ANSYS 优化设计-实例

合集下载

基于ANSYS的客车车身骨架优化设计

基于ANSYS的客车车身骨架优化设计
务l 訇 似
基 于A YS NS 的客 车车身骨架优化 设计
An op i i i t m z ng desi e hod ofbus bu gn m t dy r f am e bas ed sy on an s
余 启 志
YU Q _ h . i z
性能满足要求的前提下 ,减轻车身 自重 。
关键词 : 车身结构 ;参数化分析 ;优化设计 中图分类号 :T 1 2 H 2 文献标识码 :B 文章编号 :1 0-0 3 ( 0 14 下) 0 7 3 9 1 4 21 ) ( - 1 —0 0 3
D i 1 . 9 9 J is .0 9 0 4 2 1 . ( ) 4 o : 3 6 / . n 1 0 - 1 . 0 1 4 下 . 0 0 s 3
( 海工程技 术大 学 高等职业技术学院 。上海 2 0 3 上 0 4 7)

要 : 应用有 限元分析软件A S S N Y 建立 了车身骨 架有限元模型并进行计算 ,采用其提供的优化方法 对车 身结构进行优 化设计 。选 取车身骨 架总 质量为优 化目标函数 ,状态变量选 定为整车扭转 刚度 及车身低 阶固有频率 ,设计变量选取 为车身骨架 主要型材 的截面参数 。最 终保证客车在
学 抽 象。 设 某 设 计 有 n个 设 计 变 量 X = , , …,

在满 足 ∞ ≤ 0 = 12 …, 和 ∞ = ,( , , m)
方 法 和 计 算 技 术 ,并 已 为 全 球 业 业 界 所 接 受 。在
该 软 件 的 高 级 分 析 篇 中 ,它将 有限 元 分析 技 术 与
收稿 日期:2 1-1-1 00 2 5

[l 2o} ] x, } x o o

利用ansysAPDL进行优化设计的例子

利用ansysAPDL进行优化设计的例子

利用ansys APDL 进行优化设计的例子一、问题描述:约束条件;1.总应力不超过"max2, 梁的变形不超过8m*3, 梁的高度不超过hm^x目标函数:使梁的重量最小二、分析文件的APDL语句及注释:(可把该文件拷贝到一个文本文件,作为ansys的分析文件。

)!第一步,初始化ANSYS系统环境FINISH/CLEAR/filename,BeamOpt!第二步,定义参数化设计变量B=1.4 !初始化宽度H=3.8 !初始化高度!第三步,利用参数创建有限元模型/PREP7 !进入前处理ET,1,BEAM3 !定义单元类型为BEAM3AREA=B*H !梁的截面积ETABLE,SMAX_I,NMISC,1 !每个单元I 节点处应力的最大值ETABLE,SMAX_J,NMISC,3 !每个单元J 节点处应力的最大值!绕Z 轴的转动惯量FILLE,1,2EGEN,10,1,-1 FINISH !第四步,执行求解 /SOLUANTYPE,STATICD,1,UX,0,,11,10,UYSFBEAM,ALL,1,PRES,20 !施加压力(单位长度上的负荷) =20SOLVEFINISH!第五步,进入后处理并创建状态变量与目标变量 /POST1SET,,,,!对单元表求和 *GET,VOLUME,SSUM,,ITEM,VOLU ! 得到总的体积ESORT,ETAB,SMAX_I,,1!按照单元SMAX_I 的绝对值大小排序 *GET,SMAXI,SORT,,MAX!参数 SMAXI=SMAX_I 中的最大值 ESORT,ETAB,SMAX_J,,1!按照单元SMAX_J 的绝对值大小排序 *GET,SMAXJ,SORT,,MAX !参数 SMAXJ=SMAX_J 中的最大值R,1,AREA,IZZ,H !定义单元实常数,以设计变量表示 MP,EX,1,30E6 MP,PRXY,1,0.3N,1!创建节点1 N,11,120!创建节点11NSORT,U,Y !以Uy 为基准对节点排序 *GET,DMAX,SORT,,MAX !参数DMAX=最大位移ETABLE,VOLU,VOLU !VOLU=每个单元的体积SSUMSMAX=SMAXI>SMAXJ !找到最大的应力FINISH三、优化过程的菜单方式实现1、1、读入分析文件进行分析:2、进入。

