工程流体力学实验指导书

合集下载

《工程流体力学》实验指导书剖析

《工程流体力学》实验指导书剖析

《工程流体力学》实验指导书适用专业:机械电子工程上海电机学院2014年9月目录实验一雷诺实验 (1)实验二局部水头损失实验 (5)实验三沿程水头损失实验 (10)实验一雷诺实验一、实验目的和要求1. 观察层流、湍流的流态及其转换过程;2. 测定临界雷诺数,掌握园管流态判别准则;3. 学习应用量纲分析法进行实验研究的方法,确定非圆管流的流态判别准数。

二、实验装置1.实验装置简图实验装置及各部分名称如图1所示。

图1 雷诺实验装置图1. 自循环供水器2. 实验台3. 可控硅无级调速器4. 恒压水箱5. 有色水水管6. 稳水孔板7. 溢流板8. 实验管道9. 实验流量调节阀10. 稳压筒11.传感器12. 智能化数显流量仪2. 装置说明与操作方法供水流量由无级调速器调控,使恒压水箱4始终保持微溢流的程度,以提高进口前水体稳定度。

本恒压水箱设有多道稳水隔板,可使稳水时间缩短到3~5分钟。

有色水经有色水水管5注入实验管道8,可据有色水散开与否判别流态。

为防止自循环水污染,有色指示水采用自行消色的专用色水。

实验流量由调节阀9调节。

流量由智能化数显流量仪测量,使用时须先排气调零,所显示为一级精度瞬时流量值。

水温由数显温度计测量显示。

三、 实验原理1883年, 雷诺(Osborne Reynolds)采用类似于图1所示的实验装置,观察到液流中存在着层流和湍流两种流态:流速较小时,水流有条不紊地呈层状有序的直线运动,流层间没有质点混掺,这种流态称为层流;当流速增大时,流体质点作杂乱无章的无序的直线运动,流层间质点混掺,这种流态称为湍流。

雷诺实验还发现存在着湍流转变为层流的临界流速c v ,c v 与流体的粘性ν、园管的直径d 有关。

若要判别流态,就要确定各种情况下的c v 值,需要对这些相关因素的不同量值作出排列组合再分别进行实验研究,工作量巨大。

雷诺实验的贡献不仅在于发现了两种流态,还在于运用量纲分析的原理,得出了量纲为一的判据——雷诺数Re ,使问题得以简化。

流体力学实验指导书与报告

流体力学实验指导书与报告

流体力学实验指导书与报告所在学院:地侧学院使用专业:安全工程2006.6实验一:压强、流速、流量测定实验一、压强测定试验 知识点:静力学的基本方程;绝对压强;相对压强;测压管;差压计。

1.实验目的与意义1)验证静力学的基本方程;2)学会使用测压管与差压计的量测技能;3)灵活应用静力学的基本知识进行实际工程量测。

2.实验要求与测试内容1)熟练并能准确进行测压管的读数;2)控制与测定液面的绝对压强或相对压强; 3)验证静力学基本方程; 4)由等压面原理分析压差值。

3.实验原理1)重力作用下不可压缩流体静力学基本方程: pz c γ+=2)静压强分布规律:0p p h γ=+式中:z ——被测点相对于基准面的位置高度;p ——被测点的静水压强,用相对压强表示,以下同;0p ——水箱中液面压强;γ——液体容重;h ——被测点在液体中的淹没深度。

3)等压面原理:对于连续的同种介质,流体处于静止状态时,水平面即等压面。

4.实验仪器与元件实验仪器: 测压管、U 型测压管、差压计仪器元件:打气球、通气阀、放水阀、截止阀、量杯 流体介质:水、油、气 实验装置如下图: 5.实验方法与步骤实验过程中基本操作步骤如下:1)熟悉实验装置各部分的功能与作用;2)打开通气阀,保持液面与大气相通。

观测比较水箱液面为大气压强时各测压管液面高度;3)液面增压。

关闭通气阀、放水阀、截止阀,用打气球给液面加压,读取各测压管液面高度,计算液面下a、b、c各点压强及液面压强p;4)液面减压。

关闭通气阀,打开截止阀,放水阀放出一定水量后,读取各测压管液面高度,计算液面下a、b、c各点压强及液面压强p。

6.实验成果实验测定与计算值如下内容:00p=,a、b、c各测压管与U型测压管液面标高∇、压强水头pγ、测压管水头pzγ+;00p>,a、b、c各测压管与U型测压管液面标高∇、压强水头pγ、测压管水头pzγ+;00p<,a、b、c各测压管与U型测压管液面标高∇、压强水头pγ、测压管水头pzγ+;填入表1中。

流体力学实验指导书

流体力学实验指导书

篇一:流体力学实验指导书1流体力学(水力学)实验指导书黎强张永东编西南大学工程技术学院建筑系二零零八年九月流体力学综合实验台简介流体力学综合实验台为多用途实验装置,其结构示意图如图1所示。

图1 流体力学综合试验台结构示意图1.储水箱2.上、回水管3.电源插座4.恒压水箱5.墨盒6.实验管段组7.支架8.计量水箱9.回水管 10.实验桌利用这种实验台可进行下列实验:一、雷诺实验;二、能量方程实验;三、管路阻力实验;1.沿层阻力实验2.局部阻力实验;四、孔板流量计流量系数和文丘里流量系数的测定方法;五、皮托管测流速和流量的方法。

