整体法与隔离法的应用
整体法和隔离法
整体法和隔离法一.整体法和隔离法在平衡中的应用1. 整体法:整体法是指对物理问题中的整个系统或整个过程进行分析、研究的方法。
在力学中,就是把几个物体视为一个整体,作为研究对象,受力分析时,只分析这一整体对象之外的物体对整体的作用力〔外力〕,不考虑整体内部之间的相互作用力〔内力〕。
整体法的思维特点:整体法是从局部到全局的思维过程,是系统论中的整体原理在物理中的应用。
整体法的优点:通过整体法分析物理问题,可以弄清系统的整体受力情况和全过程的受力情况,从整体上揭示事物的本质和变体规律,从而避开了中间环节的繁琐推算,能够灵活地解决问题。
通常在分析外力对系统的作用时,用整体法。
2. 隔离法:隔离法是指对物理问题中的单个物体或单个过程进行分析、研究的方法。
在力学中,就是把要分析的物体从相关的物体体系中隔离出来,作为研究对象,只分析该研究对象以外的物体对该对象的作用力,不考虑研究对象对其他物体的作用力。
隔离法的优点:容易看清单个物体的受力情况或单个过程的运动情形,问题处理起来比较方便、简单,便于初学者使用。
在分析系统内各物体〔或一个物体的各个部分〕间的相互作用时用隔离法。
3.实例分析例1. 如图1所示,质量为m=2kg的物体,置于质量为M=10kg的斜面体上,现用一平行于斜面的力F=20N推物体,使物体向上匀速运动,斜面体的倾角,始终保持静止,求地面对斜面体的摩擦力和支持力〔取〕解析:〔1〕隔离法:先对物体m受力分析,如图甲所示。
由平衡条件有甲垂直斜面方向:①平行斜面方向:②再对斜面体受力分析,如图乙所示,由平衡条件有乙水平方向:③竖直方向:④结合牛顿第三定律知⑤联立以上各式,可得地面对斜面体的摩擦力,方向水平向左;地面对斜面体的支持力,方向竖直向上。
〔2〕整体法:因此题没有要求求出物体和斜面体之间的相互作用力,而且两个物体均处于平衡状态〔尽管一个匀速运动,一个静止〕,故可将物体和斜面体视为整体,作为一个研究对象来研究,其受力如图丙所示,由平衡条件有:丙水平方向:⑤竖直方向:⑥将题给数据代入,求得比较上面两种解法,整体法的优点是显而易见的。
第6讲 有加速度的 整体法和隔离法的应用1
第6讲 整体法和隔离法的应用一般整体法和隔离法结合起来使用,一般先整体受力分析求出a ,再对其中一个物体隔离求受力。
概念 选用原则注意问题整体法将加速度相同的几个物体作为一个整体来分析1.至少有两个物体。
2.物体的加速度相同。
3.不能求物体间的力。
1.整体中任一物体受到的外力都是整体受到的力。
2.不用考虑整体内部各个物体间的相互作用力3.要会选择合适的整体。
4.F 合=m 合 a ,即m 与F 合要对应。
隔离法 将研究对象与周围物体分隔开,单独分析研究系统内物体之间的相互作用力一般隔离分析受力较少的物体类型二:a 相同且都不等于0。
22.(2004年全国卷 )如图所示,两个用轻线相连的位于光滑水平面上的物块,质量分别为m 1和m 2,拉力F 1和F 2方向相反,与轻线沿同一水平直线,且F 1>F 2。
试求在两个物块运动过程中轻线的拉力T 的大小。
23.如图所示,A 和B 两物体相互接触,并静止在水平面上.现有两个水平推力F 1、F 2分别作用在A 、B 上,A 、B 两物体仍保持静止,则A 、B 之间的作用力大小是 A.一定等于零 B .不等于零,但小于F 1 C .一定等于F 1 D .可能等于F 224.一根粗细均匀的铜棒的质量为m ,放在光滑的水平面上,在铜棒轴线方向受水平向右的拉力F 而做匀加速直线运动,则棒中自左向右各截面处的张力大小为A .都等于FB .逐渐增大C .逐渐减小D .都等于零25.(1998年全国卷)。
如图3-12,质量为2m 的物块A 与质量为m 的物块B 之间以及B 与地面的动摩擦因数为μ,在已知水平力F 的作用下,A 、B 做加速运动,A 对B 的作用力为 .15.质量分别为M 和m 的两物体靠在一起放在光滑水平面上.用水平推力F 向右推M ,两物体向右加速运动时,M 、m 间的作用力为F N1;用水平力F 向左推m ,使M 、m 一起加速向左运动时,M 、m 间的作用力为F N2,如图(1)、(2)所示.则( ) A .F N1∶F N2=1∶1 B .F N1∶F N2=m ∶MC .F N1∶F N2=M ∶mD .条件不足,无法比较F N1、F N2的大小26.(2007年江苏卷)。
