管产品以采用U状波形结构者居多)。

每一类都有各自的优点和缺点,所以必须根据不同的使用条件,恰当地选用才能使金属波纹管正常工作,做到金属波纹管设计选型的经济合理。

(1) 单式轴向型波纹管由一个波纹管及结构件组成,主要用于吸收轴向位移而不能承受压力推力的波纹波偿器。

如图3.1所示:(a)结构简图 (b)拉伸及压缩变形示意图(c)轴向型补偿器照片图3.1 轴向型补偿器这种形式补偿器也可以用于吸收在管段上的三种基本位移,即轴向、径向和角向位移,但主要是轴向位移。

(2) 单式铰链型波纹补偿器由一个波纹管及销轴、铰链板和立板等结构件组成,只能吸收一个平面内的角位移并能承受波纹管压力推力的补偿器。

如图3.2所示:(a)结构简图 (b)角变形示意图(c)单式铰链型补偿器照片图3.2 单式铰链型波纹补偿器铰链型波纹补偿器只能以两个或三个组合在一起使用才能恰当的发挥作用。

管道补偿器的使用说明

管道补偿器的使用说明

浅谈管道补偿器的使用说明由于工作介质及环境温度的变化导致管道长度发生变化,并产生拉(压)应力,当超过管道本身的抗拉强度时,会使管道变形或破坏。

为此,在管道局部架空地段应设置补偿器,即膨胀节。

使由温度变化而引起管道长度的伸缩加以调节得到补偿一、波纹膨胀节的形式波纹管配备相应的构件,形成具有各种不同补偿功能的波纹膨胀节。

按补偿形式分为轴向型、横向型、角向型及压力平衡型。

轴向型普通轴向型、抗弯型、外压型、直埋型、直管力平衡型、一次性直埋型。

横向型单向横向型、万向铰链横向型、大拉杆横向型、小拉杆横向型。

角向型单向角向型、万向角向型。

以上是基本分类,每类都具备共同的功能。

在一些特定情况还可以有特殊功能,如耐腐蚀型、耐高温型。

按特定场合的不同,分为催化裂化装置用、高炉烟道用。

按用于不同介质分为:热风用、烟气用、蒸汽用等。

二、波纹膨胀节的结构1.轴向型波纹膨胀节普通抽向型是最基本的轴向膨胀节结构。

其中支撑螺母和预拉杆的作用是支撑膨胀节达到最大额定拉伸长度和到现场安装时调整安装长度(冷紧)。

如果补偿量较大,可用两节,甚至三节波纹管。

使用多节时,要增加抗失稳的导向限位杆。

抗弯型增加了外抗弯套筒,使整体具有抗弯能力。

这样可以不受支座的设置必须受4D、14D的约束,支架的设置可以将这段按刚性管道考虑。

外压型这种结构使波纹管外部受压,内部通大气。

外壳必须是密闭的容器,它的特点是:1)波纹管受外压不发生柱失稳,可以用多波,实现大补偿量。

2)波纹内不含杂污物及水,停汽时冷凝水不存波纹内可从排污阀排掉,不怕冷冻。

3)结构稍改进也具有抗弯能力。

直埋型它的外壳起到井的作用,把膨胀节保护起来.密封结构防止土及水进入。

实际产品分防土型和防土防水型。

对膨胀节的特殊要求是必须与管道同寿命。

一次性直理型它的使用是装在管线上后整个管线加热升温到管线的设计温度范围的中间温度,管线伸长,波纹管被压缩,两个套筒滑动靠近,然后把它们焊死,再由检压孔打压检验焊缝不漏即可。