一、雷诺实验1.实验目的(1)观察流体在管道中的流动状态;(2)测定几种状态下的雷诺数;(3)了解流态与雷诺数的关系。

2.实验装置本实验的实验装置为:(1)流体力学综合实验台;(2)雷诺实验台。

在流体力学综合实验台中,雷诺实验涉及的部分有高位水箱、雷诺数实验管、阀门、伯努力方程实验管道、颜料水(蓝墨水)盒及其控制阀门、上水阀、出水阀,水泵和计量水箱等,秒表及温度计自备。

雷诺实验台部件种类同综合实验台雷诺实验部分。

3.实验前准备(1)、将实验台的各个阀门置于关闭状态。

开启水泵,全开上水阀门,把水箱注满水,再调节上水阀门,使水箱的水有少量溢流,并保持水位不变。

(2)、用温度计测量水温。

4.实验方法(1)、观察状态打开颜料水控制阀,使颜料水从注入针流出,颜料水和雷诺实验管中的水迅速混合成均匀的淡颜色水,此时雷诺实验管中的流动状态为紊流;随着出水阀门的不断的关小,颜料水与雷诺实验管中的水渗混程度逐渐减弱,直至颜料水与雷诺实验管中形成一条清晰的线流,此时雷诺实验管中的流动为层流。

(2)测定几种状态下的雷诺系数全开出水阀门,然后在逐渐关闭出水阀门,直至能开始保持雷诺实验管内的颜料水流动状态为层流状态。

按照从小流量到大流量的顺序进行实验,在每一个状态下测量体积流量和水温,并求出相应的雷诺数。

《流体力学》实验指导书

《流体力学》实验指导书

实验(一)流体静力学综合性实验一、实验目的和要求掌握用测压管测量流体静压强的技能;通过测量静止液体点的静水压强,加深理解位臵水头、压强水头、及测管水头的基本概念;观察真空现象,加深对真空度的理解;验证不可压缩流体静力学基本方程;测量油的重度二、实验装臵本实验装臵如图1.1所示4.真空测压管5.U 型测压管6.通气阀7.加压打气球8.截止阀9.油柱10. 水柱11.减压放水阀说明: 1. 所有测压管液面标高均以标尺(测压管2)零度数为基准;2.仪器铭牌所注^B 、▽D 系测点B 、C 、D 标高;若同时取标尺零点作为静力学基本方程的基准,则^B 、▽C .▽D 亦为Z B 、Z C 、Z D3. 本仪器中所有阀门旋柄顺管轴线为开。

4. 测压管读数据时,视线与液面保持水平,读凹液面最低点对应的数据。

三、实验原理1在重力作用下不可压缩流体静力学基本方程pz +=constY或p =+y h式中:z —被测点在基准面以上的位置高度;1.测压管2.带标尺测压管3.连通管 I2367485D图1.1流体静力学综合性实验装臵图p—被测点的静水压强,用相对压强表示,以下同;po—水箱中液面的表面压强Y—液体容重;h—被测点的液体深度。

上式表明,在连通的同种静止液体中各点对于同一基准面的测压管水头相等。

利用液体的平衡规律,可测量和计算出连通的静止液体中任意一点的压强,这就是测压管测量静水压强的原理。

压强水头£和位置水头z之间的互相转换,决定了夜柱高和压差的对应关系:Ap二yKh Y对装有水油(图1.2及图1.3)U型侧管,在压差相同的情况下,利用互相连通的同种液体的等压面原理可得油的比重So有下列关系:Y h0=1—Y h+hw12图1.2图1.3据此可用仪器(不用另外尺)直接测得So。

四、实验方法与步骤1.搞清仪器组成及其用法。

包括:1)各阀门的开关;2)加压方法关闭所有阀门(包括截止阀),然后用打气球充气;3)减压方法开启筒底阀11放水4)检查仪器是否密封加压后检查测管1、2、5液面高程是否恒定。

《流体力学》实验指导书

《流体力学》实验指导书

实验二 雷 诺 数 实 验一、 实验目的1、 观察液体在不同流动状态时流体质点的运动规律2、 观察流体由层流变紊流及由紊流变层流的过度过程3、 测定液体在圆管中流动时的下临界雷诺数2c e R二、 实验原理及实验设备流体在管道中流动,由两种不同的流动状态,其阻力性质也不同。

雷诺数的物理意义,可表征为惯性力与粘滞力之比。

在实验过程中,保持水箱中的水位恒定,即水头H 不变。

如果管路中出口阀门开启较小,在管路中就有稳定的平均速度v ,微启红色水阀门,这是红色水与自来水同步在管路中沿轴线向前流动,红颜色水呈一条红色直线,其流体质点没有垂直于主流方向的横向运动,红色直线没有与周围的液体混杂,层次分明地在管路中流动。

此时,在流速较小而粘性较大和惯性力较小的情况下运动,为层流运动。

如果将出口阀门逐渐开大,管路中的红色直线出现脉动,流体质点还没有出现相互交换的现象,流体的流动呈临界状态。

如果将出口阀门继续开大,出现流体质点的横向脉动,使红色线完全扩散与自来水混合,此时流体的流动状态微紊流运动。

图1雷诺数实验台示意图1.水箱及潜水泵2.接水盒3. 上水管4. 接水管5.溢流管6. 溢流区7.溢流板8.水位隔板9. 整流栅实验管 10. 墨盒 11. 稳水箱 12. 输墨管 13. 墨针 14.实验管15.流量调节阀雷诺数表达式e v dR ν⋅=,根据连续方程:A=v Q ,Qv A=流量Q 用体积法测出,即在Δt 时间内流入计量水箱中流体的体积ΔV 。

tVQ ∆=42d A π=式中:A —管路的横截面积;d —实验管内径;V —流速;ν—水的粘度。

三、实验步骤1、准备工作:将水箱充满,将墨盒装上墨水。

启动水泵,水至经隔板溢流流出,将进水阀门关小,继续向水箱供水,并保持溢流,以保持水位高度H 不变。

2、缓慢开启阀门7,使玻璃管中水稳定流动,并开启红色阀门9,使红色水以微小流速在玻璃管内流动,呈层流状态。

3、开大出口阀门15,使红色水在玻璃管内的流动呈紊流状态,在逐渐关小出口阀门15,观察玻璃管中出口处的红色水刚刚出现脉动状态但还没有变为层流时,测定此时的流量。

工程流体力学实验指导书(石油工程).