第四讲:整体隔离法,动态平衡问题
第三章 相互作用第四讲:整体隔离法,动态平衡问题一、整体法与隔离法在平衡问题中的应用1.整体法:研究外力对物体系统的作用时,一般选用整体法。
因为不用考虑系统内力,所以这种方法更简便,总之,能用整体法解决的问题不用隔离法。
2.隔离法:分析系统内各物体(各部分)间的相互作用时,需要选用隔离法,一般情况下隔离受力较少的物体。
练习题1、如图,在光滑的水平面上叠放三个完全相同的木块,水平细绳绕过 定滑轮,两端分别系在第1、第3木块上,用水平力F 拉第3块木块 但未拉动。
设第1块和第2块、第2块和第3块之间的摩擦力大小 分别为f 12和f 23,且滑轮的摩擦不计,则应有( )A .f 12<f 23B .f 12>f 23C .f 12=f 23D .f 12=F/22、(08海南高考)如图,质量为M 的楔形物块静置在水平地面上,其斜面的倾角为θ.斜面上有一质量为m 的小物块,小物块与斜面之间存在摩擦.用恒力F 沿斜面向上拉小物块,使之匀速上滑.在小物块运动的过程中,楔形物块始终保持静止.地面对楔形物块的支持力为( ) A .(M +m )g B .(M +m )g -FC .(M +m )g +F sin θD .(M +m )g -F sin θ3、如图所示,质量分别为、的两个物体通过轻弹簧连接,在力的作用下一起沿水平方向做匀速直线运动(在地面,在空中),力与水平方向成角。
则所受支持力N 和摩擦力正确的是( )A .B .C .D .4、如图所示,一个半球形的碗放在桌面上,碗口水平,O 是球心,碗的内表面光滑.轻质杆的两端固定有两个小球,质量分别是m 1、m 2.当它们静止时,m 1、m 2与球心的连线跟水平面分别成60°、30°角,则碗对两小球的弹力F 1、F 2大小之比( )A . B.3C . 3 D.35、(2014·浙江五校联考)如图7所示,在足够长水平传送带上有三个质量分别为m 1、m 2、m 3的小木块(长度不计)1、2、3,中间分别用一原长为L ,劲度系数为k 的轻弹簧连接起来,木块与传送带间的动摩擦因数为μ,现用水平细绳将木块1固定在左边的墙上,传送带按图1m 2m F 1m 2m F θ1m f 12sin N m g m g F θ=+-12cos N m g m g F θ=+-cos f F θ=sin f F θ=示方向匀速运动,当三个木块达到平衡后,1、3两木块之间的距离是( )A .2L +μ(m 2+m 3)g /kB .2L +μ(2m 2+m 3)g /kC .2L +μ(m 2+2m 3)g /kD .2L +μ(m 1+m 2+m 3)g /k6、如图2-22所示,50个大小相同,质量均为m 的小物块,在平行于斜面向上的恒力F 作用下一起沿斜面向上匀速运动.已知斜面足够长,倾角为30°,各物块与斜面的动摩擦因数相同,重力加速度为g ,则第3个小物块对第2个小物块的作用力大小为( ).A.125F B.2425F C .24mg +F 2D .因为动摩擦因数未知,所以不能确定二、解决动态平衡问题的三种方法通过控制某些物理量,使物体的状态发生缓慢地变化,物体在这一变化过程中始终处于一系列的平衡状态中,这种平衡称为动态平衡。
专题整体法和隔离法的应用
a=MFAA=MFBB=9-3 2t=3+6 2t 故分离前的运动时间为 t=2.5 s,则分离时的速度 v=at≈3.3 m/s. (3)位移 s=12at2≈4.2 m. 答案:(1)初速度为零的匀加速直线运动 (2)3.3 m/s,43 m/s2 (3)4.2 m
变式训练3-1 如右图所示,在劲度系数为k旳弹簧 下端挂有质量为m旳物体,开始用托盘托住物体,使弹簧 保持原长,然后托盘以加速度a匀加速下降(a<g),求经过 多长时间托盘与物体分离.
