完整高数课件(一)

合集下载

《高等数学》 课件 高等数学第一章

《高等数学》 课件 高等数学第一章
2 函数的极限
高等数学 第一章. 第二节
第 22 页
定义1 给定一个数列xn ,如果当n无限增大时,xn 无限接近于某一
个确定常数A,则称当n趋于无穷时,数列xn 的极限为A,记作
lim
n∞
xn
A?或xn
A(n
∞).
此时也称数列xn 收敛.如果当n无限增大时,xn 无限接近的常数A不存在,
则称数列xn 发散,此时也称数列xn 的极限不存在.
称为中间变量.
1)复合函数的复合原则:前一个函数的定义域与后一个函数的值域
的交集非空,即中间变量有意义.
1 函数
高等数学 第一章. 第一节
第 16 页
例1 将y表示成x的复合函数.
(1)y eu,u sin v,v 3 x;(2)y ln u,u 2 v, 2 v sec x; (3)y arcsin u,u 2 x.2
四、基本初等函数
基本初等函数:幂函数、指数函数、对数函数、三角函数和反三角函数. 1.幂函数y x ( R)?
幂函数y x 的定义域和值域随的取值不同而不同,但是无论 取何值,幂
函数在x (0, ∞)内总有定义.常见的幂函数的图像如图所示.
1 函数
高等数学 第一章. 第一节
2.指数函数y a x (a 0,a 1)
指数函数y a( x a 0,a 1)的定义域 为(∞, ∞,) 值域为(0, ∞.) 指数函数的 图像如图所示.
第 11 页
1 函数
高等数学 第一章. 第一节
3.对数函数y loga x (a 0,a 1)
对数函数y loga x(a 0,a 1)的定义域为(0, ∞, ) 值域为(∞, ∞.) 对数函数y loga x是指数函数y ax的 反函数,其图像如图所示.

高数课件1-7PPT课件

高数课件1-7PPT课件
2
作单位圆的切线,得ACO .
扇形OAB的圆心角为x , OAB的高为BD,
于是有 sin x BD, x 弧 AB, tan x AC ,
函数与极限
8
sin x x tan x, 即 cos x sin x 1,
x
上式对于 x 0也成立. 当 0 x 时,
2
2
0 cos x 1 1 cos x 2sin 2 x 2( x)2 x2 , 22 2
lim x2 0, lim(1 cos x) 0,
x0 2
x0
lim cos x 1, 又lim1 1, lim sin x 1.
x0
x0
x0 x
函数与极限
9
例3

lim
x0
1
cos x2
x
.

2sin2 x
原式 lim x0
2 x2
1
lim
sin 2
x 2
2 x0 ( x)2
lim (1 1 )x e.
x
x
函数与极限
13
令 t x,
lim (1 1 )x lim (1 1)t lim (1 1 )t
x
x
t
t
t t 1
lim (1 1 )t1(1 1 ) e.
t t 1
t 1
lim(1 1 )x e
x
x
令t 1, x
lim(1
1
1
1
1 2!
1 n!
1
1
1 2
1 2n1
3
1 2n1
3,
xn是有界的;
lim n
xn
存在.

高等数学课件详细

高等数学课件详细
分学
多元微积分的应用实例
物理学:描述物理现象,如流体力学、电磁学等 工程学:解决工程问题,如结构分析、控制系统设计等 经济学:分析经济模型,如市场均衡、最优化问题等 计算机科学:用于图像处理、机器学习等领域
无穷级数与常微分
07
方程
无穷级数的概念和性质
性质:收敛性、发散 性、绝对收敛性、条
件收敛性等

常微分方程的概念和分类
常微分方程:描述函数在某点或某区 间上的变化规律的方程
一阶常微分方程:只含有一个未知函 数和一个自变量的方程
二阶常微分方程:含有两个未知函数 和两个自变量的方程
高阶常微分方程:含有多个未知函数 和多个自变量的方程
线性常微分方程:未知函数和自变量 之间的关系是线性的方程
非线性常微分方程:未知函数和自变 量之间的关系是非线性的方程
常微分方程的基本解法与实例
基本解法:分离变量法、积分因子法、常数变易法等 实例:求解一阶线性常微分方程、求解二阶线性常微分方程等 应用:在物理、化学、生物等领域有广泛应用 难点:求解高阶常微分方程、求解非线性常微分方程等
微分方程的应用实例
生物:描述生物种群增长、 生态平衡等现象
化学:描述化学反应速率、 物质扩散等现象
06
多元函数微积分
多元函数的极限与连续性
多元函数的极限:定义、性质、计算方法 多元函数的连续性:定义、性质、判断方法 多元函数的可微性:定义、性质、判断方法 多元函数的可导性:定义、性质、判断方法 多元函数的可积性:定义、性质、判断方法 多元函数的积分:定义、性质、计算方法
偏导数与全微分
性质。
函数连续性的 性质:连续函 数具有局部有 界性、局部保 号性、局部保 序性等性质。

