高等土力学

合集下载

高等土力学-李广信-清华版

高等土力学-李广信-清华版
各种三轴试验的应力路径见图 1.1.8,各应力状态特性见表 1‐1。
7
第一章 土工试验及Байду номын сангаас试
2. 三轴试验的一些问题 尽管三轴试验应力状态比较简单,边界影响也不是很严重,但仍存在一些问题。
(1) 边界条件的影响
由于顶帽和底座与试样间的摩擦力,使试样两端存在剪应力,从而形成对试样的附加约束,这 样在压缩试验中试样破坏时呈鼓形而拉伸试验时试样呈腰鼓形(颈缩)。这使试样中应力、应变不均
1.1.3 三轴试验 1930 年卡蕯格兰德(A.Casagrande)研究用圆柱形试样的压缩代替直剪仪以确定土的强度指
标,这就成了目前广泛使用的三轴仪和三轴试验。它可以完整地反映试样受力变形直到破坏的全过
程。因而既可作强度试验;也可作应力应变关系试验。它可以模拟不同工况;也可很好地控制排水 条件;并且可以进行一些不同应力路径的试验。三轴试验中试样应力状态明确;应变量测简单可靠; 可较容易判断试样的破坏;操作比较简单。这样,三轴仪成为土力学实验室中不可缺少的仪器。
1. 三轴仪及几种不同应力路径的三轴试验 图 1.1.5 表示的是三轴仪及其试样的应力状态。试样被橡皮膜包裹放在压力室中的压力水中,对
于饱和试样,排水试验中可通过接通试样的排水管量测试样的体积变化;在不排水试验中可通过孔
压传感器量测试样中的孔隙水压力。当首先施加室压(围压)σ c 时,则试样为各向等压应力状态, 即σ 1 = σ 2 = σ 3 = σ c ;随后通过活塞施加轴压,则在轴向产生偏差应力σ 1 − σ 3 ,设σ 1 = σ a ,σ a
非饱和土、区域性土、人工复合土等。 3. 试验是确定各种理论参数的基本手段。 4. 试验是验证各种理论的正确性及实用性的主要手段。 5. 足尺试验、模型试验可以验证土力学理论与数值计算结果的合理性;也是认识和解决实际

高等土力学

高等土力学

一、土质学知识点:土的来源:土是母岩经过成土作用(风化、搬运、沉积)形成的松散堆积物质。

因此,土是由岩石风化而来的。

另一方面,沉积岩是土经过成岩作用形成的岩石,因此,土和岩石实际上是互为物质来源,在地质历史时期是相互转化的。

岩土循环过程:土-(成岩作用:压密、胶结、结晶)-沉积岩-(变质作用)-变质岩-(融化)-岩浆-(侵入、喷出)-火成岩-(成土作用:风化、侵蚀、搬运)-土。

其中沉积岩和变质岩可直接成土,火成岩可成为变质岩。

成土作用(风化、搬运、沉积)举例:●风化(风力侵蚀):海蚀风、风蚀城堡、风蚀柱、风蚀蘑菇、风蚀洼地、戈壁滩●搬运:流水侵蚀(V形谷、沟谷、峡谷、瀑布);冰川侵蚀(角峰、U形谷、峡湾),海浪侵蚀。

●堆积:冰川堆积,风沙堆积,风力堆积(沙漠中,带有大量沙粒的气流,如果遇到灌丛或石块,风沙受阻堆积下来,就形成沙丘。

需利用植被阻滞),流水沉积(山区洪积扇、河口三角洲)。

—————————————土中矿物:原生矿物(母岩中的矿物未经改变留在土体中的矿物叫原生矿物。

主要是性质稳定的石英、长石、云母),次生矿物(土壤形成过程中以及土壤形成以后生成的新的无机矿物。

传统指次生粘土矿物:高岭石、伊利石、蒙脱石),水溶盐(存在于土壤孔隙水中的可溶性盐),有机质(存在于土壤中的动植物分解的残骸,彻底分解的有机质称为腐殖质),次生氧化物和难溶盐(存在于土颗粒间起胶结作用的物质,使土的性质随时间变化)。

—————————————土的分类:1.按土堆积的地点与母岩关系分:●残积土(母岩风化后未经搬运而与母岩处于同一地点的土叫残积土)●坡积土(母岩风化后经过重力短距离搬运的土)●运积土(岩石风化后经过搬运作用而存在于与母岩有一定距离的土),运积土按搬运力不同分为洪积土、冰渍土、冲积土、风积土;2.按土的沉积环境分:残积土、动水沉积土(坡积土,洪积土,冲积土)、静水沉积土(湖相沉积土,海相沉积土)、风积土、冰渍土。

高等土力学

高等土力学

一、名词解释 1、固结:根据有效应力原理,在外荷载不变的条件下,随着土中超静孔隙水压力的消散,有效应力将增加,土体将被不断压缩,直至达到稳定,这一过程称为~。

单向固结:土体单向受压,孔隙水单向渗流的条件下发生的固结。

2、固结度:在某一荷载作用下,经过时间t后土体固结过程完成的程度。

3、平均固结度:在某一荷载作用下,经过时间t后所产生的固结变形量与该土层固结完成时最终固结变形量之比称为~。

4、固结系数:反映土的固结特性,孔压消散的快慢,与渗透系数k成正比,与压缩系数a成反比,(1)vvwkeCaγ+=⋅ 5、加工硬化(应变硬化):正常固结粘土和松砂的应力随应变增加而增加,但增加速率越来越慢,最后趋于稳定。

