高等工热第一章概念总结

合集下载

工程热力学第一章 基本概念

工程热力学第一章 基本概念
27
补充习题:
一容器被一刚性壁分为两部分,如图所示。 压力表D读数为175kPa,C读数为110kPa,如 大气压为97kPa,试求表A的读值。
气体初态p1=0.5MPa,v1=0.172m³/kg,按pv= 常数的规律,可逆膨胀到p1=0.1MPa,试求膨 胀工。
1-6 功和热量
一、功(work)的定义和可逆过程的功
指导改善
————>实际循环 2.分析实际循环与理论循环的偏离程度,找出实际损失 的部位、大小、原因及改进方法。
35
三、动力循环(正循环)(power cycle; direct cycle )
输出净功;
在p-v图及T-s图上顺时针进行;
膨胀线在压缩线上方;吸热线在放热线上方。
36
动力循环:工质连续不断地将高温热源取得的热量 一部分转换成对外的净工。
研究目的:合理安排循环,提高热效率。
蒸汽动力循环
蒸汽动力循环是正循环,以蒸汽为工质,将蒸汽的热能 在动力装置中转换为机械功的循环。
蒸汽的卡诺循环
1.工作原理
朗肯循环
正循环中热转换工的经济性指标
循环热效率: t
t w q10 q1q1q2
1q2 q1
其中: q1——工质从热源吸收的热量 q2——工质向冷源放出的热量 w0——循环所做的净工 w0=q1-q2
1.刚性绝热气缸-活塞系统,B侧设有电热丝
红线内 ——闭口绝热系
黄线内不包含电热丝 ——闭口系
黄线内包含电热丝 ——闭口绝热系
蓝线内
——孤立系
11
1-2 工质的热力学状态和基本状态参数
一、热力学状态和状态参数
热力学状态(state of thermodynamic system) —系统宏观物理状况的综合

工程热力学第一章

工程热力学第一章

(3)好处:用系统的参数来计算;可以作 好处:用系统的参数来计算; 为实际过程中能量转换效果比较的标准和极 限;可把实际过程当作可逆过程进行分析计 然后再用经验系数加以修正。 算,然后再用经验系数加以修正。 (4)热量和功量 热量和功量都是过程量, 热量和功量都是过程量,它们的大小不仅与 过程的初终状态有关, 过程的初终状态有关,而且与过程的性质有 关。 可逆过程的功量: 可逆过程的功量: w = ∫ pdv 可逆过程的热量: 可逆过程的热量: q = ∫ Tds
C B A
课后题1 课后题1-5;1-6;1-9
(c)系统内部状态参数不随时间而变化 (d)系统内部状态不发生改变 2.均质等截面杆的两端的温度由分别维持 2.均质等截面杆的两端的温度由分别维持 t1 t2的两热源保持 t1 t2 不变,取此杆为系统, 不变,取此杆为系统, 则系统处于( 则系统处于(B)。 平衡状态, (a)平衡状态,因其各截面温度不随时间改 变 非平衡状态, (b)非平衡状态,因其各截面温度不等 平衡状态, (c)平衡状态,因其各截面温度不随时间改 变,且流入系统的热量等于流出系统的热量 非平衡状态, (d)非平衡状态,因其处于重力场
4.基本状态参数:温度、压力、 4.基本状态参数:温度、压力、比体积 基本状态参数 温度: (1)温度:是热平衡的惟一判据
t = T − 273.15
(2)压力Βιβλιοθήκη p = B + pg
p = B−H
(3)比体积 二、平衡状态、状态公理及状态方程 平衡状态、 1.定义 是指在没有外界作用的情况下, 定义: 1.定义:是指在没有外界作用的情况下, 系统的宏观性质不随时间变化的状态。 系统的宏观性质不随时间变化的状态。 2.实现平衡的条件: 2.实现平衡的条件:系统内部及系统与外界 实现平衡的条件 之间各种不平衡势差消失

《工程热力学》第一章 基本概念

《工程热力学》第一章  基本概念

9
1.3.1、基本术语-状态、状态参数
1、状态:工质在热力变化过程中某一瞬间所呈现的宏观 物理状况称状态
2、状态参数:表示状态特征的物理量称为状态参数
状态与状态参数是一一对应的
3、状态参数特点
数学特征为点函数: 微元变化的微增量具全微分性质
4、热力学基本状态参数为三个:比容、压力、 温度
10
1.3.2、基本状态参数--比容及密度
C 1 2 B B A
16
1-4
平衡状态、状态方程式、坐标图
1.4.1 平衡状态与非平衡态 平衡状态:系统在不受外界影响的条件下, 如果宏观热力性质不随时间而变化,系统 内、外同时建立了热平衡、力平衡(及 化学平衡),此时系统所处状态为平衡态 非平衡态: 系统与外界,系统内部各部分间 存在能量传递及相对位移,状态将随时间 变化,称系统处于非平衡态

受逐渐变化的压力作用下的活塞的移动过程 发生系统状态变化 (力作用)(NEXT)
受变化的恒温热源缓慢加热的活塞系统发生 系统状态变化(热的作用) (NEXT)

26
P3 P2
P1
工质 工 质
工质
受逐渐变化压力作用下的活塞移动过程发生系 统状态变化(P、V、T变化) (力作用)
27
工质
工质
工质
热源T
31
1-6
过程功与热量
1.6.1 功的定义: 1、功的力学定义: 将物体间通过力的作用而传递的能量称为功并 定义:功等于力F与物体在力作用方向上的位移X 的乘积(点积) dW = F ·dX 2、功的热力学定义: 热力学系统和外界通过边界而传递的能量, 其效果可表现为举起重物
区别:功与系统动能、重力位能等“储存能”变化传递 的机械能的本质区别

新版工程热力学大总结_第五版-新版.pdf

新版工程热力学大总结_第五版-新版.pdf

可逆过程 :当系统进行正、反两个过程后,系统与外界均能完全回复到初始状态,这样的过程称为
可逆过程。
膨胀功 :由于系统容积发生变化(增大或缩小)而通过界面向外界传递的机械功称为膨胀功,也称
容积功。
热量 :通过热力系边界所传递的除功之外的能量。
热力循环 :工质从某一初态开始,经历一系列状态变化, 最后又回复到初始状态的全部过程称为热
1K( 1℃)所吸收或放出的热量,称为该物
体的定容比热。
定压比热 :在定压情况下,单位物量的物体,温度变化
1K( 1℃)所吸收或放出的热量,称为该物
体的定压比热。
定压质量比热 :在定压过程中,单位质量的物体,当其温度变化
1K (1℃)时,物体和外界交换的
5
热量,称为该物体的定压质量比热。
定压容积比热 :在定压过程中,单位容积的物体,当其温度变化
热力循环 :
qw
或 u 0 , du 0
循环热效率 : t w0 q1 q2 1 q2
q1
q1
q1
式中
q1—工质从热源吸热; q2—工质向冷源放热; w 0—循环所作的净功。
制冷系数 :
q2
q2
1
w0 q1 q2
式中
q1—工质向热源放出热量; q2—工质从冷源吸取热量;
w 0—循环所作的净功。
3
供热系数:
第一章 基 本 概 念
1.基本概念
热力系统 :用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,
称为热力系
统,简称系统。
边界 :分隔系统与外界的分界面,称为边界。
外界 :边界以外与系统相互作用的物体,称为外界或环境。
闭口系统 :没有物质穿过边界的系统称为闭口系统,也称控制质量。