解析:当托盘以加速度a匀加速下降时,托盘与物体 具有相同旳加速度,在下降过程中,物体所受旳弹力逐渐 增大,支持力逐渐减小,当托盘与物体分离时,支持力为 零.设弹簧旳伸长量为x,以物体为研究对象,根据牛顿 第二定律,有:
(2)设分离前两物体之间的正压力为 F′ 由 a=9-2Mt-A F′=F′+M3B+2t,得 t=0,F′=5 N 由于 FA 随 t 的增加而减小,FB 随 t 的增加而增加,可以 断定,分离前随着时间的增加,两物体之间的正压力 F′逐 渐减小,分离时两者之间的正压力 F′为零. 分离时两者的速度和加速度相等,加速度仍为 a=43 m/s2. 此时两者之间的作用力为零,由加速度相等得:
变式训练1-1 质量分别为m1、m2、m3、m4旳四个 物体彼此用轻绳连接,放在光滑旳桌面上,拉力F1、F2分 别水平地加在m1、m4上,如图所示.求物体系旳加速度a 和连接m2、m3轻绳旳张力T.(F1>F2)
解析:由于物体系具有相同的向左加速度,所以可把 它们当成一个整体(或看作一个质点),整个系统在水平方向 受到外力F1、F2,有:
【解析】 当小球和斜面接触,但两者之间刚好无压 力时,设滑块旳加速度为a′,此时小球受力如图所示,由 水平和竖直方向状态可列方程分别为:
整体法与隔离法的应用详解
再选取物体B为研究对象, 受力分析如图所示, 根据牛顿第二定律:
FN - F2 ma
F2
FN
FN
F2
ma
F2
m F1 F2 2m
F1
F2 2
.
变式1:物块m和M用轻绳连接,在M上施加恒力 F,使两
物块作匀加速直线运动,地面光滑。求绳中张力。
解:(1)由牛顿第二定律,
课程内容
一、整体法:在研究物理问题时,把所研究的 对象作为一个整体来处理的方法称为整体法。 采用整体法不需要考虑内力的影响,可以避免 对整体内部进行繁锁的分析,常常使问题解答 更简便、明了。
二、隔离法:把所研究对象从整体中隔离出来 进行研究,最终得出结论的方法称为隔离法。 采用隔离物体法一般用来求内力,能排除与研 究对象无关的因素,使事物的特征明显地显示 出来,从而进行有效的处理。
(2)在使用隔离法解题时,所选取的隔离对象可以使连接体 中的某一部分物体,也可以使连接体中的某一个物体(包含两 个或两个以上的单个物体),而这“某一部分”的选取,也应根 据问题的实际情况,灵活处理.
平面上,其质量为M,它的斜面是光滑的,
在它的斜面上有一质量为m的物体,在用
水平力推斜面体沿水平面向左运动过程中,
物体与斜面体恰能保持相对静止,则下列 说法中正确的是( )
m
F
A.斜面体对物体的弹力大小为mgcosθ
B.斜面体对物体的弹力大小为mg/cosθ C.物体的加速度大小为gsinθ
θ
M
D.水平推力大小为(M+m)gtanθ
[解析]隔离m,由平行四边形定则可得:
FN=mg/cosθ
FN
F合=mgtanθ
θ
整体法与隔离法及应用
隔离法与整体法及其应用1.隔离法的含义及其应用把所研究的事物从整体或系统中隔离出来进行研究,最终得出结论的方法称为隔离法。
应用隔离法能排除与事物无关的因素,使该事物的主要特征明确地显示出来,从而进行有效处理,使一些无法用整体来解决的问题得到满意的结论。
任何事物总是由各个部分组成的,事物的整体和局部之间既有联系又有区别。
在处理具体的物理问题时,可以根据不同的情况把整个物体系或整个物理过程分隔成几个部分,应用相应物理规律进行处理。
由于各物体在各种不同情况下会产生不同的结果,应用隔离法能为我们针对不同情况解决问题创造条件。
同时由于事物之间总是相互关联的,对局部事物问题的研究也有利于我们进一步了解局部之间的相互关系以及局部和整体之间的相互关系,往往能突破一点掌握全局,使问题得到顺利解决。
隔离法用于解决高中物理问题常见的有以下六种情况。
1.1(隔离物体)例1.如图(1)所示,质量为M 的木板上放一质量为m 的木块。
木块与木板间的动摩擦因数为μ1,木板与水平支持面间的摩擦因数为μ2。
问:加在木板上的水平力F 多大时,才能将木板从木块下抽出来?简解:分别对m 及M 作受力分析后,根据牛顿第二定律对m :μ1m g=ma 1……①,对M :F-μ1mg-μ2(m +M )g=M a 2……②,将M 从m 下抽出,应满足a 2>a 1……③,将①、②代入③可得F>(μ1+μ2)(M+m)g 说明:共点力平衡条件、牛顿第二定律、动量定理、动能定理等力学规律均适用于隔离物体,分别列式联合求解。