6、加工硬化定律(理论):计算一个给定的应力增量引起的塑性应变大小的准则。

7、加工软化(应变软化):在密砂和超固结土的试验曲线中,应力一般是开始时随应变增加而增加,达到一个峰值后,应力随应变增大而减小,最后趋于稳定。

8、压硬性:土的变形模量随围压增加而提高的现象。

9、剪胀性:由剪应力引起的体积变化,实质上是由于剪应力引起的土颗粒间相互位置的变化,使其排列发生变化,加大颗粒间的孔隙,从而体积发生了变化。

10、屈服准则:可以用来弹塑性材料被施加应力增量后是加载还是卸载或是中性变载,即是否发生变形的准则。

屈服准则用几何方法来表示即为屈服面(轨迹)。

11、流动准则:在塑性理论中,用于确定塑性应变增量的方向或塑性应变增量张量的各个分量间的比例关系的准则,也叫做正交定律。

塑性势面g与屈服面f重合(g=f),称为相适应的~;如果gf≠,即为不相适应流动规则。

12、物态边界面:正常固结粘土'p,'q和v三个变量间存在着唯一性关系,所以在 ''pqv−−三维空间上形成一个曲面称为~,它是以等压固结线NCL和临界状态线CSL为边界的。

13、临界状态线:初始等向压缩曲线由于偏应力的增加,土体中剪应力增加,孔隙比改变,AB曲线在三维空间坐标系中脱离原水平面e-p向上方移动,达到破坏时,对应的空间曲线叫~。

高等土力学笔记

高等土力学笔记

第一章绪论一、土力学的研究对象土土体土:天然的地质材料。

岩石:经过风化、搬运/迁移、沉积变成了土。

土是第四纪沉积物,由岩石碎块、矿物颗粒、粘土矿物组成的松散集合体。

土的基本性质:非均质,不连续,各相异性,抗拉强度低,(tension weak)松散性,孔隙性,多相性,在渗流压力下的破碎性,力学压缩性,渗透性。

土力学的研究内容:1、土的工程特性。

2、土工建筑物的变形固结和稳定性。

学科特点:综合性强、经验性强、地区性强(区域土、特殊土)。

土质学是从地质学的角度出发研究土的组成成分、成因、变形机理、强度及其相互关系,并以求能进一步改善土质。

土力学是从工程力学的角度,通过实验来建立物理方程和分析工程特性,即,由控制方程得到土体的应力分布、变形及稳定性。

土力学发展简史沈珠江先生指出现代土力学应该由一个模型、三个理论和四个分支组成,一个模型是指土的本构模型;三个理论是指非饱和土固结理论、液化破坏理论和逐渐破坏理论;四个分支是指理论土力学、计算土力学、试验土力学和应用土力学。

液化破坏理论:动态液化、静态液化、稳定状态稳态强度。

二、土的变形与强度特性1、一般连续介质材料的变形特征(1)、弹性线性弹性、非线性弹性,所谓弹性就是说卸载后没有残余变形,加卸载都是同一路径即沿原曲线回到原点。

弹性的特点:①、加卸载同径,无残余变形 ②、应力应变一一对应③、线弹性时叠加原理成立 ④、与应力路径及应力历史无关σ=E ε;τ=G τ;γ=E/2(1+μ)。

σij p (平面应力) εV (体积应变) εijq (广义剪应力)γ(剪切应变)由上图知:对于弹性材料,剪应力与体积应变无关,而正应力与剪切应变也无关;即平面应力p 于广义剪应变γ无关,广义剪应力q 与体积应变εV 无关。

三向应力状态下的广义胡克定律为:εX = [σX — γ ( σY +σZ )]/E γxy = τXY /G 体积变形模量(Bulk Modulus ):m v vpK σεε==, 3m v m K K σεε==。

高等土力学

高等土力学

高等土力学在“三高”公路即将竣工之际,交通部科技司组织编写了《“三高”公路用土力学》这本书。

《土力学》是交通土建专业的一门主干专业课,是研究土的物理力学性质及其应用的学科。

该书系统地介绍了土的基本性质、土的物理性质试验方法、土的渗透性试验、土中应力测定、压缩性试验和地基承载力试验、土的动力特性及地基变形和稳定分析、土坡稳定性分析和土的抗剪强度等,其目的在于使学生全面地、完整地掌握土力学的基本概念、基本理论、基本计算方法,培养他们对土力学问题的综合分析能力。

高等土力学的特点是: 1、它们从土的基本性质出发,采用普遍适用的物理力学理论和实验方法,以近代的观点来看待问题; 2、研究土体的各向异性,进行非饱和土的变形和渗流特征的研究;应当指出的是:这种统一的概念的形成不仅有赖于教师的讲授,而且也取决于学生自己认真的读书和思考。

学习过程应当包括两个阶段:第一阶段(高等土力学课程总学时为64学时)是全面了解本课程的性质、任务,掌握本课程的基本内容,了解国内外的研究现状和发展趋势,明确学习目的和要求。