工程流体力学实验指导书(石油工程).
孔板流量计原理与文丘里流量计相同,根据能量方程和连续方程可得出不计阻力作用时的文德里流量计(孔板流量计的流量计算公式:
h K Q ∆=理
武中:
g
d
D d D k 24
2
2
22-=
π
(孔板;
g
D d A k 24
2
⎪⎭

⎝⎛-=
(文丘里
( (2211g
p z g p z h ρρ+-+
=∆根据实验室的设备条件,管道的实测流量Q实可由体积法测出。
1号管
2号管
3号管
图5.1流体力学综合实验台示意图
四、实验步骤
1.熟悉仪器,记录有关数据。,
2.启动水泵,打开总进水闸阀,使水进入管道系统;打开1号管和2号管的进水闸阀,确认出水管有稳定出流。
3.检查压差计内是否有气泡。如有气泡,必须排除干净。
4.分别调整1号管和2号管进水闸阀,依次增大流量和依次减小流量。量测各次流量相应的压差值,使用体积法测量实际流量Q (记录水箱高度,使用秒表记录时间。每管各做6次。将数据记录在表5.1中。
五、注意事项
1.改变流量时,需待开关改变后,水流稳定之后(至少需3~5分钟,方可记录。
2.当管内流量较大时,测压管内水面会有波动现象。可读取波动水面的最高与最低读数的平均值作为该次读数。
六、思考题
1.收缩断面前与收缩断面后相比,哪一个压强大?为什么?
2.实验求出的值是大于l,还是小于1?是否合理?3.每次测出流量系数值是否是常数?若不是常数则与哪些因素有关?表5.1数据记录和计算表格数据组数1 2 1号管3 4 5 6 1 2 2号管3 4 5 6压差计读数(cmH2O水箱高度时间(s)测量流量(m /s 3实际流量(m3/s结论:1号管中,流量系数;2号管中,流量系数10

工程流体力学实验指导书(完整)

工程流体力学实验指导书(完整)

《工程流体力学》实验指导书开课单位:机械电子工程系开课实验室:机械电子工程系流体力学实验室编写:邓晓刚审核:李良2011年2月目录目录 (I)前言 (III)工程流体力学实验规程 (IV)(一)水静力学综合实验 (1)一、实验目的 (1)二、实验设备 (1)三、实验原理 (1)四、实验步骤 (2)五、实验数据记录及处理 (3)六、讨论 (3)(二)流线演示实验 (4)一、实验目的 (4)二、实验设备和仪器 (4)三、实验步骤 (4)(三)伯努利能量方程实验测定 (6)一、实验目的 (6)二、实验设备 (6)三、实验准备工作 (7)四、实验步骤 (7)五、结束实验 (8)六、思考 (8)(四)雷诺数的测定 (10)一、实验目的 (10)二、实验装置 (10)三、实验原理 (10)四、实验步骤 (11)五、实验数据记录及计算 (12)六、思考 (12)(五)节流式流量计测量实验 (13)一、实验目的 (13)二、实验原理 (13)四、实验步骤 (14)五、注意事项 (14)六、思考题 (14)(六)流动阻力水头损失测量实验 (16)一、实验目的和要求 (16)二、实验仪器和设备 (16)三、实验原理 (17)四、实验步骤 (17)五、思考 (18)(七)孔口与喷嘴出流实验 (19)一、实验目的 (19)二、实验原理 (19)三、实验设备 (20)四、实验步骤 (20)五、注意事项 (21)六、思考题 (21)前言工程流体力学实验,是工程流体力学课程教学的不可分割的一部分。

通过课带实验,除了验证有关基本定理、巩固学生所学理论知识以外,还可以培养学生正确使用水泵、阀门、压力仪表、各种流量计,正确处理实验数据、分析实验结果以及撰写实验报告的能力。

这对于培养工科学生严谨的科学研究态度,培养应用型本科专门人才具有十分重要的意义。

经过长时间的建设,流体力学实验室已经拥有了一批基本满足本科工程流体力学课带实验需用的实验仪器设备。

工程流体力学实验指导书

工程流体力学实验指导书

(三)伯努利能量方程实验测定一、实验目的1、观察流体流经能量方程试验管的能量转化情况,对实验中出现的现象进行分析,加深对能量方程的理解;2、掌握流速、流量、压强等动水力学水力要素的实验量测技能:3、验证静压原理。

4、进一步掌握有压管流中,动能、压能和位置能三者之间的转换关系。

5、测定管道的测压管水头和总水头值,并绘制管道的测压管水头线及总水头线。

二、实验设备本实验台由压差板、实验管道、水泵、实验桌和计量水箱等组成。

图3.1 能量方程实验台示意图每一组测压管都有两种不同的测点位置:一种是测点处于管道中心位置,称为毕托管测压管(后续课堂内容会讲到),测量对应截面的总水头g u g p Z H 22++=ρ(全压)。