工程热力学基本概念

工程热力学基本概念

= 收获/代价

热效率: t
w net q1
顺 时 针
汽轮机
发电机 凝 汽 器
逆向循环 又称制冷循环或热泵循环
高温热源
或 制 Q1
逆 时
热冷 泵机
W

Q2
低温热源
制冷循环的经济性用制冷系数衡量:
2
1
1,a,2
1,b,2
b
2
状态参数的变化只与初终态相关,
1 dxx2 x1 与路径无关。
状态参数都有以上特性。
状态参数的循环 dx 0 积分等于零。
反之,有以上特性之一, 即为状态参数。
1-3 平衡状态、状态方程式、坐标图
一、平衡状态
热力系在没有外界作用的情况下〔重力场除 外〕,宏观性质不随时间变化的状态。
热力过程:工质由一个状态变化到另一状态所经历 的全部状态的总和。
实际过程由一系列非 平衡状态组成
例:
非平衡状态
无法简单描述
平衡状态
宏观静止
能量不能转换
“平衡〞意味着宏观静止, 引入 理想模型:
“过程〞意味着变化,意味着
准平衡过程
平衡被破坏。二者如何统一?
一、准平衡过程 热力系从一个平衡态连续经历一系列
系统与外界 通过边界进 展相互作用
热力系的选取主要决定于研究任务 。
选取热力系时注意:
❖热力系可以很大,但不能大到无限。
❖热力系可以很小,但不能小到只包含少量分子, 以致不能遵守统计平均规律。
❖ 边界可以是实际存在的, 也可以是假想的。
❖ 边界可以是固定的, 也可以是变动的。
系统与外界通过边界进展相互作用。
平衡的中间态过渡到另一个平衡态

工程热力学知识点总结

工程热力学知识点总结

工程热力学知识点总结
工程热力学知识点总结
工程热力学知识点很多,同学们需要多进行归纳总结,下面给大家整理了工程热力学知识点总结,欢迎阅读!
第一章、基本概念
1、边界
边界有一个特点(可变性):可以是固定的、假想的、移动的、变形的。

2、六种系统(重要!)
六种系统分别是:开(闭)口系统、绝热(非绝热)系统、孤立(非孤立)系统。

a.系统与外界通过边界:功交换、热交换和物质交换.
b.闭口系统不一定绝热,但开口系统可以绝热。

c.系统的取法不同只影响解决问题的难易,不影响结果。

3、三参数方程
a.P=B+Pg
b.P=B-H
这两个方程的使用,首先要判断表盘的压力读数是正压还是负压,即你所测物体内部的绝对压力与大气压的差是正是负。

正用1,负用2。

ps.《工程热力学(第六版)》书8页的系统,边界,外界有详细定义。

第二章、气体热力性质
1、各种热力学物理量
P:压强[单位Pa]
v:比容(单位m^3kg)
R:气体常数(单位J(kg*K))书25页
T:温度(单位K)
m:质量(单位kg)
V:体积(单位m^3)
M:物质的摩尔质量(单位mol)
R:8.314kJ(kmol*K),气体普实常数
2、理想气体方程:
Pv=RT
PV=m*R。

*TM
Qv=Cv*dT
Qp=Cp*dT
Cp-Cv=R
另外求比热可以用直线差值法!
第三章、热力学第一定律
1、闭口系统:
Q=W+△U
微元:δq=δw+du (注:这个δ是过程量的微元符号)2、闭口绝热
δw+du=0。

工程热力学知识点笔记总结

工程热力学知识点笔记总结

工程热力学知识点笔记总结第一章热力学基本概念1.1 热力学的基本概念热力学是研究能量与物质的转化关系的科学,它关注热与功的转化、能量的传递和系统的状态变化。

热力学中最基本的概念包括系统、热力学量、状态量、过程、功和热等。

1.2 热力学量热力学量是描述系统的性质和状态的物理量,包括内能、焓、熵、自由能等。

内能是系统的总能量,焓是系统在恒压条件下的能量,熵是系统的无序程度,自由能是系统进行非体积恒定的过程中能够做功的能量。

1.3 热力学第一定律热力学第一定律是能量守恒的表达形式,在闭合定容系统中,系统的内能变化等于系统所接受的热量减去系统所做的功。

1.4 热力学第二定律热力学第二定律是描述系统不可逆性的定律,它包括开尔文表述和克劳修斯表述。

开尔文表述指出不可能将热量完全转化为功而不引起其他变化,克劳修斯表述指出热量自然只能从高温物体传递到低温物体。

根据第二定律,引入了熵增大原理和卡诺循环。

1.5 热力学第三定律热力学第三定律是指当温度趋于绝对零度时,系统的熵趋于零。

这一定律揭示了绝对零度对热力学过程的重要意义。

第二章热力学系统2.1 定态与非定态定态系统是指系统的性质在长时间内不发生变化,非定态系统是指系统的性质在长时间内发生变化。

2.2 开放系统与闭合系统开放系统是指与外界交换物质和能量的系统,闭合系统是指与外界不交换物质但可以交换能量的系统。

2.3 热力学平衡热力学平衡是指系统内各部分之间的温度、压力、化学势等性质达到一致的状态。

系统处于热力学平衡时,不会产生宏观的变化。

第三章热力学过程3.1 等温过程在等温过程中,系统的温度保持不变,内能的变化全部转化为热量输给外界。

3.2 绝热过程在绝热过程中,系统不与外界交换热量,内能的变化全部转化为对外界所做的功。

3.3 等容过程在等容过程中,系统的体积保持不变,内能的变化全部转化为热量。

3.4 等压过程在等压过程中,系统的压强保持不变,内能的变化转化为对外界所做的功和系统所吸收的热量。

工程热力学-名词解释

工程热力学-名词解释

1.第一章 基本概念及定义 2.热能动力装置:从燃料燃烧中得到热能,以及利用热能所得到动力的整套设备(包括辅助设备)统称热能动力装置。

3.工质:热能和机械能相互转化的媒介物质叫做工质,能量的转换都是通过工质状态的变化实现的。

4.高温热源:工质从中吸取热能的物系叫热源,或称高温热源。

5.低温热源:接受工质排出热能的物系叫冷源,或称低温热源。

6.热力系统:被人为分割出来作为热力学分析对象的有限物质系统叫做热力系统。

7.闭口系统:如果热力系统与外界只有能量交换而无物质交换,则称该系统为闭口系统。

(系统质量不变) 8.开口系统:如果热力系统与外界不仅有能量交换而且有物质交换,则称该系统为开口系统。

(系统体积不变) 9.绝热系统:如果热力系统和外界间无热量交换时称为绝热系统。

(无论开口、闭口系统,只要没有热量越过边界) 10.孤立系统:如果热力系统和外界既无能量交换又无物质交换时,则称该系统为孤立系统。

11.表压力:工质的绝对压力>大气压力时,压力计测得的差数。

12.真空度:工质的绝对压力<大气压力时,压力计测得的差数,此时的压力计也叫真空计。

13.平衡状态:无外界影响系统保持状态参数不随时间而改变的状态。

充要条件是同时到达热平衡和力平衡。

14.稳定状态:系统参数不随时间改变。

(稳定未必平衡) 15.准平衡过程(准静态过程):过程进行的相对缓慢,工质在平衡被破环后自动恢复平衡所需的时间很短,工质有足够的时间来恢复平衡,随时都不致显著偏离平衡状态,那么这样的过程就称为准平衡过程。