内外压平衡式波纹补偿器工作原理

内外压平衡式波纹补偿器工作原理

内外压平衡式波纹补偿器工作原理内外压平衡式波纹补偿器是一种常用于管道系统中的补偿装置,它的工作原理是通过内外压力的平衡来实现补偿管道的热胀冷缩引起的变形。

下面将详细介绍内外压平衡式波纹补偿器的工作原理。

我们先了解一下波纹补偿器的结构。

内外压平衡式波纹补偿器主要由波纹管、法兰和连接件等组成。

波纹管是波纹补偿器的核心部件,它由多层波纹片叠加而成,能够在管道受到热胀冷缩或其他外力作用时,具有一定的伸缩能力。

法兰和连接件用于连接波纹补偿器与管道系统,确保其密封性和稳定性。

内外压平衡式波纹补偿器的工作原理可简单概括为内外压力的平衡。

当管道受到热胀冷缩或其他外力作用时,波纹补偿器的波纹管会发生形变,从而吸收管道的变形。

同时,波纹补偿器的内外压力也会发生变化。

具体地说,当管道受到热胀冷缩引起的伸长或收缩时,波纹补偿器的波纹管会发生相应的形变。

如果波纹补偿器处于无压力状态,那么其内外压力将会相等,波纹管的形变也将相对较小。

但是,如果波纹补偿器处于有压力状态,那么其内外压力将会不相等,波纹管的形变也将相对较大。

为了实现内外压力的平衡,内外压平衡式波纹补偿器采用了特殊的结构设计。

在波纹管的内外两侧分别设置了平衡室,并通过连接管道将它们连接起来。

当管道受到热胀冷缩引起的变形时,波纹补偿器内外的压力差将会通过连接管道传递到平衡室中,从而实现内外压力的平衡。

具体地说,当管道受到伸长或收缩时,波纹管的形变会导致平衡室内外的压力不相等。

此时,平衡室内的压力将会发生变化,通过连接管道传递到另一侧的平衡室中。

当平衡室内的压力相等时,波纹补偿器内外的压力差将被消除,从而实现内外压力的平衡。

通过内外压平衡式波纹补偿器的工作原理,可以有效地补偿管道的热胀冷缩引起的变形。

同时,它还可以减少管道系统的应力集中,提高系统的可靠性和安全性。

在实际应用中,内外压平衡式波纹补偿器广泛用于石油、化工、电力、冶金等行业的管道系统中,发挥着重要的作用。

温州压力平衡式波纹补偿器原理

温州压力平衡式波纹补偿器原理

温州压力平衡式波纹补偿器原理一、前言温州压力平衡式波纹补偿器是一种用于平衡水力系统中压力波的装置,广泛应用于各种水力工程中,例如给水、排水、暖通空调等系统。

是目前市场上一种广泛适用于不同程度压力波的装置。

本文将深入探讨温州压力平衡式波纹补偿器的原理,并对其结构、性能、优缺点等进行详细介绍,以期为广大工程专业人员提供一些理论基础和实践经验。

二、温州压力平衡式波纹补偿器的原理1、概述温州压力平衡式波纹补偿器是一种通过设计压力平衡室,在系统运行中通过补偿波动压力,从而实现平衡水力系统中压力的装置。

主要原理是利用阀门开度自动调节流量,调节流量所引起的压力变化,放在波纹室内,将波纹室的弹性变形作用于介质,从而形成平衡水平。

2、结构温州压力平衡式波纹补偿器主要由波纹室、阀门和进、出口等部分组成。

其中材质常用铜合金、不锈钢等,在此不再赘述。

波纹室主要作用是通过波纹的弹性能力,吸收、分散和减缓压力波,达到平衡压力的作用。

而阀门则能够对介质的流量进行调节,从而达到调节压力的目的。

进、出口主要作用是允许介质进出系统,在系统中起到连接作用。