基于ANSYS的风电机组叶片动态响应分析与优化设计

基于ANSYS的风电机组叶片动态响应分析与优化设计

基于ANSYS的风电机组叶片动态响应分析与优化设计风电机组是目前广泛应用于清洁能源领域的一种发电设备,其核心部件之一是叶片。

叶片的设计与优化对于提高风电机组的发电效率、减少结构疲劳损伤具有重要意义。

本文将基于ANSYS软件,对风电机组叶片的动态响应进行分析,并提出优化设计方法。

一、叶片动态响应分析叶片在工作过程中会受到风力的作用而发生弯曲和振动,因此需要进行动态响应分析。

首先,我们需要建立叶片的有限元模型。

通过ANSYS的建模工具,可以将叶片的几何形状进行三维建模,并使用适当的材料属性对叶片进行参数化描述。

在建立有限元模型后,我们需要给予风电机组施加载荷。

根据风力的特性和叶片的运行条件,可以采用风力加载模块对叶片进行施加风载。

该模块可以模拟风力的作用,计算叶片所受的风载大小和方向,并将其作为载荷输入到有限元模型中。

接下来,通过ANSYS的动态分析功能,对叶片的振动响应进行计算。

动态分析将考虑材料的刚度、阻尼和质量等因素,得出叶片在不同工况下的振动情况。

通过分析叶片的振动频率和振型,可以评估叶片的结构是否合理,是否存在共振问题。

二、叶片优化设计在进行叶片的优化设计时,我们可以通过ANSYS的参数化设计功能来实现。

首先,我们需要确定需要优化的设计变量,如叶片的几何参数、材料参数等。

然后,通过定义参数和参数范围,可以使得ANSYS自动地进行参数组合和计算。

通过进行多次模拟计算和优化迭代,可以得到不同设计变量组合下的叶片性能。

根据设定的优化目标,如最小化叶片的振动响应或最大化叶片的发电效率,可以选取最优的设计变量组合作为最终的优化设计方案。

另外,对于叶片的优化设计,还可以考虑使用拓扑优化方法。

拓扑优化可以根据预设的约束条件和目标函数,在给定的设计空间内调整叶片的材料分布,使得叶片的结构更加均衡和优化。

通过结合拓扑优化和动态响应分析,可以得到更加高效和可靠的叶片设计方案。

三、实例分析与展望通过基于ANSYS的风电机组叶片动态响应分析与优化设计方法,可以有效地评估叶片的结构性能,并提供优化建议。

利用ANSYS软件进行动臂(四连杆)优化设计

利用ANSYS软件进行动臂(四连杆)优化设计

三.利用ANSYS软件进行动臂(四连杆)优化设计3.1有限元模型建立装载机整机的有限元模型是主要是针对力作用的直接部件进行的,主要包括装载机机身上的转台、主要工作部件铲斗、带动铲斗动作的动臂、动力件油缸、以及运动件连杆和摇臂组成。

在实际建模过程中,通常要求设定材料的性能参数与母材相同,这样做的原因是要对各构件的焊接接头进行连续处理,更为重要的一点是为了在后续精力分析中可以有一个光顺的网格划分,在进行有限元模型的建立中,为了更快捷的进行后续计算,以不至于施加于计算机太多计算负荷,将其中不影响结果数据的螺纹孔、倒角等结构进行了移除。