至于具体应用哪一条物理规律,要视物体的运动状态和问题设置的目标而定。
此外,对于有相互关联的几部分不同气体,分别对它们应用相关的气体实验定律或气态方程列式讨论,也属这类方法应用。
对于点光源同时经不同的光学元件成像,如果要确定像的个数及虚实,或光路图等,则需要隔离光学元件进行分析。
1.2隔离过程例2.如图(2)所示,用长为L 的轻绳,一端系质量为m 的小球,另一端固定在O 处。
整体法和隔离法
整体法和隔离法一.整体法和隔离法在平衡中的应用1. 整体法:整体法是指对物理问题中的整个系统或整个过程进行分析、研究的方法。
在力学中,就是把几个物体视为一个整体,作为研究对象,受力分析时,只分析这一整体对象之外的物体对整体的作用力(外力),不考虑整体内部之间的相互作用力(内力)。
整体法的思维特点:整体法是从局部到全局的思维过程,是系统论中的整体原理在物理中的应用。
整体法的优点:通过整体法分析物理问题,可以弄清系统的整体受力情况和全过程的受力情况,从整体上揭示事物的本质和变体规律,从而避开了中间环节的繁琐推算,能够灵活地解决问题。
通常在分析外力对系统的作用时,用整体法。
2. 隔离法:隔离法是指对物理问题中的单个物体或单个过程进行分析、研究的方法。
在力学中,就是把要分析的物体从相关的物体体系中隔离出来,作为研究对象,只分析该研究对象以外的物体对该对象的作用力,不考虑研究对象对其他物体的作用力。
隔离法的优点:容易看清单个物体的受力情况或单个过程的运动情形,问题处理起来比较方便、简单,便于初学者使用。
在分析系统内各物体(或一个物体的各个部分)间的相互作用时用隔离法。
3.实例分析例1. 如图1所示,质量为m=2kg的物体,置于质量为M=10kg的斜面体上,现用一平行于斜面的力F=20N推物体,使物体向上匀速运动,斜面体的倾角,始终保持静止,求地面对斜面体的摩擦力和支持力(取)解析:(1)隔离法:先对物体m受力分析,如图甲所示。
由平衡条件有甲垂直斜面方向:①平行斜面方向:②再对斜面体受力分析,如图乙所示,由平衡条件有乙水平方向:③竖直方向:④结合牛顿第三定律知⑤联立以上各式,可得地面对斜面体的摩擦力,方向水平向左;地面对斜面体的支持力,方向竖直向上。
(2)整体法:因本题没有要求求出物体和斜面体之间的相互作用力,而且两个物体均处于平衡状态(尽管一个匀速运动,一个静止),故可将物体和斜面体视为整体,作为一个研究对象来研究,其受力如图丙所示,由平衡条件有:丙水平方向:⑤竖直方向:⑥将题给数据代入,求得比较上面两种解法,整体法的优点是显而易见的。
整体法与隔离法综合应用
解析:
例2.如图所示,放置在水平地面上的斜面M上有一质量为m的物体,若m在 沿斜面F的作用下静止在斜面M上,M仍保持静止。已知M倾角为θ。求地面对M的支持力和摩擦力。
变式2:.如图,质量m=5 kg的木块置于倾角=37、质量M=10 kg的粗糙斜面上,用一平行于斜面、大小为50 N的力F推木块匀速上滑,斜面仍保持静止,求地面对斜面的支持力和静摩擦力。
隔离法和整体法看上去相互对立,但两者在本质上是统一的,因为将几个物体看作一个整体之后,还是要将它们与周围的环境隔离开来的。通常在分析外力对系统的作用时,用整体法;在分析系统内各物体(各部分)间相互作用时,用隔离法.解题中应遵循“先整体、后隔离”的原则。
物理学中的思想方法,是求解物理问题的根本所在。认真研究总结物理学中的思想方法、策略技巧,并能在实际解题过程中灵活应用,可收到事半功倍的效果。
例3. 如图所示,位于水平桌面上的物块B,由跨过定滑轮的轻绳与物块A相连,从滑轮到A和到B的两段绳都是水平的。已知A与B之间以及B与桌面之间的动摩擦因数都是μ,两物块的质量都是m,滑轮的质 量、滑轮轴上的摩擦都不计,若用一水平向右的力F拉B使它做匀速运动,则F的大小为( ) A.4μmg B.3μmg C.2μmg D.μmg
一、静力学中的整体与隔离应用 例1用轻质细线把两个质量未知的小球悬挂起来,如图所示,今对小球a持续施加一个向左偏下30°的恒力,并对小球b持续施加一个向右偏上30°的同样大小的恒力,最后达到平衡,表示平衡状态的图可能是 ( )
A