注意这里的速度u 为管道中心处的点流速,与截面平均速度v 有所差异。

但在紊流状态下两者之间差异有限。

另一种是测点处于管道壁面,称为普通测压管,测量对应截面的静压头,即只包含Z 和gp ρ两项。

全压与静压之差,称为动压,即gu 22。

三、实验准备工作1、熟悉实验设备,分清毕托管测压管和普通测压管的区别以及各自表征的物理量。

2、接上各导压胶管;3、检验测压板是否与水平线垂直;4、启动电泵使水工作循环,检查各处是否有漏水的现象。

5、用手堵住出水口突然放水,重复几次,直至使实验管中的气泡排除。

关闭尾阀,检查各个测压管水位高度是否在同一水平线上,如果不在同一水平线上,说明有气泡存在,必须全部排除。

否则测量数据无效。

四、实验步骤1、验证静压原理:启动电泵,关闭给水阀,此时能量方程试验管上各个测压管的液柱高度相同,因管内的水不流动没有流动损失,因此静水头的连线为一平行基准线的水平线,即在静止不可压缩均匀重力流体中,任意点单位重量的位势能和压力势能之和(总势能)保持不变,测点的高度和测点位置的前后无关,记下四组数据于表二的最下方格中。

2、测速:能量方程试验管上的四组测压管的任一组都相当于一个毕托管,可测得管内任一点的流体点速度,本试验已将测压管开口位置在能量方程试验管的轴心,故所测得的动压为轴心处的,即最大速度。

工程流体力学实验指导书(完整)

工程流体力学实验指导书(完整)

《工程流体力学》实验指导书开课单位:机械电子工程系开课实验室:机械电子工程系流体力学实验室编写:邓晓刚审核:李良2011年2月目录目录 (I)前言 (III)工程流体力学实验规程 (IV)(一)水静力学综合实验 (1)一、实验目的 (1)二、实验设备 (1)三、实验原理 (1)四、实验步骤 (2)五、实验数据记录及处理 (3)六、讨论 (3)(二)流线演示实验 (4)一、实验目的 (4)二、实验设备和仪器 (4)三、实验步骤 (4)(三)伯努利能量方程实验测定 (6)一、实验目的 (6)二、实验设备 (6)三、实验准备工作 (7)四、实验步骤 (7)五、结束实验 (8)六、思考 (8)(四)雷诺数的测定 (10)一、实验目的 (10)二、实验装置 (10)三、实验原理 (10)四、实验步骤 (11)五、实验数据记录及计算 (12)六、思考 (12)(五)节流式流量计测量实验 (13)一、实验目的 (13)二、实验原理 (13)四、实验步骤 (14)五、注意事项 (14)六、思考题 (14)(六)流动阻力水头损失测量实验 (16)一、实验目的和要求 (16)二、实验仪器和设备 (16)三、实验原理 (17)四、实验步骤 (17)五、思考 (18)(七)孔口与喷嘴出流实验 (19)一、实验目的 (19)二、实验原理 (19)三、实验设备 (20)四、实验步骤 (20)五、注意事项 (21)六、思考题 (21)前言工程流体力学实验,是工程流体力学课程教学的不可分割的一部分。

通过课带实验,除了验证有关基本定理、巩固学生所学理论知识以外,还可以培养学生正确使用水泵、阀门、压力仪表、各种流量计,正确处理实验数据、分析实验结果以及撰写实验报告的能力。

这对于培养工科学生严谨的科学研究态度,培养应用型本科专门人才具有十分重要的意义。

经过长时间的建设,流体力学实验室已经拥有了一批基本满足本科工程流体力学课带实验需用的实验仪器设备。

流体力学实验指导书_2

流体力学实验指导书_2

实验一 雷诺实验一、实验目的与要求1、了解流体的流动形态:观察实际的流线形状,判断其流动形态的类型;2、熟悉雷诺准数的测定和计算方法;3、确立“层流与湍流与Re 之间有一定关系”的概念。

二、基本原理流体在流动过程中有3种不同的流动形态,即层流、湍流和介于两者之间的过渡流。

雷诺用实验的方法研究流体流动时,发现影响流体流动类型的因素除了流速u 以外,还有管径d 、流体的密度ρ以及粘度μ,由这四个物理量组成的无因次数群μρdu =Re称之为雷诺数。

实验证明,流体在直管内流动时:当Re ≤2000时,流体的流动类型为层流。

当Re ≥4000时,流体的流动类型为湍流。

当2000<Re <4000,流体的流动类型可能是层流,也可能为湍流,将这一范围称之为不稳定的过渡区。

从雷诺数的定义式来看,对于同一管路d 为定值时,u 仅为流量的函数。

对于流体水来讲,ρ及μ仅为温度的函数。

因此确定了温度及流量即可计算出雷诺数Re 。

三、实验装置及流程实验装置如图所示,实验时水从玻璃水槽3流进玻璃管4(内径20mm ),槽内水由自来水供应,供水量由阀6控制,槽壁外有进水稳定槽7及溢流槽10,过量的水进溢流槽10排入图1-3 雷诺示范实验装置1-红墨水瓶 2.6.8.12-阀门 3-玻璃水槽 4-带喇叭口玻璃管(Φ20) 5-进水管 7-进水稳定槽 9-转子流量计 10-溢流槽 11-排水管下水道。

实验时打开阀门8,水即由玻璃槽进入玻璃管,经转子流量计9后,流进排水管排出,用阀8调节水量,流量由转子流量计9测得。

高位墨水瓶贮藏墨水之用,墨水由经墨水调节阀2流入玻璃管4。

四、实验数据记录表表1-2 雷诺实验数据记录表水温__________[℃] 水粘度_______________[10-3×Pa·S]水密度_____________[kg/m3] 管内径_______________[mm]五、讨论1、流量从小做到大,当刚开始湍流,测出雷诺数是多少?与理论值2000有否差距?请分析原因。