重点放在理论联系实际方面,使学生初步了解到这门课程所涉及的基础理论和基本计算方法,同时进行这门课程所需要的试验方法的训练。

3。

第二阶段(包括必修环节)是以上一阶段的学习为基础,结合专业课的讲授和课程设计,对土力学的基本理论和方法进行较深入的学习和研究。

最后在进行毕业设计和撰写毕业论文时,能把所学的知识加以综合,运用于具体的问题中去。

这样,才能真正达到本课程所要求的目标。

只要熟练掌握了上述知识,就可以提高我们分析土力学问题的能力。

但是更重要的是,还要注意运用这些基本理论解决实际工作中的土力学问题。

下面我们以一个小的例子来说明高等土力学的重要性。

如果我们每个人都能够遵守交通部制订的有关“三高”公路的规范,那么一定会减少对土体强度和变形的计算错误。

而在施工的过程中由于采用了新技术,这些计算出来的数据又直接影响着路基的质量。

高等土力学第一章 课件

高等土力学第一章  课件

土的动应力-应 变关系
土的动力性质分 类
地震工程中的土动力学问题
土的动力性质:土的动剪切强度、动压缩强度和阻尼比等 地震工程中的土动力学问题:地震引起的土体液化、震陷、滑坡等 土的动力学模型:土的动力学本构模型、数值模拟方法等 抗震设计方法:基于土动力学原理的抗震设计方法、土体加固技术等
抗震设计方法与措施
土的应力-应变关系
土的应变:土体变形的程度
土的应力:土体受到的压力 或拉力
土的应力-应变关系曲线: 描述土的应力与应变之间的
关系
土的应力-应变关系的影响 因素:如土的种类、含水率、
温度等
04
土的强度与稳定性
土的强度
土的强度定义:土体抵抗剪切破坏的极限能力
土的强度分类:天然强度、有效强度、瞬时强度
地下水渗流 对工程的影 响
排水设计的 基本原则和 方法
排水设施的 种类和特点
排水设施的 布置和设计 要点
排水设施的 施工和维护
渗流对土体稳定性的影响
渗流现象及其产生原因 渗流对土体稳定性的影响 土体排水与加固措施 实际工程中的应用与案例分析
06
土的动力性质与地 震工程
土的动力性质
土的动强度
土的动变形
土力学的基本原理和概念 土力学在土木工程中的应用范围 土力学在土木工程中的具体应用案例 高等土力学在土木工程中的重要性
高等土力学在水利工程中的应用
水利工程中的土压力问题:介绍土压力的 产生、分类和计算方法,以及在水利工程 中的应用。
水利工程中的渗流问题:介绍渗流的基本 原理、计算方法和在水利工程中的应用, 包括堤坝、水库等。
土的物理性质
土的分类:根据土的颗粒大小、矿物成分、结构等特点进行分类 土的物理性质指标:包括密度、含水量、孔隙率、塑性指数等,用于描述土的物理性质 土的力学性质:包括抗剪强度、压缩性、渗透性等,用于描述土在力作用下的行为 土的工程分类:根据土的工程性质和特点,将土分为不同的类型,以便于工程设计和施工

高等土力学谢定义

高等土力学谢定义

高等土力学高等土力学是土木工程领域的一个重要分支,主要研究土壤的力学性质及其在土木工程中的应用。

土力学研究的对象是土壤的物理力学性质和土体在外力作用下的变形和破坏规律,帮助工程师能够正确地选择土壤基础和岩土工程结构设计,确保工程的安全性和可靠性。

土力学基本概念土壤是由固体颗粒、水和空气构成的多相体系,力学性质和结构会随着固体颗粒的类型、粒径和颗粒之间的相互作用、含水量等因素而变化。

土力学研究的基本概念包括以下几个方面:1. 土体力学性质土体的力学性质是指土壤在外力作用下的变形和破坏规律。

它包括土体的弹性性质、塑性性质、强度性质以及变形性质等。

土体在受到外力作用时,会发生弹性、塑性、粘塑性和黏塑性等不同类型的变形,并且会有一定的变形极限和破坏极限。

2. 土体结构土体的结构是指土壤颗粒之间的空隙状态和排列规律。

土壤颗粒之间的接触状态和排列规律会影响土体的力学性质和水力性质。

土体的结构包括颗粒间接触状况、颗粒间的连通性以及孔隙分布和孔隙比等参数。

不同的土体结构对于土体的刚度、渗透性和稳定性会产生重要影响。

3. 土体水力性质土体的水力性质是指土壤中水分的分布和运动规律。

水分含量对土壤的力学性质和稳定状态有重要影响。

土体中的水分可以分为吸附水、毛细水和重力水等不同形式。

高等土力学的应用高等土力学的研究结果将直接应用于土木工程中,确保工程的安全性和可靠性。

以下是高等土力学在工程实践中的一些应用:1. 土壤基础设计土壤基础是土木工程中的重要组成部分,包括建筑物、桥梁、道路等的基础和地基。

通过对土壤岩石的力学性质、结构和水力性质的研究,高等土力学可以对土壤基础进行设计和优化,确保基础的稳定性和承载能力。

2. 土壤侧向力设计土体在侧向力作用下会发生变形和破坏,特别是在边坡、挡墙和隧道施工等工程中。

高等土力学可以通过研究土体的强度性质和侧向变形规律,提供给工程师合理设计和施工,确保工程的稳定性和安全性。

3. 地基处理和加固在某些情况下,土壤的承载力和稳定性不足以满足工程的要求。

高等土力学

高等土力学

(7).土体变形完全是由空隙水排出和超静水压力消散引起的

土的本构关系
太沙基方程:
2u u Cv 2 z t
k C v 其中:固结系数 mv
mv
k
为常数

关系。

1 x ( y x ) E 1 y y ( z x ) E 1 z z ( y x ) E 2(1 ) xy xy E 2(1 ) yz yz E 2(1 ) zx zx E
可写为:
3 I1 2 I 2 I3 0
土的本构关系
应力不变量: 第一应力不变量 第二应力不变量
I1 x y z
2 2 2 I 2 x y y z z x xy yz zx
第三应力不变量
f c tan
c:粘聚强度
tan
:摩擦强度
影响土强度的因素: 1.颗粒矿物成分的影响 2.粗粒土颗粒的几何性质 3.土的组成 4.土的状态

5.土的结构
土的强度
有效应力原理: 作用在饱和土体上的总应力由两种介质承担,一种是:孔隙水压力,
另一种是:土颗粒组成的骨架上的有效应力,而土的抗剪强度由:有效
y
1 zy 2
1 xz 2 1 yz 2 z
故有6个分量是独立的:

x y z xy yz zx
土的本构关系
三个应变不变量
I1 x y z 1 2 3 1 2 I 2 x y y z z x ( xy 2 yz 2 zx ) 1 2 2 3 31 4 I 3 1 2 3