高等数学课件完整

高等数学课件完整

要点二
二重积分的性质
二重积分具有一些基本性质,如线性性、可加性、保号性 等。这些性质在求解二重积分时非常有用。
07 无穷级数
常数项级数的概念与性质
常数项级数的定义
由一系列常数按照一定顺序排列并加上正负号组 成的无穷序列。
收敛与发散
常数项级数可能收敛于一个有限值,也可能发散 至无穷大或不存在。
级数的基本性质
特点
高等数学具有抽象性、严谨性和 应用广泛性等特点,需要学生具 备较强的逻辑思维能力和数学基 础。
高等数学的重要性
培养逻辑思维能力
高等数学的学习有助于培养学生的逻辑思维能力,提高学生的数学 素养和解决问题的能力。
为后续课程打下基础
高等数学是许多后续课程的基础,如物理学、工程学、经济学等, 掌握高等数学有助于学生更好地理解和应用这些学科的知识。
不定积分的性质
不定积分具有线性性、 可加性、常数倍性等基 本性质,这些性质在求 解积分时非常有用。
基本积分公式
掌握基本积分公式是求 解不定积分的基础,如 幂函数、指数函数、三 角函数等的基本积分公 式。
定积分的概念与性质
定积分的定义
定积分是积分学中的另一个重 要概念,它表示函数在某个区
间上的积分值。定积分记为 ∫[a,b]f(x)dx,其中a和b是积
函数的性质
函数具有有界性、单调性、奇偶性、周 期性等重要性质,这些性质对于研究函 数的图像和变化规律具有重要意义。
极限的概念与性质
1 2 3
极限的定义
极限是描述函数在某一点或无穷远处的变化趋势 的重要工具,它可以通过不同的方式定义,如数 列极限、函数极限等。
极限的性质
极限具有唯一性、有界性、保号性、四则运算法 则等重要性质,这些性质对于求解极限问题和证 明极限定理具有重要作用。

专升本-高数一-PPT课件

专升本-高数一-PPT课件

例 2.下列各函数中,互为反函数的是(
n t, x o t cy (1 ) . y a x

1 x , 1 y ( ) 1 - x (2) .y2 2
知识点:反函数 求反函数的步骤是:先从函数 y f ( x ) 中解出 x f 1 ( y ) ,再置换 x 与
y ,就得反函数 y f 1 ( x ) 。
故函数的定义域为:{( x , y ) | x 0 且 x y 0} (2)要使函数有意义必须满足

x2 x 2 0 x 1 或 x 2 ,即 , x 2 x20 D ( 2, 1) (2, ) .
二、 极限
1.概念回顾
2、 极限的求法
利用极限四则运算、 连续函数、重要极限、无穷小代换、洛比达法则等 例 5: 求 lim
x
x5 . x2 9
1 5 1 5 2 lim( 2 ) x5 x x x 0 0. 解: lim 2 lim x x x x 9 x 9 9 1 1 2 lim(1 2 ) x x x 知识点:设 a0 0, b0 0, m, n N ,
数。
: D g ( D ) D f: D f( D ) g 1 1 1
f g : D f [ g ( D ) ]
例 1.下列函数中,函数的图象关于原点对称的是( (1) y 2 x 2 1 ; (3) y x 1 . 知识点: 函数的奇偶性 (2) y x 3 2sin x ;
则 lim
am x x b x n n
m
m a bn a1 x a0 0 b1 x b0
mn mn mn