它是无限接近于平衡状态的过程。

16.可逆过程:完成某一过程后,工质沿相同的路径逆行回复到原来的状态,并使相互作用所涉及的外界亦回复到原来的状态,而不留下任何改变。

可逆过程=准平衡过程+没有耗散效应(因摩擦机械能转变成热的现象)。

17.准平衡与可逆区别:准平衡过程只着眼工质内部平衡;可逆过程是分析工质与外界作用产生的总效果,不仅要求工质内部平衡,还要求工质与外界作用可以无条件逆复。

工程热力学基本知识点

工程热力学基本知识点

第一章基本概念1.基本概念热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统;边界:分隔系统与外界的分界面,称为边界;外界:边界以外与系统相互作用的物体,称为外界或环境;闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量;开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面; 绝热系统:系统与外界之间没有热量传递,称为绝热系统;孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统;单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系;复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统;单元系:由一种化学成分组成的系统称为单元系; 多元系:由两种以上不同化学成分组成的系统称为多元系;均匀系:成分和相在整个系统空间呈均匀分布的为均匀系;非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系;热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态;平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态;状态参数:描述工质状态特性的各种物理量称为工质的状态参数;如温度T、压力P、比容υ或密度ρ、内能u、焓h、熵s、自由能f、自由焓g等;基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数;温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映;热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡; 压力:垂直作用于器壁单位面积上的力,称为压力,也称压强;相对压力:相对于大气环境所测得的压力;如工程上常用测压仪表测定系统中工质的压力即为相对压力;比容:单位质量工质所具有的容积,称为工质的比容;密度:单位容积的工质所具有的质量,称为工质的密度;强度性参数:系统中单元体的参数值与整个系统的参数值相同,与质量多少无关,没有可加性,如温度、压力等;在热力过程中,强度性参数起着推动力作用,称为广义力或势;广延性参数:整个系统的某广延性参数值等于系统中各单元体该广延性参数值之和,如系统的容积、内能、焓、熵等;在热力过程中,广延性参数的变化起着类似力学中位移的作用,称为广义位移; 准静态过程:过程进行得非常缓慢,使过程中系统内部被破坏了的平衡有足够的时间恢复到新的平衡态,从而使过程的每一瞬间系统内部的状态都非常接近平衡状态,整个过程可看作是由一系列非常接近平衡态的状态所组成,并称之为准静态过程; 可逆过程:当系统进行正、反两个过程后,系统与外界均能完全回复到初始状态,这样的过程称为可逆过程;膨胀功:由于系统容积发生变化增大或缩小而通过界面向外界传递的机械功称为膨胀功,也称容积功;热量:通过热力系边界所传递的除功之外的能量; 热力循环:工质从某一初态开始,经历一系列状态变化,最后又回复到初始状态的全部过程称为热力循环,简称循环;2.常用公式状态参数:1212xxdx-=⎰⎰=0dx状态参数是状态的函数,对应一定的状态,状态参数都有唯一确定的数值,工质在热力过程中发生状态变化时,由初状态经过不同路径,最后到达终点,其参数的变化值,仅与初、终状态有关,而与状态变化的途径无关;温 度 :1.BT w m =22式中22w m —分子平移运动的动能,其中m 是一个分子的质量,w 是分子平移运动的均方根速度; B —比例常数;T —气体的热力学温度;2.t T +=273压 力 :1.nBT w m n p 322322==式中P —单位面积上的绝对压力;n —分子浓度,即单位容积内含有气体的分子数VNn =,其中N 为容积V 包含的气体分子总数; 2.fFp =F —整个容器壁受到的力,单位为牛N ;f —容器壁的总面积m 2;3.g p B p +=P >BH B p -=P <B式中 B —当地大气压力P g —高于当地大气压力时的相对压力,称表压力;H —低于当地大气压力时的相对压力,称为真空值; 比容: 1.mV v = m 3/kg式中 V —工质的容积m —工质的质量2.1=v ρ 式中 ρ—工质的密度kg/m3v —工质的比容m 3/kg热力循环:⎰⎰=w q δδ或∑=∆0u ,⎰=0du循环热效率:12121101q q q q q q w t -=-==η 式中 q 1—工质从热源吸热;q 2—工质向冷源放热;w 0—循环所作的净功;制冷系数:212021q q q w q -==ε 式中 q 1—工质向热源放出热量;q 2—工质从冷源吸取热量;w 0—循环所作的净功;供热系数:211012q q q w q -==ε 式中 q 1—工质向热源放出热量q 2—工质从冷源吸取热量w 0—循环所作的净功第二章 气体的热力性质 1.基本概念理想气体:气体分子是由一些弹性的、忽略分子之间相互作用力引力和斥力、不占有体积的质点所构成;比热:单位物量的物体,温度升高或降低1K1℃所吸收或放出的热量,称为该物体的比热;定容比热:在定容情况下,单位物量的物体,温度变化1K1℃所吸收或放出的热量,称为该物体的定容比热;定压比热:在定压情况下,单位物量的物体,温度变化1K1℃所吸收或放出的热量,称为该物体的定压比热;定压质量比热:在定压过程中,单位质量的物体,当其温度变化1K1℃时,物体和外界交换的热量,称为该物体的定压质量比热;定压容积比热:在定压过程中,单位容积的物体,当其温度变化1K1℃时,物体和外界交换的热量,称为该物体的定压容积比热;定压摩尔比热:在定压过程中,单位摩尔的物体,当其温度变化1K1℃时,物体和外界交换的热量,称为该物体的定压摩尔比热;定容质量比热:在定容过程中,单位质量的物体,当其温度变化1K1℃时,物体和外界交换的热量,称为该物体的定容质量比热;定容容积比热:在定容过程中,单位容积的物体,当其温度变化1K1℃时,物体和外界交换的热量,称为该物体的定容容积比热;定容摩尔比热:在定容过程中,单位摩尔的物体,当其温度变化1K1℃时,物体和外界交换的热量,称为该物体的定容摩尔比热;混合气体的分压力:维持混合气体的温度和容积不变时,各组成气体所具有的压力;道尔顿分压定律:混合气体的总压力P 等于各组成气体分压力P i 之和;混合气体的分容积:维持混合气体的温度和压力不变时,各组成气体所具有的容积;阿密盖特分容积定律:混合气体的总容积V 等于各组成气体分容积V i 之和;混合气体的质量成分:混合气体中某组元气体的质量与混合气体总质量的比值称为混合气体的质量成分;混合气体的容积成分:混合气体中某组元气体的容积与混合气体总容积的比值称为混合气体的容积成分;混合气体的摩尔成分:混合气体中某组元气体的摩尔数与混合气体总摩尔数的比值称为混合气体的摩尔成分;对比参数:各状态参数与临界状态的同名参数的比值;对比态定律:对于满足同一对比态方程式的各种气体,对比参数r p 、r T 和r v 中若有两个相等,则第三个对比参数就一定相等,物质也就处于对应状态中; 2.常用公式 理想气体状态方程: 1.RT pv =式中 p —绝对压力 Pa v —比容m 3/kgT —热力学温度 K 适用于1千克理想气体;2.mRT pV =式中 V —质量为m kg 气体所占的容积 适用于m 千克理想气体; 3.T R pV M 0=式中 V M = M v —气体的摩尔容积,m 3/kmol ;R 0=MR —通用气体常数,J/kmol ·K适用于1千摩尔理想气体; 4.T nR pV 0=式中 V —nK mol 气体所占有的容积,m 3;n —气体的摩尔数,Mmn =,kmol适用于n 千摩尔理想气体;5.通用气体常数:R 083140=RJ/Kmol ·KR 0与气体性质、状态均无关;6.气体常数:RMM R R 83140==J/kg ·K R 与状态无关,仅决定于气体性质;7.112212p v p v T T =比热:1.比热定义式:dTqc δ=表明单位物量的物体升高或降低1K 所吸收或放出的热量;其值不仅取决于物质性质,还与气体热力的过程和所处状态有关;2.质量比热、容积比热和摩尔比热的换算关系:04.22'ρc Mcc ==式中 c —质量比热,kJ/Kg ·k 'c —容积比热,kJ/m 3·kM c —摩尔比热,kJ/Kmol ·k3.定容比热:vv vvT u dT du dTq c ⎪⎭⎫⎝⎛∂∂===δ 表明单位物量的气体在定容情况下升高或降低1K 所吸收或放出的热量; 4.定压比热:dTdh dTq c pp==δ 表明单位物量的气体在定压情况下升高或降低1K 所吸收或放出的热量; 5.梅耶公式:R c c v p =- R c c v p 0''ρ=- 0R MR Mc Mc v p ==-6.