变式1:有三根长度皆为l=1.00 m的不可伸长的绝缘轻线,其中两根的一端固定在天花板上的 O点,另一端分别挂有质量皆为m=1.00×10-2 kg的带电小球A和B,它们的电量分别为一q和+q,q=1.00×10-7C。A、B之间用第三根线连接起来。空间中存在大小为 E=1.00×106N/C的匀强电场,场强方向沿水平向右,平衡时 A、B球的位置如图所示。现将O、B之间的线烧断,由于有空气阻力,A、B球最后会达到新的平衡位置。求最后两球的机械能与电势能的总和与烧断前相比改变了多少。(不计两带电小球间相互作用的静电力)
受力分析中的整体法与隔离法
整体法和隔离法的应用一、受力分析中的整体法与隔离法1、整体法整体法就是把几个物体视为一个整体,受力分析时,只分析这一整体之外的物体对整体的作用力,不考虑整体内部物体之间的相互作用力。
当只涉及系统而不涉及系统内部某些物体的力和运动时,一般可采用整体法。
运用整体法解题的基本步骤是:(1)明确研究的系统或运动的全过程(2)画出系统或整体的受力图或运动全过程的示意图(3)选用适当的物理规律列方程求解2、隔离法隔离法就是把要分析的物体从相关的物体系中假想地隔离出来,只分析该物体以外的物体对该物体的作用力,不考虑该物体对其它物体的作用力。
为了弄清系统(连接体)内某个物体的受力和运动情况,一般可采用隔离法。
运用隔离法解题的基本步骤是(1)明确研究对象或过程、状态(2)将某个研究对象或某段运动过程、或某个状态从全过程中隔离出来(3)画出某状态下的受力图或运动过程示意图(4)选用适当的物理规律列方程求解二、应用整体法和隔离法解题的方法1、合理选择研究对象。
这是解答平衡问题成败的关键。
研究对象的选取关系到能否得到解答或能否顺利得到解答,当选取所求力的物体,不能做出解答时,应选取与它相互作用的物体为对象,即转移对象,或把它与周围的物体当做一整体来考虑,即部分的看一看,整体的看一看。
但整体法和隔离法是相对的,二者在一定条件下可相互转化,在解决问题时决不能把这两种方法对立起来,而应该灵活把两种方法结合起来使用。
为使解答简便,选取对象时,一般先整体考虑,尤其在分析外力对系统的作用(不涉及物体间相互作用的内力)时。
但是,在分析系统内各物体(各部分)间相互作用力时(即系统内力),必须用隔离法。
2、如需隔离,原则上选择受力情况少,且又能求解未知量的物体分析,这一思想在以后牛顿定律中会大量体现,要注意熟练掌握。
3、有时解答一题目时需多次选取研究对象,整体法和隔离法交叉运用,从而优化解题思路和解题过程,使解题简捷明了。
所以,注意灵活、交替地使用整体法和隔离法,不仅可以使分析和解答问题的思路与步骤变得极为简捷,而且对于培养宏观的统摄力和微观的洞察力也具有重要意义。
专题讲解整体法和隔离法的综合应用
整体法和隔离法的综合应用1.涉及隔离法与整体法的具体问题类型1涉及滑轮的问题;若要求绳的拉力,一般都必须采用隔离法;本例中,绳跨过定滑轮,连接的两物体虽然加速度大小相同但方向不同,故采用隔离法;2水平面上的连接体问题;①这类问题一般多是连接体系统各物体保持相对静止,即具有相同的加速度;解题时,一般采用先整体、后隔离的方法;②建立坐标系时也要考虑矢量正交分解越少越好的原则,或者正交分解力,或者正交分解加速度;3斜面体与上面物体组成的连接体的问题;当物体具有沿斜面方向的加速度,而斜面体相对于地面静止时,解题时一般采用隔离法分析;2.解决这类问题的关键正确地选取研究对象是解题的首要环节,弄清各个物体之间哪些属于连接体,哪些物体应该单独分析,分别确定出它们的加速度,然后根据牛顿运动定律列方程求解;选择研究对象是解决物理问题的首要环节;若一个系统中涉及两个或者两个以上物体的平衡问题,在选取研究对象时,要灵活运用整体法和隔离法;对于多物体问题,如果不求物体间的相互作用力,我们优先采用整体法,这样涉及的研究对象少,未知量少,方程少,求解简便;很多情况下,通常采用整体法和隔离法相结合的方法;一,平衡问题典例1 如图2-9所示,放置在水平地面上的质量为M的直角劈上有一个质量为m的物体,若物体在直角劈上匀速下滑,直角劈仍保持静止,那么下列说法正确的是图2-9A.直角劈对地面的压力等于M+mgB.直角劈对地面的压力大于M+mgC.地面对直角劈没有摩擦力D.