高等土力学 pdf

高等土力学 pdf

高等土力学
高等土力学是一门深入研究和探讨土力学相关理论的学科,主要包括以下几个方面的内容:
1.土的基本性质:包括土的组成、土的分类和土的物理性质等。

这一部分内容主要涉及土的颗粒级配、孔隙性、含水性、密度、温度和湿度等特性,以及这些性质对土的力学行为的影响。

2.土的力学性质:主要研究土在力作用下的应力-应变关系、强度和稳定性等。

包括土的应力-应变理论、土的强度理论、土的稳定性分析等。

3.土与结构物的相互作用:主要研究土与建筑物、道路和管道等结构物的相互作用,包括土压力、地基承载力和沉降等。

这一部分内容主要关注如何保证结构物的安全和正常使用,同时减少对周围土体的影响。

4.土的渗流:主要研究土中水流的运动规律和影响因素,包括渗透规律、渗透系数、渗透力等。

这一部分内容主要关注如何控制和利用土中的水流,例如在水利工程中的水库建设和运营中。

5.土的动力性质:主要研究土在动力荷载下的力学行为,包括地震、车辆荷载等对土的影响。

这一部分内容主要关注如何评估和预测土在动力荷载下的响应和稳定性。

6.土工试验与数值模拟:主要研究土工试验的原理和方法,以及数值模拟技术在土力学中的应用。

这一部分内容主要涉及对土的性质和行为的实验测定,以及对复杂工程问题的数值模拟和分析。

以上是高等土力学的主要内容,通过学习高等土力学,可以深入了解土的力学行为和工程应用,为解决实际工程问题提供理论依据和技术支持。

高等土力学要点

高等土力学要点

1.土力学的研究内容?高等土力学与土力学相比,研究内容有哪些不同?答:(1)土力学是研究土的物理化学和伦理学性质及其工程应用的学科。

土力学的主要研究内容必须包括以下几个方面:①土的成因、结构、物质组成与相互作用;②土体的应力变形规律;③土体的强度及其稳定性分析;④水在土中的运动及对土应力变形和强度、稳定的影响;⑤采用各种可能的测试方法和手段研究土的物理力学性质;⑥应用土力学的基本原理研究新方法、新工艺、新材料并解决实际工程问题。

(2)高等土力学是相对初等土力学而言的,是建立在已有土力学理论与应用成果基础之上的课程,强调的是全面和深化对土性质的理论研究和应用研究;高等土力学研究的广度和深度较初等土力学来说要大得多;高等土力学将更全面的以更宽广的视角、更深层次、应用多学科交叉的理论和方法对土的性质进行研究,解决更复杂的工程问题,因而从某种意义上讲也是发展中的土力学。

2.高等土力学理论研究与发展三步曲?高等土力学研究四环节?土力学研究四分支?答:(1)三步曲:试验研究或工程调研,理论上的假设、归纳和抽象,模型验证和工程模拟,三者相互依存相互促进。

(2)四环节:理论研究、试验研究、计算方法、工程应用研究。

(3)四分支:理论土力学、实验土力学、计算土力学、应用土力学。

第2章土的生成与基本性质1. 按沉积条件,沉积土分为哪些类型?如何用符号表示(Q al ,Q pl , Q l , Q dl,Q m,Q gl等等)?沉积环境和土的工程性质有哪些典型特性?常常有不规则交错层理构造的土?答:(1)按沉积条件,沉积土分为:坡积土、洪积土、山区河谷冲积土、平原河谷冲积土、湖相沉积土、三角洲沉积土、海相沉积土等。

(2)Q al:冲积土Q pl:洪积土Q l:湖积土Q dl:坡积土Q m:海相土Q gl:冰川沉积土(3)残积土土体颗粒未被磨圆和分选,没有层理构造,土体孔隙较大,均质性也较差;黄土组成以粉粒为主,具有肉眼可见的大孔隙,结构强度较高,压缩性较小;冲积土土粒磨圆磨细,具层理构造;坡积土搬运作用很短,土质不均匀,厚度变化大,尤其新近堆积的坡积土,土质疏松,压缩性高;洪积土土质不均匀,常常有不规则交错层理构造。

高等土力学

高等土力学

高等土力学高等土力学土力学是固体力学的一个重要分支学科,研究土体受力、变形、稳定和断裂等问题,对于土木、水利、矿业、建筑、冶金、交通、能源等领域具有非常重要的应用价值。

高等土力学是土力学的进一步深化和拓展,旨在揭示土体行为的基本机理与规律,并将其应用于土工工程的设计与施工中。

一、土体的物理力学特性土体是一种非常复杂的多相材料,具有以下几个特征:1、多孔性:土体内部的空隙很多,其中包含了空气和水,土体中包括空气、水和固体三种相,因此土体的性质具有一定的变异性。