3、工作原理当波纹补偿器处于静止状态时,介质通过进口进入波纹室内。

此时阀门处于关闭状态,介质的流速较慢,波纹室内没有介质流动。

此时波纹室的弹性处于自然状态,没有任何偏移。

当介质流量增大时,波纹补偿器内部的阀门逐渐打开,增加介质的流速。

原本处于自然状态的波纹室开始受到压力力的作用,波纹室内的波纹逐渐受力变形。

随着阀门的逐渐增大,波纹室内的波纹也逐渐增多,波形更加明显。

当介质流量减小时,波纹室内的阀门逐渐关闭,减小介质的流速。

波纹室内的弹性作用开始有所缓解,波纹室内的波纹逐渐减少,波形逐渐趋于平滑。

当介质流量和波纹室内的波纹达到平衡时,温州压力平衡式波纹补偿器的压力达到平稳状态,从而达到平衡压力的目的。

三、性能与优缺点1、性能温州压力平衡式波纹补偿器能够有效平衡水力系统中的压力波,减少压力爆炸的可能性,使得系统更加稳定,从而提升系统的工作效率。

波纹补偿器的安装规范

波纹补偿器的安装规范

波纹管:波纹管是指用可折叠皱纹片沿折叠伸缩方向连接成的管状弹性敏感元件。

波纹管在仪器仪表中应用广泛,主要用途是作为压力测量仪表的测量元件,将压力转换成位移或力。

波纹管管壁较薄,灵敏度较高,测量范围为数十帕至数十兆帕。

它的开口端固定,密封端处于自由状态,并利用辅助的螺旋弹簧或簧片增加弹性。

工作时在内部压力的作用下沿管子长度方向伸长,使活动端产生与压力成一定关系的位移。

活动端带动指针即可直接指示压力的大小。

波纹管常常与位移传感器组合起来构成输出为电量的压力传感器,有时也用作隔离元件。

由于波纹管的伸展要求较大的容积变化,因此它的响应速度低于波登管。

波纹管适于测量低压。

膨胀节:膨胀节是指能有效地起到补偿轴向变形作用的挠性元件。

例如焊接在固定管板式换热器壳体上的膨胀节轴向柔度大、容易变形,可补偿管子和壳体因壁温不同产生的热膨胀差,降低它们的轴向载荷,从而减小管子、管板和壳体的温差应力,避免引起强度破坏、失稳破坏和管子拉脱破坏。

膨胀节的种类较多,常用的有波形、环板焊接和夹壳式等结构,其中波形膨胀节应用最广泛,环板焊接膨胀节仅适用于常压或低压场合。

波纹补偿器:波纹补偿器属于一种补偿元件。

利用其工作主体波纹管的有效伸缩变形,以吸收管线、导管、容器等由热胀冷缩等原因而产生的尺寸变化,或补偿管线、导管、容器等的轴向、横向和角向位移。

也可用于降噪减振。

在现代工业中用途广泛。

简介:波纹补偿器,习惯上也叫膨胀节,或伸缩节。

由构成其工作主体的波纹管(一种弹性元件)和端管、支架、法兰、导管等附件组成。

主要用在各种管道中,它能够补偿管道的热位移,机械变形和吸收各种机械振动,起到降低管道变形应力和提高管道使用寿命的作用。

波纹补偿器连接方式分为法兰连接和焊接两种。

直埋管道补偿器一般采用焊接方式(地沟安装除外)工作原理波纹补偿器是用以利用波纹补偿器的弹性元件的有效伸缩变形来吸收管线、导管或容器由热胀冷缩等原因而产生的尺寸变化的一种补偿装置,属于一种补偿元件。

波纹补偿器的安装和使用要求

波纹补偿器的安装和使用要求

波纹补偿器的安装和使用要求一、波纹补偿器的基本概念和作用波纹补偿器是一种用于管道系统中的补偿装置,主要用于解决管道系统中由于温度变化、震动和安装误差等原因引起的热应力和机械应力。

