2.4 绝对值与相反数(1)

合集下载

2.4绝对值与相反数(1)

2.4绝对值与相反数(1)

点A表示的数-5的绝对值为5; 点B表示的数-3.5的绝对值为3.5; 点C表示的数1的绝对值为1;
点D表示的数2.5的绝对值为2.5;
点E表示的数5的绝对值为5.
例1
求4、-3.5的绝对值.
解:在数轴上分别画出表示4、-3.5的点A、点B.
3.5
4
A
-4 -3 -2 -1
B ·
0
1
2
3
4
5
因为点A与原点的距离是4,所以4的绝对值是4; 因为点B与原点的距离是3.5,所以-3.5的绝对值是3.5.
通常,我们将数a的绝对值记为|a| .
例如: 4的绝对值记为|4|, -3.5的绝对值记为 |-3.5|.
例2 某厂生产闹钟,从中抽取5件检验时,比标准
时间多的记为正数,比标准时间少的记为负数,请
根据下表,选出最准确的闹钟.
1 2 3 4 5
+2s
-3.5s
6s
+7s
-4s
误差不超过5秒的为合格品,否则为次品,问有几
台合格?
作业: 课原点O右侧且到原点O的距离为2个单位长
度.
A 3 O 2 B
-4 -3 -2 -1
0 1
2
3
4
5
-4
-3
-2
-1
0
1
2
3
4
数轴上表示一个数的点与原点的距离
叫做这个数的绝对值. 请你结合数轴,根据绝对值的概念, 说出-3、2、0的绝对值.
你能说出数轴上的点A、B、C、D、E所表
示的数的绝对值吗?
小明家在学校正西方3 km处,小丽家在学
校正东方2 km处,他们上学所花的时间,与各

初中-数学-苏科版-七年级上册-2.4绝对值与相反数(1)

初中-数学-苏科版-七年级上册-2.4绝对值与相反数(1)

总课题第2章有理数总课时数本课课题 2.4绝对值与相反数课型新授第 1 课时备课时间教学目标(一)知识与技能(1)初步理解绝对值的概念,理解绝对值的几何意义。

(2)通过画数轴的方法求一个数的绝对值。

(二)过程与方法(1)经历将实际问题数学化的过程,感受数学与生活的关系。

(三)情感态度价值观(1)经历将实际问题数学化的过程,感受数学与生活的联系。

(2)进一步渗透数形结合的思想,感知数学知识具有普遍的联系性。

教学重点、难点(一)教学重点:(1)一个数的绝对值的意义;(2)求已知数的绝对值;(3)用绝对值比较大小.(二)教学难点:理解绝对值的几何意义。

教学环节教师活动教学内容学生活动(一)创设情境引入新课提问板书课题绝对值与相反数(1)小明家在学校正西方3 km处,小丽家在学校正东方2 km处,他们上学所花的时间与各家到学校的距离有关.你会用数轴上的点表示学校、小明家、小丽家的位置吗?做一做:用数轴上的点表示学校、小明家、小丽家的位置.1.画数轴,用数轴的原点O表示学校的位置,规定向东为正,数轴上的1个单位长度表示1km;2.设点A、点B分别表示小明家、小丽家,则点A在原点O左侧且到原点O的距离为3个单位长度,点B在原点O右侧且到原点O的距离为2个单位长度.本节课我们就一起来学习绝对值。

尝试通过数轴表示问题。

交流分享(二)层层递进探索新知提问板书绝对值概念。

教师板书第一组:5-=_5_巡视,学生交流有错(1)观察图1,点A、B、C、D到原点的单位长度分别为______、______、______、_____,即它们到原点的距离为_____、______、______、_____.(2)点A、B、C、D所表示的数的绝对值为____、_____、_____、_____.归纳:数轴上表示一个数的点到_原点的距离_,叫做这个数的绝对值.3和-3所对应的点到原点的距离相同。

绝对值的表示与比较:-5的绝对值为___,记为:5-=____;-212的绝对值为____,记为:____;3.2的绝对值为___,记为:___.我们容易看出:_____<_____<_____.例l 求下列各数的绝对值:-112,5,0,-1,4.5.(1)5,1.5,2.5,65,1.5,2.5,6(2)5,1.5,2.5,6齐声朗读学生思考,交流。

苏科版七年级上2.4绝对值与相反数(1)课件ppt

苏科版七年级上2.4绝对值与相反数(1)课件ppt
小 明 家A -3 -2 -1
学 校 小 丽 家 B
0
1
2
3
A
2
B
-3Βιβλιοθήκη -2-101
2
上图中点A与原点的距离是2,点B与原点的 距离是3.关于数轴上点与原点的距离我们 有一种专门的称呼----绝对值
学.科.网
你能说出什么是绝对值?
如图,你能说出数轴上A、B、C、D、E、F各点所 表示的数的绝对值吗?
2.4绝对值与相反数(1)
1、你能描述出你家与学校的位置和距离吗?
2、你能用正负数来说明你与你同桌家 和学校的位置吗?
小明的家在学校西边3㎞处,小李的家在学校东边 2km处。他们上学所花的时间与各家到学校的距离 有什么关系?
学.科.网
如果学校门前的大街看成一条数轴,把学校看作原点,那 么你能把小明和小丽家的相对位置在数轴上表示出来吗?
解:在数轴上分别画出表示-3、-6的点A、点B
6
3 B
-6 -5 -4
A
-3 -2 -1 0 1 2 3 4 5 6
因为∣-3 ∣=3, ∣ -6∣=6,并且3<6,
所以∣-3∣ <∣ -6∣,即-3的绝对值小于-6的绝对值 .
求-3、-0.4、-2的绝对值,并用“〈” 号把这些绝对值连接起来。
5 例3.已知一个数的绝对值是 ,求这个数。 2
从上面的问题中你能找到求一个数的绝对值 的方法吗?
学.科.网
(1)先画出数轴,在数轴上找出需要的点; (2)观察这个点与原点的距离,这个距离就是我们 要求的绝对值。
求4、-3.5的绝对值。
解:在数轴上分别画出表示4、-3.5的点A、点B
3.5
4
B

2-4 绝对值与相反数(教师版)2021-2022学年七年级数学上册讲义(苏科版)

2-4 绝对值与相反数(教师版)2021-2022学年七年级数学上册讲义(苏科版)

第2章 有理数2.4 绝对值与相反数 课程标准 课标解读 1.借助数轴理解绝对值和相反数的概念;2.知道|a|的绝对值的含义以及互为相反数的两个数在数轴上的位置关系;3.会求一个数的绝对值和相反数,并会用绝对值比较两个负有理数的大小;4.通过应用绝对值解决实际问题,体会绝对值的意义和作用. 1、相反数和绝对值的表示方法 2、数轴的几何意义表示,在数轴上分析绝对值和相反数性质知识点01 相反数 1.定义:如果两个数只有符号不同,那么称其中一个数为另一个数的相反数.特别地,0的相反数是0.2.性质:(1)互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等(这两个点关于原点对称).(2)互为相反数的两数和为0.【微点拨】(1)“只”字是说仅仅是符号不同,其它部分完全相同.(2)“0的相反数是0”是相反数定义的一部分,不能漏掉.(3)相反数是成对出现的,单独一个数不能说是相反数.(4)求一个数的相反数,只要在它的前面添上“-”号即可.【即学即练1】1.3-的相反数是( )A .13-B .13C .3D .3-【答案】C【分析】目标导航知识精讲依据相反数的定义求解即可.【详解】解:-3的相反数是3.故选:C.知识点02 多重符号的化简多重符号的化简,由数字前面“-”号的个数来确定,若有偶数个时,化简结果为正,如-{-[-(-4)]}=4 ;若有奇数个时,化简结果为负,如-{+[-(-4)]}=-4 .【微点拨】(1)在一个数的前面添上一个“+”,仍然与原数相同,如+5=5,+(-5)=-5.(2)在一个数的前面添上一个“-”,就成为原数的相反数.如-(-3)就是-3的相反数,因此,-(-3)=3.【即学即练2】2.在下列各数:13⎛⎫--⎪⎝⎭,36-,227,0,-(+3),-|-2015|中,负数的个数是()A.1个B.2个C.3个D.4个【答案】C【分析】先化简各数,再与0比较即可.【详解】解::11=033⎛⎫-->⎪⎝⎭,-(+3)=-3<0,-|-2015|=-2015<0,负数有36-,-(+3),-|-2015|,负数的个数是3.故选择:C.知识点03 绝对值1.定义:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值,例如+2的绝对值等于2,记作|+2|=2;-3的绝对值等于3,记作|-3|=3.2.性质:(1)0除外,绝对值为一正数的数有两个,它们互为相反数.(2)互为相反数的两个数(0除外)的绝对值相等.(3)绝对值具有非负性,即任何一个数的绝对值总是正数或0.【微点拨】(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即对于任何有理数a 都有:(2)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小.(3)一个有理数是由符号和绝对值两个方面来确定的.【即学即练3】3.已知关于x 的方程mx |m |+1=0是一元一次方程,则m 的取值是( )A .±1B .﹣1C .1D .以上答案都不对【答案】A【分析】根据一元一次方程的定义得出m≠0且|m|=1,求出m 即可.【详解】解:∵关于x 的方程mx |m|+1=0是一元一次方程,∵m≠0且|m|=1,解得:m =±1,故选:A . 知识点04 有理数的大小比较1.数轴法:在数轴上表示出这两个有理数,左边的数总比右边的数小. 如:a 与b 在数轴上的位置如图所示,则a <b .2.法则比较法:两个数比较大小,按数的性质符号分类,情况如下:(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩-数为0 正数与0:正数大于0负数与0:负数小于03. 作差法:设a 、b 为任意数,若a-b >0,则a >b ;若a-b =0,则a =b ;若a-b <0,a <b ;反之成立.4. 求商法:设a 、b 为任意正数,若1a b >,则a b >;若1a b =,则a b =;若1a b<,则a b <;反之也成立.若a 、b 为任意负数,则与上述结论相反.5. 倒数比较法:如果两个数都大于零,那么倒数大的反而小.【微点拨】利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2)比较绝对值的大小:(3)判定两数的大小.【即学即练4】4.下列四个数中,最小的数是( )A .2-B .4-C .(1)--D .0【答案】A【分析】根据有理数的大小比较及绝对值可直接进行排除选项.【详解】解:∵()44,11-=--=,∵()4102->-->>-,∵最小的数是-2;故选A .考法01 化简绝对值1、根据题设条件只要知道绝对值将合内的代数式是正是负或是零,就能根据绝对值意义顺利去掉绝对值符号,这是解答这类问题的常规思路.2、借助数轴 能力拓展①零点的左边都是负数,右边都是正数.②右边点表示的数总大于左边点表示的数.③离原点远的点的绝对值较大,牢记这几个要点就能从容自如地解决问题了.3、采用零点分段讨论法①求零点:分别令各绝对值符号内的代数式为零,求出零点(不一定是两个).②分段:根据第一步求出的零点,将数轴上的点划分为若干个区段,使在各区段内每个绝对值符号内的部分的正负能够确定.③在各区段内分别考察问题.④将各区段内的情形综合起来,得到问题的答案.误区点拨 千万不要想当然地把 等都当成正数或无根据地增加一些附加条件,以免得出错误的结果.【典例1】a 、b 、c 三个数在数轴上的位置如图所示,则下列各式中正确的个数有( )∵0ab >; ∵c a b -<<-; ∵11a b >; ∵b b =-. A .4个B .3个C .2个D .1个 【答案】B【分析】根据有理数大小的比较可得数轴上的右边的数总大于左边的数得出b <c <0<a ,b a c >>,再分别判断各式.【详解】解:结合图形,根据数轴上的右边的数总大于左边的数,可得b <c <0<a ,b a c >>.∵∵0ab <,故错误;∵c a b -<<-,故正确; ∵11a b>,故正确; ∵b b =-,故正确;考法02 绝对值的意义一.绝对值的实质:正实数与零的绝对值是其自身,负实数的绝对值是它的相反数,即也就是说,|x|表示数轴上坐标为x的点与原点的距离。

七年级上册教案:2_4绝对值与相反数(学生版)

七年级上册教案:2_4绝对值与相反数(学生版)

初一数学助学案(学生版)课题:§2.4 绝对值与相反数一、学习目标1.借助数轴,初步理解绝对值的概念, 能求一个有理数的绝对值;3.会比较两个有理数的绝对值的大小;二、学习重点与难点1.重点:了解绝对值的含义;2.难点:会比较两个有理数的绝对值的大小;三、 学习过程复习回顾1.有理数的分类:2.数轴的三要素 。

3.分别指出数轴上点A 、B 、C 、D 所表示的数:4.在数轴上画出表示下列各数的点:-3.5,3,-0.8,2.5,0.5.在数轴上位于-3.2与1之间的点表示的整数有:___________.6. 比较下列各数的大小:-2, 2.3, 0, 121。