流体力学综合实验指导书

流体力学综合实验指导书

流体力学综合实验一、实验目的1.能进行光滑管、粗糙管、闸阀局部阻力测定,测出湍流区阻力系数与雷诺数关系曲线图;2.能进行离心泵特性曲线测定,测出扬程、功率和效率与流量的关系曲线图;3.学习工业上流量、功率、转速、压力和温度等参数的测量方法,了解涡轮流量计、C1000、电动调节阀以及相关仪表的原理和操作。

二、装置整体流程图:1-水箱;2-进口压力变送器;3-离心泵;4-出口压力变送器;5-涡沦流量计;6-管路选择球阀;7-均压环;8-连接均压环和压力变送器球阀;9-局部阻力管上的闸阀;10-差压变送器;11-出水管路闸阀;12-水箱放水阀;13-宝塔接头;14-温度传感器;15-离心泵的管路阀;16-旁路阀;17-电动调节阀;图1 实验装置流程示意图实验三、离心泵特性测定实验一、基本原理离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H 、轴功率N 及效率η与泵的流量Q 之间的关系曲线,它是流体在泵内流动规律的宏观表现形式。

由于泵内部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。

1. 流量的测定流量是在实验过程中设定值,可直接设定流量3m 3/h ——12m 3/h 共取10组数据。

也可设定出口阀的开度从10%——100%共取10组数据。

2.扬程H 的测定与计算 取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方 程: fHgu gp z H gu g p z ∑+++=+++2222222111ρρ (1-1) 由于两截面间的管长较短,通常可忽略阻力项f H ∑,速度平方差也很小故可忽略,则有 (=H gp p z z ρ1212)-+- (1-2)式中: 12z z -,表示泵出口和进口间的位差,m ;ρ——流体密度,kg/m 3 ; g ——重力加速度 m/s 2;p 1、p 2——分别为泵进、出口的真空度和表压,Pa ; u 1、u 2——分别为泵进、出口的流速,m/s ; z 1、z 2——分别为真空表、压力表的安装高度,m 。

《工程流体力学》实验指导书

《工程流体力学》实验指导书

《工程流体力学》实验指导书适用专业:机械电子工程上海电机学院2014年9月目录实验一雷诺实验 (1)实验二局部水头损失实验 (5)实验三沿程水头损失实验 (10)实验一雷诺实验一、实验目的和要求1. 观察层流、湍流的流态及其转换过程;2. 测定临界雷诺数,掌握园管流态判别准则;3. 学习应用量纲分析法进行实验研究的方法,确定非圆管流的流态判别准数。

二、实验装置1.实验装置简图实验装置及各部分名称如图1所示。

图1 雷诺实验装置图1. 自循环供水器2. 实验台3. 可控硅无级调速器4. 恒压水箱5. 有色水水管6. 稳水孔板7. 溢流板8. 实验管道9. 实验流量调节阀10. 稳压筒11.传感器12. 智能化数显流量仪2. 装置说明与操作方法供水流量由无级调速器调控,使恒压水箱4始终保持微溢流的程度,以提高进口前水体稳定度。

本恒压水箱设有多道稳水隔板,可使稳水时间缩短到3~5分钟。

有色水经有色水水管5注入实验管道8,可据有色水散开与否判别流态。

为防止自循环水污染,有色指示水采用自行消色的专用色水。

实验流量由调节阀9调节。

流量由智能化数显流量仪测量,使用时须先排气调零,所显示为一级精度瞬时流量值。

水温由数显温度计测量显示。

三、 实验原理1883年, 雷诺(Osborne Reynolds)采用类似于图1所示的实验装置,观察到液流中存在着层流和湍流两种流态:流速较小时,水流有条不紊地呈层状有序的直线运动,流层间没有质点混掺,这种流态称为层流;当流速增大时,流体质点作杂乱无章的无序的直线运动,流层间质点混掺,这种流态称为湍流。

