微电子封装用导电胶的研究
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微电子封装用导电胶的研究
【摘要】随着经济社会的发展和科学技术水平的迅速提高,电子产品逐渐向小型化、数字化、智能化、便携化等方面发展,微电子封装用导电胶以其绿色、环保、无污染的特性逐渐取代了传统的Pn/Sn材料,并作为电子时代工业材料的主流被广泛使用和推广。本文主要研究了微电子封装用导电胶的组成和分类以及不同结构的用途和优势,研究了导电胶的发展进程和可靠性评估,提出了导电胶在微电子封装技术中的作用和价值,并为电子数码技术的不断发展提供了借鉴。
【关键词】微电子封装;导电胶;可靠性;研究进展
一、引言
随着经济全球化的发展和互联网时代的相继到来,电子数码产品广泛在工业、农业、商业等不同领域得到应用。而随着电子数码技术的不断发展,对电子封装技术的要求越来越严格,尤其是从上世纪末起,电子产品逐渐趋向于小型化,自身体积越来越小,如智能手机、笔记本电脑、Mp3、Mp4等产品的相继出现,使得大量的电子产品可以随身携带,为个人的日常工作和生活带来了极大地便利,其半导体芯片的集成度也越来越高,功能也越来越多,数据处理能力由单层处理向多层处理发展,并出现立体化技术。
不同电子数码技术集成化的发展对电子封装提出了更高的要求,数码芯片上I/O的单位面积增加,密度增大。原始的电子封装多采用Pn/Sn材料的焊接,由于当时的数码产品多具有体积巨大,不可携带的特点,Pn/Sn材料具有成本低、稳定性强、结构强度大、加工塑性和润湿度较高等优势而在原始电子封装中广泛应用。然而随着数码产品不断微型化发展,Pn/Sn材料本身的密度大、质量大、扭曲性弱、易腐蚀等弊端逐渐暴露,Pn/Sn逐渐被导电胶取代。大量数据研究表明,铅对于不同年龄段的人群都有着较大的危害,如影响儿童的发育、青少年的反应快慢、成年人的血压和血液循环水平等。而导电胶相对于Pn/Sn材料而言,极大地降低了铅等重金属对人体带来的健康危害,因此得到了广泛推广,微电子封装用导电胶已经成为电子数码技术的一种发展趋势。
电子封装无铅化主要利用高温钎焊技术来加强铅接工艺配合,同时采用新型无铅连接工具制备成特殊的无铅材料,最大程度将铅等重金属含量将至最低。目
前,最具有发展前景的而是以锌为主合金,主要优势为熔点低(240℃)、可塑性强、可与其他金属高温融合等,随着电子数码技术的不断发展逐渐获得了一定价值的商业应用。此外,同样具有明显优势的无铅材料有Sn/Ag和Sn/Ag/Cu,二者共融的熔点只有180℃,而大多数材料的熔点都在220℃以上,这样可以极大地降低了焊接难度和焊接成本,增强系统的功能稳定性。
导电胶主要由无机聚合物的粘合剂填充,采用导电性材料,性能上主要通过有机高分子材料提供物理机械化性能,它与Pn/Sn材料相比,同样无铅污染,焊接时不需要焊前清理和焊后清理,焊接环境相对安全;固化温度低,适用于不同的热敏性元件;能提供不同力合和间距的零件组装,避免了由于热消耗而造成的功率大量损失;导电胶的热固性使得在使用中仅局部加热就能带动整个系统的安全运行。
减少对铅等重金属的使用已经成为全球关注的热点问题,而导电胶的引进在很大技术程度上减弱了这种现象,大量发展微电子封装用导电胶取代Pn/Sn材料,对电子数码技术的发展和对环境方面的保护都有着重要的作用。然而,导电胶由于发展周期不长,目前还没有得到全面的应用和推广,因此,对导电胶的研究还需相关技术人员不断研发、不断创新,从不同角度和领域加强导电胶的应用效果,扩大应用范围。本文主要研究导电胶在微电子封装中的应用,并具体介绍了其研究进展。
二、导电胶的组成与分类
1.导电胶的组成
导电胶是导电性胶粘剂的简称,通过无机胶连接不同材料进行使用,是一种具有导电等基本性能的粘合剂。导电胶一般有导电填充物和导电树脂组成,具体结构包括预聚体、固化剂、增塑剂、稀释剂、导电填料等,其中预聚体包括PU、PE、EU等,主要为增强粘合程度;固化剂包括胺类、磋米类、有机硅酸等化合物,主要与预聚体发生化学反应产生与三维网中聚合物不融合的物质;增塑剂包括甲临苯二乙偏硅酸、磷酸化合物等,主要为提高材料的稳定性和抗冲击能力;稀释剂包括丙酮、乙二醇和甘油等,主要为降低粘度,减少焊接前后的冲洗以增强导电胶的使用寿命;导电填料包括Cu、Ag、Au和碳粉以及复合粉等,主要为提高导电胶的导电性。
2.导电胶的分类
导电胶具有多种类型,在具体分类是可以按照不同标准确定不同的种类。
按照组成的基体不同,导电胶可分为结构性和填充性两大类,其中填充性导电胶由于具有高导电性而广泛使用。在此基础上按照导电性能的强弱又可分为各向同性导电胶和各向异性导电胶,各向同性导电胶是指在不同方向都有相同的导电性,可以提供机械控制和塑化功能,主要适用于便于携带的电子数码产品,因为便携式产品的芯片往往可以随机倒置,但其功能性不可随之发生变化,而各向异性导电胶一般针对同一个方向,如对Z方向发挥作用,而在类似X方向等则变成了不导电的绝缘体,其原理类似于发光二极管的单向导电过程,另一种各向异性还包括不同方向性能不同的研究,如智能手机在观看播放器时,需要XY方向的多层控制,保证手机在不同角度都能使得人们观看到视频的正向角度。在理论上,各向同性导电胶和各向异性导电胶理论上的差异主要是各向同性导电胶是基于渗流理论和填充粒子的形状尺寸决定的,一般情况下φ=10%~20%,而对于各向异性导电胶,渗滤值浓度很高,致使导电胶不能在各个方向上导电,只能在Z方向畅通无阻。由于各向异性导电胶对焊盘的压力不同,因此对胶接工艺和原料配制率的要求比较高,在实际使用中受到了一定的限制。
导电胶按照固化条件可分为热稳定导电胶、高温烧制导电胶、光电子导电胶和固定束导电胶等;按照固化温度又可以分为高温固化导电胶、室温固化导电胶(一般低于150℃)、低温固化导电胶(高于300℃),一般情况下,室温和低温固化时间较长,但是固化程度比较安全稳定,高温固化虽然效率高,但容易对元件和胶体造成损坏。
按导电离子的不同,导电胶还可分为金银铜等通过电镀产生的混合物,在实际使用中,金由于价格昂贵而很少使用,银成为导电胶构成的主要材料之一,不仅可以适应相对高温的环境,还能在潮湿的条件下降低化合物的分解,增强使用寿命,然而为防止银的迁移和失效,镀银导电胶需要长期置于空气中,以防止物理性能的丧失。