地面对直角劈有向左的摩擦力解析方法一:隔离法先隔离物体,物体受重力mg、斜面对它的支持力F N、沿斜面向上的摩擦力F f,因物体沿斜面匀速下滑,所以支持力F N和沿斜面向上的摩擦力F f可根据平衡条件求出;再隔离直角劈,直角劈受竖直向下的重力Mg、地面对它竖直向上的支持力F N地,由牛顿第三定律得,物体对直角劈有垂直斜面向下的压力F N′和沿斜面向下的摩擦力F f′,直角劈相对地面有没有运动趋势,关键看F f′和F N′在水平方向上的分量是否相等,若二者相等,则直角劈相对地面无运动趋势,若二者不相等,则直角劈相对地面有运动趋势,而摩擦力方向应根据具体的相对运动趋势的方向确定;对物体进行受力分析,建立坐标系如图2-10甲所示,因物体沿斜面匀速下滑,由平衡条件得:支持力F N=mg cos θ,摩擦力F f=mg sin θ;图2-10对直角劈进行受力分析,建立坐标系如图乙所示,由牛顿第三定律得F N=F N′,F f=F f′,在水平方向上,压力F N′的水平分量F N′sinθ=mg cos θsin θ,摩擦力F f′的水平分量F f′cosθ=mg sin θcos θ,可见F f′cosθ=F N′sinθ,所以直角劈相对地面没有运动趋势,所以地面对直角劈没有摩擦力;在竖直方向上,直角劈受力平衡,由平衡条件得:F N地=F f′sinθ+F N′cosθ+Mg=mg +Mg;方法二:整体法直角劈对地面的压力和地面对直角劈的支持力是一对作用力和反作用力,大小相等、方向相反;而地面对直角劈的支持力、地面对直角劈的摩擦力是直角劈和物体整体的外力,所以要讨论这两个问题,可以以整体为研究对象;整体在竖直方向上受到重力和支持力,因物体在斜面上匀速下滑、直角劈静止不动,即整体处于平衡状态,所以竖直方向上地面对直角劈的支持力等于物体和直角劈整体的重力;水平方向上地面若对直角劈有摩擦力,无论摩擦力的方向向左还是向右,水平方向上整体都不能处于平衡状态,所以整体在水平方向上不受摩擦力,整体受力如图丙所示;答案AC2012·湖北调考如图2所示,100个大小相同、质量均为m且光滑的小球,静止放置于L 形光滑木板上;木板斜面AB与水平面的夹角为30°;则第2个小球对第3个小球的作用力大小为图2A.错误!B.48mgC.49mg D.98mg解析:选C 以第3个到第100个这98个小球整体为研究对象,受到三个力的作用,即重力、斜面AB的支持力和第2个小球对第3个小球的作用力,由于整体处于平衡状态,沿斜面AB方向的受力应平衡,所以有F23=98mg sin 30°=49mg,所以选项C正确;二,非平衡问题例2 2012·江苏高考如图3-3-5所示,一夹子夹住木块,在力F作用下向上提升;夹子和木块的质量分别为m、M,夹子与木块两侧间的最大静摩擦力均为f;若木块不滑动,力F 的最大值是 A图3-3-5A.错误!B.错误!C.错误!-m+MgD.错误!+m+Mg例2如图2-12,m和M保持相对静止,一起沿倾角为θ的光滑斜面下滑,则M和m间的摩擦力大小是多少f=mgsinθ·cosθ方向沿水平方向m受向左的摩擦力,M受向右的摩擦力;分析解答因为m和M保持相对静止,所以可以将m+M整体视为研究对象;受力,如图2-14,受重力M十mg、支持力N′如图建立坐标,根据牛顿第二定律列方程x:M+ngsinθ=M+ma ①解得a=gsinθ沿斜面向下;因为要求m和M间的相互作用力,再以m为研究对象,受力如图2-15;根据牛顿第二定律列方程因为m,M的加速度是沿斜面方向;需将其分解为水平方向和竖直方向如图2-16;由式②,③,④,⑤解得评析此题可以视为连接件问题;连接件问题对在解题过程中选取研究对象很重要;有时以整体为研究对象,有时以单个物体为研究对象;整体作为研究对象可以将不知道的相互作用力去掉,单个物体作研究对象主要解决相互作用力;单个物体的选取应以它接触的物体最少为最好;如m只和M接触,而M和m还和斜面接触;另外需指出的是,在应用牛顿第二定律解题时,有时需要分解力,有时需要分解加速度,具体情况分析,不要形成只分解力的认识;1一斜劈,在力F推动下在光滑的水平面上向左做匀加速直线运动,且斜劈上有一木块与斜面保持相对静止,如图3-3-2所示,已知斜劈的质量为M,木块的质量为m,求斜面对木块作用力的大小;图3-3-22.如图3-3-3所示,在光滑水平面上有甲、乙两木块,质量分别为m1和m2,中间用一原长为L、劲度系数为k的轻质弹簧连接起来,现用一水平力F向左推木块乙,当两木块一起匀加速运动时,两木块之间的距离是 B图3-3-3A.L+错误!B.L-错误!C.L-错误!D.L+错误!.