波纹补偿器能够吸收管道系统中的位移、变形和振动,保护管道和设备的完整性,同时提高系统的可靠性和安全性。

二、波纹补偿器的种类和选择波纹补偿器根据其结构形式和使用场景的不同,可以分为各种不同类型的补偿器,如橡胶补偿器、金属波纹补偿器、伸缩节等。

在选择波纹补偿器时,需要考虑管道系统的工作压力、工作温度、介质性质、管道材质、管径和补偿量等因素,以确保选择合适的补偿器。

三、波纹补偿器的安装要求3.1 安装位置选择波纹补偿器应根据管道系统的设计要求和实际情况选择合适的安装位置。

一般来说,波纹补偿器应安装在管道系统的转弯、支撑、变径和法兰等部位,以便充分发挥其吸收位移和变形的作用。

3.2 安装方法波纹补偿器的安装应按照相关标准和规范进行,确保安装质量和安全性。

安装时应注意以下几点: 1. 波纹补偿器的两端应与管道系统的法兰连接,连接时应使用合适的密封垫片和螺栓,并适当加紧螺栓,确保连接的密封性和稳固性。

2. 波纹补偿器的安装应避免过度拉伸或压缩,以免影响其正常工作和寿命。

3. 安装时应注意波纹补偿器的方向和位置,确保其正常工作和排水。

3.3 安装验收安装完成后,应进行安装验收,包括以下几个方面: 1. 检查波纹补偿器的安装位置是否正确,连接是否牢固,无漏水现象。

2. 检查波纹补偿器的外观是否完好,有无损坏、变形等情况。

3. 进行压力试验,确保波纹补偿器的密封性和耐压性能。

四、波纹补偿器的使用要求4.1 工作温度和压力波纹补偿器的使用温度和压力应在其设计范围内,不得超过其允许的最大工作温度和压力。

超过设计范围使用会导致波纹补偿器失效,甚至引发事故。

4.2 定期检查和维护波纹补偿器在使用过程中应定期进行检查和维护,以确保其正常工作和使用寿命。

补偿器原理

补偿器原理

补偿器原理补偿器是一种常见的电子元件,用于电路中对信号进行补偿,以保证信号的稳定性和准确性。

补偿器的原理主要是通过对电路中的信号进行调节,使得输出信号能够在受到外部干扰或变化时,保持在一个稳定的水平上。

本文将介绍补偿器的原理及其在电子电路中的应用。

首先,补偿器的原理是基于对电路中信号的调节。

在电子电路中,信号的传输往往会受到各种因素的影响,如温度变化、电压波动、电磁干扰等。

这些因素会导致信号的失真和波动,影响电路的正常工作。

补偿器通过对这些因素进行补偿,使得输出信号能够在受到外部影响时,保持在一个稳定的水平上。

其次,补偿器的原理是通过对电路中的参数进行调节来实现信号的补偿。

在电子电路中,信号的传输往往受到电阻、电容、电感等元件的影响。

补偿器可以通过对这些元件的参数进行调节,来实现对信号的补偿。

例如,当电路中的温度发生变化时,补偿器可以通过调节电阻的数值,来实现对信号的温度补偿,从而保证输出信号的稳定性。

补偿器在电子电路中有着广泛的应用。

在各种精密仪器和设备中,补偿器都扮演着重要的角色。

例如,在测量仪器中,补偿器可以对信号进行补偿,以确保测量结果的准确性。

在通信设备中,补偿器可以对信号进行补偿,以确保通信质量的稳定性。

在控制系统中,补偿器可以对信号进行补偿,以确保系统的稳定性和可靠性。

总之,补偿器是一种重要的电子元件,其原理是通过对电路中信号的调节,实现对信号的补偿。

补偿器在电子电路中有着广泛的应用,可以保证信号的稳定性和准确性,是电子技术中不可或缺的一部分。

通过对补偿器的原理和应用进行深入了解,可以更好地掌握电子技术的核心原理,为电子电路的设计和应用提供重要的参考。

波纹管补偿器安装要求

波纹管补偿器安装要求

波纹管补偿器安装要求
波纹管补偿器的安装要求如下:
1. 安装波纹管补偿器时,应确保其能够自由伸缩,不受外力约束,并能够避免在安装过程中产生过大的扭矩或挤压力。

2. 波纹管补偿器的安装位置应尽量靠近需要补偿的管道或设备的连接处,并确保其能够有效吸收管道或设备的热膨胀、冷缩或振动引起的变形。

3. 在安装波纹管补偿器时,应保持其处于水平位置,并避免产生弯曲或扭转变形。

4. 波纹管补偿器的安装应遵循相关的安装规范和要求,例如使用正确的法兰连接或其他适当的连接方式,并确保连接紧固螺栓的均匀力度,以防止波纹管补偿器在使用过程中出现泄漏或松动。

5. 安装波纹管补偿器时,应注意管道或设备的工作温度和压力范围,选择合适的波纹管补偿器材质和型号,并确保其能够承受工作条件下的压力和温度要求。

6. 在进行波纹管补偿器的安装前,应仔细检查和清理管道或设备的连接口和内部,确保没有污垢、杂质或其它物质的存在,以保证连接处的密封性和可靠性。

7. 在安装波纹管补偿器时,要注意避免对波纹管补偿器造成冲击、撞击或拉扯力,以免损坏其结构或降低其使用寿命。

总之,安装波纹管补偿器时,应根据具体情况选择合适的安装方式和位置,遵循相关的安装规范和要求,确保其能够正常工作,提供有效的补偿功能。

补偿器的功能及工作原理

补偿器的功能及工作原理

补偿器的功能及工作原理<B>波纹管补偿器习惯上也叫膨胀节、伸缩节,由构成其工作主体的波纹管(一种弹性元件)和端管、支架、法兰、导管等附件组成。

是用以利用波纹管补偿器的弹性元件的有效伸缩变形来吸收管线、导管或容器由热胀冷缩等原因而产生的尺寸变化的一种补偿装置,属于一种补偿元件。

可对轴向,横向,和角向位移的的吸收,用于在管道、设备及系统的加热位移、机械位移吸收振动、降低噪音等.在现代工业中用途广泛。

2.补偿器执行标准:金属波纹管采用GB/T12777-91并参照美国""EJMA""标准,优化设计,结构合理,性能稳定,强度大,弹性好、抗疲劳度高等优点,材料采用1Cr18Ni9Ti,OCr19Ni9奥氏体不锈钢,两端接管或法兰采用低碳钢或低合金钢。

金属波纹管----补偿器选用U形波,分单层和多层制成,有较大的补偿量,耐压可高达4Mpa,使用温度----1960C一≤450度,结构紧凑,使用成本低,耐腐蚀,弹性好,钢度值低,允许疲劳度寿命1000次,解决了管道热胀冷缩,位移和机械高频振动与管道之间的柔性联接,广泛用于石油、热力、电力、煤气、化工等管路上安装。