(用“<”连接)(一)创设情境小明的家在学校西边3km 处,小丽的家在学校东边2km 处,小芳的家在学校东边3km 处,我们能够用数轴来表示小明、小丽和小芳的家和学校的位置,以学校为原点,向东为正,小明、小丽和小芳的家分别在A 、B 、C 处。

请画出数轴思考:(1)点A 、B 、C 离原点的距离各是多少?(2)点A 、B 、C 离原点的距离与它们表示的数是正数还是负数有没相关系?(3)在数轴上分别描出下列数所对应的点,并说出它们到原点的距离:0, -2, 5,21, -3.3二、探究新知小结: 叫做这个数的绝对值。

例如:3的绝对值记为 ,读作 。

3 表示的几何意义是_______________________________练习:在数轴上写出A ,B ,C ,D ,E 各点所表示的数的绝对值。

例1. 求4、-3.5的绝对值 例2.比较-3与-6的绝对值的大小-3-2-143210F E D C B A例3.在数轴上画出表示下列各数的点,并分别求出它们的绝对值:-2, +3.5, 0, -1, 12, -0.6 例4.出租车司机小李某天下午某一时段营运,全是在东西走向的人民大道实行。

如果规定向东为正,向西为负,他在这个时段行车里程(单位:千米)如下:-2, +5, -1,+10,-3,若车耗油量为0.8升/千米,你能协助小李算出在这个时段共耗油多少升吗?四、当堂反馈1.比较|-3|, | -0.4| , |-2 |的大小,并用“<”号把他们连接起来.2.填空题: (1)|+3|= , |0|= ; |-8.3| = , |-100| = .(2)若||4x =,则____x =; 若|a |=0, 则a = ____ (3)1||2-的倒数是____.3.选择题:(1)任何一个有理数的绝对值一定( )A 、大于0B 、小于0C 、小于或等于0D 、大于或等于0(2)下列说法:①7的绝对值是7 ②-7的绝对值是7 ③绝对值等于7的数是7或-7 ④绝对值最小的有理数是0.其中准确说法有( )A 、1个B 、2个C 、3个D 、4个五 学习反思初一数学助学案(学生版)课型:新授 执笔:杨存明 审核:初一备课组 姓名 课题:§2.3 绝对值与相反数(2)学习目标:有理数的相反数概念及表示方法,有理数相反数的求法、多重符号的化简和简单计算,在相反数概念学习过程中,理解数形结合等思想方法,培养概括水平.学习重点、难点:重点:互为相反数的数在数轴上的特征难点:根据相反数的意义实行多重符号的化简学习过程:复习回顾1. 叫做这个数的绝对值。

七年级数学2.4绝对值与相反数典例解析相反数与绝对值

七年级数学2.4绝对值与相反数典例解析相反数与绝对值

典例解析:相反数与绝对值例1 求下列各数的绝对值,并把它们用“>”连起来.87-,91+,0,-1.2 分析 首先可根据绝对值的意义,即正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0来求出各数的绝对值.在比较大小时可以根据“两个负数比较大小,绝对值大的反而小”比较出2.187->-,其他数的比较就容易了. 解 .2.12.1,00,9191,8787=-==+=-.2.187091->->>+说明: 利用绝对值只是比较两个负数. 例2 求下列各数的绝对值:(1)-38;(2)0.15;(3))0(<a a ;(4))0(3>b b ; (5))2(2<-a a ;(6)b a -.分析:欲求一个数的绝对值,关键是确定绝对值符号内的这个数是正数还是负数,然后根据绝对值的代数定义去掉绝对值符号,(6)题没有给出a 与b 的大小关系,所以要进行分类讨论. 解:(1)|-38|=38;(2)|+0.15|=0.15; (3)∵a <0,∴|a |=-a ; (4)∵b>0,∴3b>0,|3b|=3b ;(5)∵a <2,∴a -2<0,|a -2|=-(a -2)=2-a ;(6)⎪⎩⎪⎨⎧<-=>-=-).();(0);(b a a b b a b a b a b a说明:分类讨论是数学中的重要思想方法之一,当绝对值符号内的数(用含字母的式子表示时)无法判断其正、负时,要化去绝对值符号,一般都要进行分类讨论. 例3 一个数的绝对值是6,求这个数.分析 根据绝对值的意义我们可以知道,绝对值是6的数应该是6±. 说明:互为相反数的两个数的绝对值相等.例4 计算下列各式的值(1)272135-+++-;(2)21354543-+--; (3)71249-⨯-;(4).21175.0-÷- 分析 这些题中都带有绝对值符号,我们应先计算绝对值再进行其他计算. 解 (1)83272135272135=++=-+++-;(2)2162135454321354543=+-=-+--; (3)1057124971249=⨯=-⨯-; (4).5.021175.021175.0=÷=-÷- 说明:在去掉绝对值之后,要注意能简算的要简算,如(2)题. 例5 已知数a 的绝对值大于a ,则在数轴上表示数a 的点应在原点的哪侧?分析 确定表示a 的点在原点的哪侧,其关键是确定a 是正数还是负数.由于负数的绝对值是它的相反数正数,所以可确定a 是负数.解 由于负数的绝对值是它的相反数,所以负数的绝对值大于这个负数;又因为0和正数的绝对值都是它本身,所以a 是负数,故表示数a 的点应在原点的左侧.说明:只有负数小于其本身的绝对值,而0和正数都等于自己的绝对值. 例6 判断下列各式是否正确(正确入“T”,错误入“F”): (1)a a =-;( ) (2)a a -=-;( )(3))0(≠=a aaaa ;( ) (4)若|a |=|b|,则a =b ;( ) (5)若a =b ,则|a |=|b|;( )分析:判断上述各小题正确与否的依据是绝对值的定义,所以思维应集中到用绝对值的定义来判断每一个结论的正确性.判数(或证明)一个结论是错误的,只要能举出反例即可.如第(2)小题中取a =1,则-|a |=-|1|=-1,而|-a |=|-1|=1,所以-|a |≠|-a |.在第(4)小题中取a =5,b =-5等,都可以充分说明结论是错误的.要证明一个结论正确,须写出证明过程.如第(3)小题是正确的.证明步骤如下:当0>a 时,1==a a a a ,而1==aaa a ,a aaa =∴成立; 当0<a 时,1-=-=a a aa ,而1-=-=aaa a ,aaa a =∴也成立. 这说明0≠a 时,总有成立.此题证明的依据是利用的定义,化去绝对值符号即可. 解:其中第(2)、(4)、小题不正确,(1)、(3)、(5)小题是正确的.说明:判断一个结论是正确的与证明它是正确的是相同的思维过程,只是在证明时需要写明道理和依据,步骤都要较为严格、规范.而判断一个结论是错误的,可依据概念、性质等知识,用推理的方法来否定这个结论,也可以用举反例的方法,后者有时更为简便. 例7 若0512=-++y x ,则y x +2等于( ).分析与解:“任意有理数的绝对值一定为非负数.”利用这一特点可得012≥+x ;05≥-y .而两个非负数之和为0,只有一种可能:两非负数均为0.则012=+x ,21-=x ;05=-y ,5=y .故452122=+⎪⎭⎫⎝⎛-⨯=+y x .说明:任意有理数的绝对值一定为非负数,因为它表示的是一个数在数轴上的对应点到原点的距离.绝对值的这个特性今后会经常用到.几个非负数的和为0,则每一个非负数都是0. 例8 计算)5(13>-+-x x x .分析:要计算上式的结果,关键要弄清x -3和1-x 的符号,再根据正数的绝对值等于本身,负数的绝对值等于它的相反数,0的绝对值是0.可求上式的结果,又∵5>x ,故03<-x ,而01>-x .解:又∵5>x ,∴03<-x ,01>-x ,∴421313-=-+-=-+-x x x x x .说明:利用绝对值的代数定义灵活化简含绝对值的式子同,首先应确定代数式的符号.另外,要求出负数的相反数.例9 指出下面各数的相反数:-5,3,211,-7.5,0 分析:如果两个数只有符号不同则这两个数互为相反数. 解:-5的相反数是+5,3的相反数是-3;211的相反数是-211;-7.5的相反数是7.5;0的相反数是0.注意:(1)要注意相反数和倒数之间的区别.(2)只有0的相反数是它本身.例10 指出下面数轴上各点表示的相反数.分析:首先弄清A、B、C、D各点表示的数,然后根据相反数的意义就可以写出其相反数.解:A点表示的数的相反数是1;B点表示的数的相反数是-2;C点表示的数的相反数是0;D点表示的数的相反数是3.说明:不要把“表示的数”和“表示的数的相反数”混淆.例11 在下面的等式的□中,填上连续的五个整数,使这个等式成立.0-□-□-□-□-□=0分析:上面的式子的左边可以看成是和的省略“+”号形式,所以上式可以写成0+(-□)+(-□)+(-□)+(-□)-□=0所以可以变为0+(-□)+(-□)+(-□)+(-□)-□=0由此可知:0+(-□)+(-□)+(-□)-□=□依次这样做下去可把原式变为□+□+□+□+□=0由此可知要使五个连续的整数的和是0,其中必有两对数互为相反数,另一个是0,所以这五个数是-2,-1,0,1,2.解:原式可变形为:□+□+□+□+□=0故五个数应该是-2-1,0,1,2.注意:(1)要注意题中给出的条件是“连续整数”,如果去掉“连续”该题的解就将很多了.(2)事实上这个题我们还可以采取下面的方法进行分析.我们可把-□用□去替换就可以直接得到□+□+□+□+□=0,但这种想法比较抽象,不易理解.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.甲、乙两人做同样的零件,如果甲先做1天,乙再开始做,5天后两人做的一样多;如果甲先做30个,乙再开始做,4天后乙反而比甲多做10个,设甲每天做x个,乙每天做y个,则可列出的方程组是( )A.156304410x yx y+=⎧⎨+=-⎩B.65304410x yx y=⎧⎨+=-⎩C.65304410x yx y=⎧⎨+=+⎩D.156304410x yx y+=⎧⎨+=+⎩【答案】B【解析】设甲每天做x个,乙每天做y个,根据题意即可列出方程组.【详解】设甲每天做x个,乙每天做y个,根据如果甲先做1天,乙再开始做,5天后两人做的一样多;如果甲先做30个,乙再开始做,4天后乙反而比甲多做10个,可得方程组65304410 x yx y=⎧⎨+=-⎩故选B.【点睛】此题主要考查二元一次方程组的应用,解题的关键是根据题意找到等量关系进行列出方程. 2.奥运会的年份与届数如下表,表中n的值为()A.28 B.29 C.30 D.31【答案】D【解析】第1届相应的举办年份=1896+4×(1-1)=1892+4×1=1896年;第2届相应的举办年份=1896+4×(2-1)=1892+4×2=1900年;第3届相应的举办年份=1896+4×(3-1)=1892+4×3=1904年;…第n届相应的举办年份=1896+4×(n-1)=1892+4n年,根据规律代入相应的年数即可算出届数.【详解】观察表格可知每届举办年份比上一届举办年份多4,则第n届相应的举办年份=1896+4×(n−1)=1892+4n年,1892+4n=2016, 解得:n=31, 故选D. 【点睛】本题考查数字变化的规律,解题的关键是由题意得出第n 届相应的举办年份=1896+4×(n−1)=1892+4n 年. 3.在平面直角坐标系中,将点(-2,3)向上平移1个单位长度,所得到的点的坐标是( ) A .(-1,3) B .(-2,2) C .(-2,4) D .(-3,3)【答案】C【解析】试题分析:点(-2,3) 向上平移1个单位长度,所以横坐标不变,纵坐标加1,因此所得点的坐标是(-2,4). 故选C .点睛:本题考查了点的平移的坐标特征,需熟记沿横轴平移,横坐标变化,沿纵轴平移纵坐标变化,沿正方向平移加,沿负方向平移减.4.晓东根据某市公交车阶梯票价,得出乘坐路程m (单位:公里)和票价n (单位:元)之间的关系如下表:我们定义公交车的平均单价为w m=,当7,10,13m =时,平均单价依次为1w ,2w ,3w ,则1w ,2w ,3w 的大小关系是( )A .123w w w >>B .312w w w >>C .231w w w >>D .132w w w >>【答案】D【解析】根据题意,按计费规则计算即可. 【详解】解:由题意1232237100.28570.20.208133w w w =≈===≈,,, 所以132w w w >>, 故选D . 【点睛】本题为实际应用问题,考查了函数图象的意义以阅读图表能力,解答关键需要理解计费规则.5.一个不等式组的解集在数轴上表示出来如图所示,则下列符合条件的不等式组为( )A .x 2{x 1>≤-B .x 2{x 1<>-C .x 2{x 1<≥-D .x 2{x 1<≤-【答案】C【解析】不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个。

苏科版七年级数学上册 2.4 绝对值与相反数(含解析)

苏科版七年级数学上册 2.4 绝对值与相反数(含解析)