雷诺实验还发现存在着湍流转变为层流的临界流速c v ,c v 与流体的粘性ν、园管的直径d 有关。

若要判别流态,就要确定各种情况下的c v 值,需要对这些相关因素的不同量值作出排列组合再分别进行实验研究,工作量巨大。

雷诺实验的贡献不仅在于发现了两种流态,还在于运用量纲分析的原理,得出了量纲为一的判据——雷诺数Re ,使问题得以简化。

流体力学实验指导书工程力学

流体力学实验指导书工程力学

前言流体力学实验是学习流体力学课程的一个重要环节。

当我们感到流体力学的理论、公式难于理解和掌握的时候,实验将帮助我们解决一个又一个难题。

学完这门课之后的若干年,可能对流体力学的理论、公式的记忆已很淡薄,但一些实验方法、测试技术仍然记忆犹新,由此可见实验对于课程学习的重要作用。

事实上,实验方法与理论研究和数值计算一样都是流体力学研究的基本方法。

实验不但能检验理论和计算是否正确,还可以发现新的流动现象,探索新的理论方法。

实验技能是每一个科学工作者和工程技术人员的基本素质。

流体力学实验室为开放型实验室,全天为学生开放,只需提前三天预约即可。

为了保证实验的教学质量。

要求学生做到以下几点。

1、实验之前必须预习实验指导书及有关理论,了解实验的目的,仪器设备、实验原理、实验方法、操作规程及数据处理等等。

上实验课时,接受指导教师检查。

预习不合格者,不能参加实验。

2、在实验室中,要专心致志,遵守纪律,接受教师的指导与管理。

3、实验小组要协调一致,既要取得准确的测量数据,又要使每个学生掌握实验中的各个测试环节。

4、当场计算实测数据,以便检查实验的正确性。

5、实验观测完毕,应将仪器设备恢复为启用前的状态,请教师检查后才能离开实验室。

6、在实验过程中,如遇仪器设备工作不正常,应立即报告教师,在教师指导下排除故障,不得擅自拆卸。

7、爱护仪器设备,细心操作,倘有损坏,应立即报告教师,按规定处理。

8、实验后的一周内,提出个人的实验报告送教师审批。

要求报告书写工整,图表清晰、结果正确;有不符合要求者,应与实验室联系重新补做。

流体力学实验室2012年春实验一雷诺实验(一)实验目的1、观察液体在层流和紊流状态时流体质点的运动规律。

2、观察流体由层流变为紊流及由紊流变为层流的过渡过程。

Re。

3、测定液体在圆管中流动时的下临界雷诺数cr(二)实验装置图2—1 雷诺实验仪1—装红颜色水的水箱2—软管(三)实验原理流体在管道中流动,有两种不同的流动状态,其阻力性质也不同。

流体力学实验指导书(2012.9.16)

流体力学实验指导书(2012.9.16)

实验一 能量转换实验一、实验目的1、熟悉流体在流动过程中各种能量和水头的概念及其转换关系,加深对伯努利方程的理解;2、观察流体流速随管径变化的规律。

二、实验原理1、总水头的分析:总水头为测压管水头与流速水头之和,任意两截面间的能量方程为21,2111222222--++=++f H gv g p Z g v g p Z ρρ 。

图一所示实验装置中,从实验可以观测到B 截面的总水头低于A 截面的总水头,这符合伯努利方程。

2、A 、B 截面间压强水头的分析:由于A 、B 两截面处于同一水平位置,B 截面面积比A 截面面积大。

所以B 截面处的流速比A 截面处小。

设流体从A 截面流到B 截面的水头损失为B A f H -,,在A 、B 两截面间列伯努利方程。

B A f BB B A A A H gv g p Z g v g p Z -+++=++,2222ρρ B A Z Z =B A f BA AB H gv g v g p g p ---=-,2222ρρ 即A 、B 两截面处的压强水头之差,决定于ggBA2222νν-和B A f H -,。

当ggBA2222νν-大于B A f H -,时,压强水头的增值为正,反之,压强水头的增值为负。

3、C 、D 截面间压强水头的分析:出口阀全开时,由于C 、D 截面积相等,所以C 、D 两截面处的流速相等,即流速水头相等;设流体从C 截面流到D 截面的水头损失为D C f H -, ,在C 、D 两截面间列伯努利方程。

D C f DD D C C C H gv g p Z g v g p Z -+++=++,2222ρρgv g v DC 2222=D C f D C CD H Z Z gp g p ---=-,ρρ 即C 、D 两截面压强水头之差,决定于)(D C Z Z -和D C f H -,。

当)(D C Z Z -大于D C f H -,时,压强水头的增值为正,反之,压强水头的增值为负。

流体力学实验指导书20151007.(DOC)

流体力学实验指导书20151007.(DOC)

工 程 流 体 力 学实验指导与实验报告姓 名:学 号:班 级:西南科技大学制造科学与工程学院中心实验室二零一五年十月目录实验说明 (I)TXZH-3型流体力学综合实验装置说明.............................................................................................. I I一、装置组成 (II)二、实验内容 (II)三、实验台参数 (II)四、实验装置组成 (III)实验一雷诺实验 (1)一、实验目的 (1)二、实验装置 (1)三、实验原理 (1)四、实验方法与步骤 (1)实验报告一雷诺实验 (4)1. 实验数据表 (4)2. 计算过程 (4)3. 实验结果分析 (5)4. 思考题 (5)实验二伯努利方程实验 (6)一、实验目的 (6)二、实验装置 (6)三、实验原理 (6)四、实验方法和步骤 (7)五、实验数据记录 (8)实验报告二伯努利方程实验 (9)1. 实验数据表 (9)2. 计算过程 (9)3. 实验结果分析 (10)4. 思考题 (11)实验三文丘里实验 (12)一、实验目的 (12)二、实验装置 (12)三、实验原理 (12)四、实验操作与步骤 (13)五、实验数据记录 (13)实验报告三文丘里实验 (14)1. 实验数据表 (14)2. 计算过程 (14)3. 实验结果分析 (15)4. 思考题 (15)实验说明工程流体力学实验作为《液压与气压传动》课程的随课实验,开设该实验的目的是通过本实验的教学,使学生初步了解流体力学的研究方法,学习流体力学实验中有关参数(如温度、流量、水位、测压管水头、总水头等)的测量;培养学生观测实验现象、正确记录与处理数据和运用所学知识分析实验结果的可靠性的能力。

通过实验验证工程流体力学主要理论的正确性,巩固加深对这些理论的理解。

培养学员严肃、认真的科学态度和严格、细致的工作作风。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工程流体力学实验指导书与报告华中科技大学交通学院性能实验室2 00 6.9(一) 不可压缩流体恒定流能量方程(伯诺里方程)实验一、实验目的要求1.验证流体恒定总流的能量方程;2.通过对动水力学诸多水力现象的实验分析研讨,进一步掌握有压管流中动水力学的能量转换特性;3.掌握流速、流量、压强等动水力学水力要素的实验量测技能。