3.补偿器连接方式:补偿器连接方式分为法兰连接和焊接两种。

直埋管道补偿器一般采用焊接方式(地沟安装除外)4.补偿器类型:补偿器分为轴向型、横向型、角向型三大类型二十多个品种。

轴向型补偿器主要包括:内压式、外压式、复式、平衡式、直埋式补偿器等。

横向型补偿器包括:大拉杆横向补偿器、万向铰链横向型补偿器等。

角向型补偿器包括:铰链补偿器、万向铰链补偿器等。

二.补偿器作用:补偿器也称伸缩器、膨胀节、波纹补偿器。

补偿器分为:波纹补偿器、套筒补偿器、旋转补偿器、方形自然补偿器等几大类型,其中以波纹补偿器较为常用,主要为保障管道安全运行,具有以下作用:1.补偿吸收管道轴向、横向、角向热变形。

2.波纹补偿器伸缩量,方便阀门管道的安装与拆卸。

3.吸收设备振动,减少设备振动对管道的影响。

波纹补偿器

波纹补偿器

波纹补偿器波纹补偿器:也称伸缩节、膨胀节,主要为保障管道安全运行。

波纹管补偿器英文名称为expansion joints,Bellow Expansion Joint,是一种挠性、薄壁、有横向波纹的具有伸缩功能的器件,它由金属波纹管与构件组成。

波纹管补偿器的工作原理主要是利用自身的弹性伸缩功能,补偿管道由于热变形、机械变形和各种机械振动而产生的轴向、角向、侧向及其组合位移,补偿的作用具有耐压、密封、耐腐蚀、耐温度、耐冲击、减振降噪的功能,起到降低管道变形和提高管道使用寿命的作用。

工作原理波纹补偿器是用以利用波纹补偿器的弹性元件的有效伸缩变形来吸收管线、导管或容器由热胀冷缩等原因而产生的尺寸变化的一种补偿装置,属于一种补偿元件。

可对轴向,横向,和角向位移的的吸收。

检测由于不同类型的波纹补偿器补偿形式不同,主要有轴向、横向、角向以及组合补偿方式。

对同时存在多种位移的波纹补偿器,要对其各种位移进行合成,求出总等效轴向位移,检测是对总等效轴向位移而言。

也就是说,波纹补偿器公称位移的检测是对总等效轴向位移检测。

通用类波纹管的公称位移,实际上就是波纹管给定的名义位移变形的能力。

对于用波纹管制成的膨胀节(补偿器)、补偿器而言,通常称为补偿量,反映了波纹管吸收系统位移的能力,表示在一定条件下,产品所具有的最大的补偿能力。

波纹管在正常工作时,要吸收系统位移而产生位移变形,同时还要保证一定次数的正常安全工作位移循环次数。

因此波纹管在设计时,根据每一个波可以承受的位移大小,设计有一定的波纹数,当每个波都在均匀地承受位移载荷,没有局部超负荷时,波纹管可以正常的工作。

设计合理时,可以保证一定的设计工作位移循环寿命次数。

在JB/T 6169-92“金属波纹管”标准中,对此项性能的检测做出了规定。

补偿器的使用说明

补偿器的使用说明

波纹管补偿器波纹管补偿器简介:波纹补偿器:也称伸缩节、膨胀节、主要为保障管道安全运行。

波纹补偿器工作原理:波纹补偿器的主要弹性元件为不锈钢波纹管,依靠波纹管伸缩、弯曲来对管道进行轴向、横向、角向补偿。

其作用可以起到:1.补偿吸收管道轴向、横向、角向热变形。

2.吸收设备振动,减少设备振动对管道的影响。

3.吸收地震、地陷对管道的变形量。

[补偿器]波纹膨胀节通用技术说明1.1 波纹膨胀节(补偿器)基本参数1.1.1 设计压力:用作压力管道附件时设计压力分为0.6MPa﹑1.0MPa﹑1.6MPa ﹑2.5MPa四个等级。

用作常压管道附件时设计压力为0.25MPa,用作内燃机排气管道复件时设计压力为0.05MPa﹑0.1MPa.1.1.2 设计温度:用作城市直埋管道附件时设计温度为150℃、300℃两个等级。