2.4 绝对值与相反数一.选择题(共8小题)1.﹣的相反数是()A.2019B.﹣C.﹣2019D.2.﹣2的绝对值为()A.﹣B.C.﹣2D.23.计算|﹣3|的结果是()A.3B.C.﹣3D.±34.下列各数与﹣(﹣2019)相等的是()A.﹣2019B.2019C.﹣|﹣2019|D.5.如果实数a满足|a|=3,且a<0,那么a的值为()A.±3B.1C.3D.﹣36.已知数轴上的三点A、B、C,分别表示有理数a、1、﹣1,那么|a+1|表示为()A.A、B两点间的距离B.A、C两点间的距离C.A、B两点到原点的距离之和D.A、C两点到原点的距离之和7.已知a<0,ab<0,化简|a﹣b﹣1|﹣|2+b﹣a|的结果是()A.1B.3C.﹣1D.﹣38.|a﹣b|=|a|+|b|成立的条件是()A.ab>0B.ab>1C.ab≤0D.ab≤1二.填空题(共6小题)9.﹣16的相反数是.10.﹣的绝对值是.11.若1<a<2,化简|a﹣2|+|1﹣a|的结果是.12.π﹣3的绝对值是.13.一对相反数x,y满足2x﹣y=6,则|y﹣x|=.14.化简﹣(﹣)的结果是.三.解答题(共6小题)15.阅读下列材料并解决有关问题:我们知道,|m|=.现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|m+1|+|m﹣2|时,可令m+1=0和m﹣2=0,分别求得m=﹣1,m=2(称﹣1,2分别为|m+1|与|m﹣2|的零点值).在实数范围内,零点值m=﹣1和m=2可将全体实数分成不重复且不遗漏的如下3种情况:(1)m<﹣1;(2)﹣1≤m<2;(3)m≥2.从而化简代数式|m+1|+|m﹣2|可分以下3种情况:(1)当m<﹣1时,原式=﹣(m+1)﹣(m﹣2)=﹣2m+1;(2)当﹣1≤m<2时,原式=m+1﹣(m﹣2)=3;(3)当m≥2时,原式=m+1+m﹣2=2m﹣1.综上讨论,原式=通过以上阅读,请你解决以下问题:(1)分别求出|x﹣5|和|x﹣4|的零点值;(2)化简代数式|x﹣5|+|x﹣4|;(3)求代数式|x﹣5|+|x﹣4|的最小值.16.(1)阅读下面材料:点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,①如图(2),点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图(3),点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图(4),点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|;综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.(2)回答下列问题:①数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;②数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2,那么x为;③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是.④解方程|x+1|+|x﹣2|=5.17.当a≠0时,请解答下列问题:(1)求的值;(2)若b≠0,且,求的值.18.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示﹣3和2两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|,如果表示数a和﹣2的两点之间的距离是3,那么a=.(2)若数轴上表示数a的点位于﹣4与2之间,求|a+4|+|a﹣2|的值.19.阅读下列材料完成相关问题:已知a,b、c是有理数(1)当ab>0,a+b<0时,求的值;(2)当abc≠0时,求的值;(3)当a+b+c=0,abc<0,的值.20.【归纳】(1)观察下列各式的大小关系:|﹣2|+|3|>|﹣2+3|,|﹣6|+|3|>|﹣6+3||﹣2|+|﹣3|=|﹣2﹣3|,|0|+|﹣8|=|0﹣8|归纳:|a|+|b||a+b|(用“>”或“<”或“=”或“≥”或“≤”填空)【应用】(2)根据上题中得出的结论,若|m|+|n|=13,|m+n|=1,求m的值.【延伸】(3)a、b、c满足什么条件时,|a|+|b|+|c|>|a+b+c|.答案与解析一.选择题(共8小题)1.﹣的相反数是()A.2019B.﹣C.﹣2019D.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣的相反数是:.故选:D.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.﹣2的绝对值为()A.﹣B.C.﹣2D.2【分析】直接利用绝对值的性质化简得出答案.【解答】解:﹣2的绝对值为:2.故选:D.【点评】此题主要考查了绝对值,正确掌握相关定义是解题关键.3.计算|﹣3|的结果是()A.3B.C.﹣3D.±3【分析】根据绝对值的性质进行计算.【解答】解:|﹣3|=3.故选:A.【点评】本题考查了绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.4.下列各数与﹣(﹣2019)相等的是()A.﹣2019B.2019C.﹣|﹣2019|D.【分析】利用绝对值和相反数的定义解答即可.【解答】解:﹣(﹣2019)=2019,A.﹣2019与2019不相等,故此选项不符合题意;B.2019与2019相等,故此选项符合题意;C.﹣|﹣2019|=﹣2019,与2019不相等,故此选项不符合题意;D.﹣与2019不相等,故此选项不符合题意;故选:B.【点评】本题主要考查了绝对值和相反数的定义,理解定义是解答此题的关键.5.如果实数a满足|a|=3,且a<0,那么a的值为()A.±3B.1C.3D.﹣3【分析】直接利用绝对值的性质得出a的值.【解答】解:∵|a|=3,且a<0,∴a=﹣3.故选:D.【点评】此题主要考查了绝对值,正确把握绝对值的性质是解题关键.6.已知数轴上的三点A、B、C,分别表示有理数a、1、﹣1,那么|a+1|表示为()A.A、B两点间的距离B.A、C两点间的距离C.A、B两点到原点的距离之和D.A、C两点到原点的距离之和【分析】首先把|a+1|化为|a﹣(﹣1)|,然后根据数轴上的三点A、B、C,分别表示有理数a、1、﹣1,判断出|a+1|表示为A、C两点间的距离即可.【解答】解:∵|a+1|=|a﹣(﹣1)|,∴|a+1|表示为A、C两点间的距离.故选:B.【点评】此题主要考查了绝对值的含义和求法,要熟练掌握,解答此题的关键要明确:①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.7.已知a<0,ab<0,化简|a﹣b﹣1|﹣|2+b﹣a|的结果是()A.1B.3C.﹣1D.﹣3【分析】根据绝对值的性质即可求出答案.【解答】解:由于a<0,ab<0,∴b>0,∴a﹣b﹣1<0,2+b﹣a>0,∴原式=﹣(a﹣b﹣1)﹣(2+b﹣a)=﹣a+b+1﹣2﹣b+a=﹣1故选:C.【点评】本题考查绝对值的性质,解题的关键是熟练运用绝对值的性质,本题属于基础题型.8.|a﹣b|=|a|+|b|成立的条件是()A.ab>0B.ab>1C.ab≤0D.ab≤1【分析】根据条件分析a与b的关系,进而求出正确答案.【解答】解:当a、b异号或a、b均为0时,|a﹣b|=|a|+|b|成立,∴ab≤0,故选:C.【点评】此题主要考查了绝对值的性质,能够根据已知条件正确地判断出a、b的关系是解答此题的关键.二.填空题(共6小题)9.﹣16的相反数是16.【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.【解答】解:﹣16的相反数是16.故答案为:16【点评】此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.10.﹣的绝对值是.【分析】根据绝对值的定义即可得到结论.【解答】解:﹣的绝对值是,故答案为:.【点评】本题考查了绝对值的定义,熟练掌握绝对值的定义是解题的关键.11.若1<a<2,化简|a﹣2|+|1﹣a|的结果是1.【分析】判断a﹣2、1﹣a是正数还是负数,然后利用绝对值的概念进行化简即可.【解答】解:∵1<a<2,∴a﹣2<0,1﹣a<0,∴|a﹣2|+|1﹣a|=﹣a+2﹣1+a=1,故答案为:1.【点评】本题考查了绝对值的概念,解题的关键是根据得出a﹣2、1﹣a是正数还是负数.12.π﹣3的绝对值是π﹣3.【分析】根据正有理数的绝对值是它本身即可求解.【解答】解:π﹣3的绝对值是π﹣3.故答案为:π﹣3.【点评】考查了绝对值,如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.13.一对相反数x,y满足2x﹣y=6,则|y﹣x|=4.【分析】根据相反数的性质得出x+y=0,进而得出x,y的值,进而利用绝对值解答即可.【解答】解:根据题意可得:,解得:,所以|y﹣x|=|﹣2﹣2|=4,故答案为:4【点评】本题考查了相反数、绝对值的意义.根据相反数的性质得出x+y=0是解决本题的关键.14.化简﹣(﹣)的结果是.【分析】根据相反数的定义作答.【解答】解:﹣(﹣)=.故答案是:.【点评】考查了相反数.求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a 的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号。

2.4绝对值与相反数(1)

2.4绝对值与相反数(1)

2.4绝对值与相反数(1) 班级 姓名 完成时间:19︰25——20︰00 一、选择题 1.-6的绝对值是 ( )A .6B .-6C .+16 D .-162.在数轴上表示-2的点离原点的距离等于 ( )A .2B .-2C .±2D .43.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是 ( )4.绝对值最小的有理数是 ( )A .1B .0C .-1D .不存在5.绝对值最小的整数是 ( )A .-1B .1C .0D .不存在6.绝对值小于3的负数的个数有 ( )A .2B .3C .4D .无数二、填空题 7.2012-=_______.8.23的绝对值是_______,-23的绝对值是_______. 9.实数a 、b 在数轴上位置如图所示,则a 、b 的大小关系是_______.10.用“<”、“>”或“=”填空.(1) 6.3_______7- (2) 4.6_______ 4.5--11.a =100,则a =_______.12.计算|4|+|0|-|-3|=______________.三、解答题13.计算:(1) 4178--- (2)50.7558-÷+14.把-5,5.2-,2,0,-2按从小到大的顺序排列.15.正式排球比赛对所使用的排球质量是有严格规定的,超过规定质量的克数记作正数,不足质这4个排球中,哪一个质量更好些?请你用绝对值的知识加以说明.16.如果点M 、N 在数轴上表示的数分别是a ,b ,且a =3,b =1,试确定M 、N 两点之间的距离.17.已知02921=-+-y x .求代数式y x +22的值.书写评价 优 良 中 差 成绩评价 优 良 中 差 批改时间。

苏科版-数学-七年级上册-2.4 绝对值与相反数 第1课时 教案

苏科版-数学-七年级上册-2.4 绝对值与相反数 第1课时 教案

绝对值与相反数 第1课时教学目标1.理解有理数的绝对值的意义,会求已知数的绝对值;2. 理解有理数的相反数的概念,会求已知数的相反数;3.渗透数形结合等思想方法,培养学生的概括能力.教学重难点【教学重点】绝对值和相反数概念的理解应用、观察分析问题和语言表达能力的培养. 【教学难点】应用绝对值的知识解决问题能力的形成.课前准备课件.教学过程情境创设导入小明的家在学校西边3km 处,小丽的家在学校东边2km 处,我们可以用数轴来表示小明、小丽两家和学校的位置分别在A.B 两处. 学生思考:1.A.B 两点离原点的距离各是多少?2.A.B 两点离原点的距离与它们表示的数是正数还是负数有没有关系?3.在数轴上分别描出下列数所对应的点,并指出它们到-2 -1 21 0A-3 B自学指导:阅读书本第23页.完成下面的尝试练习尝试练习:如图,你能说出数轴上A.B.C.D.E各点所表示的数的绝对值问题串:(1)点A表示的数是多少?(2)它到原点的距离是多少?(3)点A表示的数的绝对值是多少?以此类推…特别注意:0的绝对值│0│=?总结:从上面的问题中你能找到求一个数的绝对值的方法吗?(1)先画出数轴,在数轴上找出需要的点;(2)观察这个点与原点的距离,这个距离就是我们要求的绝对值.例1、求4、-3.5的绝对值.解:在数轴上分别画出表示4、-3.5的点A.点BA 点与原点的距离是4, 所以4的绝对值是4, | 4|= 4B 与原点的距离是 3.5, -3.5的绝对值是 3.5, | -3.5|=3.5活动一:请一位同学随便报一个数,并说出它的绝对值,然后点名叫另一位同学说出它的意义.例2、比较-3与-6的绝对值的大小解:在数轴上分别画出表示-3、-6的点A.点B因为∣-3 ∣=3, ∣ -6∣=6,并且3<6,所以∣-3∣ <∣ -6∣,即-3的绝对值小于-6的绝对值. 例3 求3,-4.5,0的相反数.表示一个数的相反数,在这个数前面添一个“-”号,就可以表示这个数的相反数了,比如-5的相反数可以表示为-(-5).(投影教材第23页的“议一议”)大家独立思考第161243-3 65-1-2 -4 -5 -6 3AB。