二、实验装置本实验的装置如图2.1所示。

说明本仪器测压管有两种:1.毕托管测压管(表2.1中标*的测压管),用以测读毕托管探头对准点的总水头)2(2g u pZ H ++='γ,须注意一般下H ’与断面总水头)2(2gv p Z H ++=γ不同(因一般v u ≠),它的水头线只能定性表示总水头变化趋势;2.普通测压管(表2.1未标*者),用以定量量测测压管水头。

实验流量用阀13 调节,流量由体积时间法(量筒、秒表另备)、重量时间法(电子称另备)或电测法测量(以下实验类同)。

三、实验原理在实验管路中沿管内水流方向取n 个过水断面。

可以列出进口断面(1)至另一断面(i)的能量方程式(i=2,3,……,n)i i i i i hw gv a p Z g v a p Z ,122111122+++=++γγ取121====n a a a Λ,选好基准面,从已设置的各断面的测压管中读出γpZ +值,测出通过管路的流量,即可计算出断面平均流速v 及gav 22,从而即可得到各断面测管水头和总水头。

四、实验方法与步骤1.熟悉实验设备,分清哪些测管是普通测压管,哪些是毕托管测压管,以及两者功能的区别。

2.打开开关供水,使水箱充水,待水箱溢流,检查调节阀关闭后所有测压管水面是否齐平。

如不平则需查明故障原因(例连通管受阻、漏气或夹气泡等)并加以排除,直至调平。

3.打开阀13,观察思考 1)测压管水头线和总水头线的变化趋势;2)位置水头、压强水头之间的相互关系;3)测点(2)、(3)测管水头同否?为什么? 4)测点(12)、(13)测管水头是否不同?为什么? 5)当流量增加或减少时测管水头如何变化?4.调节阀13开度,待流量稳定后,测记各测压管液面读数,同时测记实验流量(毕托管供演示用,不必测记读数)。

5.改变流量2次,重复上述测量。

其中一次阀门开度大到使19号测管液面接近标尺零点。

五、实验成果及要求 ’ 1.记录有关常数均匀段D1= cm 缩管段D2= cm 扩管段D3= cm 水箱液面高程=∇0 cm 上管道轴线高程=∇z cm 实验装置台号No______________(2).标“*”者为毕托管测点(测点编号见图2.2)。

(3).测点2、3为直管均匀流段同一断面上的两个测压点,10、11为弯管非均匀流段同一断面上的两个测点。

2.量测(γpZ +)并记人表2.2表2.2 测记(γpZ +)数值表 (基准面选在标尺的零点上) 单位:cm3.计算流速水头和总水头。

4.绘制上述成果中最大流量下的总水头线E -E 和测压管水头线P -P(轴向尺寸参见图2.2,总水头线和测压管水头线可以绘在图2.2上)。

提示:1.P -P 线依表2.2数据绘制,其中测点10、11、13数据不用; 2.E -E 线依表2.3(2)数据绘制,其中测点10、11数据不用; 3.在等直径管段E -E 与P -P 线平行。

图2.2六、成果分析及讨论1.测压管水头线和总水头线的变化趋势有何不同?为什么?2.流量增加,测压管水头线有何变化?为什么?3.测点2、3和测点10、11的测压管读数分别说明了什么问题?☆4.试问避免喉管(测点7)处形成真空有哪几种技术措施?分析改变作用水头(如抬高或降低水箱的水位)对喉管压强的影响情况。

5.毕托管所显示的总水头线与实测绘制的总水头线一般都略有差异,试分析其原因。

表2.3 计算数值表(2) 总水头(gav pZ 22++γ) 单位:cm(二)不可压缩流体恒定流动量定律实验一、实验目的要求1.验证不可压缩流体恒定流的动量方程;2. 通过对动量与流速、流量、出射角度、动量矩等因素间相关性的分析研讨,进一步掌握流体动力学的动量守恒定理;3.了解活塞式动量定律实验仪原理、构造,进一步启发与培养创造性思维的能力。

二、实验装置本实验的装置如图3.1所示。

自循环供水装置1由离心式水泵和蓄水箱组合而成。

水泵的开启、流量大小的调节均由调速器3控制。

水流经供水管供给恒压水箱5,溢流水经回水管流回蓄水箱。

流经管嘴6的水流形成射流,冲击带活塞和翼片的抗冲平板9,并以与入射角成90o的方向离开抗冲平板。

抗冲平板在射流冲力和测压管8中的水压力作用下处于平衡状态。

活塞形心水深hc可由测压管8测得,由此可求得射流的冲力,即动量力F。

冲击后的弃水经集水箱7汇集后,再经上回水管10流出,最后经漏斗和下回水管流回蓄水箱。

为了自动调节测压管内的水位,以使带活塞的平板受力平衡并减小摩擦阻力对活塞的影响,本实验装置应用了自动控制的反馈原理和动摩擦减阻技术,其构造如下:带活塞和翼片的抗冲平板9和带活塞套的测压管8如图3.2所示,该图是活塞退出活塞套时的分部件示意图。