比热比: vp vp vp Mc Mc c c c c ===''κ1-=κκRc v 1-=κnRc p道尔顿分压定律:VT ni i n p p p p p p ,1321⎥⎦⎤⎢⎣⎡=++++=∑=阿密盖特分容积定律:PT ni i n V V V V V V ,1321⎥⎦⎤⎢⎣⎡=++++=∑=质量成分:ii m g m=1211nn i i g g g g =+++==∑容积成分: ii V r V=1211nn i i r r r r r ==++==∑ 摩尔成分: i i n x n =1211nn i i x x x x x ==+++==∑容积成分与摩尔成分关系:i i i nr x n==质量成分与容积成分:i i i i i i i i m n M M M g x r m nM M M====i i i ii i i M Rg r r r M R ρρ===折合分子量:111ni in ni i i i i i i n Mm M x M r M nn=======∑∑∑1211211nn i i niM g g g g M M M M ===+++∑折合气体常数:0010001nnii ni i ii i i R m n R R nRM R g R M mmm========∑∑∑001122n nR R R M r M r M r M ==+++12121n n r r r R R R =+++11ni i ir R==∑分压力的确定i i i Vp p r p V==i i i i i i i R Mp g p g p g p M R ρρ=== 混合气体的比热容:121nn n i ii c g g c g c ==+=∑12c +g c +混合气体的容积比热容:121'''nn n i i i c r r c rc ==+=∑12c'+r c'+混合气体的摩尔比热容:11n ni i i i i i i Mc M g c x M c ====∑∑混合气体的热力学能、焓和熵 1ni i UU ==∑ 或1ni i i U m u ==∑1n i i H H ==∑ 或 1ni i i H m h ==∑1n i i S S ==∑ 或 1ni i i S m s ==∑ 范德瓦尔Van der Waals 方程()2a p v b RTv ⎛⎫+-= ⎪⎝⎭ 对于1kmol 实际气体()02M M a p V b R T V ⎛⎫+-= ⎪⎝⎭ 压缩因子:id v pvz v RT==对比参数: r c TT T =, r cpp p =,r cv v v =第三章 热力学第一定律 1.基本概念热力学第一定律:能量既不能被创造,也不能被消灭,它只能从一种形式转换成另一种形式,或从一个系统转移到另一个系统,而其总量保持恒定,这一自然界普遍规律称为能量守恒与转换定律;把这一定律应用于伴有热现象的能量和转移过程,即为热力学第一定律;第一类永动机:不消耗任何能量而能连续不断作功的循环发动机,称为第一类永动机;热力学能:热力系处于宏观静止状态时系统内所有微观粒子所具有的能量之和;外储存能:也是系统储存能的一部分,取决于系统工质与外力场的相互作用如重力位能及以外界为参考坐标的系统宏观运动所具有的能量宏观动能;这两种能量统称为外储存能;轴功:系统通过机械轴与外界传递的机械功称为轴功;流动功或推动功:当工质在流进和流出控制体界面时,后面的流体推开前面的流体而前进,这样后面的流体对前面的流体必须作推动功;因此,流动功是为维持流体通过控制体界面而传递的机械功,它是维持流体正常流动所必须传递的能量; 焓:流动工质向流动前方传递的总能量中取决于热力状态的那部分能量;对于流动工质,焓=内能+流动功,即焓具有能量意义;对于不流动工质,焓只是一个复合状态参数;稳态稳流工况:工质以恒定的流量连续不断地进出系统,系统内部及界面上各点工质的状态参数和宏观运动参数都保持一定,不随时间变化,称稳态稳流工况;技术功:在热力过程中可被直接利用来作功的能量,称为技术功;动力机:动力机是利用工质在机器中膨胀获得机械功的设备;压气机:消耗轴功使气体压缩以升高其压力的设备称为压气机;节流:流体在管道内流动,遇到突然变窄的断面,由于存在阻力使流体压力降低的现象;2.常用公式 外储存能: 宏观动能:221mc E k =重力位能:mgz E p =式中g —重力加速度;系统总储存能:1.p k E E U E ++=或mgz mc U E ++=2212.gz c u e ++=221 3.U E = 或u e =没有宏观运动,并且高度为零热力学能变化: 1.dT c duv =,⎰=∆21dT c u v适用于理想气体一切过程或者实际气体定容过程 2.)(12T T c u v -=∆适用于理想气体一切过程或者实际气体定容过程用定值比热计算 3.1020121221t c t c dt c dt c dt c u t vmt vmt v t v t t v ⋅-⋅=-==∆⎰⎰⎰适用于理想气体一切过程或者实际气体定容过程用平均比热计算 4.把()T f c v =的经验公式代入⎰=∆21dT c u v 积分;适用于理想气体一切过程或者实际气体定容过程用真实比热公式计算 5.∑∑====+++=ni i i ni i n u m U U U U U1121由理想气体组成的混合气体的热力学能等于各组成气体热力学能之和,各组成气体热力学能又可表示为单位质量热力学能与其质量的乘积; 6.⎰-=∆21pdv q u适用于任何工质,可逆过程; 7.q u =∆适用于任何工质,可逆定容过程8.⎰=∆21pdv u适用于任何工质,可逆绝热过程;9.0=∆U适用于闭口系统任何工质绝热、对外不作功的热力过程等热力学能或理想气体定温过程;10.W Q U -=∆适用于mkg 质量工质,开口、闭口,任何工质,可逆、不可逆过程; 11.w q u -=∆适用于1kg 质量工质,开口、闭口,任何工质,可逆、不可逆过程 12.pdv q du -=δ适用于微元,任何工质可逆过程 13.pv h u ∆-∆=∆热力学能的变化等于焓的变化与流动功的差值; 焓的变化: 1.pV U H+=适用于m 千克工质2.pv u h +=适用于1千克工质 3.()T f RT u h =+=适用于理想气体4.dT c dhp =,dT c h p ⎰=∆21适用于理想气体的一切热力过程或者实际气体的定压过程5.)(12T T c h p -=∆适用于理想气体的一切热力过程或者实际气体的定压过程,用定值比热计算 6221211201t t t t t p p p pmpm t h c dt c dt c dt c t c t ∆==-=⋅-⋅⎰⎰⎰适用于理想气体的一切热力过程或者实际气体的定压过程用平均比热计算 7.把()T f c p =的经验公式代入⎰=∆21dT c h p 积分;适用于理想气体的一切热力过程或者实际气体的定压过程,用真实比热公式计算 8.∑∑====+++=ni i i n i i n h m H H H H H1121由理想气体组成的混合气体的焓等于各组成气体焓之和,各组成气体焓又可表示为单位质量焓与其质量的乘积;9.热力学第一定律能量方程CVS dE W m gz C h m gz C h Q ++⎪⎭⎫⎝⎛++-⎪⎭⎫ ⎝⎛++=δδδδ11211222222121适用于任何工质,任何热力过程;10.s w gdz dc q dh δδ---=221 适用于任何工质,稳态稳流热力过程 11.s w q dh δδ-=适用于任何工质稳态稳流过程,忽略工质动能和位能的变化;12.⎰-=∆21vdp q h适用于任何工质可逆、稳态稳流过程,忽略工质动能和位能的变化; 13.⎰-=∆21vdp h适用于任何工质可逆、稳态稳流绝热过程,忽略工质动能和位能的变化; 14.q h =∆适用于任何工质可逆、稳态稳流定压过程,忽略工质动能和位能的变化; 15.0=∆h适用于任何工质等焓或理想气体等温过程; 熵的变化: 1.⎰=∆21Tqs δ适用于任何气体,可逆过程; 2.g fs s s ∆+∆=∆f s ∆为熵流,其值可正、可负或为零;g s ∆为熵产,其值恒大于或等于零; 3.12lnT T c s v=∆理想气体、可逆定容过程 4.12lnT T c s p=∆理想气体、可逆定压过程 5.2112ln lnp pR v v R s ==∆理想气体、可逆定温过程 6.0=∆s 定熵过程121212121212ln lnln lnln ln p p c v v c p p R T T c v v R T T c s v p pv +=-=+=∆适用于理想气体、任何过程 功量:膨胀功容积功: 1.pdv w =δ 或⎰=21pdv w适用于任何工质、可逆过程 2.0=w适用于任何工质、可逆定容过程 3.()21w p v v =-适用于任何工质、可逆定压过程 4.12lnv v RT w =适用于理想气体、可逆定温过程 5.u q w ∆-=适用于任何系统,任何工质,任何过程; 6.q w =适用于理想气体定温过程; 7.u w ∆-=适用于任何气体绝热过程; 8.dT C w v ⎰-=21适用于理想气体、绝热过程 9.()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--=--=--=∆-=-k k p p k RT T T R k v p v p k uw 1121212211111111适用于理想气体、可逆绝热过程 10.()()()11111111121212211≠⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--=--=--=-n p p n RT T T R n v p v p n w n n 适用于理想气体、可逆多变过程 流动功: 1122v p v p w f-=推动1kg 工质进、出控制体所必须的功; 技术功: 1.s tw z g c w +∆+∆=221 热力过程中可被直接利用来作功的能量,统称为技术功; 2.s tw gdz dc w δδ++=221 适用于稳态稳流、微元热力过程 3.2211v p v p w w t-+=技术功等于膨胀功与流动功的代数和; 4.vdp w t-=δ适用于稳态稳流、微元可逆热力过程 5.