2、均质性:土体是由许多微观细小的粒子组成的,粒子之间没有明显的结构和规律,因此具有均质性。

3、存在粒度分布和排列:土体中各种粒度的颗粒分布不均匀,且排列方式不同,因此土体的物理性质会受到粒度分布和排列方式的影响。

4、可塑性强:由于土体微观结构的特殊性质,使得土体在受到外部作用力时,可以发生形变而不破裂,因此土体具有一定的可塑性。

基于以上这些特点,我们可以进行土体的物理力学性质的研究,其中包括土体的物理化学性质、力学性质、流动性质、耦合性质等。

二、土体的力学特性1、应力-应变关系应力-应变关系是研究土体力学特性最基本的一个问题。

土体受到外部作用力后,会发生应变状态,这种应变状态可以被分为弹性应变和塑性应变。

其中弹性应变是一种恢复性变形,随着外力的消失,它会消失。

而塑性应变是一种永久性变形,即在改变外部应力状态的情况下,它不会消失。

需要注意的是,土体的应力-应变关系是非线性的,存在极限的应力和应变,当超过了这个范围后,土体会发生破坏。

2、孔隙水压和渗透性由于土体是多孔介质,其中包含了孔隙水和固体颗粒,因此导致土体独特的水文力学性质。

土体内部的孔隙水会受到地下水的压力影响,产生水压。

当土体的孔隙水压升高时,它会改变土体的应力状态和应变状态。

另一方面,由于水分子的特殊性质,使得土体的渗透性是与孔径大小、孔隙分布和分布方式等因素相关的。

这些因素将影响土体内部的流体介质的运动。

高等土力学-绪论

高等土力学-绪论

在盐分影响下,液限和强度均将降低。
多水高岭石因其在各片之间有H2O型式的结晶水,矿物 是圆杆形或扁平的棒状。由于这种棒状矿物在湿化后将起 滚珠轴承似的作用,岩土体将易于发生滑动。
蒙脱石(2Al2[Si4O10](OH)2•nH2O)的基本单元为2︰ 1组合的三层结构,由基本单元构成蒙脱石微粒。 它的晶胞之间为数层水分子,由联结力很弱的O2-相 互联系,晶格具有异常大的活动性,遇水很不稳定,水 分子可无定量地进入晶格之间而产生膨胀,体积可增大 数倍。 矿物离子表面常被水包围,具有高塑性,和低内摩 擦角。脱水后又会显著收缩,并伴有微裂隙产生。
物质结构组分的物质特性与相互作用是土性考察的主要对象。
土的物质结构研究包括各组分(各组成相)物质本身 的特性以及各组成相物质之间相互作用的特性以及它们的 运动形式。 前者有各组份的物质成分、特征状态、相对含量,后 者又有气液之间、固液之间、流固之间不同的相互作用。 在气液之间,其相互作用基于收缩膜理论,即气液交 界面上表面张力与孔隙气压力和孔隙水压力之间的应力平 衡理论; 在固液之间,其相互作用基于双电层理论,即固相表 面上的电荷层与其相邻液相中的离子层以及受它影响的扩 散层之间电力平衡理论、离子交换理论和电动理论; 在流固之间,其相互作用基于结构性理论,即土骨架 结构在气相作用,尤其是液相作用下结构强度的损伤变化 理论。
土的物质结构理论 土的强度理论 土的变形(本构)理论 土的渗透理论 土的固结、流变理论 土体的松散介质极限平衡理论
土体的楔体极限平衡理论 土体的渗流理论 土体的土工抗震理论
第2章
2.1 概述
土的物质结构理论
土的物质结构理论是研究土的物质组分特性及物 质结构特性与土力学特性间本质关系的理论。 将着重从如下四个方面讨论有关的问题: 第一,物质结构的变化是土性变化的内在依据; 第二,物质结构的状态是自然历史与环境条件综 合影响的结果; 第三,物质结构组分的物质特性与相互作用是土 性考察的主要对象; 第四,物质结构的总体特性是评价、利用与改造 土的基础。

高等土力学知识点

高等土力学知识点

一、影响土的强度因素影响土强度的因素很多,土的抗剪强度及其影响因素的关系可以定性地用以下公式表示τf=f(e,ψ,C,σ’,c,H,T,ε,ε’,S)其中e为土的孔隙比,C为土的组成,H为应力历史,T为温度,ε和ε’分别为应变和应变率,S为土的结构,c和ψ分别为粘聚力和内摩擦角。

可分为两大类:内部因素(物理性质),外部因素(外界条件主要是应力应变条件)。

1、内部因素(1)影响土强度的一般物理性质:①颗粒矿物成分的影响。

不同矿物之间的滑动摩擦角是不同的②粗粒土颗粒的几何性质,当孔隙比相同及级配相似时,一方面大尺寸颗粒具有较强的咬合能力,可能增加土的剪胀,从而提高强度;另一方面,在单位体积中大尺寸颗粒间接触点少,接触点上应力加大,颗粒更容易破裂,从而减少剪胀,降低土的强度。

③土的组成的其他因素。

粗粒土的级配对于抗剪强度有较大影响,级配较好的砂,咬合作用也比较强,另一方面,单位体积中颗粒接触点多,接触应力小,颗粒破碎少,剪胀量加大,所以抗剪强度高④土的状态。