活塞中心设有一细导水管a ,进口端位于平板中心,出口端伸出活塞头部,出口方向与轴向垂直。

在平板上设有翼片b ,活塞套上设有窄槽c 。

图3.2 图3.3工作时,在射流冲击力作用下,水流经导水管a 向测压管内加水。

当射流冲击力大于测压管内水柱对活塞的压力时,活塞内移,窄槽c 关小,水流外溢减少,使测压管内水位升高,水压力增大。

反之,活塞外移,窄槽开大,水流外溢增多,测管内水位降低,水压力减小。

在恒定射流冲击下,经短时段的自动调整,即可达到射流冲击力和水压力的平衡状态。

这时活塞处在半进半出、窄槽部分开启的位置上,过a 流进测压管的水量和过c 外溢的水量相等。

由于平板上设有翼片b ,在水流冲击下,平板带动活塞旋转,因而克服了活塞在沿轴向滑移时的静摩擦力。

为验证本装置的灵敏度,只要在实验中的恒定流受力平衡状态下,人为地增减测压管中的液位高度,可发现即使改变量不足总液柱高度的±5‰(约0.5~lmm),活塞在旋转下亦能有效地克服动摩擦力而作轴向位移,开大或减小窄槽c ,使过高的水位降低或过低的水位提高,恢复到原来的平衡状态。

这表明该装置的灵敏度高达0.5%,亦即活塞轴向动摩擦力不足总动量力的5‰。

三、实验原理恒定总流动量方程为)(1122v v Q F ρρρββρ-=取脱离体如图3.3所示,因滑动摩擦阻力水平分力X x F f %5.0<,可忽略不计,故x 方向的动量方程化为)0(4112x cc x v Q D h A p F βρπγ-=-=-= 即 04211=-D h Qv c x γπρβ式中: c h ——作用在活塞形心处的水深; D ——活塞的直径; Q ——射流流量; x v 1——射流的速度; 1β——动量修正系数。

实验中,在平衡状态下,只要测得流量Q 和活塞形心水深hc ,由给定的管嘴直径d 和活塞直径D ,代入上式,便可率定射流的动量修正系数1β值,并验证动量定律。

其中,测压管的标尺零点已固毫在活塞的园心处,因此液面标尺读数,即为作用在活塞园心处的水深。

四、实验方法与步骤1.准备 熟悉实验装置各部分名称、结构特征、作用性能,记录有关常数。

2.开启水泵 打开调速器开关,水泵启动2~3分钟后,关闭2~3秒钟,以利用回水排除离心式水泵内滞留的空气。

3.调整测压管位置 待恒压水箱满顶溢流后,松开测压管固定螺丝,调整方位,要求测压管垂直、螺丝对准十字中心,使活塞转动松快。

然后旋转螺丝固定好。

4.测读水位 标尺的零点已固定在活塞园心的高程上。

当测压管内液面稳定后,记下测压管内液面的标尺读数,即hc 值。

5.测量流量 用体积法或重量法测流量时,每次时间要求大于20秒,若用电测仪测流量时,则须在仪器量程范围内。

均需重复测三次再取均值。

6.改变水头重复实验 逐次打开不同高度上的溢水孔盖,改变管嘴的作用水头。

调节调速器,使溢流量适中,待水头稳定后,按3—5步骤重复进行实验。

7.验证02≠x v 对x F 的影响 取下平板活塞,使水流冲击到活塞套内,调整好位置,使反射水流的回射角度一致,记录回射角度的目估值、测压管作用水深hc 和管嘴作用水头Ho 。

五、实验成果及要求1.记录有关常数。

实验装置台号NO____________ 管嘴内径d= cm ,活塞直径D= cm 。

2.设计实验参数记录、计算表,并填入实测数据。

3.取某一流量,绘出脱离体图,阐明分析计算的过程。

六、实验分析与讨论1.实测β(平均动量修正系数)与公认值(05.1~02.1=β)符合与否?如不符合,试分析原因。

2.带翼片的平板在射流作用下获得力矩,这对分析射流冲击无翼片的平板沿x 方向的动量方程有无影响?为什么?3.若通过细导水管的分流,其出流角度与2v 相同,对以上受力分析有无影响? 4.滑动摩擦力x f 为什么可以忽略不计?试用实验来分析验证x f 的大小,记录观察结果。

(提示:平衡时,向测压管内加入或取出1mm 左右深的水量,观察活塞及液位的变化)。

5.x v 2若不为零,会对实验结果带来什么影响?试结合实验步骤7的结果予以说明。

(三)毕托管测速实验一、实验目的和要求1.通过对管嘴淹没出流点流速及点流速系数的测量,掌握用毕托管测量点流速的技能; 2. 了解普朗特型毕托管的构造和适用性,并检验其量测精度,进一步明确传统流体力学量测仪器的现实作用。

二、实验装置本实验的装置如图4.1所示。

图4.1 毕托管买验装置图1.自循环供水器; 2.实验台; 3.可控硅无级调速器; 4.水位调节阀; 5.恒压水箱; 6.管嘴; 7.毕托管; 8.尾水箱与导轨; 9.测压管; 10.测压计; 11.滑动测量尺(滑尺); 12.上回水管。

说明经淹没管嘴6,将高低水箱水位差的位能转换成动能,并用毕托管测出其点流速值。

测压计10的测压管1、2用以测量高、低水箱位置水头,测压管3、4用以测量毕托管的全压水头和静压水头。

水位调节阀4用以改变测点的流速大小。

三、实验原理gc k h k h g c u 22=∆=∆= (4.1)式中 u ——毕托管测点处的点流速; c ――毕托管的校正系数;h ∆――毕托管全压水头与静水压头差。

H g u ∆'=2ϕ (4.2)联立求解上两式可得H h c ∆∆='ϕ (4.3)式中 u ——测点处流速,由毕托管测定; ϕ'——测点流速系数;△H ――管嘴的作用水头。

四、实验方法与步骤1.准备 (a)熟悉实验装置各部分名称、作用性能,搞清构造特征、实验原理。

(b)用医塑管将上、下游水箱的测点分别与测压计中的测管1、2相连通。

相关文档
最新文档