⎰-=21vdp w t适用于稳态稳流、可逆过程 热量:1.TdS q =δ适用于任何工质、微元可逆过程;2.⎰=21Tds q适用于任何工质、可逆过程 3.W UQ +∆=适用于mkg 质量任何工质,开口、闭口,可逆、不可逆过程 4.w u q +∆=适用于1kg 质量任何工质,开口、闭口,可逆、不可逆过程 5.pdv du q +=δ适用于微元,任何工质可逆过程; 6.⎰+∆=21pdv uq适用于任何工质可逆过程; 7.2222212Q h C gZ m δδ⎛⎫=++-⎪⎝⎭2111112S CV h C gZ m W dE δδ⎛⎫++++ ⎪⎝⎭适用于任何工质,任何系统,任何过程; 8.s w gdz dc dh q δδ+++=221适用于微元稳态稳流过程9.t w h q +∆= 适用于稳态稳流过程 10.u q ∆=适用于任何工质定容过程 11.()12T T c q v-=适用于理想气体定容过程; 12.h q ∆=适用于任何工质定压过程 13.()12T T c q p-=适用于理想气体、定压过程 14.0=q适用于任何工质、绝热过程 15.()()1112≠---=n T T c n kn q v 适用于理想气体、多变过程第四章 理想气体的热力过程及气体压缩1.基本概念分析热力过程的一般步骤:1.依据热力过程特性建立过程方程式,p=fv ;2.确定初、终状态的基本状态参数;3.将过程线表示在p-v 图及T —s 图上,使过程直观,便于分析讨论;4.计算过程中传递的热量和功量;绝热过程:系统与外界没有热量交换情况下所进行的状态变化过程,即0=q δ或0=q 称为绝热过程; 定熵过程:系统与外界没有热量交换情况下所进行的可逆热力过程,称为定熵过程; 多变过程:凡过程方程为=n pv 常数的过程,称为多变过程;定容过程:定量工质容积保持不变时的热力过程称为定容过程;定压过程:定量工质压力保持不变时的热力过程称为定压过程;定温过程:定量工质温度保持不变时的热力过程称为定温过程;单级活塞式压气机工作原理:吸气过程、压缩过程、排气过程,活塞每往返一次,完成以上三个过程; 活塞式压气机的容积效率:活塞式压气机的有效容积和活塞排量之比,称为容积效率;活塞式压气机的余隙:为了安置进、排气阀以及避免活塞与汽缸端盖间的碰撞,在汽缸端盖与活塞行程终点间留有一定的余隙,称为余隙容积,简称余隙; 最佳增压比:使多级压缩中间冷却压气机耗功最小时,各级的增压比称为最佳增压比;压气机的效率:在相同的初态及增压比条件下,可逆压缩过程中压气机所消耗的功与实际不可逆压缩过程中压气机所消耗的功之比,称为压气机的效率; 热机循环:若循环的结果是工质将外界的热能在一定条件下连续不断地转变为机械能,则此循环称为热机循环; 气体主要热力过程的基本公式多变指数n :z 级压气机,最佳级间升压比:i 1z1p p β+=第五章 热力学第二定律 1.基本概念 热力学第二定律:开尔文说法:只冷却一个热源而连续不断作功的循环发动机是造不成功的;克劳修斯说法:热不可能自发地、不付代价地从低温物体传到高温物体;第二类永动机:从单一热源取得热量,并使之完全转变为机械能而不引起其他变化的循环发动机,称为第二类永动机;孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统;孤立系统熵增原理:任何实际过程都是不可逆过程,只能沿着使孤立系统熵增加的方向进行; 定熵过程:系统与外界没有热量交换情况下所进行的可逆热力过程,称为定熵过程;热机循环:若循环的结果是工质将外界的热能在一定条件下连续不断地转变为机械能,则此循环称为热机循环;制冷:对物体进行冷却,使其温度低于周围环境温度,并维持这个低温称为制冷;制冷机:从低温冷藏室吸取热量排向大气所用的机械称为制冷机;热泵:将从低温热源吸取的热量传送至高温暖室所用的机械装置称为热泵;理想热机:热机内发生的一切热力过程都是可逆过程,则该热机称为理想热机;卡诺循环:在两个恒温热源间,由两个可逆定温过程和两个可逆绝热过程组成的循环,称为卡诺循环;卡诺定理:1.所有工作于同温热源与同温冷源之间的一切可逆循环,其热效率都相等,与采用哪种工质无关; 2.在同温热源与同温冷源之间的一切不可逆循环,其热效率必小于可逆循环; 自由膨胀:气体向没有阻力空间的膨胀过程,称为自由膨胀过程; 2.常用公式 熵的定义式:⎰=∆21Tqs δ J/kg K工质熵变计算:12s s s -=∆,⎰=0ds工质熵变是指工质从某一平衡状态变化到另一平衡状态熵的差值;因为熵是状态参数,两状态间的熵差对于任何过程,可逆还是不可逆都相等;1.1212ln ln v vR T T c s v +=∆理想气体、已知初、终态T 、v 值求 ΔS;2.1212ln ln P PR T T c s P -=∆理想气体已知初、终态T 、P 值求 ΔS;3.1212ln ln P Pc v v c s v P +=∆理想气体、已知初、终态P 、v 值求 ΔS; 4.固体及液体的熵变计算:12ln ,T T mc s T mcdTds =∆=5.热源熵变:TQ s =∆ 克劳修斯不等式:0≤⎰rT Qδ任何循环的克劳修斯积分永远小于零,可逆过程时等于零; 闭口系统熵方程:∑=∆=∆∆+∆=∆ni i iso sur sys iso s s s s s 1或式中: ΔS sys ——系统熵变; ΔS sur ——环境熵变;ΔS I ——某子系统熵变;开口系统熵方程:1122s m s m s s s sur sys iso -+∆+∆=∆式中:m 2s 2——工质流出系统的熵;m 1s 1——工质流入系统的熵; 不可逆作功能力损失: ISO S T W∆=∆0式中:T 0——环境温度;ΔS ISO ——孤立系统熵增;第八章 湿空气 1.基本概念湿空气:干空气和水蒸气所组成的混合气体; 饱和空气:干空气和饱和水蒸气所组成的混合气体;未饱和空气:干空气和过热水蒸气所组成的混合气体;绝对湿度:每立方米湿空气中所含有的水蒸气质量;饱和绝对湿度:在一定温度下饱和空气的绝对湿度达到最大值,称为饱和绝对湿度相对湿度:湿空气的绝对湿度v ρ与同温度下饱和空气的饱和绝对湿度s ρ的比值含湿量比湿度:在含有1kg 干空气的湿空气中,所混有的水蒸气质量饱和度:湿空气的含湿量d 与同温下饱和空气的含湿量d s 的比值湿空气的比体积:在一定温度T 和总压力p 下,1kg 干空气和水蒸气所占有的体积湿空气的焓: 1kg 干空气的焓和水蒸气的焓的总和; 第十一章 制 冷 循 环 1.基本概念制冷:对物体进行冷却,使其温度低于周围环境的温度,并维持这个低温称为;空气压缩式制冷:将常温下较高压力的空气进行绝热膨胀,获得低温低压的空气;蒸汽喷射制冷循环:用引射器代替压缩机来压缩制冷剂,以消耗蒸汽的热能作为补偿来实现制冷的目的;蒸汽喷射制冷装置:由锅炉、引射器或喷射器、冷凝器、节流阀、蒸发器和水泵等组成;吸收式制冷:利用制冷剂液体气化吸热实现制冷,它是直接利用热能驱动,以消耗热能为补偿将热量从低温物体转移到环境中去;吸收式制冷采用的工质是两种沸点相差较大的物质组成的二元溶液,其中沸点低的物质为制冷剂,沸点高的物质为吸收剂; 热泵:是一种能源提升装置,以消耗一部分高位能机械能、电能或高温热能等为补偿,通过热力循环,把环境介质水、空气、土壤中贮存的不能直接利用的低位能量转换为可以利用的高位能;影响制冷系数的主要因素:降低制冷剂的冷凝温度即热源温度和提高蒸发温度冷源温度,都可使制冷系数增高; 2.常用公式制冷系数:210q w ε==收获消耗空气压缩式制冷系数 1122111111T p T p κκε-==-⎛⎫- ⎪⎝⎭或1121T T T ε=-卡诺循环的制冷系数:11,31c T T T ε=-习题答案2-5当外界为标准状态时,一鼓风机每小时可送300 m 3的空气,如外界的温度增高到27℃,大气压降低到,而鼓风机每小时的送风量仍为300 m 3,问鼓风机送风量的质量改变多少解:同上题2130099.3101.32512()()100021287300273v p p m m m R T T =-=-=-⨯=2-14 如果忽略空气中的稀有气体,则可以认为其质量成分为%2.232=go ,%8.762=N g ;试求空气的折合分子量、气体常数、容积成分及在标准状态下的比容和密度; 解:折合分子量28768.032232.011+==∑ii Mg M =气体常数86.2883140==M R R =288)/(K kg J • 容积成分2/22Mo M g r o o ==% =2N r1-%=%标准状态下的比容和密度4.2286.284.22==M ρ= kg /m 3ρ1=v = m 3/kg2—181天然气在标准状态下的密度;2各组成气体在标准状态下的分压力; 解:1密度(97160.6300.18440.18580.2441.8328)/100i i M rM ==⨯+⨯+⨯+⨯+⨯+⨯∑ =30/736.04.2248.164.22m kg M ===ρ 2各组成气体在标准状态下分压力 因为:p r p i i ===325.101*%974CH p3-8 容积由隔板分成两部分,左边盛有压力为600kPa,温度为27℃的空气,右边为真空,容积为左边5倍;将隔板抽出后,空气迅速膨胀充满整个容器;试求容器内最终压力和温度;设膨胀是在绝热下进行的;解:热力系:左边的空气 系统:整个容器为闭口系统 过程特征:绝热,自由膨胀 根据闭口系统能量方程WU Q +∆=绝热0=Q自由膨胀W =0 因此ΔU=0。