组件几何模型如图3.1所示。

图3.1 工作装置几何模型根据实际情况定义相应材料的性能,包括:弹性模量e = 2.06×106pa,泊松比μ= 0.3,密度ρ= 7850kg / m3。

每个部件均由solid186单元模拟,接头处的销轴由beam188单元模拟,联接单元由销轴与轴套之间的运动关系模拟,而液压缸则由连杆单元模拟。

通过设置诸如截面积,弹性模量和密度之类的参数来实现对实际液压缸的仿真。

要求将元素尺寸控制在15mm〜20mm之内,并在销轴上局部细化网格,这可以提高计算精度。

最后,为了以危险的姿势获得工作装置的整个有限元模型,需要组装每个部件的有限元模型。

有限元模型包括266783个单元,其中包括266638个实体单元,142个梁单元,3个杆单元和444467个节点。

最后,如果装载机转盘需要完全约束,则应采用边界条件。

通过上述过程计算得出的切向和法向挖掘阻力将作为有限元模型中的外部载荷应用于铲斗尖端,如3.2所示。

图3.2 工作装置有限元模型及边界载荷3.2工作装置静强度分析结果据了解,装载机的材料为 q460c 钢,屈服极限为[ ]=235×106 Pa。

结果表明,工作装置的最大应力为802mpa,该应力发生在提升臂的上吊耳的铰孔和铲斗杆的油缸,远远超过了材料的屈服极限。

基于ANSYS的车架结构优化设计

基于ANSYS的车架结构优化设计

基于ANSYS的车架结构优化设计车架结构在汽车工程中起着至关重要的作用,它是支撑整个车辆的骨架,承受着来自地面、悬挂系统和动力系统的力和扭矩。

为了满足车辆的性能要求,提高安全性和降低噪音振动,车架结构需要进行优化设计。

本文将通过使用ANSYS软件进行车架结构优化设计,并详细介绍整个优化设计过程。

第一步是建立车架的有限元模型。

有限元分析是一种以离散化方法来近似连续物体的一种数学方法。

在车架结构的有限元建模中,可以使用SOLID186单元来模拟车架的实体结构。

同时,还需要将汽车的质量、车轮的载荷等加载到有限元模型中。

第二步是进行静态结构分析。

静态结构分析是车架结构优化设计的基础,可以评估车架在不同载荷情况下的应力和变形情况。

在进行静态结构分析之前,需要根据汽车设计标准和车辆使用条件来确定适当的载荷情况。

采用ANSYS软件进行静态结构分析,可以得到车架的应力和变形分布情况。

第三步是进行优化设计。

优化设计是车架结构设计中的重要环节,可以通过调整车架的材料、形状和尺寸等参数来改善车架的性能。

在ANSYS 中,可以使用自动优化工具进行优化设计。

首先,需要定义优化目标函数和约束条件,例如最小化最大应力、最小化车架的质量等。

然后,可以选择不同的优化算法,如遗传算法、粒子群优化等,来最优解。

通过多次迭代和分析,可以逐步得到最优的车架结构。

第四步是验证优化结果。

在优化设计完成后,需要进行验证来确认优化结果的可行性和有效性。

可以对优化后的车架结构进行静态结构分析、模态分析和疲劳寿命分析等,来评估车架的性能和可靠性。

如果结果满足要求,就可以进行后续的制造和测试。

总之,基于ANSYS的车架结构优化设计可以帮助工程师更好地理解和改善车架的性能。

通过使用ANSYS软件进行有限元建模、静态结构分析、优化设计和验证,可以得到最优的车架结构,提高汽车的性能和安全性。

同时,车架结构优化设计还可以减少材料的使用和降低成本,对环境也有积极的意义。

ansys workbench2020工程实例解析

ansys workbench2020工程实例解析

Ansys Workbench 2020是一款强大的工程仿真软件,广泛应用于工程领域的结构、流体、热传导等多个领域的仿真分析。

本文将以Ansys Workbench 2020为工具,通过几个典型的工程实例,解析其在工程实践中的应用和优势,帮助读者更好地了解和使用该软件。

1. 车身结构优化在汽车制造领域,车身结构的设计和优化是一个复杂而又关键的问题。

通过Ansys Workbench 2020的结构分析模块,可以对车身结构进行强度、刚度、振动等方面的仿真分析,进而优化结构设计,提高车身的整体性能和安全性。

通过对车身材料、连接结构、受力情况等多个方面的仿真分析,工程师可以更好地指导实际设计,提高设计效率和成功率。

2. 风力发电机叶片设计风力发电机的叶片设计是风力发电领域的核心问题之一。

Ansys Workbench 2020的流体仿真模块可以对风力发电机叶片的气动性能进行仿真分析,包括气动力、气流分布等多个方面的参数。

通过对叶片的材料、形状、尺寸等进行仿真分析和优化,可以提高风力发电机的发电效率和稳定性,降低能量损耗,对提高风力发电机的整体性能具有重要意义。

3. 燃烧室热传导分析在航天、航空发动机等领域,燃烧室的热传导分析是一个关键的问题。

Ansys Workbench 2020的热传导分析模块可以对燃烧室内部的温度场、热应力等进行仿真分析,帮助工程师优化燃烧室的结构设计、材料选择和冷却系统设计。

通过仿真分析,可以提高燃烧室的工作效率和寿命,确保燃烧室的安全可靠性。

4. 桥梁结构静动力分析在土木工程领域,桥梁结构的设计和分析是一个重要的问题。

Ansys Workbench 2020的静动力分析模块可以对桥梁结构在静载荷和动载荷作用下的响应进行仿真分析,包括应力、挠度、疲劳寿命等多个方面的参数。

通过仿真分析,工程师可以对桥梁的结构设计、材料选择和荷载标准进行优化,确保桥梁的安全可靠性和经济性。

Ansys Workbench 2020作为一款强大的工程仿真软件,在工程实践中具有广泛的应用前景和优势。

基于ANSYS workbench的汽车传动轴有限元分析和优化设计

基于ANSYS workbench的汽车传动轴有限元分析和优化设计

基于ANSYS workbench的汽车传动轴有限元分析和优化设计使用ANSYS Workbench进行汽车传动轴的有限元分析和优化设计是一种常见的方法。

以下是基于ANSYS Workbench的汽车传动轴有限元分析和优化设计的一般步骤:1.创建几何模型:使用CAD软件创建传动轴的几何模型,并将其导入到ANSYS Workbench中。