砂土的孔隙比和相对密度可能是影响其强度的最重要因素。

孔隙比小或者相对密度大的砂土有较高的抗剪强度。

孔隙比对黏土的影响通常变现为其应力历史的影响。

⑤土的结构。

土的结构对土的抗剪强度有很大影响,有时对于某些粘性土如区域土或特殊土,可以说是控制因素。

原状土的结构性使其强度高于重塑土或扰动土。

⑥剪切带的存在对土强度的影响。

剪切带处局部孔隙比很大,并且有很强烈的颗粒定向作用。

剪切带的生成会使土的强度降低。

(2)孔隙比与砂土抗剪强度的关系------临界孔隙比随着孔隙比减小,砂土的ψ将明显提高。

松砂与密砂在试验中的应力应变关系也有很大区别,松砂的应力应变曲线是应变硬化的,剪缩,孔隙比减小;密砂的应力应变曲线是应变软化的,剪胀,e增加。

两个式样加载到最后,其e接近相同,都达到临界孔隙比еcr,еcr是指在三轴试验加载过程中,轴向应力差几乎不变,轴向应变连续增加,最终式样体积几乎不变时的e。

高等土力学-课件

高等土力学-课件
E 1
ε
1、沉降计算问题
σ
τf
ε
2、土压力问题 3、边坡稳定问题 4、地基承载力问题
强度问题加变形问题
极限平衡分析 条分法 k=1.4
强度问题加变形问题
上海倒楼问题 成寿寺邮电出版社基坑(上抬)
相互作用问题
有限土体土压力问题
深、大基础承载力问题 Pu=cNC + rdNq + rbNr/2
内蒙鄂尔多斯某砼搅拌站
(1930年,美国哈佛大学工硬化 加工软化
εa
不同应力路径下来做三轴试验:
1、常规 σr不变 σa增加
三轴压缩
σr不变 σa减小
三轴挤压(三轴拉伸)
其他
σa不变 σr增加 三轴挤压 σa不变 σr减小 三轴压缩 σa增大 σr减小 但平均应力不变
三轴压缩
σr增大 σa减小 但平均应力不变 三轴挤压
J.H.Atkinson, P.L.Bransby
主要内容
1、引言 2、土工试验 3、应力分析、应变分析 4、屈服准则 5、几个模型
Duncan— Chang Model Lade—Duncan Model Cambridge Model 6、渗流问题 7、简单的测试与讨论
李广信 70万字
龚晓南 24万字
高等土力学
(Advanced Soil Mechanics)
张钦喜
北京工业大学
2014.09
高等土力学(32h) (Advanced Soil Mechanics)
主要参考文献:
1、土的本构关系 蒋彭年 科学出版社 1982 2、土的塑性力学 屈智炯 成都科技大学出版社
1987 3、土的塑性力学 龚晓南 浙江大学出版社

高等土力学(李广信)-期末总结

高等土力学(李广信)-期末总结

一般弹塑性模型
屈服与屈服准则 硬化规律 正交性(流动法则:相适应与不相适应) 刚塑性、弹性-理想(完全)塑性 (perfectly plastic)和增量弹塑性模型。

剑桥模型



物态边界面概念:正 常固结线、临界状态 f p 线、固结不排水试验 d ij d 有效应力路径。 ij q 剑桥模型与修正剑桥 M 模型的屈服面:物理 意义、公式推导、曲 线形式。 剑桥模型的硬化参数、 流动规则、增量应力 p0 应变关系式。 p0 /2 图1 剑桥模型的屈服面
土的强度理论
各强度理论的特点 参数 计算 优缺点 适用情况

第四章 土中水与土的 渗透及其计算
1. 渗透规律-达西定律 2. 有关渗流的工程问题 3. 渗透计算

渗透及达西定律
几种渗流势:重力、压力、基质势 渗透系数及其影响因素 渗流的基本方程,流网及其应用Leabharlann 有关渗流的工程问题p
第三章 土的强度
土的强度机理与影响因素 排水与不排水、饱和与不饱和土强度 土的强度理论

土的强度机理
土的强度-抗剪强度: 粘聚强度与摩擦强度: 粘聚力:机理,粘性土的微观结构; 假粘聚力:吸力、冰冻、机械咬和; 内摩擦角:表面摩擦与咬和-剪胀、破 碎与颗粒的重排列。

强度的影响因素
固结


(1)单向固结的普遍方程及一般条件下的单向 固结问题: 加载时间 分层土 厚度随时间变化 (2)砂井固结问题:井阻、涂抹、加载时间 (3)比奥固结理论与太沙基(Terzaghi)—伦杜 立克(Rendulic)准三维固结理论(扩散方程)
固结问题的简化计算
均匀加载、分期加载 不均匀土层与分层土 砂井:井阻与涂抹影响

高等土力学土的压缩与固结

高等土力学土的压缩与固结

p av 0.434
av
Cc p
lg
p2 p1
av
Cc p
0.434
2)变形模量和压缩模量的关系:
由虎克定律:
x
1 E0
x
y
z
y
1 E0
y
z
x
压缩试验时: x y 0
则可得:
x
y
1
z
K0 z
又由虎克定律:
z
1 E0
z
x
y
可得:
z
z
E0
22
1
1
对于压缩试验:
z
z
Es
所以:
z
Es
z
E0
1
2 2 1
由此可得:
E0
1
1
1
2
Es
1
2 2 1
Es
Es
5.2.3 沉降产生原因和类型
1. 引起地基沉降的可能原因
2. 沉降的类型
• 瞬时沉降Si • 固结沉降Sc • 次压缩(固结)沉降Ss
5.2.4 瞬时沉降和次压缩沉降
1、瞬时沉降
h k u vk
z w z
dQ
k
w
2u z 2
dzdxdydt
➢ dt时间内微元体的体积变化为:
dV Vv dt eVs dt 1 e dzdxdydt
t
t
1 e1 t
又由: de a:
d
则可得: e a
t t
根据有效应力原理:
e a a u au
t t
t
t
所以有:
2)固结方程
(1) 连续性条件:dt时间内微元体的排水量的变化等于微元体在dt时间内的 竖向压缩量。