工程热力学第一章基本概念

工程热力学第一章基本概念

受重力影响,大部分热力系统内部存在压力变化,但该变化相对很小,通常忽略不计。 The variation of pressure as a result of gravity in most thermodynamic system is relatively small and usually disregarded
热力学温标(Kelvin scale):纯水三相点温度为273.16K,每1K为水三相点温度的1/273.16。
朗肯温标(Rankine scale):以绝对零度为起点的华氏温标
温标之间的换算
基本状态参数——压力(Pressure)
微观概念:大量分子碰撞器壁的结果。
单位面积上的压力
分子浓度
平均平动动能
在没有外来影响的情况下,两物体相互作用最终达到相同的冷热状况。
热力学第零定律 1931年 T
热力学第一定律 18401850年 E
热力学第二定律 18541855年 S
热力学第三定律 1906年 S基准
闭口系统的质量保持恒定
开口系统(Open system):有物质流穿过边界的系统,又称为控制体积或控制体(Control volume)。
开口系统的界面称为控制界面。
开口系统和闭口系统都可能与外界发生能量(功和热)传递。
闭口系统与开口系统
绝热系统(Adiabatic system):系统与外界之间没有热量传递的系统。
化学平衡( Chemical equilibrium ) 系统中化学成分不随时间变化 if its chemical position does not change with time. That is, no chemical reactions occur. 化学反应——化学不平衡势