七年级数学2.4绝对值与相反数生活中的绝对值

七年级数学2.4绝对值与相反数生活中的绝对值

生活中的绝对值看到这个题目,同学们一定会感到惊讶,生活中哪有绝对值呀,为了让同学们能明白绝对值在生活中的应用,现举几例,希望同学们能有所感悟.例1 某检修小组甲乘一辆汽车沿公路检修线路,约定向东为正,某天从A 地出发到收工时,行走记录为(单位:千米):+15、-2、+5、-1、+10、-3、-2、+12、+4、-5、+6;另一小组乙也从A 地出发,在南北方向检修,约定向北为正,行走记录为:-17、+9、-2、+8、+6、+9、-5、-1、+4、-7、-8(1)分别计算收工时,两组在A 地的哪一边,距A 地多远?(2)若每千米汽车耗油量为2升,求出发到收工两小组各耗油多少升?分析:要确定两组在A 地的哪一边,距A 地多远,只要能分别求出行走记录和,若结果是正,则表示在A 地的东或北,若结果是负,则表示在A 地的西或南;进而利用绝对值的意义分别求出两组各行走的路程,再分别乘以每千米汽车耗油量即可求解.解:(1)因为(+15)+(-2)+(+5)+(-1)+(+10)+(-3)+(-2)+(+12)+(+4)+(-5)+(+6)=+39; (-17)+(+9)+(-2)+(+8)+(+6)+(+9)+(-5)+(-1)+(+4)+(-7)+(-8)=-4. 所以小组甲在A 地东39千米、小组乙在A 地南4千米.(2)因为|+15|+|-2|+|+5|+|-1|+|+10|+|-3|+|-2|+|+12|+|+4|+|-5|+|+6|=65; |-17|+|+9|+|-2|+|+8|+|+6|+|+9|+|-5|+|-1|+|+4|+|-7|+|-8|=76, 而65×2=130,76×2=152,所以小组甲130升、小组乙152升.例2 检查5个篮球的质量,把超过标准质量的克数记为正数,不足标准质量的克数记为负数,检查(1)指出哪个篮球的质量好一些?(2)如果对两个篮球作上述检查,检查的结果分别为a 和b ,请利用学过的绝对值知识指出哪个篮球的质量好一些?分析:本题主要考查正、负数的意义及绝对值在实际问题中的应用.根据实际问题可知,哪个篮球的质量偏离标准质量越小,哪个篮球的质量越好.这个偏差可以用绝对值表示,绝对值小表示偏差小,绝对值大表示偏差大.解:(1)因为98743+<-<+<+<-,所以3号篮球的质量好一些. (2)如果b a >,则结果为b 的质量好一些. 如果b a <,则结果为b 的质量好一些. 如果b a =,则两个篮球的质量一样好.例3 有一只小昆虫在数轴上爬行,它从原点开始爬,“+”表示此昆虫由数轴向右,“-”表示此昆虫由原点向左,总共爬行了10次,其数据统计如下(单位:厘米):+3,-2,-3,+1,+2,-2,-1,+1,-3,+2.如果此昆虫每分钟爬行4厘米,则在此爬行过程中,它用了几分钟?分析:根据时间=路程÷速度,已知昆虫爬行的速度是每分钟4厘米,要求爬行的时间,须求出总路程,即此昆虫在爬行过程中每次爬行的距离之和,而要求每次爬行的距离,就是求各数的绝对值.解:路程=3++2-+3-+1++2++2-+1-+1++3-+2+=3+2+3+1+2+2+1+1+3+2=20. 所用时间为20÷4=5(分钟).即在此爬行过程中,它用了5分钟.2019-2020学年初一下学期期末模拟数学试卷一、选择题(每题只有一个答案正确) 1.下列方程中,是一元一次方程的是( ) A .220x +=B .237x y +=C .248x +=D .535x-= 2.把长14cm 的铁丝截成三段,围成三边都不相等的三角形,且使三边长均为整数,那么( ) A .只有一种截法 B .两种截法 C .三种截法D .四种截法3.如图所示图形中,把△ABC 平移后能得到△DEF 的是( )A .B .C .D .4.在平面直角坐标系中,将点A (-2,3)向右平移5个单位长度后,那么平移后对应的点A ′的坐标是( ) A .(-2,-3)B .(-2,8)C .(-7,3)D .(3,3)5.如图,△ABC 中,∠BAC=90°,AD ⊥BC ,∠ABC 的平分线BE 交AD 于点F ,AG 平分∠DAC ,给出下列结论:①∠BAD=∠C ;②∠AEF=∠AFE ;③∠EBC=∠C ;④AG ⊥EF ;正确结论有( )A .4个B .3个C .2个D .1个6.如图,将AOB 绕点O 逆时针旋转45后得到DOE ,若15AOB =,则AOE ∠的度数是( )A .25B .30C .35D .407.不等式3(x+1)>2x+1的解集在数轴上表示为( ) A . B . C .D .8.下面的调查中,不适合抽样调查的是( )A .一批炮弹的杀伤力的情况B .了解一批灯泡的使用寿命C .全国的人口普查D .全市学生每天参加体育锻炼的时间9.在ABC ∆和DEF ∆中,①A E ∠=∠,AB EF =,C D ∠=∠;②A D ∠=∠,AB EF =,B E ∠=∠;③A F ∠=∠,AB DF =,B D ∠=∠;④A F ∠=∠,AB EF =,CB ED =;⑤A D ∠=∠,B E ∠=∠,BC EF =能判断这两个三角形全等的条件有( )A .①②④B .①③⑤C .④⑤D .①③10.下列世界博览会会徽图案中是轴对称图形的是( )A .B .C .D .二、填空题题11.不等式组212x x m -≥⎧⎨+⎩<有三个整数解,则m 的取值范围是__.12.如图,AB ∥CD ,∠DCE=118°,∠AEC 的角平分线EF 与GF 相交于点F ,∠BGF=132°,则∠F 的度数是__.13.已知1x =,8y =-是方程31-=-mx y 的解,则m 的值是______.14.已知a 17b -1是400a b +的值为______.15.已知4360{270x y z x y z --=+-=,那么x y z x y z -+++的值等于_________.16.如图,射线OP 平分AOB ∠,PQ AO ⊥,垂足为Q ,3PQ =,4OQ =,点M 是OB 上的一个动点,则线段PM 的最小值是_________.17.方程2x+3y=17的正整数解为________________.三、解答题18.阅读理解.∵4<5<9,即2<5<1.∴1<5﹣1<2∴5﹣1的整数部分为1,∴5﹣1的小数部分为5﹣2.解决问题:已知a是17﹣1的整数部分,b是17﹣1的小数部分.(1)求a,b的值;(2)求(﹣a)1+(b+4)2的平方根,提示:(17)2=3.19.(6分)推理填空:如图,直线AB,CD被直线EF所截,AD是∠CAB的角平分线,若∠3=∠1,∠2=50°,求∠4的度数.解:∵直线AB与直线EF相交,∴∠2=∠CAB=50°.()∵AD是∠CAB的角平分线,∴∠1=∠5=12∠CAB=25°,()∵∠3=∠1,(已知)∴∠3=25°,(等量代换) ∴∠3=∠5,(等量代换)∴_______.( ) ∵CD ∥AB ,( ) ∴_______.(两直线平行,同位角相等)20.(6分)某电器超市销售每台进价分别为160元、120元的A 、B 两种型号的电风扇,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A 、B 两种型号的电风扇的销售单价;(2)若超市准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A 种型号的电风扇最多能采购多少台? 21.(6分)计算:(1)(2)已知2x =,求()2924x x +-+的值.22.(8分)某校举行全体学生“汉字听写”比赛,每位学生听写汉字39个.随机抽取了部分学生的听写结果,绘制成如下的图表.根据以上信息完成下列问题:(1)统计表中的m =,n = ,并补全条形统计图; (2)扇形统计图中“C 组”所对应的圆心角的度数是 ;(3)已知该校共有900名学生,如果听写正确的字的个数少于24个定为不合格,请你估计该校本次听写比赛不合格的学生人数.23.(8分)第一个容器有水44升,第二个容器有水56升,若将第二个容器的水倒满第一个容器,那么第二个容器剩下的水是该容器的一半;若将第一个容器的水倒满第二个容器,那么第一个容器剩下的水是该容器的三分之一,求两个容器的容量.24.(10分)如图,为建设美丽农村,村委会打算在正方形地块甲和长方形地块乙上进行绿化.在两地块内分别建造一个边长为a 的大正方形花坛和四个边长为b 的小正方形花坛(阴影部分),空白区域铺设草坪,记1S 表示地块甲中空白处铺设草坪的面积, 2S 表示地块乙中空白处铺设草坪的面积.(1)1S =__ ,2S = (用含,a b 的代数式表示并化简) .(2)若2a b =,求12S S 的值.(3)若1213S S =,求b a的值. 25.(10分)已知:如图,直线l 分别与直线AB ,CD 相交于点P ,Q ,PM 垂直于EF ,∠1+∠2=90°. 求证:AB ∥CD .参考答案一、选择题(每题只有一个答案正确)1.C【解析】【分析】根据一元一次方程的概念逐一进行分析判断即可得.【详解】A、未知项的最高次数为2,不是一元一次方程;B、含有两个未知数,不是一元一次方程;C、符合一元一次方程的定义;D、分母中含有未知数,不是一元一次方程,故选C.【点睛】本题考查了一元一次方程的概念,只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).2.A【解析】【分析】根据题目要求,根据构成三角形的条件,周长为11,可逐步分析,将每个符合题意的三角形写出即可.【详解】根据三角形的三边关系,两边之和大于第三边,最短的边是1时,不成立;当最短的边是2时,三边长是:2,6,6(不合题意);当最短的边是3时,三边长是:3,5,6;当最短的边是1时,三边长是:1,1,6和1,5,5(均不合题意).最短的边一定不能大于1.综上,只有3,5,6共1种截法.故选A.【点睛】本题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边.3.A【解析】【分析】根据平移的概念判断即可,注意区分图形的平移和旋转.【详解】根据平移的概念,平移后的图形与原来的图形完全重合.A是通过平移得到;B通过旋转得到;C通过旋转加平移得到;D通过旋转得到.故选A【点睛】本题主要考查图形的平移,特别要注意区分图形的旋转和平移.4.D【解析】【分析】在平面直角坐标系中,将点向右平移5个单位,即为把横坐标加上5,纵坐标不变,得到新的坐标即为平移后的坐标.【详解】点A横坐标为-2,平移后的点A′横坐标为-2+5=3,纵坐标不变都为3.所以点A′的坐标为(3,3).故选D.【点睛】本题考查平面直角坐标系中点的平移,务必清楚的是当点左(右)平移时,对横坐标减(加)相应的单位长度,上(下)平移时,对纵坐标加(减)相应的单位长度.5.B【解析】【分析】根据同角的余角相等求出∠BAD=∠C,再根据等角的余角相等可以求出∠AEF=∠AFE;根据等腰三角形三线合一的性质求出AG⊥EF.【详解】∵∠BAC=90°,AD⊥BC,∴∠C+∠ABC=90°,∠BAD+∠ABC=90°,∴∠BAD=∠C,故①正确;∵BE是∠ABC的平分线,∴∠ABE=∠CBE,∵∠ABE+∠AEF=90°,∠CBE+∠BFD=90°,∴∠AEF=∠BFD,又∵∠AFE=∠BFD(对顶角相等),∴∠AEF=∠AFE,故②正确;∵∠ABE=∠CBE,∴只有∠C=30°时∠EBC=∠C,故③错误;∵∠AEF=∠AFE,∴AE=AF,∵AG平分∠DAC,∴AG⊥EF,故④正确.综上所述,正确的结论是①②④.故选B.【点睛】本题考查了直角三角形的性质,等腰三角形三线合一的性质,同角的余角相等的性质以及等角的余角相等的性质,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.6.B【解析】【分析】由已知求出旋转角,再根据角的和差关系求得∠AOE=∠BOE-∠AOB=45〬-15〬.【详解】由已知可得,旋转角:∠BOE=45〬,所以,∠AOE=∠BOE-∠AOB=45〬-15〬=30〬.故选:B【点睛】本题考核知识点:旋转角,角的和差倍.解题关键点:理解旋转角的定义.7.A【解析】【分析】先求出不等式的解集,再在数轴上表示出来即可.【详解】解:去括号得,3x+3>2x+1,移项得,3x﹣2x>1﹣3,合并同类项得,x>﹣2,在数轴上表示为:.故选:A.【点睛】本题考查的是在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解答此题的关键.8.C【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A、了解一批炮弹的杀伤力的情况,由于破坏性强,适合抽样调查,故选项错误;B、了解一批灯泡的使用寿命,调查具有破坏性,适合抽样调查,故选项错误;C、全面人口普查,适合全面调查,故选项正确;D、全市学生每天参加体育锻炼的时间,适合抽样调查,故选项错误.故选C.【点睛】本题考查抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9.B【解析】【分析】依据全等三角形的判定定理进行判断即可.【详解】解:第①组满足AAS,能证明△ABC≌△EFD.第②组不是两角及一边对应相等,不能证明△ABC和△DEF全等.第③组满足ASA,能证明△ABC≌△FDE.第④组只是SSA,不能证明△ABC≌△FED.第⑤组满足AAS,能证明△ABC≌△DEF.故选:B.【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.B【解析】【分析】根据轴对称的定义即可解答.【详解】解:如果一个图形沿着一条直线对折后两部分完全重合,这样的图叫做轴对称图形,这条直线叫做对称轴,根据轴对称的定义可得只有B选项是轴对称图形.故选B.【点睛】本题考查轴对称的定义,熟悉掌握是解题关键.二、填空题题11.7<m≤8【解析】【分析】把m当成已知数求解不等式即可.【详解】解不等式组可得3≤x<m-2因为不等式组有三个整数解3,4,5,所以5<m-2≤6,求得7<m≤8.【点睛】了解m-2的取值范围是解题的关键,注意端点处是否有等号,要单独考虑.12.11°.【解析】分析:本题考查的是平行线的内错角相等,角平分线的性质和三角形外角的性质.解析:∵AB//CD,∠DCE=118°,∴∠AEC=118°,∵∠AEC的角平分线EF与GF相交线于点F,∴∠AEF=∠FEC=59°,∵∠BGF=132°, ∴∠F=11°.故答案为11°.13.﹣3【解析】【分析】知道了方程的解,可以把这组解代入方程,得到一个含有未知数m的一元一次方程,从而可以求出m的值. 【详解】把x=1,y=−8代入方程3mx−y=−1,得3m+8=−1,解得m=−3.故答案为−3.14.5【解析】【分析】直接利用估算无理数的方法进而得出a,b的值即可得出答案.【详解】解:∵a b-1是400的算术平方根,∴a=4,b-1=20,则b=21,5==.【点睛】此题主要考查了估算无理数的大小,正确把握算术平方根的定义是解题关键.15.1 3【解析】【分析】把z 看做已知数表示出x 与y ,代入原式计算即可得到结果.【详解】方程组整理得:43627{x y z x y z -=+=①②,②×4−①得:11y=22z ,即y=2z ,把y=2z 代入②得:x=3z ,则原式=321323z z zz z z -+=++.【点睛】本題考査三元一次方程組的解法,解题的关键是用含x 的代数式表示y 、z ,然后再求解就容易了. 16.1【解析】【分析】根据垂线段最短得出当PM ⊥OB 时,PM 的值最小,根据角平分线性质得出PQ =PM ,求出即可.【详解】当PM ⊥OB 时,PM 的值最小,∵OP 平分AOB ∠,PQ AO ⊥,3PQ =,∴PM =3PQ =,故答案为:1.【点睛】本题考查了角平分线性质,垂线段最短的应用,能得出要使PM 最小时M 的位置是解此题的关键.17.1{=5xy=,4{=3xy=,7{=1xy=【解析】由2x+3y=17可得1723xy-=,当x=1时,y=5,当x=4时,y=3,当x=7时,y=1,所以方程2x+3y=17的正整数解为1{=5xy=,4{=3xy=,7{=1xy=.三、解答题18.(1)a=1,b﹣4;(2)±4.【解析】【分析】(1)根据被开饭数越大算术平方根越大,可得a,b的值,(2)根据开平方运算,可得平方根.【详解】解:(1<,∴4<<5,∴1﹣1<2,∴a=1,b4;(2)(﹣a)1+(b+4)2=(﹣1)1+4+4)2=﹣1+3=16,∴(﹣a)1+(b+4)2的平方根是:±4.【点睛】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出4<5是解题关键.19.对顶角相等;角平分线定义;CD∥AB;内错角相等,两直线平行;已证;∠4=∠2=50°【解析】【分析】根据平行线的判定及性质求角的过程,一步步把求解的过程补充完整即可.【详解】直线AB与直线EF相交,∴∠2=∠CAB=50°(对顶角相等),∵AD是∠CAB的角平分线,∴∠1=∠DAB=12∠CAB=25°(角平分线的定义),∵∠3=∠1,(已知)∴∠3=25°,(等量代换)∴∠3=∠5,(等量代换)∴CD∥AB.(内错角相等,两直线平行)∵CD∥AB,(已证)∴∠4=∠2=50°.(两直线平行,同位角相等)故答案为:对顶角相等;角平分线定义;CD∥AB,内错角相等,两直线平行;已证;∠4=∠2=50°.【点睛】本题考查了平行线的判定及性质、角平分线的定义,解题的关键是把解题的过程补充完整.本题属于基础题,难度不大,解决该题型题目时,熟悉利用平行线的性质解决问题的过程.20.(1)分别为200元、150元;(2)A种型号电风扇37台时,采购金额不多于7500元【解析】【分析】(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号4台B型号的电扇收入1200元,5台A型号6台B型号的电扇收入1900元,列方程组求解;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(50−a)台,根据金额不多余7500元,列不等式求解.【详解】解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,依题意得:341200561900x yx y+=⎧⎨+=⎩,解得:200{150xy==,答:A、B两种型号电风扇的销售单价分别为200元、150元.(2)设采购A种型号电风扇a台,则采购B种型号电风扇(50﹣a)台.依题意得:160a+120(50﹣a)≤7500,解得:a≤3712.答:超市最多采购A种型号电风扇37台.【点睛】此题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.21.(1);(2)4.【解析】【分析】(1)先去括号再利用根式的运算法则进行计算即可.(2)先利用完全平方公式计算出x 2=9-45,再把x 和x 2的值代入得到原式=(9+45)(9-45)-(5+2)(5-2)+4,然后利用平方差公式计算.【详解】(1) 原式=1322⨯⨯= (2) 52x =-,222)549x ∴==-=-2(92)4(92)4x x ∴+-+=+--+8180(54)4=---+114=-+4=.【点睛】本题考查了二次根式的化简求值及完全平方公式的运用,熟练掌握二次根式的运算法则是正确求解的关键. 22.(1)m =30,n =20;(2)“C 组”所对应的圆心角的度数是90°;(3)估计这所学校本次听写比赛不合格的学生人数为450人.【解析】【分析】(1)根据条形图和扇形图确定B 组的人数环绕所占的百分比求出样本容量,求出m 、n 的值; (2)求出C 组”所占的百分比,得到所对应的圆心角的度数;(3)求出不合格人数所占的百分比,求出该校本次听写比赛不合格的学生人数.【详解】(1)从条形图可知,B 组有15人,从扇形图可知,B 组所占的百分比是15%,D 组所占的百分比是30%,E 组所占的百分比是20%,15÷15%=100,100×30%=30,100×20%=20,∴m =30,n =20;(2)“C 组”所对应的圆心角的度数是25÷100×360°=90°;(3)估计这所学校本次听写比赛不合格的学生人数为:900×(10%+15%+25%)=450人.【点睛】本题考查的是频数分布表、条形统计图和扇形统计图,用样本估计总体的知识. 利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.第一个容器60升,第二个容器80升.【解析】【分析】设第一个容器x 升,第二个容器y 升,根据题意列出方程组求解即可。