高等数学-第1章课件

高等数学-第1章课件
x x0
三、函数极限的性质
第三节 极限的运算
一、极限的运算法则
法则1 法则2
x x0
lim[ f ( x) g ( x)] lim f ( x) lim g ( x) A B
x x0 x x0 x x0 x x0
x x0
lim[ f ( x ) g ( x )] lim f ( x ) lim g ( x ) A B
第 一 章 函 数 ︑ 极 限 与 连 续
目录
第一节 函数
第二节 极限
第三节 极限的运算 第四节 无穷小与无穷大 第五节 函数的间断性与连续点 第六节 初等函数的连续性
第一节 函数
一、集合、区间与邻域
1.集合
集合(简称集)是具有某种共同性质的事物的全 体,组成集合的单一事物称为该集合的元素。
有限集合 有限个元素构成 北京户籍人口
° a
• a •
a°Leabharlann a3.邻域设 x0, δ R, 其中δ > 0,以 x0为中心,以δ 为半径,长为 2δ的
开区间. 即
( x0 , x0 ) { x x x0 , 0}
称为点 x0 的 δ 邻域 , 记为U(x0 , δ ).
2
x0
x0
x0
集合的运算及关系
由所有属于集合A或属于集合B的元 并集 素所组成的集合,称为集合A与B的 并集 交集 差集 由属于集合A且属于集合B的所有元 素组成的集合,称为A与B的交集
由所有属于集合A 而不属于集合B 的 元素组成的集合
A∪B A∪B={x|x∈A,或 x∈B}
A∩B A-B
A∩B={x|x∈A,且 x∈B} A-B={x|x∈A,且 xB}

《高等数学第一章》PPT课件

《高等数学第一章》PPT课件

思考题解答
f ( x)在x0 连续,
lim x x0
f (x)
f ( x0 )
且 0 f ( x) f ( x0 ) f ( x) f ( x0 )
lim x x0
f (x)
f ( x0 )
lim
x x0
f
2(
x)


lim
x x0
f
(
x
)

断点;在 x 2 是第_____类间断点 .
2、指出 y x 2 x 在 x 0 是第________类间 x ( x 2 1)
断点;在 x 1 是第______类间断点;在 x 1
是第_____类间断点 .
x, x 1
二、研究函数 f ( x)
的连续性,并画出函数
函数 f ( x)在点 x0处不连续(或间断), 并称点x0为 f ( x)的不连续点(或间断点).
1.跳跃间断点 如果 f ( x)在点 x0处左, 右极限都
存在,但f ( x0 0) f ( x0 0), 则称点 x0为函数 f ( x)的跳跃间断点.
例4
讨论函数
f
(x)

x, 1 x,
1.函数在一点连续必须满足的三个条件; 2.区间上的连续函数; 3.间断点的分类与判别;
间断点
第一类间断点:可去型,跳跃型. 第二类间断点:无穷型,振荡型.
(见下图)
第y 一
可去型




o x0
x
y
第 二 类 间 断o 点
x0
x
无穷型
y 跳跃型
o
x0

高等数学完整详细PPT课件

高等数学完整详细PPT课件


原式
lim a cos ax sinbx x0 bcos bx sinax
cos bx lim x0 cos ax
1.
第27页/共175页
例5 求 lim tan x . x tan 3 x
2

原式
lim
x
sec2 3sec2
x 3x
1 3
lim
x
cos2 3x cos2 x
2
2
1 lim 6cos 3x sin3x lim sin6x
第14页/共175页
例4 设函数f ( x)在[0,1]上连续, 在(0,1)内可导, 证明:
至少存在一点 (0,1),使 f ( ) 2[ f (1) f (0)].
证 分析: 结论可变形为
f (1) f (0) 10
f () 2
f ( x) ( x 2 )
x .
设 g( x) x2 ,
F(b) F(a) f (b) f (a) f () .
F (b) F (a) F ()
当 F ( x) x, F (b) F (a) b a, F ( x) 1,
f (b) f (a) f () F (b) F (a) F ()
f (b) f (a) f (). ba
第10页/共175页
例3 证明当x 0时, x ln(1 x) x. 1 x
证 设 f ( x) ln(1 x),
f ( x)在[0, x]上满足拉氏定理的条件,
f ( x) f (0) f ()( x 0), (0 x)
f (0) 0, f ( x) 1 , 由上式得 1 x
ln(1 x) x , 1
又0 x 1 1 1 x