(完整版)工程热力学知识总结

(完整版)工程热力学知识总结

第一章基本概念1.基本概念热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。

边界:分隔系统与外界的分界面,称为边界。

外界:边界以外与系统相互作用的物体,称为外界或环境。

闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。

开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。

绝热系统:系统与外界之间没有热量传递,称为绝热系统。

孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。

单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。

复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。

单元系:由一种化学成分组成的系统称为单元系。

多元系:由两种以上不同化学成分组成的系统称为多元系。

均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。

非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。

热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。

平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。

状态参数:描述工质状态特性的各种物理量称为工质的状态参数。

如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。

基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。

温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。

热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡。

压力:垂直作用于器壁单位面积上的力,称为压力,也称压强。

相对压力:相对于大气环境所测得的压力。

工程热力学与传热学概念整理

工程热力学与传热学概念整理

工程热力学与传热学概念整理工程热力学第一章、基本概念1.热力系:根据研究问题的需要,人为地选取一定范围内的物质作为研究对象,称为热力系(统),建成系统。

热力系以外的物质称为外界;热力系与外界的交界面称为边界。

2.闭口系:热力系与外界无物质交换的系统。

开口系:热力系与外界有物质交换的系统。

绝热系:热力系与外界无热量交换的系统。

孤立系:热力系与外界无任何物质和能量交换的系统3.工质:用来实现能量像话转换的媒介称为工质。

4.状态:热力系在某一瞬间所呈现的物理状况成为系统的状态,状态可以分为平衡态和非平衡态两种。

5.平衡状态:在没有外界作用的情况下,系统的宏观性质不随时间变化的状态。

实现平衡态的充要条件:系统内部与外界之间的各种不平衡势差(力差、温差、化学势差)的消失。

6.强度参数:与系统所含工质的数量无关的状态参数。

广延参数:与系统所含工质的数量有关的状态参数。

比参数:单位质量的广延参数具有的强度参数的性质。

基本状态参数:可以用仪器直接测量的参数。

7.压力:单位面积上所承受的垂直作用力。

对于气体,实际上是气体分子运动撞击壁面,在单位面积上所呈现的平均作用力。

8.温度T:温度T是确定一个系统是否与其它系统处于热平衡的参数。

换言之,温度是热力平衡的唯一判据。

9.热力学温标:是建立在热力学第二定律的基础上而不完全依赖测温物质性质的温标。

它采用开尔文作为度量温度的单位,规定水的汽、液、固三相平衡共存的状态点(三相点)为基准点,并规定此点的温度为273.16K。

10状态参数坐标图:对于只有两个独立参数的坐标系,可以任选两个参数组成二维平面坐标图来描述被确定的平衡状态,这种坐标图称为状态参数坐标图。

11.热力过程:热力系从一个状态参数向另一个状态参数变化时所经历的全部状态的总和。

12.热力循环:工质由某一初态出发,经历一系列状态变化后,又回到原来初始的封闭热力循环过程称为热力循环,简称循环。

13.准平衡过程:由一系列连续的平衡状态组成的过程称为准平衡过程,也成准静态过程。

工程热力学-第一章—基本概念

工程热力学-第一章—基本概念

● 为什么叫做热力学第零定律
热力学第零定律 热力学第一定律 热力学第二定律 热力学第三定律
1931年
T
18401850年 E
18541855年 S
1906年
S基准
● 温度的热力学定义
★由热力学第零定律可以推断:处于同一热平衡 状态的各个热力系,必定有某一宏观特征彼此 相同,用于描述此宏观特征的物理量——温度。
T 0.5 m c2 T=0 0.5 m c2=0 分子一切运动停止,零动能。
● 热力学第零定律
◆ 热平衡:不同物体的冷热程度相同,则它们处于热平衡。 ◆ 热力学第零定律(热力学中的一个基本实验结果):
若两个热力系分别与第三个热力系处于热平衡,那么这 两个热力系也处于热平衡。
温度测量的理论基础 B 相当于温度计
压力的表示方法
◆ 绝对压力(p)、表压力(pg)、 真空度(pv)
◆ 绝对压力p、表压力pg、真空度pv、 大气压力pb的关系 pg =p- pb pv= pb-p
只有绝对压力p才是系统的状态参数。
例1:已知甲醇合成塔上压力表的读数为 150kgf/cm2,这时车间内气压计上的 读数为780mmHg。试求合成塔内绝 对压力等于多少kPa?
●状态参数的微分特性:全微分
状态参数的微分特性
设 z =z (x , y) , dz是全微分 则: dzxzy dxyzxdy
充要条件是: 2 z 2 z xy yx
可判断是否是状态参数。
2.强度参数和广度参数
● 强度参数:与物质的量无关的参数。
如 p、T、v 等
0 冰熔点
32
-17.8 盐水熔点 0
559.67 491.67 459.67

工程热力学-1第一章 基本概念

工程热力学-1第一章 基本概念

例1-2 P23 可逆过程功的计算关键:找到p和v之间的关系
三、过程热量
系统与外界之间依靠温差传递的能量称为热量。 符号:Q ;单位:J 或kJ。
单位质量工质所传递的热量用q 表示,单位为 J/kg 或 kJ/kg。
热量正负的规定: 系统吸热:q > 0 系统放热:q < 0
热量和功量都是系统与外界在相互作用的过程 中所传递的能量,都是过程量而不是状态量
热量如何表达?
热量是否可以用类似于功的
? 式子表示?
Entropy
引入“熵”
清华大学刘仙洲教授 命名为“熵”
在可逆过程中,系统与外界交换的热量与功量
的计算公式具有相的形式。
功量:
热量:
w pdv
qqTTds?
2
w 1 pdv
2
q 1 Tds
条件 准静态或可逆
可逆
s 称为比熵。比熵同比体积 v 一样是工质的状态 参数。
比熵的定义式:ds q
T
(可逆过程)
比熵的单位为J/ (kg·K) 或 kJ/ (kg·K)
对于质量为m的工质,
Q TdS
2
Q 1 TdS
S为质量为 m 的工质的熵,单位是 J/K。
示热图
2
w 1 pdv
2
q 1 Tds
在可逆过程中单位 质量工质与外界交换 的 热 量 可 以 用 T-s 图 (温熵图)上过程曲 线下的面积来表示。
消除一种 不平衡势差
达到某一 方面平衡
消除一种能量 传递方式
状态公理 对于组成一定的物质系统,该系统平衡态的
独立状态参数有 n +1
n-表示系统与外界进行准静功交换的数目