2.4__绝对值与相反数(1)

2.4__绝对值与相反数(1)

请你结合数轴,根据定义说出
-3、2、0的绝对值.
你能说出数轴上的点A、B、C、D、E所表
示的数的绝对值吗?
点A表示的数-5的绝对值为5; 点B表示的数-3.5的绝对值为3.5; 点C表示的数1的绝对值为1;
点D表示的数2.5的绝对值为2.5;
点E表示的数5的绝对值为5.
例1
求4、-3.5的绝对值.ห้องสมุดไป่ตู้
解:在数轴上分别画出表示4、-3.5的点A、点B.
3.5
4
5 4 3 2 1 0
B ·
A
1
2
3
4
5
因为点A与原点的距离是4,所以4的绝对值是4; 因为点B与原点的距离是3.5,所以-3.5的绝对值是3.5.
通常,我们将数a的绝对值记为|a| .
例如: 4的绝对值记为|4|, -3.5的绝对值记为 |-3.5|.
5 例2 已知一个数的绝对值是 2 ,求这个数. 5 解:数轴上到原点的距离是 2 的点有2个,它们 分别是点A和点B.

B ·
5 2
5 2
5 4 3 2 1 0
1
2
A ·
3
4
5
5 5 , 因为点A、点B表示的数分别是 、 2 2 5 5 5 所以绝对值是 的数有2个,它们是 或 . 2 2 2
初中数学 七年级(上册)
2.4
绝对值与相反数(1)
小明家在学校正西方3 km处,小丽家在学
校正东方2 km处,他们上学所花的时间,与各
家到学校的距离有关.
小明家
学校
小丽家
你会用数轴上的点表示学校、小明家、小
丽家的位置吗?
1.画数轴,用数轴的原点O表示学校的位置,