高等土力学李广信3.3土的强度与土的物理性质内因.ppt

高等土力学李广信3.3土的强度与土的物理性质内因.ppt

1. 内部因素 组成(C)、状态(e)和结构(S)
(1)组成:矿物成分,颗粒大小与级配,颗粒 形状,含水量(饱和度)以及粘性土的离子和 胶结物种类等因素。
(2)状态:砂土的相对密度;粘土的孔隙比。 (3)结构:颗粒的排列与相互作用关系。
2. 外部因素 温度、应力状态(围压、中主应力)、应力
历史、主应力方向、应变值、加载速率及排水 条件。
3. 土的级配
密度增加 剪胀性增强 触点增加与接触应力减小 有利于强度提高
4. 土的状态 孔隙比e及相对密度Dr——影响强度的重要因素, 密度大其强度提高。
砂土(以石英为主)的干与湿:二者一般接近, 相差1~2。
5.土的结构:强度有所提高与各向异性 6.剪切带的形成及其影响:应变软化与残余强度
3
制 样 孔 隙 应比 变 - 简围 化压 关 系- 破 坏 时 体
e
-v
ecr
v
制样孔隙比e
v
图3-25 制样孔隙比e-围压3-破坏时体应变v简化关系
3.4.4 孔隙比与粘土强度——真强度理论
正常固结粘土的强度包线过原点:但各围压下的密度不同 实际上存在粘聚力
ce k
图3-26 真强度理论
伏斯列夫的真 强度理论:
对内摩擦角的影响
e
A
(对碎石影响小)
R
w
影响不大,并且不确定
不均匀系数 Cu
图3-21 影响砂土内摩擦角的物理因素
3.4.3 孔隙比e与砂土抗剪强度关系—— 临界孔隙比ecr
松砂的天然
休止角r
图3-22 天然沙丘
天然休止角:r
图3-23 相同围压下密砂与松砂的三轴 试验:破坏时孔隙比接近
临界孔隙比ecr是指在在三轴试验加载过程中,