如图5所示,在光滑水平地面上,水平外力F拉动小车和木块一起做无相对滑动的加速运动;小车质量为M,木块质量为m,加速度大小为a,木块和小车之间的动摩擦因数为μ,则在这个过程中,木块受到的摩擦力大小是BD图5A.μmg B.错误!C.μM+mg D.ma2012·豫南九校联考如图7所示,质量为M的劈体ABDC放在水平地面上,表面AB、AC 均光滑,且AB∥CD,BD⊥CD,AC与水平面成角θ;质量为m的物体上表面为半球形以水平速度v0冲上BA后沿AC面下滑,在整个运动的过程中,劈体M始终不动,P为固定的弧形光滑挡板,挡板与轨道间的宽度略大于半球形物体m的半径,不计转弯处的能量损失,则下列说法中正确的是 D图7A.水平地面对劈体M的摩擦力始终为零B.水平地面对劈体M的摩擦力先为零后向右C.劈体M对水平地面的压力大小始终为M+mgD.劈体M对水平地面的压力大小先等于M+mg,后小于M+mg.如图5所示,一个人坐在小车的水平台面上,用水平力拉绕过定滑轮的细绳,使人和车以相同的加速度向右运动;水平地面光滑,则BC图5A.若人的质量大于车的质量,车对人的摩擦力为0B.若人的质量小于车的质量,车对人的摩擦力方向向左C.若人的质量等于车的质量,车对人的摩擦力为0D.不管人、车质量关系如何,车对人的摩擦力都为02013·江西联考如图6所示,动物园的水平地面上放着一只质量为M的笼子,笼内有一只质量为m的猴子,当猴子以某一加速度沿竖直柱子加速向上爬时,笼子对地面的压力为F1;当猴子以同样大小的加速度沿竖直柱子加速下滑时,笼子对地面的压力为F2;关于F1和F2的大小,下列判断中正确的是BC图6A.F1=F2B.F1>M+mg,F2<M+mgC.F1+F2=2M+mgD.F1-F2=2M+mg.2012·福州模拟如图9所示,质量为m1和m2的两个物体用细线相连,在大小恒定的拉力F作用下,先沿光滑水平面,再沿粗糙的水平面运动,则在这两个阶段的运动中,细线上张力的大小情况是 C图9A.由大变小B.由小变大C.始终不变D.由大变小再变大10.质量为M的光滑圆槽放在光滑水平面上,一水平恒力F作用在其上促使质量为m的小球静止在圆槽上,如图10所示,则 CA.小球对圆槽的压力为错误!B.小球对圆槽的压力为错误!C.水平恒力F变大后,如果小球仍静止在圆槽上,小球对圆槽的压力增加D.水平恒力F变大后,如果小球仍静止在圆槽上,小球对圆槽的压力减小2013·长沙模拟如图5所示,光滑水平面上放置质量分别为m、2m和3m的三个木块,其中质量为2m和3m的木块间用一不可伸长的轻绳相连,轻绳能承受的最大拉力为F T;现用水平拉力F拉质量为3m的木块,使三个木块以同一加速度运动,则以下说法正确的是 C图5A.质量为2m的木块受到四个力的作用B.当F逐渐增大到F T时,轻绳刚好被拉断C.当F逐渐增大到1.5 F T时,轻绳还不会被拉断D.轻绳刚要被拉断时,质量为m和2m的木块间的摩擦力为错误!F T12.如图11所示,固定在水平面上的斜面倾角θ=37°,长方体木块A的MN面上钉着一颗小钉子,质量m=1.5 kg的小球B通过一细线与小钉子相连接,细线与斜面垂直,木块与斜面间的动摩擦因数μ=0.50;现将木块由静止释放,木块将沿斜面下滑;图11求在木块下滑的过程中小球对木块MN面的压力;取g=10 m/s2,sin 37°=0.6,cos 37°=0.8答案:6.0 N,方向沿斜面向下5.如图6所示,质量为80 kg的物体放在安装在小车上的水平磅秤上,小车在平行于斜面的拉力F作用下沿斜面无摩擦地向上运动,现观察到物体在磅秤上读数为1 000 N;已知斜面倾角θ=30°,小车与磅秤的总质量为20 kg;g=10 m/s2图61拉力F为多少2物体对磅秤的静摩擦力为多少解析: 1选物体为研究对象,受力分析如图甲所示;甲将加速度a沿水平和竖直方向分解,则有:F N1-mg=ma sin θ解得a=5 m/s2取小车、物体、磅秤这个整体为研究对象,受力分析如图乙所示;F-M+mg sin θ=M+ma所以F=M+mg sin θ+M+ma=1 000 N2对物体有F f静=ma cos θ=200错误! N根据牛顿第三定律得,物体对磅秤的静摩擦力大小为200错误! N,方向水平向左;答案:11 000 N 2200错误! N 方向水平向左16.14分静止在水平面上的A、B两个物体通过一根拉直的轻绳相连,如图18所示,轻绳长L=1 m,承受的最大拉力为8 N,A的质量m1=2 kg,B的质量m2=8 kg,A、B与水平面间的动摩擦因数μ=0.2,现用一逐渐增大的水平力F作用在B上,使A、B向右运动,当F增大到某一值时,轻绳刚好被拉断g=10 m/s2;图181求绳刚被拉断时F的大小;2若绳刚被拉断时,A、B的速度为2 m/s,保持此时的F大小不变,当A静止时,A、B间的距离为多少答案:140 N 23.5 m。