初二数学:2.4绝对值与相反数《相反数》学习指导

初二数学:2.4绝对值与相反数《相反数》学习指导

《相反数》学习指导学习目标:1、掌握相反数的意义;2、会求一个已知数的相反数;3、体验数形结合思想,能利用数形结合解决问题.知识要点:相反数一、正确理解相反数的概念像2和-2,5和-5这样,只有符号不同的两个数,我们称它们互为相反数.这就是说,2是-2的相反数,-2是2的相反数;5是-5的相反数,-5是5的相反数.零的相反数是零.由相反数的概念我们知道,(1)互为相反数的两个数表示在数轴上分别在原点的两旁,并且这两个数到原点的距离相等.(2)互为相反数总是成对出现的,单独一个数或三个数等都不能说成是互为相反数.(3)符号不同的两个数也不能说成是互为相反数,如3与-2就不是互为相反数.要注意概念中的“只有”这个字眼,就是说在两个数中,就是符号不同,一个是正号,另一个是负号,其余什么都相同.二、熟练掌握相反数的性质相反数的概念告诉我们,数a的相反数是-a,特别地,当a=0时,得到0的相反数是0.事实上,一个正数的相反数是负数,一个负数的相反数是正数.所有这些我们就得到相反数有下列一些重要性质:1、如果a、b互为相反数,则a、b在数轴上对应的点到原点的距离相等,2、0的相反数仍是0.预习检测:1、的个数,我们称它们互为相反数.2、互为相反数的两个数在数轴上分别在原点的,并且这两个数到原点的距离 .3、0的相反数是 .4、假设a是一个负数,那么a的相反数-a 0.练习:1、判断下列说法是否正确:(1)-3是相反数;(2)+3是相反数;(3)3是-3的相反数;(4)-3与+3互为相反数.2、写出下列各数的相反数:6,-8,-3.9,52,112-,100,0.3、如果a=-a,那么表示a的点在数轴上的什么位置?4、化简下列各数:-(-68),-(+0.75),-(35-),-(+3.8).参考答案:1、(1)错;(2)错;(3)对;(4)对.2、-6,8,3.9,52-,112,-100,0.3、原点位置.4、68,-0.75,35,-3.8.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.若三角形的两条边的长度是4cm和9cm,则第三条边的长度可能是( )A.4 cm B.5 cm C.9cm D.13cm【答案】C【解析】根据三角形的特性:两边之和大于第三边,三角形的两边的差一定小于第三边,进行解答即可.【详解】由题可得:9﹣4<第三边<9+4,所以5<第三边<13,即第三边在5 cm~13 cm之间(不包括5 cm和13 cm),结合选项可知:9 cm符合题意.故选C.【点睛】本题考查了三角形的三边关系的运用,解答此题的关键是掌握:三角形两边之和大于第三边,三角形的两边的差一定小于第三边.2.已知二元一次方程x+7y=5,用含x的代数式表示y,正确的是A.57x+B.57x-C.57y+D.57y-【答案】B【解析】先把x从左边移到右边,然后把y的系数化为1即可. 【详解】∵x+7y=5,∴7y=5-x,∴y=57x -.故选B.【点睛】本题考查了等式的基本性质,等式的基本性质1是等式的两边都加上(或减去)同一个整式,所得的结果仍是等式;等式的基本性质2是等式的两边都乘以(或除以)同一个数(除数不能为0),所得的结果仍是等式.3.不等式2132x x--<的解集是()A .1x <-B .2x >C .1x >-D .2x <【答案】C 【解析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1运算即可.【详解】()()2231x x -<-2433x x -<-2334x x -<-+1x -<1x >-故选C.【点睛】此题考查解一元一次不等式,解题关键在于掌握一元一次不等式运算的基本步骤.4.下列长度的三条线段,能组成三角形的是A .1cm ,2cm ,3cmB .2cm ,3cm ,6cmC .4cm ,6cm ,8cmD .5cm ,6cm ,12cm【答案】C【解析】试题分析:三角形的三边关系:三角形的任两边之和大于第三边,任两边之差小于第三边. 解:A 、1+2=3,B 、2+3<6, D 、5+6<11,均不能组成一个三角形,故错误;C 、4+6>8,能组成一个三角形,本选项正确.考点:三角形的三边关系点评:本题属于基础应用题,只需学生熟练掌握三角形的三边关系,即可完成.5.下列四种调查适合做抽样调查的个数是( )①调查某批汽车抗撞击能力;②调查某池塘中现有鱼的数量;③调查春节联欢晚会的收视率;④某校运动队中选出短跑最快的学生参加全市比赛.A .1个B .2个C .3个D .4个 【答案】C【解析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:①调查某批汽车抗撞击能力,适合抽样调查;;②调查某池塘中现有鱼的数量,适合抽样调查;;③调查春节联欢晚会的收视率,适合抽样调查;;④某校运动队中选出短跑最快的学生参加全市比赛,适合普查;综上可得①②③适合抽样调查,共3个.故选:C .【点睛】本题考查抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.解方程组322510x y y x =-⎧⎨-=⎩①②时,把①代入②,得 A .()232510y x --=B .()23210y y --=C .()32510y x --=D .()253210y y --=【答案】D【解析】根据二元一次方程组解法中的代入消元法求解.【详解】解:把①代入②得:2y-5(3y-2)=10,故选:D【点睛】此题考查了解二元一次方程组,解题的关键是利用了消元的思想.7.在迎宾晚宴上,若每桌坐12人,则空出3张桌子;若每桌坐10人,则还有12人不能就坐. 设有嘉宾x 名,共准备了y 张桌子. 根据题意,下列方程组正确的是( ) A .12(3)1210x y x y =-⎧⎨-=⎩ B .12(3)1210x y x y =+⎧⎨-=⎩C .12(3)1210x y x y =+⎧⎨+=⎩D .12(3)1210x y x y =-⎧⎨+=⎩【答案】A 【解析】设有嘉宾x 名,共准备了y 张桌子,根据“每桌坐12人,则空出3张桌子;每桌坐10人,则还有12人不能就坐”列出方程组即可.【详解】设有嘉宾x 名,共准备了y 张桌子.根据题意可得,()1231210x y x y ⎧=-⎨-=⎩.故选A.【点睛】本题考查了二元一次方程组的应用,正确找出题目中的等量关系是解决问题的关键.8.要使分式21x x -有意义,则实数x 的取值应满足( )A .0x ≠B .1x ≠C .0x ≠或1x ≠D .0x ≠且1x ≠【答案】D【解析】要使分式有意义,分式的分母不等为0. 【详解】解:∵分式21x x -有意义,∴20x x -≠,解得:0x ≠且1x ≠.故选D.【点睛】本题主要考查分式有意义,分式是有意义的条件为:分母不为0.9.在227,3.14159-80.6,03π中是无理数的个数有()个.A .2B .3C .4D .5【答案】B3π共有3个.故选B .考点:无理数.10.不等式组2220x x >⎧⎨-⎩的解在数轴上表示为( ) A .B .C .D .【答案】C【解析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可. 【详解】解:2220x x >⎧⎨-⎩,解得12x x >⎧⎨⎩, 故选:C .【点睛】把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.二、填空题题11.数据0.0005用科学记数法表示为______.【答案】5510⨯﹣【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10n -,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0005=5510⨯﹣故答案为:5510⨯﹣.【点睛】此题考查科学记数法—表示较小的数,解题关键在于掌握其一般形式.12.在平面直角坐标系中,点P(2n-1,3+3n)在坐标轴上则n 的值是__________. 【答案】12或-1 【解析】分点P 在x 轴上和点P 在y 轴上两种情况求解即可.【详解】当点P 在x 轴上时,3+3n=0,∴n=-1;当点P 在y 轴上时,2n-1=0,∴n=12. 故答案为12或-1. 【点睛】本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x 轴上的点纵坐标为0,y 轴上的点横坐标为0.13.已知关于x 的不等式组0521x a x -≥⎧⎨-⎩只有四个整数解,则实数a 的取值范是______. 【答案】-3<a≤-2【解析】分析:求出不等式组中两不等式的解集,根据不等式取解集的方法:同大取大;同小取小;大大小小无解;大小小大取中间的法则表示出不等式组的解集,由不等式组只有四个整数解,根据解集取出四个整数解,即可得出a 的范围.详解:0521x a x ①②,-≥⎧⎨->⎩ 由不等式①解得:x a ≥;由不等式②移项合并得:−2x>−4,解得:x<2,∴原不等式组的解集为2a x ,≤<由不等式组只有四个整数解,即为1,0,−1,−2,可得出实数a 的范围为3 2.a -<≤-故答案为3 2.a -<≤-点睛:考查一元一次不等式组的整数解,求不等式的解集,根据不等式组有4个整数解觉得实数a 的取值范围.14.如图,动点P 在平面直角坐标系中按图中的箭头所示方向运动,第一次从原点运动到点(2,2)第2次运动到点A (4,0),第3次接着运动到点(6,1)……按这样的运动规律,经过第2018次运动后动点P 的坐标是____.【答案】(4036,0).【解析】根据题意可得,每四次重复一次,所以可得其规律,再根据2018÷4的结果便可得到答案.【详解】令P 点第n 次运动到的点为Pn 点(n 为自然数).观察,发现规律:P 0(0,0),P 1(2,2),P 2(4,0),P 3(6,1),P 4(8,0),P 5(10,2),…, ∴P 4n (8n ,0),P 4n+1(8n+2,2),P 4n+2(8n+4,0),P 4n+3(8n+6,1).∵2018=4×504+2,∴P 第2018次运动到点(4036,0).故答案是(4036,0).【点睛】本题主要考查学生的归纳总结能力,关键在于根据题意寻找规律,根据规律求解.15.如图,在ABC ∆中,AB AC =,AB 的垂直平分线AB 交于点D ,交AC 于点E .已知BCE ∆的周长为8,2AC BC -=,则AB 的长是__________.【答案】2【解析】根据题意可知AC+BC=1,然后根据AC-BC=2,即可得出AB 的长度.【详解】解:如图所示:∵△BCE的周长为1,∴BE+EC+BC=1.∵AB的垂直平分线交AB于点D,∴AE=BE,∴AE+EC+BC=1,即AC+BC=1,∵AC-BC=2,∴AC=2,BC=3,∵AB=AC,∴AB=AC=2;故答案为:2.【点睛】本题主要考查线段垂直平分线的性质、等腰三角形的性质,由线段垂直平分线的性质得出AE=BE是解题的关键.16.某旅馆的客房有三人间和二人间两种,三人间每人每天80元,二人间每人每天110元,一个40人的旅游团到该旅馆住宿,租住了若干房间,且每个客房正好住满,一天共花去住宿费3680元.求两种客房各租住了多少间?若设租住了三人间x间,二人间y间,则根据题意可列方程组为____.【答案】3240 38021103680 x yx y+⎧⎨⨯+⨯⎩==.【解析】设租住了三人间x间,二人间y间,根据该旅游团共40人共花去住宿费3680元,列出关于x,y的二元一次方程组即可.【详解】设租住了三人间x间,二人间y间,依题意,得:3240 38021103680 x yx y+⎧⎨⨯+⨯⎩==,故答案为:324038*********x y x y +⎧⎨⨯+⨯⎩==. 【点睛】本题考查了二元一次方程组的应用,弄清题意,找准等量关系,正确列出二元一次方程组是解题的关键.17.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、4,则第5组的频率是________【答案】0.2【解析】先求出第5组的频数,根据频率=频数÷总数,再求出频率即可.【详解】由题可知:第5组频数=40-12-10-6-4=8,840÷=0.2故答案是0.2.【点睛】本题考查了数据的统计,属于简单题,熟悉频率的求法是解题关键.三、解答题18.分解因式:(1)2250a -;(2)4224816x x y y -+.【答案】(1)1(a+5)(a ﹣5);(1)(x+1y )1(x ﹣1y )1.【解析】(1)先提取公因式1,再对括号里面用平方差公式因式分解;(1)先用完全平方公式因式分解,再对括号里面用平方差公式因式分解.【详解】解:(1)原式=1(a 1-15)=1(a+5)(a -5);(1)原式=(x 1-4y 1)1=[(x+1y )(x -1y )]1=(x+1y )1(x -1y )1.【点睛】本题考查因式分解优先提取公因式,若括号里面能继续因式分解则要分解到不能继续因式分解为止.19.如图1,点C 为线段AB 上任意一点(不与点A 、B 重合),分别以AC 、BC 为一腰在AB 的同侧作等腰△ACD 和△BCE ,CA =CD ,CB =CE ,∠ACD =∠BCE =30°,连接AE 交CD 于点M ,连接BD 交CE 于点N ,AE 与BD 交于点P ,连接CP .(1)线段AE 与DB 的数量关系为 ;请直接写出∠APD = ;(2)将△BCE绕点C旋转到如图2所示的位置,其他条件不变,探究线段AE与DB的数量关系,并说明理由;求出此时∠APD的度数;(3)在(2)的条件下求证:∠APC=∠BPC.【答案】(1)AE=BD,30°;(2)结论:AE=BD,∠APD=30°.理由见解析;(3)见解析.【解析】(1)只要证明△ACE≌△DCB,即可解决问题;(2)只要证明△ACE≌△DCB,即可解决问题;(3)如图2-1中,分别过C作CH⊥AE,垂足为H,过点C作CG⊥BD,垂足为G,利用面积法证明CG=CH,再利用角平分线的判定定理证明∠DPC=∠EPC即可解决问题;【详解】(1)解:如图1中,∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,又∵CA=CD,CE=CB,∴△ACE≌△DCB.∴AE=BD,∴CAE=∠CDB,∵∠AMC=∠DMP,∴∠APD=∠ACD=30°,故答案为AE=BD,30°(2)如图2中,结论:AE=BD,∠APD=30°.理由:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,又∵CA=CD,CE=CB,∴△ACE≌△DCB.∴AE=BD,∴CAE=∠CDB,∵∠AMP=∠DMC,∴∠APD=∠ACD=30°.(3)如图2﹣1中,分别过C作CH⊥AE,垂足为H,过点C作CG⊥BD,垂足为G,∵△ACE≌△DCB.∴AE=BD,∵S△ACE=S△DCB∴CH =CG ,∴∠DPC =∠EPC∵∠APD =∠BPE ,∴∠APC =∠BPC .【点睛】本题考查几何变换综合题、旋转变换、全等三角形的判定和性质、角平分线的判定定理等知识,解题的关键是正确寻找全等三角形解决问题,学会添加常用辅助线,学会利用面积法证明高相等,属于中考压轴题.20.已知实数a ,b 满足23(b 1)0a ,求a b - .【答案】2【解析】根据非负数的性质列式求出a 、b 的值,然后代入代数式进行计算即可得解.【详解】由题意得,a −3=0,b+1=0,解得a=3,b=−1,所以, a b -=()31-- =2.故答案为2【点睛】此题考查非负数的性质:偶次方,解题关键在于掌握运算法则.21.如图锐角△ABC,若∠ABC=40°,∠ACB=70°,点D 、E 在边AB 、AC 上,CD 与BE 交于点H .(1)若BE⊥AC,CD⊥AB,求∠BHC 的度数.(2)若BE 、CD 平分∠ABC 和∠ACB,求∠BHC 的度数.【答案】(1)110°;(2)125°.【解析】试题分析:(1)已知BE⊥AC,CD⊥AB,根据直角三角形的两锐角互余可求得∠EBC、∠DCB 的度数,在△BHC中,根据三角形的内角和定理即可求得∠BHC的度数;(2)已知BE、CD平分∠ABC和∠ACB,根据角平分线的都有可求得∠EBC、∠DCB的度数,在△BHC中,根据三角形的内角和定理即可求得∠BHC的度数.试题解析:(1)∵BE⊥AC,∠ACB=70°,∴∠EBC=90°﹣70°=20°,∵CD⊥AB,∠ABC=40°,∴∠DCB=90°﹣40°=50°,∴∠BHC=180°﹣20°﹣50°=110°.(2)∵BE平分∠ABC,∠ABC=40°,∴∠EBC=20°,∵DC平分∠ACB,∠ACB=70°,∴∠DCB=35°,∴∠BHC=180°﹣20°﹣35°=125°.点睛:本题考查三角形内角和定理、三角形的高、角平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考基础题.22.刘大伯种植了很多优质草莓,有一天,他带上若干千克草莓进城出售.为了方便,刘大伯带了一些零钱备用,刚开始销售很好,后来降价出售,如图表示刘大伯手中的钱y(元)与出售草莓的重量x(千克)之间的关系.请你结合图形回答下列问题:(1)刘大伯自带的零用钱是多少元?(2)降价前,每千克草莓的出售价是多少元?(3)降价后,刘大伯按每千克16元将剩下的草莓售完,这时他手中的钱有330元(含零用钱),则此次出售刘大伯共带了多少千克草莓?【答案】(1)50元;(2)20(元);(3)5(千克),共计15千克.【解析】(1)直接根据图象与y轴的交点可知:刘大伯自带的零钱是50元;(2)根据销售10千克收入的钱数是250-50=200元,据此即可求得降价前的价格;(3)根据降价后销售的钱数是330-250=80元,单价是每千克16元,即可求得降价销售的数量,进而求得销售的总的数量;【详解】解:(1)直接根据图象与y轴的交点可知:刘大伯自带的零钱是50元;(2)根据销售10千克收入的钱250-50=200元,则降价前的价格是250502010-=(元);(3)根据降价后销售的钱数是330-250=80元,单价是每千克16元,即可求得降价销售的数量为8016=5÷,则销售的总的数量为5+10=15(千克)【点睛】本题考查一次函数,熟练掌握运算法则是解题关键.23.定义一种新运算“a*b”:当a≥b时,a*b=a+2b;当a<b时,a*b=a-2b.例如:3*(-4)=3+(-8)=-5,(-6)*12=-6-24=-30(1)填空:(-4)*3= .(2)若(3x-4)*(x+6)=(3x-4)+2(x+6),则x的取值范围为;(3)已知(3x-7)*(3-2x)<-6,求x的取值范围;(4)小明在计算(2x 2-4x+8)*(x 2+2x-2)时随意取了一个x 的值进行计算,得出结果是-4,小丽告诉小明计算错了,问小丽是如何判断的.【答案】(1)-10;(2)x ≥1;(3)x >1或x <1;(4)小明计算错误.【解析】(1)根据公式计算可得;(2)结合公式知3x-4≥x+6,解之可得; (3)由题意可得()3732372326x x x x -≥--+--⎧⎨⎩<或 ()3732372326x x x x -----⎩-⎧⎨<<,分别求解可得; (4)计算(2x 2-4x+8)*(x 2+2x-2)时需要分情况讨论计算.【详解】(1)(-4)*3=-4-2×3=-10,故答案为:-10;(2)∵(3x-4)*(x+6)=(3x-4)+2(x+6),∴3x-4≥x+6,解得:x≥1,故答案为:x≥1. (3)由题意知()3732372326x x x x -≥--+--⎧⎨⎩<①或()3732372326x x x x -----⎩-⎧⎨<<②, 解①得:x >1;解②得:x <1;(4)若2x 2-4x+8≥x 2+2x-2,则原式=2x 2-4x+8+2(x 2+2x-2)=2x 2-4x+8+2x 2+4x-4=4x 2+4;若2x 2-4x+8<x 2+2x-2,则原式=2x 2-4x+8-2(x 2+2x-2)=2x 2-4x+8-2x 2-4x+4=-8x+12,所以小明计算错误.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤和弄清新定义是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.24.阅读下列材料,完成相应的任务;全等四边形根据全等图形的定又可知:四条边分别相等、四个角也分别相等的两个四边形全等。