大一高数上_PPT课件_第一章

大一高数上_PPT课件_第一章

几个数集:
R表示所有实数构成的集合,称为实数集。
Q表示所有有理数构成的集合,称为有理集。 Z表示所有整数构成的集合,称为整数集。 N表示所有自然数构成的集合, 称为自然数集。 子集: 若xA,则必有xB,则称A是B 的子集, 记 为AB(读作A包含于B)。 显然,N Z ,Z Q ,Q R 。
的上方。
y y=f(x) O x
y=K2
如果存在数 M,使对任一 xX,有 | f(x) |M, 则称函数f(x)在X上有界;如果这样的M不存在, 则称函数f(x)在X上是无界函数,就是说对任何M ,总存在 x1X,使|f(x)|>M。 有界函数的图形特点: 函数y = f(x)的图形在直线y = - M和y = M y 的之间。
高等数学研究的主要对象是函数,主要研 究函数的分析性质(连续、可导、可积等)和 分析运算(极限运算、微分法、积分法等)。 那么高等数学用什么方法研究函数呢?这个方 法就是极限方法,也称为无穷小分析法。从方 法论的观点来看,这是高等数学区别于初等数 学的一个显著标志。 由于高等数学的研究对象和研究方法与初 等数学有很大的不同,因此高等数学呈现出 以下显著特点:
周期函数的图形特点:
y
y=f(x)
-2l
-l
O
l
2l
x
四、反函数与复合函数
1. 反函数 设函数y=f(x)的定义域为D,值域为W。 对于任一数值 yW,D上可以确定唯一数值 x 与 y 对应,这个数值 x 适合关系 f(x)=y。
如果把 y看作自变量,x 看作因变量,按 照函数的定义就得到一个新的函数,这个 新函数称为函数y=f(x)的反函数,记作 x=f -1(y)。
什么样的函数存在反函数?

高数课件第一章

高数课件第一章

第一节预备知识一、实数及其几何表示1、实数2、数轴规定原点、正方向和长度单位的直线叫做数轴。

3、实数与数轴数轴上的点与全体实数是一一对应的。

二、实数的绝对值1、实数的绝对值实数的绝对值,用表示,即实数的绝对值是一个非负值,几何上,表示数轴上点与原点之间的距离.a a ,0,0a a a a a >⎧=⎨-<⎩a2、实数绝对值的性质(1),仅当时,有(2)(3)(4)绝对值的运算性质(1)(2)(3)(4)0a ≥0a =0a =2a a=a a -=a a a -≤≤a b a b+≤+a b a b -≥-a b a b ⋅=⋅(0)aa b b b =≠3、绝对值不等式当时,例2 解下列不等式(1)(2)解:由原不等式可知(1)或,整理得(2)得0k >a k k a k ≤⇔-≤≤a k a k a k>⇔<->或2+5>7x 324x ->2+5>7x 2+5<-7x 16x x ><-或324324324x x x ->⇔-<-->或223x x <>或1、区间设a 和b 都是实数,且a<b,则称{x | a<x<b }表示的实数x 的集合为开区间,记作(a, b ),即(a , b)={x | a<x<b}.类似地,称[ a, b ]={ x| a }为闭区间;[ a,b ]={ x | }以及( a ,b ) ={x |a<x<b }都称为半开区间.以上这些区间都称为有限区间,a 和b 称为区间的端点,数b-a 称为这些区间的长度。

引进记号+ (读作正无穷大)及-(读作负无穷大),则可类似地表示下面的无限区间[ a ,+ )={ x | a x}(-,b )={ x | x<b},全体实数的集合也可记作(-,+ ),它也是无限区间.∞∞∞a xb ≤≤≤∞∞∞。

完整高数(一)PPT课件

完整高数(一)PPT课件
y
y f (x)
f (x1)
f (x2 )
o
x
I
.
22
3.函数的奇偶性:
设D关于原点对称 , 对于x D, 有 f ( x) f ( x) 称 f ( x)为偶函数 ;
y y f (x)
f (x)
f (x)
-x o
x
x
偶函数
.
23
设D关于原点对称 , 对于x D, 有 f ( x) f ( x) 称 f ( x)为奇函数 ;
y 1 x2
定义: 设函数 y f (u)的定义域D f , 而函数 u ( x)的值域为Z, 若D f Z , 则称 函数 y f [( x)]为x 的复合函数.
x 自变量, u 中间变量, y 因变量,
.
47
注意:1.不是任何两个函数都可以复合成一个复 合函数的;
例如 y arcsin u, u 2 x2; y arcsin(2 x2 )
或 x 0, ( x) x 2 1, 或 x 0, ( x) x 2 1 1,
综上所述
ex2,
f
[
(
x)]
x 2, e x2 1 ,
x2 1,
x 1 1 x 0
. 0 x 2
x 2
1 x 0; x 2;
.
50
三、双曲函数与反双曲函数
1.双曲函数
双曲正弦 sinh x e x ex 2
4321
-4 -3 -2 -1
o -1 1 2 3 4 5
x
-2 -3 -4
阶梯曲线
.
13
(3) 狄利克雷函数
y
D(
x)
1 0
当x是有理数时 当x是无理数时