确保几何模型准确、完整,并符合设计要求。

2.网格划分:对传动轴几何模型进行网格划分,将其划分为离散的单元。

选择合适的网格划分方法和单元类型,以确保模型的准确性和计算效率。

3.材料属性定义:定义传动轴所使用的材料的力学性质,如弹性模量、泊松比、密度等。

确保选择适当的材料模型,以准确模拟材料的行为。

4.载荷和约束定义:定义施加在传动轴上的载荷,如扭矩、轴向力等。

同时,定义约束条件,如固定轴承端点、自由转动等。

5.设置分析类型和求解器:根据实际情况选择适当的分析类型,如静态、动态、模态等。

配置求解器设置,选择合适的求解器类型和参数。

6.进行有限元分析:运行有限元分析,计算传动轴的应力、变形和振动等。

根据分析结果,评估传动轴的性能和强度。

7.优化设计:根据有限元分析的结果,对传动轴的结构进行优化设计。

通过调整传动轴的几何形状、材料或其他参数,以提高其性能。

8.重新进行有限元分析:对优化后的设计进行再次有限元分析,以验证优化结果。

如果需要,可以多次进行重复优化和分析的步骤。

9.结果评估和优化验证:评估优化结果的有效性,并验证传动轴在实际工况下的性能。

根据需求进行修正和改进。

请注意,基于ANSYS Workbench的有限元分析和优化设计需要一定的专业知识和技能。

基于ANSYS的风扇设计与优化

基于ANSYS的风扇设计与优化

基于ANSYS的风扇设计与优化一、引言风扇是一种常见的动力工具,广泛应用于家用电器、车辆、建筑等领域。

良好的风扇设计和优化可以提高工作效率和节能性能,为各行各业带来巨大的经济和环境收益。

本文将介绍基于ANSYS的风扇设计与优化的方法和实践,力图提供一个全面的指导。

二、风扇设计的基本原理1.风扇的工作理论风扇是通过旋转叶片产生气流,利用气流的动能对周围空气进行运动的装置。

其工作原理是将旋转动能转化为风速和压力。

风扇的关键参数包括风量、风速和静压。

2.风扇的主要构件风扇由电机、叶轮和外壳组成。

电机提供动力,叶轮是产生气流的关键部分,外壳起到引导气流的作用。

三、基于ANSYS的风扇设计与优化实践1.建立风扇模型首先,在ANSYS软件中,我们需要建立一个风扇的三维模型。

可以使用CAD 模型导入、参数化建模等方法。

接下来,通过划分网格,提高模型的精度和计算效率。

2.流体动力学模拟在建立了风扇模型后,通过ANSYS的流体动力学(CFD)模块进行模拟分析。

CFD模块可以模拟风扇在不同工况下的气流特性,如风速、风量和静压等。

通过调整叶片的形状和数量,可以改变风扇的气流性能。

3.模拟结果分析根据CFD模拟的结果,可以对风扇的气流性能进行评估和分析。

比如,可以通过观察叶轮上的压力分布、流线图和速度云图等来判断风扇的工作效果。

同时,也可以对比不同设计方案的性能差异,选择最佳的风扇设计方案。

4.优化设计根据模拟结果的分析,我们可以进一步优化风扇的设计。

比如,可以通过调整叶片的形状和数量来改变风扇的工作效率和噪声水平。

还可以通过优化叶轮和外壳之间的匹配关系,减少内部的漏风和压力损失。

5.验证与改进进行优化设计后,需要对改进后的风扇进行验证。

可以通过建立物理原型并进行实验测试来验证CFD模拟的准确性。

如果实验结果与模拟结果一致,说明优化设计是可行的。

如果存在差异,则需要对模型进行进一步改进和优化。

四、风扇设计与优化的挑战与展望1.挑战风扇设计与优化面临着诸多挑战。

运用ANSYSWorkbench快速优化设计

运用ANSYSWorkbench快速优化设计

运用ANSYS Workbench快速优化设计SolidWorks是一个优秀的、应用广泛的3D设计软件,尤其在大装配体方面使用了独特的技术来优化系统性能。

本文给出几种改善SolidWorks装配体性能的方法,在相同的系统条件下,能够进步软件的可操纵性,进而进步设计效率。

众所周知,大多数3D设计软件在使用过程中都会出现这样的情况,随着装配零件数目和复杂度增加,软件对系统资源的需求就相对增加,系统的可操纵性就会下降。

造成这种状况的原因有两种:一是计算机系统硬件配置不足,二是没有公道使用装配技术。

本文对这两种情况进行分析并提出相应的解决方案。

一、计算机系统配置不足的解决方案SolidWorks使用过程中,计算机硬件配置不足是导致系统性能下降的直接原因,其中CPU、内存、显卡的影响最大。

假如计算机系统内存不足,Windows就自动启用虚拟内存,由于虚拟内?*挥谟才蹋?斐上低衬诖嬗胗才唐捣苯换皇?荩?贾孪低承阅芗本缦陆担籆 PU性能过低时,延长运算时间,导致系统响应时间过长;显卡性能不佳时引起视图更新慢,移动模型时出现停顿现象,并导致CPU占用率增加。

运行SolidWorks的计算机推荐以下配置方案:CPU:奔腾Ⅱ以上内存:小零件或装配体(少于300个特征或少于1000个零件),内存最少为512M;大零件或装配体(大于1000个特征或2500个零件),内存需要1G或更多;虚拟内存一般设为物理内存的2倍。

显卡:支持OpenGL的独立显卡(避免采用集成显卡),显存最好大于64M。

对于现有的计算机,使用以下方法分析系统瓶颈,有针对性地升级计算机。

(1)在SolidWorks使用过程中启动Windows任务治理器,在性能页,假如CPU的占用率经常在100%,那么系统瓶颈就在CPU或显卡,建议升级CPU或显卡;假如系统内存大部分被占用,虚拟内存使用量又很大,操纵过程中硬盘灯频繁闪烁,这说明系统瓶颈在内存,建议扩大内存。

基于ANSYS模拟的风力发电机组叶片优化设计

基于ANSYS模拟的风力发电机组叶片优化设计

基于ANSYS模拟的风力发电机组叶片优化设计引言随着全球对可再生能源需求的不断增加,风力发电作为一种理想的清洁能源逐渐受到广泛关注。

风力发电机组中的叶片作为最核心的部件之一,对发电机组的性能影响至关重要。

本文将基于ANSYS软件进行风力发电机组叶片的优化设计,旨在提高其效率和可靠性。

一、风力发电原理简介风力发电是利用风能驱动风力发电机组发电的一种可再生能源发电方式。

其基本原理是利用风动力驱动叶片旋转,通过旋转轴上的发电机将机械能转化为电能。

叶片的设计与性能优化直接影响着风力发电机组的效率和输出功率。

二、风力发电机组叶片设计的挑战风力发电机组叶片的设计面临一些挑战。

首先,叶片需要在复杂多变的风场环境下工作,面对不同强度和方向的风力。

其次,叶片材料需要具备一定的强度和韧性,以应对不同的工作条件和负荷。

最后,叶片的结构设计需要在保证强度的前提下,尽可能减小重量和阻力,以提高风力发电机组的效率。

三、ANSYS在风力发电机组叶片优化设计中的应用ANSYS是一种常用的工程仿真软件,可以提供准确的数值模拟和分析结果,对风力发电机组叶片的设计和优化起到重要作用。

在风力发电机组叶片设计中,ANSYS可以用来进行叶片结构分析、风场模拟和性能优化等方面。

1. 叶片结构分析通过ANSYS的结构分析功能,可以对风力发电机组叶片进行强度和刚度分析,以确定叶片的结构设计是否满足工作要求。

这可以帮助设计者找到叶片的薄弱点,进行针对性的结构优化,提高叶片的可靠性和使用寿命。

2. 风场模拟ANSYS的流体力学分析功能可以模拟叶片在不同风场环境下的工作情况。

通过建立风场模型,可以分析不同风速和风向对叶片的影响,进而优化叶片的气动特性。

这有助于提高叶片的抗风能力和发电效率。

3. 性能优化ANSYS的优化算法可以对风力发电机组叶片的形状和结构进行优化。

通过设定优化目标和约束条件,可以自动调整叶片的参数,使之达到最佳性能。

例如,可以通过优化叶片的曲率和扭转角度,以最大程度地提高风力发电机组的输出功率。

基于ANSYS的某轻型车车架纵梁优化设计

基于ANSYS的某轻型车车架纵梁优化设计
第2 8 卷第 4期
2 0 1 3年 8月






V0 l _ 2 8 No . 4 Au g . 2 0 1 3
J o u mM o f L i u z h o u T e a c h e r s C o l l e g e
基于 A N S Y S的某 轻 型 车 车 架 纵 梁 优 化 设 计
Re s e a r c h o n Co g e ne r a t i o n Fa u l t Di a g no s i s Ba s e d o n Fu z z y Ne u r a l Ne t wo r k
J I ANG We n s h e n g
中图分类号 : T G 3 8 6 文献标识码 : A 文章编 号 : 1 0 0 3 - 7 0 2 0 ( 2 0 1 3 ) 0 4 - 0 1 5 2 - 0 4
0 引 言
某 公 司 开发 的整 体式轻 型 车 车架 , 车 架 满 载 后 出
现 车 身下 沉 , 严 重影 响 行 车 安 全 。针 对 这 些 问题 , 本
车架 满载 参数 见 表 1 。对 车 架满 载 弯 曲变 形 , 加 载时将 车 架载 荷乘 以 动载荷 系 数 , 模 拟 行 车 时 的 载 荷
波动 , 所 得 动 载 荷 施 加 在 相 应 的 节 点 上 。 结 果 如 图
2~图 5所 示 。
移, 将 前后 车 轮悬 架 处 用 赋 予 刚度 的 弹簧 单 元 模 拟 ,
为 2 1 1 G Pa 。
1 车 架 结 构 ANS YS有 限 元 模 型 建 立
由于本 文 车架 结 构 优 化 设 计 时 使 用 有 限元 软 件