苏教版七年级数学上册《绝对值和相反数》课件

苏教版七年级数学上册《绝对值和相反数》课件

解:3的相反数是-3,
-4.5 的相反数是 4.5 ,
-4(的 -4相 .5)反 = 4数 .54是.
7
7
例2 化 ( 简 2 ) ,( 2 .7 ) ,( 3 ) ,( 3 ).
4
解: 因 2为 的相反数 2, 是 所以 ( 2)2.
例2 化 ( 简 2 ) ,( 2 .7 ) ,( 3 ) ,( 3 ).
AB
FC D
E
- 5 - 4 - 3 - 2 - 1 0 1 2 34 5
点 A 表示 -5 ,点 A 与原点的距 离是 5 ,所以 -5 的绝对值是 5 .记为 |-5| = 5.
说一说:
你能说出数轴上点 A、B、C、D、 E、F 各点所表示的数的绝对值吗?
AB
FC D
E
- 5 - 4 - 3 - 2 - 1 0 1 2 34 5
解:(4)因为4 4, 4 4, 并且44,
所以4 4 .
动脑筋 有一天,甲、乙两个数在比谁
大.甲抢着说:“在数轴上我表示 的点到原点的距离比你表示的点到 原点的距离要大,看来我比你大”, 乙不甘示弱,紧接着说,“我是正 数,我大于零,也大于一切负数, 当然是我比你大”.你们说到底谁 大呢?
4
解 : 因 2为 .的 7 相反数 2., 7是
所 (以 2.7) 2.7.
例2 化 ( 简 2 ) ,( 2 .7 ) ,( 3 ) ,( 3 ).
4
解 : 因3为 的 相 反 数 3,是 所(以 3) 3.
例2 化 ( 简 2 ) ,( 2 .7 ) ,( 3 ) ,( 3 ).
•8、普通的教师告诉学生做什么,称职的教师向学生解释怎么做,出色的教师示范给学生,最优秀的教师激励学生。

苏科版七年级数学上册《2.4.1绝对值与相反数》说课稿

苏科版七年级数学上册《2.4.1绝对值与相反数》说课稿

苏科版七年级数学上册《2.4.1绝对值与相反数》说课稿一. 教材分析《2.4.1绝对值与相反数》这一节的内容,主要围绕着绝对值和相反数的概念,性质以及它们之间的关系展开。

教材通过例题和练习,使学生掌握绝对值和相反数的定义,并能运用它们解决一些实际问题。

这一节内容是初中的基础知识点,对于学生来说,理解并掌握这些概念和性质,对于后续的学习有着至关重要的作用。

二. 学情分析面对七年级的学生,他们对数学已有一定的认识和基础,但是对一些抽象的概念的理解还需要通过具体的实例来引导。

在这个阶段,学生的思维正处于从具体形象思维向抽象逻辑思维过渡的阶段,因此,在教学过程中,需要通过丰富的教学手段,引导学生从具体实例中发现规律,理解概念。

三. 说教学目标1.知识与技能目标:通过本节课的学习,学生能理解绝对值和相反数的概念,掌握它们的性质,并能运用它们解决一些实际问题。

2.过程与方法目标:通过观察,分析,归纳等方法,学生能自主探索绝对值和相反数的性质,培养他们的逻辑思维能力。

3.情感态度与价值观目标:通过对绝对值和相反数的学习,学生能体会数学与生活的密切联系,增强他们对数学的兴趣。

四. 说教学重难点1.教学重点:绝对值和相反数的概念,性质。

2.教学难点:绝对值和相反数性质的运用。

五. 说教学方法与手段在本节课的教学中,我将采用引导发现法,实例分析法,小组合作法等教学方法。

通过这些方法,引导学生主动探索,合作交流,从而达到理解并掌握绝对值和相反数的目的。

同时,我还将利用多媒体教学手段,如PPT,数学软件等,以直观,生动的方式展示数学概念和性质,帮助学生更好地理解和掌握。

六. 说教学过程1.导入:通过一个实际问题,引导学生思考绝对值和相反数的概念。

2.新课讲解:通过具体的实例,引导学生观察,分析,归纳出绝对值和相反数的性质。

3.例题讲解:通过一些典型的例题,让学生运用绝对值和相反数的性质解决问题。

4.练习巩固:让学生做一些相关的练习题,巩固他们对绝对值和相反数的理解和掌握。

绝对值与相反数(1)作业和答案

绝对值与相反数(1)作业和答案

《2.4绝对值与相反数(1)》作业一、选择题1、-6的绝对值是( )A .6B .-6C .+D .- 2、如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是 ( )3、一个数的绝对值一定是( ) A .正数 B .负数 C .非正数 D .非负数4、绝对值最小的整数是 ( ) A .-1 B .1 C .0 D .不存在5、绝对值小于3的负数的个数有( )A .2个B .3个C .4个D .无数个二、填空题:1、的绝对值是_______,-的绝对值是_______.2、用“<”、“>”或“=”填空.(1) (2) (3)|π|______|-3.15| 3、=100,则a =_______.4、计算:|4|+|0|-|-3|=______________.5、实数a 、b 在数轴上位置如图所示,则、的大小关系是_______________.三、解答题 必做题 1、计算:(1) (2)161623236.3_______7- 4.6_______ 4.5--a ab 4178---50.7558-÷+2、正式排球比赛对所使用的排球质量是有严格规定的,超过规定质量的克数记作正数,不足质量的这4选做题3、若点A 、B 在数轴上表示的数分别是a ,b ,且=3,=1,试确定A 、B 两点之间的距离.4、已知.求2x +y 的值.《2.4绝对值与相反数(1)》参考答案一、选择题 1、A2、C3、B4、C5、A二、填空题 1、23 23 2、< > < 3、±100a b 02921=-+-y x4、15、|a|<|b|三、解答题必做题1、(1)47−18=2556(2)34÷258=2152、因为|-10|<|+13|<|-15|<|+20|,所以2号球的质量较好.选做题3、因为|a|=3,所以a=±3;因为|b|=1,所以b=±1.借助数轴,可得(1)当a=3,b=1时,点A、点B间的距离为2;(2)当a=3,b=-1时,点A、点B间的距离为4;(3)当a=-3,b=1时,点A、点B间的距离为4;(4)当a=-3,b=-1时,点A、点B间的距离为2.综上所述,点A、点B间的距离为2或4.4、由题意,得x−12=0,x=12; y−92=0,y=92.所以2x+y=2×12+92=5.5 .。

七年级数学2.4绝对值与相反数《绝对值》考点链接

七年级数学2.4绝对值与相反数《绝对值》考点链接

《绝对值》考点链接考点解读本节主要的考点有三个:(1)利用绝对值的意义求一个数的绝对值;(2)绝对值非负性的应用;(3)利用绝对值比较两个负数的大小.这些考点都是中考命题的热点。

试题的形式与填空题、选择题和解答题. 真题演练1.(2014•无锡)-3的相反数是( ) A .3 B .-3 C .±3 D .132.(2014•张家界)-2014的绝对值是( ) A .-2014 B .2014 C .12014 D .-120143.(2012•永州)已知a 为实数,则下列四个数中一定为非负实数的是( ) A .a B .-a C .|-a| D .-|-a|4.(2014•重庆)2014年1月1日零点,北京、上海、宁夏的气温分别是-4℃、5℃、6℃、-8℃,当时这四个城市中,气温最低的是( ) A .北京 B .上海 C .重庆 D .宁夏5.(2014•聊城)在-12,0,-2,13,1这五个数中,最小的数为( ) A .0 B .-12 C .-2 D .136.(2013•永州)已知0a b a b +=则 abab的值为 . 7.(2013•鄂州)若|p+3|=0,则p= .参考答案1. 分析:根据相反数的概念解答即可. 解:-3的相反数是-(-3)=3.故选A .2. 解析:根据负数的绝对值等于它的相反数解答. 解:-2014的绝对值是2014. 故选B .3. 分析:根据绝对值非负数的性质解答. 解:根据绝对值的性质,为非负实数的是|-a|. 故选C .4. 分析:根据正数大于0,0大于负数,可得答案. 解:-8<-4<5<6, 故选:D .5. 分析:用数轴法,将各选项数字标于数轴之上即可解本题. 解:画一个数轴,将A=0、B=-21、C=-2、D=31,E=1标于数轴之上, 可得:∵C 点位于数轴最左侧,是最小的数 故选C .6. 分析:先判断出a 、b 异号,再根据绝对值的性质解答即可.解:0a ba b+=Q,a b ∴、异号,0ab ∴<,1ab ab ab ab∴==--.故答案为:-1.7. 分析:根据零的绝对值等于0解答. 解:∵|p+3|=0, ∴p+3=0, 解得p=-3. 故答案为:-3.2019-2020学年中考数学模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图直线y =mx 与双曲线y=kx交于点A 、B ,过A 作AM ⊥x 轴于M 点,连接BM ,若S △AMB=2,则k 的值是( )A .1B .2C .3D .42.下列运算正确的是( ) A .﹣(a ﹣1)=﹣a ﹣1 B .(2a 3)2=4a 6C .(a ﹣b )2=a 2﹣b 2D .a 3+a 2=2a 53.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是 A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-24.如图,在矩形ABCD 中,E 是AD 上一点,沿CE 折叠△CDE ,点D 恰好落在AC 的中点F 处,若CD =3,则△ACE 的面积为( )A .1B .3C .2D .235.等式33=11x x x x --++成立的x 的取值范围在数轴上可表示为( ) A .B .C .D .6.下列长度的三条线段能组成三角形的是 A .2,3,5B .7,4,2C .3,4,8D .3,3,47.若x =-2 是关于x 的一元二次方程x 2-52ax +a 2=0的一个根,则a 的值为( ) A .1或4B .-1或-4C .-1或4D .1或-48.计算(ab 2)3的结果是( ) A .ab 5B .ab 6C .a 3b 5D .a 3b 69.下列一元二次方程中,有两个不相等实数根的是( ) A .x 2+6x+9=0B .x 2=xC .x 2+3=2xD .(x ﹣1)2+1=010.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是( ) A .310B .925C .920D .3511.如图,△ABC 的面积为8cm 2 , AP 垂直∠B 的平分线BP 于P ,则△PBC 的面积为( )A .2cm 2B .3cm 2C .4cm 2D .5cm 212.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程( ) A .3(2)29x x -=+ B .3(2)29x x +=- C .9232x x -+= D .9232x x +-=二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,用10 m 长的铁丝网围成一个一面靠墙的矩形养殖场,其养殖场的最大面积________m 1.14.计算tan 260°﹣2sin30°2cos45°的结果为_____.15.已知关于x的方程x2-23x-k=0有两个相等的实数根,则k的值为__________.16.已知二次函数y=ax2+bx+c(a≠0)中,函数值y与自变量x的部分对应值如下表:x …-5 -4 -3 -2 -1 …y … 3 -2 -5 -6 -5 …则关于x的一元二次方程ax2+bx+c=-2的根是______.17.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值是.18.计算:12466⎛⎫+⨯=⎪⎪⎝⎭______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知关于x的方程(a﹣1)x2+2x+a﹣1=1.若该方程有一根为2,求a的值及方程的另一根;当a为何值时,方程的根仅有唯一的值?求出此时a的值及方程的根.20.(6分)在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字1,1,2;乙袋中的小球上分别标有数字﹣1,﹣2,1.现从甲袋中任意摸出一个小球,记其标有的数字为x,再从乙袋中任意摸出一个小球,记其标有的数字为y,以此确定点M的坐标(x,y).请你用画树状图或列表的方法,写出点M所有可能的坐标;求点M(x,y)在函数y=﹣的图象上的概率.21.(6分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线.交BC于点E.求证:BE=EC填空:①若∠B=30°,AC=23,则DE=______;②当∠B=______度时,以O,D,E,C为顶点的四边形是正方形.22.(8分)我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.王老师采取的调查方式是(填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共件,其中b班征集到作品件,请把图2补充完整;王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,请直接写出恰好抽中一男一女的概率.23.(8分)瑞安市曹村镇“八百年灯会”成为温州“申遗”的宝贵项目.某公司生产了一种纪念花灯,每件纪念花灯制造成本为18元.设销售单价x(元),每日销售量y(件)每日的利润w(元).在试销过程中,每日销售量y(件)、每日的利润w(元)与销售单价x(元)之间存在一定的关系,其几组对应量如下表所示:(元)19 20 21 30(件)62 60 58 40(1)根据表中数据的规律,分别写出毎日销售量y(件),每日的利润w(元)关于销售单价x(元)之间的函数表达式.(利润=(销售单价﹣成本单价)×销售件数).当销售单价为多少元时,公司每日能够获得最大利润?最大利润是多少?根据物价局规定,这种纪念品的销售单价不得高于32元,如果公司要获得每日不低于350元的利润,那么制造这种纪念花灯每日的最低制造成本需要多少元?24.(10分)读诗词解题:(通过列方程式,算出周瑜去世时的年龄)大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?25.(10分)如图1在正方形ABCD的外侧作两个等边三角形ADE和DCF,连接AF,BE.请判断:AF与BE的数量关系是,位置关系;如图2,若将条件“两个等边三角形ADE 和DCF”变为“两个等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)问中的结论是否仍然成立?请作出判断并给予证明;若三角形ADE和DCF为一般三角形,且AE=DF,ED=FC,第(1)问中的结论都能成立吗?请直接写出你的判断.26.(12分)已知关于x的方程x2-(m+2)x+(2m-1)=0。