高等工程热力学-第一章、热力学基本原理及定义

高等工程热力学-第一章、热力学基本原理及定义
在一定的环境条件下,系统与外界交换的功量, 可以转换成有用功的最大理论限度。
功量的 流:
系统所交换的功量,对系统自身 值变化的贡献。
例:两种可逆绝热膨胀过程,
判断功量 值的正负。
=面积(A+B)-面积B =面积A>0
=面积D-面积(C+D) =-面积C<0
功库:假想的、定质量定容积的绝热系统,内部可逆。
注意:无用能只是指能量的作功能力为零,并非绝对无用, 在非作功场合仍有使用价值。
4.有用功及无用功
系统1→2过程:
无用功: 有用功:
(可逆过程)
最大有用功:
问:下面哪些是过程量,哪些是状态量?
5. 与 Exergy and Anergy
在一定的环境条件下,一定形态的能量中可以转换成有 用功的最大理论限度,称为该种形态能量中的 , 而不 能转换成有用功的部分则称为 。
◆是否满足热力学第一定律的过程,都能够实现? 怎样实现?条件是什么? 例:①一杯热水放在桌子上,会自发地慢慢变冷。 ②杂技中耍手帕,或热功当量实验。 ③煤气(液化气)泄露事故。 热过程具有方向性。
◆自然界中的一切过程总是自发地朝着一定的方向进行。
◆但非自发过程并不是不可能实现的。非自发过程的实现 要花费一定的代价,需要补偿过程同时进行。 压气机→气体的压缩; 热机→热能转变为机械能; 制冷机→热量由低向高传递。
周围环境:能容量无限大的、定质量系统,内部可逆,
4. 质量流能容量的可用性
质量流的 值: A f
质量交换对系统火用值变化的贡献,总是由流动质量本身 的的火用值及流动功的火用流两部分组成,而且它们总是同 时出现,所以可以把它们的总和看作是质量流本身所固有的 能质属性,定义为质量流的火用值。
质量流的 流: (A)M
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.热力学第零定律:如果两个系统分别与第三个系统处于热平衡,则两个系统彼此必然处于热平衡。

2.热力学第一定律:在热力系统的两个给定稳定状态之间进行的一切绝热过程的功都是相同的。

它是能量守恒与转化定律在热现象上的应用;(不同表达方式)
热力学:热能与其他形态对能量(机械能、化学能、电磁能……)之间相互转化和守恒。

工程热力学:热能与机械能之间相互转化和守恒。

3. 热力学第二定律:(克劳修斯说法)热不可能自发地、不付代价地、从低温物体传至高温物体。

(开尔文说法)不可能制造出从单一热源吸热,使之全部转化成为功而不留下其他任何变化的热力发动机。

4.热力学第二定律推论I:只和单一热源交换热量的热力系统,在其确定的初始与最终稳定状态之间进行的一切可逆过程的输出总功相同;如为不可逆过程,则输出的总功总是小于可逆过程所输出的总功。

5. 热力学第二定律推论II:只能与单一热源交换热量的热力系统,在完成了一个可逆循环后,所输出的总功以及和热源交换的热量均为零。

1.简单可压缩系统:只交换热量和一种准静态的容积变化功(压缩功、膨胀功)。

2. 平衡状态:在不受外界影响的条件下(重力场除外),如果系统的状态参数不随时间变化。

3.热力学平衡状态:力平衡、热平衡、化学平衡、相平衡。

4. 强度参数:与物质的量无关的参数,如压力p、温度T;广延参数:与物质的量有关的参数−可加性,如质量m、容积V、内能U、焓H、熵S。

5. 独立参数数目N=不平衡势差数=能量转换方式的数目=各种功的方式+热量= n+1
7. 准静态过程:如果在过程进行的每一瞬间,热力系统内部都无限地接近热力平衡状态,这种过程称为准净态过程。

其过程可用一系列平衡状态表示,形成一条连续地曲线。

8. 准静态过程的工程条件:破坏平衡所需时间(外部作用时间)>>恢复平衡所需时间(驰豫时间)。

有足够时间恢复新平衡⇒准静态过程
9. 可逆过程与不可逆过程:可逆过程是指在过程完成以后,能够使热力系统及其外界都严格地回复到该过程前的起始状态,在任何环节都没有留下任何变化。

反之就是不可逆过程。

10.可逆过程=准静态过程+无耗散。

可逆过程一定是准静态过程,准静态过程不一定是可逆过程。

15年高等工程热力学考题
一、简答题
1、何为平衡状态?试述平衡状态的条件。

在不受外界影响的条件下(重力场除外),如果系统的状态参数不随时间变化。

平衡状态是宏观状态中一种重要的特殊情况。

力平衡、热平衡、化学平衡、相平衡。

平衡的本质:不存在各种不平衡势
2、国际公认热力学温标取水的三相点作为标准固定点(T d=273.16K),因此热力学温标的表达式为T=273.16,试说明公式中Q和Q td的物理意义。

Q:可逆机向热源吸取的热量
Q td:可逆机向三相点排出的热量
3、当系统完成一个循环,试写出的的值与对应的条件。

任何循环的克劳修斯积分总是小于或等于零。

在可逆时等于零,不可逆时大于零。

4.评价热工设备热力性能的经济指标:
热力经济指标=所获得(或收益)的能量/所付出(或消耗)的能量。

试指出该评价方法的理论依据、优点及欠缺之处。

并针对欠缺之处,应如何改进?
理论依据:热力学第一定律表明,能量可以从一个物体传递给另一个物体,从一种形式转变为另一种形式,在传递和转换的过程中总数量保持不变。

基于能量在数量上守恒的观点。

优点:一目了然地放映出热工设备的收益能量与消耗能量之比。

缺点:只反映了能量在“数量”方面被利用的比例,而不能直接反映出能量在“品位”方面所利用的程度。

改进:用能量中能够转变为有用功部分的多少,作为衡量能量的质的指标,引入“㶲”、“㶲效率”的概念。

5、什么是热力学第零定律?它的理论作用是什么?
如果两个系统分别与第三个系统处于热平衡,则两个系统彼此必然处于热平衡。

热平衡(讨论热平衡的目的是为了引出温度的概念。

6、试指出热力学普遍关系式的主要作用,并举例说明。

根据易测量求得其他热力学参数;普遍关系式是导出有关公式的主要依据。

7、什么是孤立系统的熵增原理?
孤立系统的熵只能增大,或者不变,绝不能减小。

8、冬天-10℃时,问空气中是否存在水蒸气,并给出理由。

存在,可以产生升华现象。

9、什么是相律,有什么物理意义?试分析一种纯物系在各种可能存在状态下,有几个独立状态量?
f=r-Φ+2。

在不影响平衡相数目的条件下,平衡系统中可以自由改变的独立强度变量数。

即要确定系统的强度状态所必须任意选择的独立变量数。

对于纯物质而言,r=1,令f=0则Φ=3。

说明平衡状态时,最多可以共存的相有三种。

当Φ=1时,f=2,即2个独立状态量;当Φ=2时,f=1,即1个独立状态量;当Φ=3时,f=0,即0个独立状态量。

相关文档
最新文档