ANSYS教学算例集FL_螺旋盘管风道仿真优化设计

ANSYS教学算例集FL_螺旋盘管风道仿真优化设计

操作步骤
3.3.2. 选择变形区域 选择Regions标签栏,在Origin栏下设置X,Y,Z为-1.5,-2,-3。在Size of Region下设 置Direction-1(m)为1,Direction-2(m)为1,Direction-3(m)为5.75。设置Control Points下的Direction-1为2,Direction-2为2,Direction-3为3。点击Create创建区域。
操作步骤
3.2. 定义优化目标 本步骤将采用用户自定义函数编写优化目标函数,目标函数描述为当前值与目标值之间的 差值。 树状栏中选择【Parameters & Customization】>【Parameters】>Output Parameters, 在Output Parameters中点击Create选项,选择From Report Definitions,在弹出对话 框中选择New > Flux Report > Mass Flow Rate…,在弹出对话框中设置名称为 inlet_massflow,Options中选择Mass Flow Rate,Boundaries下选择inlet,点击OK确 认。
展开树中【Setup】>【Models】,可以观察到Viscous选项后括号中为Laminar,表示粘 性计算模型使用的是层流模式,同时观察到Energy选项后括号中为Off,表明计算涉及温 度,不考虑能量方程。
操作步骤
• 3.1.4. Materials材料设置查看 • 在最左侧的树中,鼠标左键双击【Setup】>【Materials】>【Fluid】>【stuff】,进
操作步骤
• 3.1.2. 导入已有计算文件 • 菜单中点击【File】>【Read】>【Case & Data…】,选取case文件

(完整版)ANSYS拓扑优化原理讲解以及实例操作

(完整版)ANSYS拓扑优化原理讲解以及实例操作

(完整版)ANSYS拓扑优化原理讲解以及实例操作拓扑优化是指形状优化,有时也称为外型优化。

拓扑优化的⽬标是寻找承受单载荷或多载荷的物体的最佳材料分配⽅案。

这种⽅案在拓扑优化中表现为“最⼤刚度”设计。

与传统的优化设计不同的是,拓扑优化不需要给出参数和优化变量的定义。

⽬标函数、状态变量和设计变量(参见“优化设计”⼀章)都是预定义好的。

⽤户只需要给出结构的参数(材料特性、模型、载荷等)和要省去的材料百分⽐。

给每个有限元的单元赋予内部伪密度来实现。

这些伪密度⽤PLNSOL ,TOPO 命令来绘出。

拓扑优化的⽬标——⽬标函数——是在满⾜结构的约束(V )情况下减少结构的变形能。

减⼩结构的变形能相当于提⾼结构的刚度。

这个技术通过使⽤设计变量。

结构拓扑优化的基本思想是将寻求结构的最优拓扑问题转化为在给定的设计区域内寻求最优材料分布的问题。

通过拓扑优化分析,设计⼈员可以全⾯了解产品的结构和功能特征,可以有针对性地对总体结构和具体结构进⾏设计。

特别在产品设计初期,仅凭经验和想象进⾏零部件的设计是不够的。

只有在适当的约束条件下,充分利⽤拓扑优化技术进⾏分析,并结合丰富的设计经验,才能设计出满⾜最佳技术条件和⼯艺条件的产品。

连续体结构拓扑优化的最⼤优点是能在不知道结构拓扑形状的前提下,根据已知边界条件和载荷条件确定出较合理的结构形式,它不涉及具体结构尺⼨设计,但可以提出最佳设计⽅案。

拓扑优化技术可以为设计⼈员提供全新的设计和最优的材料分布⽅案。

拓扑优化基于概念设计的思想,作为结果的设计空间需要被反馈给设计⼈员并做出适当的修改。

最优的设计往往⽐概念设计的⽅案结构更轻,⽽性能更佳。

经过设计⼈员修改过的设计⽅案可以再经过形状和尺⼨优化得到更好的⽅案。

5.1.2优化拓扑的数学模型优化拓扑的数学解释可以转换为寻求最优解的过程,对于他的描述是:给定系统描述和⽬标函数,选取⼀组设计变量及其范围,求设计变量的值,使得⽬标函数最⼩(或者最⼤)。