大学高数第一章 PPT课件

大学高数第一章 PPT课件
39
复合函数
代入法
设 y u, u 1 x2 ,
y 1 x2
定义: 设函数y=f(u),uU,函数u=(x), x X, 其值域 为(X)={u|u= (x), xX } U,则称函数y=f[(x)]为 x的复合函数。
x 自变量, u 中间变量, y 因变量,
所以它们不相等。
(2)f(x)=x, φ(x)=|x|;
解: f(x)与φ(x)的对应规律不同 ,所以是不同的函数。
(3)f(x)=sin2x+cos2x, φ(x)=1. 解:f(x)与φ(x)的对应规律相同 ,定义域也相同, 所以 f(x)=φ(x)。
17
二、函数的特性
1.函数的单调性:
设函数 f ( x)的定义域为D, 区间I D,
例1 在出生后 1~6个月期间内,正常婴儿的体重近似 满足以下关系:
y 3 0.6x x [1,6] 公式法
13
例2 监护仪自动记录了某患者一段时间内体温T的 变化曲线,如下图示:
T
T (t0 )
37
o
t0
t
例3 某地区统计了某年1~12月中当地流行性出血热 的发病率,见下表
t (月份) 1 2 3 4 5 6 7 8 9 10 11 12
如果对于区间 I 上任意两点x1及 x2 , 当 x1 x2时,
恒有 f ( x1 ) f ( x2 ) ( f ( x1 ) f ( x2 ) ), 则称函数 f ( x)在区间I上是单调增加(减少)的 ;
y
y f (x)
y
y f (x)
f (x2 )
f ( x1)
f ( x1)
y ax (a 1)

《高数教程》课件

《高数教程》课件
《高数教程》PPT课件
欢迎来到《高数教程》PPT课件!本教程将带您深入理解高等数学的核心概念, 通过生动的图像和实例,让您轻松掌握高数的奥秘。
第一章:函数基础
基础公式
掌握常见函数的基本性质和公式
函数图像
了解各种函数的图像和特性
函数方程
学习如何求解函数的方程
坐标系
掌握二维坐标系下的点与图形
第二章:极限与连续
平滑曲线
了解什么是平滑曲线及其特点
第五章:定积分与不定积分
定积分概念
深入理解定积分的概念和性质
定积分应用
应用定积分解决实际问题
不定积分计算
学习如何计算各种函数的不定积分
反常积分
探索反常积分的概念及计算方法
第六章:常微分方程
方程类型
了解常微分方程的不同类型
求解方法
学习解常微分方程的常用方法
应用领域
深入探讨常微分方程在各个领域 中的应用
第七章:多元函数积分学
1
多元函数概念
了解多元函数的定义和性质
2
二重积分
学习如何计算二重积分
3
三重积分
掌握三重积分的计算方法
极限定义
了解极限的定义和概念
极限计算
学习如何计算各种函数的极限
连续性
理解函数的连续性及其重要性
第三章:导数与微分
1
导数定义
掌握导数的定义和计算方法
2
常见导数
掌握常见函数的导数表达式3 Nhomakorabea微分应用
了解微分在实际问题中的应用
第四章:函数的单调性与曲线图
增减性
学习如何判断函数的增减性质
凹凸性
掌握函数的凹凸性质与曲线图