2.4绝对值与相反数(1)教学案

2.4绝对值与相反数(1)教学案

课题:2.4绝对值与相反数(1)班级 姓名_______________ 学号__________ 1.理解一个数的绝对值,就是在数轴上该数所对应的点与原点的距离; 2.会求一个已知数的绝对值。

教学重点理解一个数的绝对值的意义。

教学难点数形结合思想的渗透,会在数轴上表示一个数的绝对值。

教学过程 一、问题情境:小明家在学校西边3公里处,小丽家在学校东边2公里处,他们两家与学校都在同一条直线上,你能画数轴表示它们的位置吗? 它们到学校的距离分别是多少?二、导入新课:1.定义:数轴上表示一个数的点与原点的距离,叫做这个数的绝对值.2.数轴上,表示—3的点与原点的距离是 ,因此—3的绝对值是 ;表示2的点与原点的距离是 ,因此2的绝对值是 ;表示0的点与原点的距离是 ,因此0的绝对值是 .请小组内的一位同学随便取一个数,让另一位同学说出它的绝对值.3.口答 :说出数轴上点A ,B ,C ,D ,E 所表示的数的绝对值.因为距离不可能为负数,所以一个数的绝对值也不能为负.0到原点的距离就是0.即:任何一个数的绝对值均大于或等于0(即非负数). 4.绝对值用符号“︱︱”表示,我们将数a 的绝对值记为 . 三、例题精讲:例1.求4与—3.5的绝对值.牛刀小试: 填空:︱-3︱= ,︱43︱= ,︱-4.7︱= , ︱0︱= . 例2.已知一个数的绝对值是2.5,求这个数。

例3. 求下列各组数的绝对值,并分别比较它们的大小。

(1)2与4 (2)-3.5与0 (3)-3与-6一展身手:某车间生产一批圆形零件,从中抽取8件进行检验,比规定直径长的毫米数记为正数,随堂演练:1.-8的绝对值是 ,112的绝对值是 ,0的绝对值是 . 2.绝对值等于4的数是 ;如果一个数的绝对值是π,那么这个数是 . 3.若6x =,则x = ;若45x =-,则x . 4.在数轴上标出:152-,-│-4│,2,0,83+,-3.5,并把它们按从小到大的顺序排列.5.回答下列问题:(1)绝对值是2013的数是 ;绝对值是0的数是 ; (2)绝对值小于5的整数有 ;(3)绝对值大于2且不大于5的整数 。

七年级数学苏科版上册课时练第2单元《 2.4 绝对值与相反数》(1) 练习试题试卷 含答案

七年级数学苏科版上册课时练第2单元《 2.4 绝对值与相反数》(1) 练习试题试卷 含答案

课时练2.4绝对值与相反数一.选择题(共7小题,满分35分)1.一个数的绝对值为7,则这个数是()A.7B.﹣7C.±7D.以上都不对2.已知a=|﹣3|,则a﹣4=()A.7B.1C.﹣1D.﹣73.设a是不为零的实数,那么x=的不同取值共有()A.1种B.2种C.3种D.4种4.若x的相反数是3,则x的值是()A.﹣3B.﹣C.3D.±35.﹣(﹣2)的值为()A.B.﹣C.2D.﹣26.若a与1互为相反数,那么a+1=()A.﹣1B.0C.1D.﹣27.﹣(﹣6)的相反数是()A.B.C.﹣6D.6二.填空题(共9小题,满分45分)8.若|x+2|=3,则x是.9.若﹣|a|=﹣3.2,则a是.10.已知|x﹣1|+|y+2|=0,则(2x+y)(2x﹣y)=.11.|2x﹣4|+|x+2y﹣8|=0,则x﹣y=.12.如果x、y都是不为0的有理数,则代数式的最小值是.13.当|2x+y|+1取最小值时,代数式4x+2y+3的值是.14.π﹣3的相反数是.15.如果|x﹣3|=5,那么x=.16.若|﹣1﹣2|=.三.解答题(共5小题,满分40分)17.计算:已知|x|=3,|y|=2,(1)当xy<0时,求x+y的值;(2)求x﹣y的最大值.18.已知|a﹣3|+|b+5|=0,求:(1)a+b的值;(2)|a|+|b|的值.19.已知|a|=2,|b|=3,且b<a,试求2a﹣3b的值.20.若|2x﹣4|与|y﹣3|互为相反数,求3x﹣y的值.21.已知|x|+4=12,|y|+3=5:(1)求x,y的取值;(2)当x﹣y<0,求2x+y的值.参考答案一.选择题(共7小题,满分35分)1.C.2.C.3.B.4.A.5.C.6.B.7.C.二.填空题(共9小题,满分45分)8.1或﹣5.9.±3.2.10.0.11.﹣1.12.﹣3.13.3.14.3﹣π.15.8或﹣2.16.3.三.解答题(共5小题,满分40分)17.解:由题意知:x=±3,y=±2,(1)∵xy<0,∴x=3,y=﹣2或x=﹣3,y=2,∴x+y=±1,(2)当x=3,y=2时,x﹣y=3﹣2=1;当x=3,y=﹣2时,x﹣y=3﹣(﹣2)=5;当x=﹣3,y=2时,x﹣y=﹣3﹣2=﹣5;当x=﹣3,y=﹣2时,x﹣y=﹣3﹣(﹣2)=﹣1,所以x﹣y的最大值是518.解:∵|a﹣3|+|b+5|=0,∴a﹣3=0,b+5=0,∴a=3,b=﹣5,(1)a+b=3+(﹣5)=﹣2;(2)|a|+|b|=|3|+|﹣5|=3+5=8.19.解:∵|a|=2,|b|=3,∴a=±2,b=±3,又∵b<a,∴a=2,b=﹣3或a=﹣2,b=﹣3.当a=2,b=﹣3时,2a﹣3b=2×2﹣3×(﹣3)=4+9=13;当a=﹣2,b=﹣3时,2a﹣3b=2×(﹣2)﹣3×(﹣3)=﹣4+9=5.20.解:根据题意得,|2x﹣4|+|y﹣3|=0,所以,2x﹣4=0,y﹣3=0,解得x=2,y=3,则3x﹣y=3×2﹣3=3.21.解:(1)∵|x|+4=12,|y|+3=5,∴|x|=8,|y|=2,∴x=±8;y=±2;(2)∵x﹣y<0,∴x=﹣8,y=2或x=﹣8,y=﹣2,当x=﹣8,y=2时,2x+y=2×(﹣8)+2=﹣14;当x=﹣8,y=﹣2时,2x+y=2×(﹣8)+(﹣2)=﹣18;即2x+y的值为﹣14或﹣18.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.3 绝对值与相反数(1)
【学习目标】
1、一个数的绝对值,就是在数轴上该数所对应的点与原点的距离;
2、会求一个已知数的绝对值。

【学习重点】知道一个数的绝对值的意义。

【学习难点】数形结合思想的渗透,会在数轴上表示一个数的绝对值。

一、【预习导航】
1、小明家在学校西边3公里处,小李家在学校东边2公里处,他们两家与学校都在同一条直线上,你能画数轴表示它们的位置吗?
它们到学校的距离分别是多少?
2、数轴上____________________________________叫这个数的绝对值。

3、数a的绝对值记为______________.
二、【合作探究】
1、说出数轴上点A,B,C,D,E所表示的数的绝对值。

2、例1、求—3.5与3的绝对值,并比较它们的大小。

例2、已知一个数的绝对值是2,求这个数。

3︱= ,︱-4.7︱= , ︱0︱= 例3、填空:︱-3︱= ,︱
4
-︱-3︱= ,︱-3︱+︱-4︱= 。

三、【巩固拓展】
1.-3的绝对值是,4的绝对值是,0的绝对值是。

2.11
2
的绝对值为_________,—3
1
2
的绝对值为_________。

符号为“+”,绝对值是0.5的数是_____________
符号为“-”,绝对值是3的数是________________
3.绝对值是3.5数是______________.
4.绝对值小于2的整数是________________.
5.︱-7︱= ,︱-
4
3︱= ,︱2.7︱= , ︱0︱= 。

6.用数轴上点表示下列各数,并写出这些数的绝对值。

0,-2,7.3, 1
2
,-3
1
5
7、把下列各数填入相应的集合里.
-3,│-5│,-3.14 , 0 ,│-2.5│,3
4
,│-
4
5
│.0.02002…
整数集合:{ …};
正数集合:{ …};
分数集合:{ …}.四、小结与思考
(2)如果一个数的绝对值是5,则这个数是5 ( )
(3)绝对值小于3的整数有2,1,0. ( )
2.填空题
(1) +6的符号是_______,绝对值是_______,65-
的符号是_______,绝对值是_______ (2)
在数轴上离原点距离是3的数是________________ (3)
绝对值等于本身的数是___________ (4)
绝对值小于2的整数是________________________ (5) 用”>”、”<”、”=”连接下列两数: ∣117-∣___∣11
7∣ ∣-3.5∣___-3.5 ∣0∣____∣-0.58∣ ∣-5.9∣___∣-6.2∣
(6) 数轴上与表示1的点的距离是2的点所表示的数有___________________.
(7) 计算|4|+|0|-|-3|=______________.
3.选择题
(1). 如图所示的图形为四位同学画的数轴,其中正确的是( )
(2). 如图所示,点M 表示的数是( )
A. 2.5
B. -15.
C. -25.
D. 1.5
2014年秋学期七年级数学校本作业(7)
设计:朱伯琴 审核:孙大庆
班级______姓名_______得分________
1.判断题
(1)任何一个有理数的绝对值都是正数. ( )
(3). 下列说法正确的是( )
A. 有原点、正方向的直线是数轴
B. 数轴上两个不同的点可以表示同一个有理数
C. 有些无理数不能在数轴上表示出来
D. 任何一个数都可以用数轴上的点表示
( 4). 下列各组数中,大小关系正确的是( )
A. -<-<-752
B. ->->
752 C. -<-<-725 D. ->->-275
(5). 数轴上点M 到原点的距离是5,则点M 表示的数是( )
A. 5
B. -5
C. 5或-5
D. 不能确定
(6). 在数轴上表示-206315
,,,.的点中,在原点右边的点有( )
A. 0个
B. 1个
C. 2个
D. 3个 (7).下列说法正确的是( )
A .0是最小的有理数 B.0是最小的整数
C.0是正数与负数的分界点
D.到原点距离是3的点在数轴上只有一个
(8).在数轴上,原点及原点左边所表示的数是( )
A 正数
B 负数
C 非负数
D 非正数
4.在数轴上表示下列各数,并写出它们的绝对值:
21245023
,,,,--.
5、比赛中使用乒乓球的重量是有严格规定的。

检查5只乒乓球的重量,超过规定重量的毫克数记作正数,不足规定重量的毫克数记作负数,检查结果如下:(5分)
请指出哪只乒乓球的质量好一些?你能用绝对值的知识进行说明吗?。

相关文档
最新文档