ansys有限元分析案例

ansys有限元分析案例

ansys有限元分析案例ANSYS有限元分析案例。

ANSYS是一款广泛应用于工程领域的有限元分析软件,它可以对结构、流体、热传导、电磁场等多个领域进行仿真分析。

在工程设计和研发过程中,有限元分析可以帮助工程师们更好地理解和预测产品的性能,从而指导优化设计方案和减少试验次数,降低产品开发成本。

本文将通过一个实际案例,介绍ANSYS有限元分析的基本流程和方法。

案例描述:假设我们需要设计一个汽车座椅支架,在使用过程中需要承受乘客的重量和车辆行驶时的振动载荷。

为了确保座椅支架的安全性能,我们需要进行有限元分析,验证其在不同载荷下的受力情况和变形情况。

1. 几何建模,首先,我们需要在ANSYS中建立汽车座椅支架的三维几何模型。

可以通过ANSYS的几何建模工具,绘制支架的外形和内部结构,包括连接件和加强筋等。

在建模过程中,需要考虑到实际生产工艺和材料特性,确保模型的真实性和可靠性。

2. 材料属性,在进行有限元分析之前,需要为支架材料定义材料属性,包括杨氏模量、泊松比、密度等。

这些参数将直接影响支架在受力时的应力分布和变形情况。

根据实际材料的力学性能数据,可以在ANSYS中设置相应的材料模型。

3. 网格划分,有限元分析的核心是将实际结构划分为有限个小单元,然后在每个单元内进行力学方程的求解。

在ANSYS中,可以通过网格划分工具对支架模型进行网格划分,确保每个单元的尺寸和形状合理,并且能够准确地反映支架的几何特征。

4. 载荷和约束,在进行有限元分析之前,需要定义支架的载荷和约束条件。

对于汽车座椅支架来说,载荷包括乘客的重量和车辆行驶时的振动载荷,约束条件包括支架的固定支撑点和连接点。

在ANSYS中,可以通过载荷和约束工具对支架模型进行加载和约束设置。

5. 求解分析,一旦模型的几何、材料、网格、载荷和约束都设置完毕,就可以进行有限元分析的求解计算。

在ANSYS中,可以选择合适的求解器进行计算,根据模型的复杂程度和计算资源的限制,选择合适的求解策略和参数,进行力学方程的求解和数值计算。

利用APDL语言进行优化设计的例子

利用APDL语言进行优化设计的例子

利用ansys APDL进行优化设计的例子一、问题描述:二、分析文件的APDL语句及注释:(可把该文件拷贝到一个文本文件,作为ansys的分析文件。

)!第一步,初始化ANSYS系统环境FINISH/CLEAR/filename,BeamOpt!第二步,定义参数化设计变量B=1.4 !初始化宽度H=3.8 !初始化高度!第三步,利用参数创建有限元模型/PREP7 !进入前处理ET,1,BEAM3 !定义单元类型为BEAM3AREA=B*H !梁的截面积IZZ=(B*(H**3))/12 !绕Z轴的转动惯量R,1,AREA,IZZ,H !定义单元实常数,以设计变量表示MP,EX,1,30E6 !定义材料性质MP,PRXY,1,0.3N,1 !创建节点1N,11,120 !创建节点11FILLE,1,2EGEN,10,1,-1 !复制单元FINISH !退出前处理!第四步,执行求解/SOLUANTYPE,STATICD,1,UX,0,,11,10,UYSFBEAM,ALL,1,PRES,20 !施加压力(单位长度上的负荷)=20 SOLVEFINISH!第五步,进入后处理并创建状态变量与目标变量/POST1SET,,,,NSORT,U,Y !以Uy为基准对节点排序*GET,DMAX,SORT,,MAX !参数DMAX=最大位移ETABLE,VOLU,VOLU !VOLU=每个单元的体积ETABLE,SMAX_I,NMISC,1 !每个单元I节点处应力的最大值ETABLE,SMAX_J,NMISC,3 !每个单元J节点处应力的最大值SSUM !对单元表求和*GET,VOLUME,SSUM,,ITEM,VOLU !得到总的体积ESORT,ETAB,SMAX_I,,1 !按照单元SMAX_I的绝对值大小排序*GET,SMAXI,SORT,,MAX !参数SMAXI=SMAX_I中的最大值ESORT,ETAB,SMAX_J,,1 !按照单元SMAX_J的绝对值大小排序*GET,SMAXJ,SORT,,MAX !参数SMAXJ=SMAX_J中的最大值SMAX=SMAXI>SMAXJ !找到最大的应力FINISH三、优化过程的菜单方式实现1、设计变量有两个:B和H在本例中需要分别采用两种方法进行优化设计:1)首先选用子问题(sub-problem)优化方法,设置迭代30次,获得7个可行性优化结果;2)再次基础上进行扫描法优化(DV-sweep),选择BEST Design opt,NSPS 中填入5.优化过程的apdl,命令流:finish/INPUT,'BEAM','INP',',,0!执行优化分析/OPTOPCLROPANL,'BEAM','INP','' !指定分析文件名!声明优化变量OPVAR,B,DV,0.5,16.5 !B和H为设计变量OPVAR,H,DV,0.5,8OPVAR,DMAX,SV,-0.1,0 !DMAX和SMAX为状态变量OPVAR,SMAX,SV,0,20000OPVAR,VOLUME,OBJ !VOLUME为目标函数!优化控制设置选项OPDATA,,,OPLOOP,PREP,PROC,ALLOPPRNT,ONOPKEEP,ON!选择子问题法进行第一次优化计算OPTYPE,SUBP !子问题法OPSUBP,30,7,!最大迭代次数OPEXE !执行优化循环!选择扫描法进行第二次优化分析OPTYPE,SWEEP !dv sweep 扫描法OPSWEEP,BEST,5 !最佳设计序列,5次评估OPEXE !执行优化分析。

ANSYS WORKBENCH优化设计详细教程

ANSYS WORKBENCH优化设计详细教程

1文件存储(1)仿真模块与优化模块文件夹如下图所示:(2)仿真流程Workbench界面流程节点,对应后台文件如下图所示。

1.材料文件;2.几何文件;3.设置及网格、结果文件2优化参数设置左侧为输入输出参数界面,右侧为工况列表。

目标:提取结果最小值3ANSYS WORKBENCH优化设计3.1目标驱动优化(Driven optimization)和多学科项目类似。

算例:Direct_optimization.wbpj3.1.1确定输入输出参数输入输出参数如下图所示:3.1.2设置优化目标设置一个或者多个优化目标,如将质量最小化作为目标,并设置质量范围,如下图所示。