高等土力学

高等土力学

残积土(Qel):岩石经风化作用后残留在原地的碎屑堆积物。

特性取决于母岩性质,矿物成份与母岩相差不大。

界限不明显未经搬运,土体颗粒未被磨圆和分选,无层理构造,土体孔隙较大,均质性较差。

坡积土(Qdl):风化物经雨水、雪水冲刷侵蚀、携带,沉积在较平缓的山坡上形成的沉积物。

土质不均匀,厚度变化大。

冲积土(Qal):由水流搬运堆积形成的土,发育在河流泛滥地或河漫滩地冲积物土的一种非地带性泛域土。

洪积土(Qpl):由山区洪流搬运而堆积的碎屑土。

常具不规则交错层理构造,如夹层、透镜体等。

固结:根据有效应力原理,在外荷载不变的条件下,随着土中超静孔隙水压力的消散,有效应力将增加,土体将被不断压缩,直至达到稳定,这一过程称为~。

主固结(渗透固结):饱和粘性土在侧限条件下受压后,孔隙水逐渐排出,孔隙水压力逐渐消散至零,有效应力相应增加,这种由孔隙水的渗透引起的压缩过程称主固结。

次固结(一维流变):在侧限压缩条件下,由于土的流变性而发生的压缩。

单向固结:土体单向受压,孔隙水单向渗流的条件下发生的固结。

固结度:在某一荷载作用下,经过时间t后土体固结过程完成的程度。

平均固结度:在某一荷载作用下,经过时间t后所产生的固结变形量与该土层固结完成时最终固结变形量之比。

固结系数:反映土的固结特性,孔压消散的快慢,与渗透系数k成正比,与压缩系数a成反比, k(1+e0)/(rwav)。

加工硬化(应变硬化):正常固结粘土和松砂的应力随应变增加而增加,但增加速率越来越慢,最后趋于稳定。

加工软化(应变软化):在密砂和超固结土的试验曲线中,应力一般是开始时随应变增加而增加,达到一个峰值后,应力随应变增大而减小,最后趋于稳定。

压硬性:土的变形模量随着围压提高而提高的现象。

剪胀性:因剪应力引起的土体体积的膨胀或收缩的特性屈服:当应力达到某一状态时材料发生了不可恢复的塑形变形。

屈服准则:可以用来弹塑性材料被施加应力增量后是加载还是卸载或是中性变载,即是否发生变形的准则。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 方玉树教授提出一种方法,详见《边坡稳 定性分析的一种新条分法》。该方法能用 于滑动面为任意形态(包括局部上凸和前部 反翘) 的边坡, 能保证土条界面不处于受拉 状态也不违反土体破坏准则, 能适应端部有 水平力的情形, 对包括端部有水平力情形在 内的直线形滑动面的边坡等效于单块力平 衡方程, 对无外加水平力的圆弧形滑动面的 边坡等效于简化毕肖普法, 且计算过程较简 单。结果表明, 该方法有较高的计算精度。
根据竖向应力平很条件
Wi X i N i cos i Ti sin i ui li cos i 0 从而得: N i cos i Wi X i Ti sin i ui li cos i 根据极限平衡条件得: ci li N i tani Ti K 整理后得: 1 Ni sin i tani cos i K ci li sin i W X u l cos i i i i i K
土坡稳定性分析方法及原理
极限平衡计算原理:
分析岩体和土体稳定性时假定一破坏面, 取破坏面内土 体, 为脱离体计算出作用于脱离体上的力系达到静力平衡时 所需的岩土的抗力或抗剪强度, 与破坏面实际所能提供的岩 土的抗力或抗剪强度相比较,以求得稳定性安全系数。安全系 数根据定义可表示为
f K
K为安全系数, f 为滑动面抗滑力, 为滑动面实际滑力
f K
对于均质简单黏性土土坡其滑动面可以假设为一圆弧 面,其安全系数也可以用滑动面上最大抗滑力矩与滑动力 矩之比来定义,其结果完全相同。
• 如图表示一均质的黏性土土坡,它可能沿圆弧面AC滑动。 土坡失去稳定就是滑动土体绕圆心O发生转动。土体重力 W为动力,绕O旋转,滑动力矩M=Wd,抗滑力矩Mr是抗 剪抗剪强度提供的,包括两部分:滑动面AC上年距离产 生的抗滑力矩,值为cLR(L为弧长)滑动土体的重力W 在滑动面上的反力所产生的抗滑力矩。这时,可以定义黏 性土坡的稳定安全系数:
Ti Wi sin i
Ni Wi cosi
作用在土条底面上的法向反力 Ni ,与Ni大小相等方向相反。 作用在土条底面上的抗剪力 Ti ,根据极限平衡条件有:
(c i t an )li cli N i t an Ti K K K
按照滑动土体的整体力矩平衡条件,外力对圆心力矩之和 为零。在土条的三个作用力中,法向应力通过圆心不产生 力矩。滑动土体的整体力矩平衡,即: M 0 ,则有:
Thank You!
i i i i i
K
cL b t an hi cos i
b hi sin i
• 毕肖普法
工程上最常用到的条分法是毕肖普法,这种方法就是 在瑞典条分法的基础上,给各个土条加上了侧面的应力, 包括法向应力和切向应力。其推导过程和瑞典法是相似的, 都是运用极限平衡条件和对圆心力矩相等推出。
土坡稳定性分析方法及原理
• 方法一:整体圆弧滑动法
粘性土由于土粒间存在黏聚力,发生滑坡时是整块土 体沿着滑动面向下滑动,坡上任意单元的土体稳定条件不 能代表整个土坡的稳定条件。若按平面应变问题考虑,将 滑动面以上土体看做刚体,并以它为脱离体,分析在极限 平衡条件下其上的各种作用力,而以整个滑动面上的平均 抗剪强度与平均剪应力之比来定义土坡的稳定安全系数, 即:
M r f LR K M Wd
从上式可以看出,反力的大小和方向与土的内摩擦角 有关,当φ=0时,滑动面是一个光滑曲面,反力方向必定 垂直于滑动面,即通过圆心O,它不产生力矩所以抗滑力 矩只有前一项cLR。
M r cLR K M Wd
注意:只有在φ=0时才可以采用整体圆弧滑动法。如果φ不等 于0,我们可以用条分法来解决。
土坡稳定性分析方法及原理
土坡失稳的类型比较复杂,大多是土体的塑形破坏,土体 塑形破坏的分析方法有极限平衡法、极限分析法、有限元法等 等。在边坡稳定分析中,目前工程实际中大都采用极限平衡法。 极限平衡方法分析的一般步骤是:假定斜坡破坏是沿着土体 内某一确定的滑裂面滑动,根据滑裂土体的静力平衡条件和摩尔 --库伦理论,可以计算出该滑裂面滑动的可能性,即土坡稳定全 系数的大小或破坏概率的高低。然后在系统的选取多个可能滑动 的面,用同样的方法计算稳定安全系数或破坏概率。稳定安全系 数最低或者破坏概率最高的滑动面就是可能性最大的滑动面。
fili
T R T R
i i
在整个滑动面上各土条的总抗滑力产生的滑动力矩为:
cl i N i tan R Ti R K
T R W sin R
i i i
结合上面两个式子,我们很容易就得到安全系数K的就算式
(cl W cos t an ) K W sin
再由力矩平衡条件得:
W X
i
i

T R
i
化简得到K的值
1 m cibi Wi uibi X i tani i K Wi sin i
通过比较瑞典法和毕肖普法,我们可以看出其两者之 间的区别就是在于有没有考虑土条侧面上的应力问题。 因此我们也可以运用简化的毕肖普法。下面是一种简化 的毕肖普法的运用。
• 2014年09月 27日早6时左 右,湖北宣 恩县老车站 附近三栋四 层砖混民房 因山体滑坡 垮塌,12人 被埋困。
• 引起滑坡的原因 1、外界力的作用破坏了土体内原来的应力平 衡状态。如路堑或基坑的开挖是因为土自 身重力发生变化,从而改变土原来的应力 状态平衡状态。 2、土的抗剪强度由于受到外界各种因素的影 响而降低,促使土坡失稳而破坏。
通过上面我们所介绍的几种工程常用的 条分法,我们会发现这几种方法都是建立 在圆弧形滑动面的基础上。但是否所有的 滑动面都可以简化成圆弧形呢? 对于一些不是圆弧形滑动面模型我们也 有一些解决方法,但这些方法的精确度又 难以保障。 能否提出一种适用于任何形态的滑动面、 计算过程简单且计算精度高的条分法呢?
基于平衡法的边坡稳定性浅析
姓名:*** 建筑与土木工程专业 学号:***
目录
概述
概念 滑坡的危害 滑坡的原因
方法及原理
整体圆弧滑动法 条分法
一:概述
土坡分为天然土坡和人工土坡两类。天然土坡如山坡、江 河湖海岸坡等,其性质由工程地质、水文地质条件而定;人 工土坡如基坑、土坝、路堤等受人类影响比较大,故性质比 较复杂。 由于土坡表面倾斜,在各种内利合外力作用下,整个土体都 有从高处向低处滑动的趋势,土坡丧失其原有的稳定性,便会 出现一部分土体相对与另一部分土体滑动的现象,成为滑坡。
Bishop (毕肖普)简化计算方法
简化的Bishop 法假设滑移面的形状为圆弧形,土条之 间只有水平推力,条间剪力系数的影 响仅在1%左右,满足工程精度,因此得到 广泛的应用。这种方法与瑞典条分法相比 其特点是: (1)满足整体力矩平衡条件 (2)满足各个土条力的多边闭合条件,但不 满足土条的力矩平很条件 (3)假设土条间作用力只有法向力没有切向 力 (4)满足极限平衡条件
土坡稳定性分析方法及原理
• 方法二:条分法
条分法又分为瑞典条分法、毕肖普(A.N.Bishop)条 分法、杨布(Janbu)条分法等等。首先介绍一下瑞典条 分法。 瑞典条分法是条分法中最古老而又最简单的方法。其 假定滑动面为圆弧面、滑动土体为不变形的刚体、不考虑 土条两侧面上的作用力。
土条重力Wi 其值为 Wi ibi hi 将Wi引致滑动面上并分解 得到和弧线相切的剪切力 Ti、法向应力Ni。则有:
相关文档
最新文档