高数ppt课件

高数ppt课件

无穷级数的求和法和乘法运算
求和法
求和法是求无穷级数和的基本方法。对于简单的无穷级数,可以直接计算其和。对于复杂的无穷级数,可能需要 使用一些技巧来求解。
乘法运算
乘法运算是指将两个无穷级数相乘。在乘法运算中,需要特别注意收敛性的变化。如果两个无穷级数相乘后的结 果是收敛的,那么它们的乘积就是收敛的;否则,它们的乘积就是发散的。
总结标词题
利•用文无字穷级内数容表示π • 文字内容
和•e是文高字数内中容另一个 • 重文要字的内应容用。
详细描述
π和e是数学中非常重 要的常数,它们都可 以通过无穷级数来表 示。例如,π可以通
过级数sin(x)/x = π/2, x≠0来表示,而 e可以通过级数1 +
x/1! + x^2/2! + x^3/3! + ...来表示。
多元函数的极值和最小二乘法
多元函数的极值
极值是函数在某点达到的最大或最小值。对 于二元函数f(x,y),如果它在点(x0,y0)达到 极值,那么fx(x0,y0) = 0和fy(x0,y0) = 0。 类似地,对于三元函数f(x,y,z),它在点 (x0,y0,z0)达到极值,那么fx(x0,y0,z0) = 0 、fy(x0,y0,z0) = 0和fz(x0,y0,z0) = 0。
高数的历史和发展
1 2
3
早期起源
自古希腊数学家开始研究极限和微积分的前身,到17世纪牛 顿和莱布尼茨的微积分学革命。
18世纪发展
以拉格朗日、欧拉等数学家对微积分和解析几何的杰出贡献 为标志。
19世纪现状
高数在物理、工程、经济等多领域得到广泛应用,如麦克斯 韦的电磁学理论、傅里叶的三角级数方法等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、证明 y lg x 在( 0, ) 上的单调性. 三、证明任一定义在区间( a , a ) ( a 0 ) 上的函数可表 示成一个奇函数与一个偶函数之和. 四、设 f ( x ) 是以 2 为周期的函数, x 2 ,1 x 0 且 f ( x) ,试在( , ) 上绘出 0, 0 x 1 f ( x ) 的图形. 五、证明:两个偶函数的乘积是偶函数,两个奇函数的 乘积是偶函数,偶函数与奇函数的乘积是奇函数. ax b 六、证明函数 y 的反函数是其本身. cx a e x ex 七、求 f ( x ) x 的反函数,并指出其定义域. x e e
2
t
1 0 x1 设f ( x ) , 求函数 f ( x 3)的定义域. 2 1 x 2

例2
1 0 x1 f ( x) 2 1 x 2 1 0 x31 f ( x 3) 2 1 x 3 2 1 3 x 2 2 2 x 1
y csc x
5.反三角函数
反正弦函数 y arcsin x
y arcsin x
反余弦函数 y arccos x
y arccos x
反正切函数 y arctan x
y arctan x
反余切函数 y arccot x
y arccot x
幂函数,指数函数,对数函数,三角函数和反 三角函数统称为基本初等函数.
则称函数 f ( x )在区间I上是单调增加的;
y
y f ( x)
f ( x2 )
f ( x1 )
o x
I
设函数 f ( x )的定义域为 D, 区间I D,
如果对于区间I 上任意两点x1及 x2 , 当 x1 x2时,
恒有 (2) f ( x1 ) f ( x2 ),
则称函数 f ( x )在区间I上是单调减少的 ;
有理数点
(4) 取最值函数
y max{ f ( x ), g( x )}
y
y min{ f ( x ), g( x )}
y
f ( x) g( x )
o x o
f ( x) g( x )
x
对应法则用不同的 在自变量的不同变化范围中 , 式子来表示的函数,称为分段函数.
例如,
2 x 1, f ( x) 2 x 1,
(
x
D
对应法则f
x0 )
f ( x0 )
自变量
(
W
y
)
因变量
约定: 定义域是自变量所能取的使算式有意义 的一切实数值.
例如, y 1 x 2 1 例如, y 1 x2
D : [1,1] D : ( 1,1)
如果自变量在定 y 义域内任取一个数值 时,对应的函数值总 是只有一个,这种函 W y 数叫做单值函数,否 则叫与多值函数.
二、复合函数 初等函数
1.复合函数
设 y u, u 1 x 2 ,
定义:
y 1 x2
设函数 y f ( u) 的定义域D f , 而函数
f ( x ) f ( x )
称 f ( x )为奇函数;
y
y f ( x)
f ( x)
-x o x x
f ( x )
奇函数
4.函数的周期性:
设函数f ( x )的定义域为D, 如果存在一个不为零的 数l , 使得对于任一 x D, ( x l ) D. 则称f ( x )为周 期函数, l称为f ( x )的周期. 且f ( x l ) f ( x )恒成立.
函数的特性 有界性,单调性,奇偶性,周期性. 反函数
思考题
1 2 设 x 0 ,函数值 f ( ) x 1 x , x 求函数 y f ( x ) ( x 0) 的解析表达式.
思考题解答
1 设 u x
2 1 1 1 1 u 则 f u 1 2 , u u u
故 D f : [3,1]
三、函数的特性
1.函数的有界性:
若X D, M 0, x X , 有 f ( x ) M 成立,
则称函数f ( x )在X上有界.否则称无界.
y
M y=f(x) o 有界 -M X -M M
y
x
x0
o X 无界
x
2.函数的单调性:
设函数 f ( x )的定义域为 D, 区间I D, 如果对于区间I 上任意两点x1及 x2 , 当 x1 x2时, 恒有 (1) f ( x1 ) f ( x2 ),
o
x
-1
x sgn x x
(2) 取整函数 y=[x]
[x]表示不超过 的最大整数
y 4321
x
-4 -3 -2 -1
o -1 1 2 3 4 5
-2 -3 -4
x
阶梯曲线
(3) 狄利克雷函数
1 当x是有理数时 y D( x ) 0 当x是无理数时
y 1 • 无理数点 o x
x
4.常量与变量: 在某过程中数值保持不变的量称为常量,
而数值变化的量称为变量.
注意 常量与变量是相对“过程”而言的. 常量与变量的表示方法: 通常用字母a, b, c等表示常量, 用字母x, y, t等表示变量.
a a0 a a a 0 运算性质: ab a b ;
5.绝对值:
b
x
{ x a x b} { x a x b}
称为半开区间, 记作 [a , b) 称为半开区间, 记作 (a , b] 有限区间
[a ,) { x a x }
( , b) { x x b}
无限区间
o
a o
b
x x
区间长度的定义:
两端点间的距离(线段的长度)称为区间的长度.
(通常说周期函数的周期是指其最小正周期).