其他用途时设计温度为300℃。

1.1.3 疲劳寿命:用作压力管道附件时,设计全循环疲劳寿命为200次,1000次,3000 次三个等级。

安全系数≥10。

1.2 波纹膨胀节(补偿器)选用材料1.2.1 波纹膨胀节(补偿器)常用波纹管材料见表1-1名称牌号允许使用温度范围℃ 标准号相当日本牌号奥氏体不锈钢0Cr18Ni10Ti ﹣196~600 SUS321 0Cr17Ni12M O 2 ﹣196~450 SUS316 0Cr18Ni9 ﹣196~250 GB/T4237GB/T3280SUS304 00Cr19Ni10 ﹣200~425 SUS304L 00Cr17Ni14M O 2 ﹣200~450 SUS316L耐蚀合金NS111 ﹣196~800 GB/T15010 FN-2 ﹣196~900 GB1330名称钢号允许使用温度范围℃ 标准号无逢钢管102020G≤475℃GB/T8163GB9948GB6479波纹膨胀节稳定性包括柱失稳,平面失稳定,外压周向稳定性均经理论校核及长期实践考验,安全可靠。

直管压力平衡型波纹补偿器原理

直管压力平衡型波纹补偿器原理

直管压力平衡型波纹补偿器原理直管压力平衡型波纹补偿器采用波纹结构,可以补偿管路中因温度变化、振动和介质流动引起的热胀冷缩和位移变化,并保持管道的密封性和稳定性。

其原理基于弹性变形和介质压力之间的关系,下面将详细介绍其工作原理。

1.弹性波纹结构:直管压力平衡型波纹补偿器是由一系列波纹组成的弹性结构,通常采用不锈钢材料制造。

波纹的几何形状和数量根据工作条件和需求设计,其主要作用是吸收管道的热胀冷缩和位移变化。

2.波纹的工作原理:当波纹补偿器受到温度变化或压力变化时,波纹会发生弹性变形,从而吸收或释放热胀冷缩引起的变形位移。

当波纹补偿器装在管道中时,波纹可以在径向、轴向和角度方向上发生弹性变形,以补偿管道的位移变化。

3.温度变化引起的补偿:当管道受到温度变化时,波纹补偿器会发生热胀冷缩。

当温度升高时,补偿器会伸展,吸收超出管道正常承受能力的热胀位移。

当温度下降时,补偿器会收缩,返还之前吸收的热胀位移。

通过这种方式,波纹补偿器可以保持管道的稳定性和密封性。

4.压力变化引起的补偿:在管道中,介质的流动会产生压力的波动。

这些波动会影响到管道的稳定性和密封性。

波纹补偿器可以通过其弹性波纹结构的变形来平衡管道中的压力变化,保持压力的稳定。

当管道内部压力增加时,波纹补偿器会受到外部压力的挤压,发生弹性变形以平衡内外压力差。

反之,当管道内部压力减小时,波纹补偿器会恢复原状。

5.振动补偿:在管道运行过程中,由于流体的流动和其他外界因素的影响,管道会发生振动。

这些振动会给管道和相关设备带来不稳定和损害。

波纹补偿器通过其弹性波纹结构的变形,可以吸收和减少管道振动的影响,保护管道和设备的安全运行。

总结起来,直管压力平衡型波纹补偿器利用波纹结构的弹性变形来补偿管道中的热胀冷缩、位移变化和压力波动,保持管道的稳定性、密封性和安全性。

其工作原理基于弹性波纹结构的变形与介质压力之间的关系,通过吸收和释放变形量来实现补偿效果。

波纹补偿器广泛应用于各个行业的管道系统中,对于保证管道的正常运行和延长设备寿命具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平衡式波纹管补偿器是利用流体力学的原理在一般波纹管补偿器的基础上设计的一种新型的、国内外领先的管道补偿器。

其结构的设计为外套管的内截面积等于连接管内截面积。

使管道内介质对固定支架没有推力。

从而使补偿器的应用进入了一个新的时期和高度。

一、前言
在热力管网敷设中,补偿器是保证管道安全运行的重要部件。

目前在国内采用的补偿器
中,波纹管补偿器己占有举足轻重的地位,而且很有发展前景。

但是由于波纹管本身是一个弹性体,如果管内介质压力过高,而且对波纹管保护又不好,很可能将其拉坏,在热力管网中,如果采用波纹管补偿器对其补偿,在管网转角、阀门或者盲板处介质作用力必定要作用到固定支架上,作用力的大小等于波纹管的有效截面积S乘以管内工作介质压力p,即SP。

由于该力的作用必定要加强固定支架的强度和刚度,提高了固定支架的造价,并影响管网的运行安全性,特别在高压力大口径的情况下,这个作用力是很大的,它的大小与管网工作介质的压力成正比,与管径的平方成正比。