3.1.3输入参数范围设置两个输入参数范围如下图所示:3.1.4优化方法(1)是否保留工况点求解数据(2)目标驱动的优化方法•Screening•MOGA•NLPQL•MISQP•Adaptive Single-Objective•Adaptive Multiple-Objective(3)设置工况数量,最小6个(4)设置残差结果残差设置:1e-6(5)设置候选工况数残差达不到要求,增加候选节点继续优化计算。

3.1.5求解开始求解显示当前求解工况仿真各个节点状态显示计算候选工况3.1.6优化完毕3.1.6.1 输入参数变化曲线显示两个输入参数变化曲线3.1.6.2 工况数据列表3.1.6.3收敛判断描述优化目标,优化算法,是否收敛,最优工况等,类似于设置总结3.1.6.4 结果设置参考点,计算工况残差,优化目标结果满足1e-6标准,即可认为收敛。

工况DP7为参考点,DP11残差为0,则最优点为DP7。

工况结果分布散点图3.1.6.5 输入输出分布算例:parameter_correlation.wbpj3.2.1参数设置(1)是否保留工况点数据DX计算完成后是否保留相关数据(2)失败工况管理(failed design points management)尝试计算次数(Number of retries):失败后重新尝试计算的次数计算延迟时间(Retry delay):两次重新计算之间要经过多少时间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ANSYS 优化设计1.认识ANSYS优化模块1.1 什么时候我需要它的帮忙?什么是ANSYS优化?我想说明一个例子要比我在这里对你絮叨半天容易理解的多。

注意过普通的水杯吗?底面圆圆的,上面加盖的哪一种。

仔细观察一下,你会发现比较老式的此类水杯有一个共同特点:底面直径=水杯高度。

图1 水杯的简化模型为什么是这样呢?因为只有满足这个条件,才能在原料耗费最少的情况下使杯子的容积最大。

在材料一定的情况下,如果水杯的底面积大,其高度必然就要小;如果高度变大了,底面积又大不了,如何调和这两者之间的矛盾?其实这恰恰就反应了一个完整的优化过程。

在这里,一个水杯的材料是一定的,所要优化的变量就是杯子底面的半径r和杯子的高度h,在ANSYS的优化模块里面把这些需要优化的变量叫做设计变量(DV);优化的目标是要使整个水杯的容积最大,这个目标在ANSYS的优化过程里叫目标函数(OBJ);再者,对设计变量的优化有一定的限制条件,比如说整个杯子的材料不变,这些限制条件在ANSYS 的优化模块中用状态变量(SV)来控制。

下面我们就来看看ANSYS中怎么通过设定DV、SV、OBJ,利用优化模块求解以上问题。

首先参数化的建立一个分析文件(假设叫volu.inp),水杯初始半径为R=1,高度为H =1(DV),由于水杯材料直接喝水杯的表面积有关系,这里假设水杯表面积不能大于100,这样就有S=2πRH+2πR2<100(SV),水杯的容积为V=πR2H(OBJ)。

File:volu.inp (用参数直接定义也可或者在命令栏内直接写)R=1H=1S=2*3.14*R*H+2*3.14*R*RV=10000/(3.14*R*R*H)然后再建一个优化分析文件(假设叫optvolu.inp),设定优化变量,并求解。

/clear,nostart/input,volu,inp/optopanl,volu,inpopvar,R,dv,1,10,1e-2opvar,H,dv,1,10,1e-2opvar,S,sv,,100,1e-2opvar,V,obj,,,1e-2opkeep,onoptype,subpopsave,optvolu,opt0opexec最后,在命令输入框中键入“/input,optvolu,inp”,整个优化过程就开始了。

图2 ANSYS优化过程图几秒钟的优化过程结束后,让我们来看一下优化的结果:/optoptlist,all图3 优化结果上图中左右带*的SET 22是最优解,由此可以看出,要想在表面积一定的情况下使水杯容积最大,的确有这样一个规律H=D=2*R。

有兴趣的同志可以用求极值的方法演算一下,一定会得到相同的答案。

ANSYS的优化模块是用来求解工程分析中的优化例子的,但上面一个例子说明即使这样于工程毫无关系纯数学极值问题,也能够轻松求解。

不过在细节处会有一些技巧,后面再仔细分析。

(其实用ANSYS的优化模块完全能解决数学上比较负责的极值问题,不过现在有了Matlab、Mathematica,大概也没有人愿意来用ANSYS献丑了)。

1.2 ANSYS优化设计基础前面写了一个例子,来说明ANSYS的基本优化过程。

在这一节中,我们结合这个例子来说明一下优化模块中的一些概念。

1.2.1 优化模块中的三大变量:设计变量(DV):即自变量。

例子中的opvar,R,dv,1,10,1e-2就是用来定义一个设计变量R,其上限为10,下限为1,公差为10-2(公差和优化过程的收敛有关)。

ANSYS优化模块中允许定义不超过60个设计变量。

状态变量(SV):用来体现优化的边界条件,是设计变量的函数。

例子里面opvar,S,sv,,100,1e-2就是定义了一个状态变量S,它的上限为100,无下限,公差为10-2。

从文件volu.inp中可以看到,S=2*3.14*R*H+2*3.14*R*R。

可见,定义这样一个状态变量,即是限制水杯的表面积(可以认为表示材料的多少)不大于100。

在ANSYS优化模块中用户可以定义不超过100个状态变量。

目标函数(OBJ):最终的优化目的。

它必须是设计变量的函数,而且只能求其最小值。

看到volu.inp里面目标函数的定义了吧V=10000/(3.14*R*R*H),为了把求最大体积转化为求最小值,只好对它求倒数了;如果知道目标函数的上限,还可以用一个大数减目标函数的方法来转换。