3l 2

l 2
l 2
3l 2
四、反函数
y
反函数y ( x )
Q ( b, a )
o
直接函数y f ( x ) P (a , b)
x
直接函数与反函数的图形关于直线 y x 对称.
五、小结
基本概念 集合, 区间, 邻域, 常量与变量, 绝对值. 函数的概念
1 1 x 故 f ( x) . ( x 0) x
2
练 习 题
一、填空题:
3、不等式 x 5 1 的区间表示法是_________. x U ( 0, ) y U ( 0, 2 ) 2 4、设 y x ,要使 时, , 须 __________.
1 5 2 1、若 f 2t ,则 f ( t ) __________ , t t f ( t 2 1) __________ . 1 , x 3 2、若( t ) , sin x , x 3 则( ) =_________,( ) =_________. 6 3
y log 1 x
a
4.三角函数 正弦函数 y sin x
y sin x
余弦函数 y cos x
y cos x
正切函数 y tan x
y tan x
余切函数 y cot x
y cot x
正割函数 y sec x
y sec x
余割函数
y csc x
y
y f ( x)
f ( x1 )
f ( x2 )
o x
I
3.函数的奇偶性:
设D关于原点对称, 对于x D, 有 f ( x ) f ( x ) 称 f ( x )为偶函数;
y
y f ( x)
f ( x )
-x o 偶函数 x
f ( x)
x
设D关于原点对称, 对于x D, 有
( x, y)
x
例如,x y a .
2 2 2
o
x
D
定义: 点集C {( x , y) y f ( x ), x D} 称为
函数y f ( x )的图形.
几个特殊的函数举例
(1) 符号函数
1 y
1 当x 0 y sgn x 0 当x 0 1 当x 0
(是常数)
y x
y x
o
1 y x
1
x
x 2.指数函数 y a
(a 0, a 1)
y ex
1 x y( ) a
y ax
(a 1)

(0,1)
3.对数函数 y loga x
(a 0, a 1)
y ln x
y log a x
(1,0)

(a 1)
确定的数值和它对应,则称 y 是 x 的函数,记作
y f ( x)
因变量
数集D叫做这个函数的定义域 自变量
当x0 D时, 称f ( x0 )为函数在点x0处的函数值.
函数值全体组成的数集 W { y y f ( x ), x D} 称为函数的值域 .
函数的两要素: 定义域与对应法则.
Z----整数集 R----实数集
N Z , Z Q , Q R. 若A B, 且B A, 就称集合A与B相等. ( A B )
数集间的关系:
例如 A {1,2},
C { x x 2 3 x 2 0}, 则 A C .
不含任何元素的集合称为空集. (记作 )
第一节 函数
一、基本概念
1.集合: 具有某种特定性质的事物的总体.
相关文档
最新文档