以DN600管径为例,如果工作介质的压力为,则这个作用力为:
F=SP
式中 F-- 工作介质对固定支架的作用力,N
P-- 管内工作介质压力,Pa
S-- 波纹管补偿器的有效截面积,
对DN600波纹管补偿器,S=
F=SP= 这是一个很大的力,特别在高架管线中,不仅给设计管道支架带来很大困难,也给施工带来诸多不便,并且还提高了工程造价。

平衡式波纹管补偿器是在轴向型波纹管补偿器的基础上设计的一种新型管道补偿装置,该补偿器利用流体力学平衡原理,可消除管道的内压力对固定支架的作用力,该补偿器中自带导向,它简化了管网设计,给管网设计和施工带来很大方便,并且既能降低土建工程造价,又能使设备成本降低,还提高了管网运行安全性,因此说平衡式波纹管补偿器是一种理想的热力管道补偿装置,具有很高的社会效益和经济效益。

二、平衡式波纹管补偿器的工作原理
平衡式波纹管补偿器主要由左、右外接管、外套管及工作波纹管和密封波纹管组成:
见图1,该补偿器的具体结构如下:工作波纹管1的两端分别和左外接管3、右外接管4焊接,左外接管3、右外接管4分别焊有盲板8、9。

在工作波纹管外部设有导流套7,在左、右外
接管3、4外部设有套管5,套管5左端与左外接管3焊接,套管5右端与右外接管4可相对移动。

右外接管4上焊有档兰10,密封波纹管2的两端分别与档兰10、套管5右端焊接,在左、右外接管3、4上分别开有介质进出孔.连通管6穿过左外接管、盲板8并与左外接管3、盲板8相焊接。

连通管6保证两盲板8、9之间的压力与外界大气压力相同。

在套管5上部设有放气口,下部设有排水口。

管道在正常运行时,右外接管4右端的管道设有固定立架,并在固定支架的右面有转角、
阀门或盲板等,这样由于管道内介质压力对转角、阀门或盲板处的作用,从而对固定支架产生向右的推力,推力的大小为管道截面积πr23与管内介质压力p的乘积(即πr23P)。

在右外接管4的左端焊有盲板9,介质对盲板9有一个向左的推力,其推力大小也为πr23P,它与作用于转角、阀门或盲板处的力大小相等方向相反,互相抵消,从而形成介质内压对固定支架无作用力。

图2为工作波纹管、密封波纹管及接管的有效面积参考示意图。

下面就图中r1、r2的尺寸来说明平衡式波纹管补偿器对固定支架的推力。

当r1=r2(r2≥r3+δ),δ为右外接管壁厚,此时因r1=r2,作用在固定支架上会存在两
个大小相等方向相反的力,其值为πr12P=πr22P。

在固定支架上介质作用力为 F=πr12P-πr22P=0
故此种结构形式的补偿器称为平衡式补偿器。

当πr12P=πr32P+Kx时,其中K为波纹管的刚度,x为波纹管补偿量,Kx为波纹管弹性力。

此时作用在固定支架上的介质内压推力为
F=πr12P-πr32P=Kx
此作用力的大小正好为波纹管的弹性力。

供热管道在正常运行时,因管道受热,波纹管被压缩产生对固定支架一个推力,其推力大小为Kx,但由于波纹管受压产生的弹性力与介质内压产生的推力大小相等方向相反,此时固定支架上无任何推力。