例子中opvar,V,obj,,,1e-2就是定义了一个目标函数V,它的公差是10-2。

1.2.2 ANSYS优化模块中的两种求解模式ANSYS优化模块的求解有两种运行模式,一种是在GUI方式下运行,即已经打开ANSYS 的分析界面后进行分析;另一种是Batch模式,无需打开ANSYS分析界面,后台运行求解。

前面例子的运行过程其实就是一个典型的GUI方式体现,它涉及到两个重要的文件:一个就是类似volu.inp的ANSYS分析文件,如果是一个工程问题,该文件中应该有参数定义、参数建模、求解、结果提取、目标函数赋值的一个全过程(由于优化求解是一个不断跌代的过程,ANSYS分析文件其实是包涵了一个完整的循环)。

另一个文件是类似optvolu.inp 的优化控制文件,基本语句就那么几条,无非是定义三大变量、优化方式、优化控制等几条,用户拿过去稍稍替换下就可以用在不同的问题上。

(注:细心的读者可能会提问,既然ANSYS 分析文件包涵了一个完整的循环,但是整个优化过程中是要求设计变量不断改变的,每次循环都有一个参数重定义的过程,不会使设计变量恢复初始值吗?这一点勿用担心,正是由于有了另一个优化控制文件,优化过程只在第一次进行完全的参数定义工作,在后续循环中,优化控制文件中声明的设计变量定义将被忽略)。

有了这样两个文件,简单的在命令窗口把优化控制文件输入进去(其中的opanl命令会自动调用指定的ANSYS分析文件),就可以完成整个优化过程。

以上说明的是完全使用命令流的GUI方式,至于如何在菜单中进行优化过程的定制,窃以为没有命令流方式快捷,这里就不再赘述了。

另一种方式是后台运行的Batch方式,它只需要一个输入命令流文件(batch文件)。

该文件可以简单的把GUI方式下ANSYS分析文件和优化控制文件合并得到。

不过有几个注意点:1、需要把optanl语句去掉,因为在batch文件中,不需要提供ANSYS分析文件名字,系统默认batch文件中/opt语句以前的所有部分为ANSYS分析文件内容。

2、以前为防止在GUI方式下的重新定义错误而引入的一些语句,如/cle,nostart需要去除。

上述例子经过合并、处理,就可以得到Batch方式下需要的batch文件batch.inp File:batch.inpR=1H=1S=2*3.14*R*H+2*3.14*R*RV=10000/(3.14*R*R*H)/optopvar,R,DV,1,10,1e-2 ! 指定设计变量Ropvar,H,DV,1,10,1e-2 ! 指定设计变量Hopvar,S,SV,,100,1e-2 ! 指定状态变量Sopvar,V,obj,,,1e-2 ! 指定优化目标Vopkeep,on !optype,subp ! 指定优化方法——子问题逼近法(零阶法)opsave,optvolu,opt0opexe假定batch.inp在目录bvolu下,在cmd命令行方式下,进入bvolu目录,执行命令:ansys -b -j bvolu -p ane3flds -i batch.inp –o output.txt命令中-b 参数指定用batch模式求解;-j bvolu参数指定该求解默认工作名字为bvolu (不指定就默认为file)-p ane3flds 参数指定使用ANSYS/Multiphysics/LS-DYNA求解器-i batch.inp 参数指定输入batch文件为batch.inp-o output.txt 参数指定把输出导向到output.txt中,便于查看过程纠错运行结束后,可以从output.txt文件中看到最有解是多少:文件output.txt中的一部分数据:----------SOLUTION HAS CONVERGED TO POSSIBLE OPTIMUM -----------(BASED ON DV TOLERANCES BETWEEN FINAL TWO DESIGNS)FINAL VARIABLES ARESET 22(FEASIBLE)S (SV) 99.997R (DV) 2.2851H (DV) 4.6830V (OBJ)130.23其结果与用GUI方式求解完全一样,生成的bvolu.opt文件中也有最优解的信息,同时还能看到求解整个参数迭代求解过程。

1.2.3 ANSYS的优化方法和收敛准则例子中优化控制文件里面的优化命令,还有opkeep,on(用来要求保留最优解的DB),opexec(执行优化),剩下重要的命令就只有optype了,这个命令指定ANSYS优化中使用的优化方法。

优化方法发展到今天可说是形形色色,比较完善了。

ANSYS的优化模块中只支持两种优化方法,不能不说是一大遗憾。

但ANSYS的这两种优化方法对绝大多数的工程问题已经足够,更何况ANSYS还留下了用户话优化接口,方便用户写出适合于自己问题的优化方法来使用。

看看例子中的命令”optype,subp”,这里指定的是第一种通用的函数逼进优化方法。

改种方法的本质是采用最小二乘逼进,求取一个函数面来拟和解空间,然后再对该函数面求极值。

无疑这是一种普适的优化方法,不容易陷入局部极值点,但优化精度一般不是很高,因此多用来做粗优化的手段。

另外一种是针对第一种优化方法缺点的改进方法,叫做梯度寻优。

如果说第一种方法是C0阶、大范围普适的粗优化方法;第二种方法就是C1阶、局部寻优的精优化方法。

一般来说,一个比较负责的问题都需要同时采用两种优化方法,先用函数逼进的第一类方法初步求得最优解基本位置,然后再采用梯度寻优的对最优解的位置进行更精确的确定。

(注:但用第二类梯度寻优进行优化,不仅时间消耗长,还可能陷入局部最小点,因此通常的问题都建议使用0阶函数逼进优化subp)前面讨论了ANSYS的两种优化方法,但光了解优化进行的方式是不够的。

ANSYS进行优化计算,都是一个不断迭代的过程。

有时候,了解优化过程什么时候结束比了解优化过程本身更加重要。

下面我们就来谈谈决定优化过程什么时候结束的条件:优化准则。

假设F j、X j和F j-1、X j-1分别为目标函数、设计变量第j次迭代和第j-1次迭代的结果(X j 为矢量),F b和X b分别是当前的最优目标函数和其相应的设计变量值。

相关文档
最新文档