工作时,管道中介质通过左外接管3,经孔11流入套管5中,再经孔12流入右外接管4中,当管道受温度影响发生位移时,右外接管4与套管5可相对移动。

工作波纹管和密封波纹管2可起到密封作用。

工作波纹管,内空间室由于右外接管4相对移动引起的压力变化可通过连通管6进行调节。

三、平衡式波纹管补偿器的特点
1.减小对固定支架的推力
平衡式波纹管补偿器能使固定支架受到的推力减小,使固定支架结构尺寸都可做到最小,能大量地降低土建工程费用。

2.无导向支架
目前工程设计中,一般在波纹管补偿器的一端设置固定支架,另一端设置导向支架。

导向支架的设置使得管网支架增多,因而工程费用很高。

平衡式波纹管补偿器从自身结构上解决了管道的导向问题,从而达到设计管网时不必在其另一侧再设导向支架,既简化了管网设计又便于补偿器的施工安装。

3.提高了波纹管的耐压性
平衡式波纹管补偿器从结构设计上使之成为外压型,从而提高了波纹管的承压能力,延长了波纹管使用寿命。

4.解决了波纹管凹处积水的问题
通常管网中的波纹管补偿器代管网停止运行时,往往在波纹管的凹处积水,时间一久,波纹管便受到腐蚀,降低了波纹管使用寿命。

平衡式波纹管补偿器的工作波纹管内部不存在工作介质,所以不可能有积水问题。

另外,由于套管的存在,当管网停止运行时,管内剩余介质只能沉积在套管中,又因套管下部设有放水口,打开此口介质就会排出。

5.防止保温材料对波纹管的度蚀
在供热管网中,为了减少管网散热损失,必须对波纹管补偿器进行保温。

如果将保温材料直接包在波纹管外部,势必造成波纹管的腐蚀,缩短了波纹管的使用寿命。

而且由于波纹管的轴向运动,会使保温层松动破坏。

平衡式波纹管补偿器的保温材料直接包在套管外部,与波纹管不接触,从而避免了由于保温材料而造成的对波纹管的腐蚀,提高了波纹管的使用寿命。

6.设备成本低
目前国内一般己有的波纹管补偿器,为了减小对固定支架的推力,至少由三段波纹管组
成,使得设备价格较高,影响了推广使用,而平衡式波纹管补偿器只有两段波纹管组成即可解决,从而降低了设备成本,有利于推广使用。

四、平衡式波纹管补偿器的安装及计算
1.管道热伸长量
供热管道安装后,由于管内介质的加热作用会引起管道受热伸长。

管道的热伸长量可按
下式计算:
△L=a(t1-t2)L
式中△L-- 管道的热伸长量,mm
a-- 管道的线膨胀系数,mm/m℃,
一般可取a=,mm/m℃
t1-- 管壁最高温度,可取介质的最高温度,℃
t2-- 管道安装时的温度,℃
L-- 计算管段的长度,m
2.计算预拉量
预拉量一般取计算管段热伸长量的一半。

3.固定支架受到的推力计算
设计热力管道固定支架时,必须首先考虑它的受力状况。

固定支架所受的水平推力由下
列两方面产生:
(1)由于活动支架上的摩擦力而产生的水平推力Pm。

(2)平衡式波纹管补偿器本身的弹性力产生的水平推力Pm。

管道与活动支架间的摩擦力Pm用下式计算:
Pm=quK
式中 Pm-- 管道与活动支架间的摩擦力,N
u-- 活动支架上的摩擦系数,可取下列数值:
钢与钢接触,u=
钢与混凝土接触,u=
q-- 该管段的单位长度计算重量,N/主要包括管道自重、
介质自重、保温材料及外保护壳重量。

为了减少管道的摩擦阻力,工程上也常采用滚动支架,其摩擦力为Pm=LqK/R+Lqf·r
式中 K-- 滚动力臂,一般取K=
R-- 滚筒半径,cm
r-- 滚筒的轴半径,cm
f-- 滚筒轴和轴承的摩擦系数,取f=
平衡式波纹管补偿器本身的弹性力Ptm可由下式计算:
Ptm=a(f1+f2)x
式中 f1-- 工作波纹管的轴向刚度,N/mm
f2-- 密封波纹管的轴向刚度,N/mm
x-- 工作波纹管的补偿量,mm
a-- 系数,波纹管预拉时,a=1/2;无预拉时,a=1
为了减少补偿器在运行时对固定支架的轴向推力,在补偿器安装前应进行必要的预拉,预拉量△x按下式计算:
△x=x[1/2-(ta-td)/(tg-td)]
式中 x-- 补偿器的补偿量,mm
ta-- 管道安装温度,℃
td-- 管道最低温度,℃
tg-- 管道运行时的最高温度,℃
对于高温管道(tg>ta),预拉量为正,应将补偿器预拉伸;对于低温管道(tg <ta),预拉量
为负,应将补偿器预压缩。

热力管道属于前者。

当ta=td时,△x=1/2x。

所以一般资料介绍,预拉量可以取补偿量的一半,但是这一结论的前提是管道安装温度与最低温度近似相等。

当ta>td时,△x<1/2x;当ta<td时,△x>1/2x。

在分析管道轴向力的同时,还应注意到管道的横向推力,由于在安装管道时,管线的布置不可能绝对平直,因此受热后不仅轴回移动,还会造成径向位移。

如果导向支架不能承受所加的横向载荷或导向滑板侧回形状不规则、表面粗糙等,其摩擦阻力随横向推力的增大而增大,所以在对平衡式波纹管补偿器进行设计时,对导向问题也进行了专门的设计,以保证其横向摩擦力最小,能最大限度地保证管道的安全运行。

五、结束语。

相关文档
最新文档