整体法和隔离法的应用
整体法和隔离法的应用整体法和隔离法是管理学中常用的两种管理模式,它们在企业管理的实践中,被广泛应用。
从理论上说,两种管理模式都有其优点和劣势,但具体的管理应用则需要根据企业的实际情况和管理目标来选择。
本文将从整体和隔离的定义、特点、优缺点等方面,分别探讨两种管理模式的应用。
一、整体法整体法是指将企业看作一个整体来进行管理。
它强调企业的内部各项职能和部门之间的密切合作,以提高企业的整体效益和竞争力。
整体法的特点是以全局为导向,注重协同合作,提高整体效益。
应用方面,在实践中,企业如果希望采用整体管理模式,需要有以下几个方面需要考虑:1、打破各部门之间的隔阂,加强协同合作。
不同部门之间通常存在着比较严重的信息堵塞和合作协调的问题,这需要通过制定相关流程和机制,以及分配任务和责任来解决。
2、加强内部沟通,建立健康和谐的工作环境。
企业内部的交流和沟通是很重要的,如果内部信息流通不畅,部门之间缺少合作和协作,很容易导致企业目标的不一致,甚至是内部矛盾的发生。
3、优化管理流程,减少不必要的环节。
企业需要将发现的问题及时上报到高层管理层,以及给出相应的解决方案。
在流程中需要规范突发事件的处理流程,根据事件情况及时给出处理办法。
二、隔离法隔离法是指将不同区域和功能划分为不同的管理部门,形成相对独立的管理体系,最终达到优化管理、提高效率的目的。
隔离法的特点是区域和职能相对独立,能够减少不必要的干扰和影响,提高工作效率。
应用方面,在实践中,企业采用隔离法通常需要考虑以下几个方面:1、运营过程需要规划清晰,在工作制度和流程上需要有所约束。
各项工作的执行必须遵循明确的流程和标准,对于工作细节等相关信息必须进行严密监管,任何不符合标准的行为都将被严肃处理。
2、管理部门要加强沟通和合作。
不同管理区域和功能之间一定要密切合作,以保证企业目标的协调性和一致性。
在实践中,这需要建立适合企业的沟通和合作机制,加强信息和资源共享。
3、制定合理的考核制度,以及加强员工培训。
整体法与隔离法的应用(附答案)
整体法与隔离法的应用整体法和隔离法在力的平衡问题和牛顿运动定律中的连接体问题中经常遇到这样的题目。
方法剖析:整体法:解题一般比较简单,但整体法整体法不能求内力。
隔离法:对系统内的物体受力分析时,一般先从受力简单的物体入手,采用隔离法进行分析, 注意事项:整体法的适用条件系统内各个物体的运动状态必须相同,两种方法实际问题常常需要整体法与实际应用隔离法交叉运用 精准练习巩固:1.如图,滑块A 置于水平地面上,滑块B 在一水平力作用下紧靠滑块A (A 、B 接触面竖直),此时A 恰好不滑动,B 刚好不下滑。
已知A 与B 间的动摩擦因数为μ1,A 与地面间的动摩擦因数为μ2,最大静摩擦力等于滑动摩擦力。
A 与B 的质量之比为( ) A.1μ1μ2 B.1-μ1μ2μ1μ2 C.1+μ1μ2μ1μ2 D.2+μ1μ2μ1μ22.如图所示,在粗糙水平地面上放着一个截面为半圆的柱状物体A ,A 与竖直墙之间放一光滑半圆球B ,整个装置处于静止状态。
已知A 、B 两物体的质量分别为m A 和m B ,则下列说法正确的是( )A.A 物体对地面的压力大小为m A gB.A 物体对地面的压力大小为(m A +m B )gC.B 物体对A 物体的压力大于m B gD.地面对A 物体没有摩擦力3.如图所示,甲、乙两个小球的质量均为m ,两球间用细线连接,甲球用细线悬挂在天花板上。
现分别用大小相等的力F 水平向左、向右拉两球,平衡时细线都被拉紧。
则平衡时两球的可能位置是下面的( )4.在上题目的图中,如果作用在乙球上的力大小为F,作用在甲球上的力大小为2F,则此装置平衡时的位置可能是()5.如图所示,用完全相同的轻弹簧A、B、C将两个相同的小球连接并悬挂,小球处于静止状态,弹簧A与竖直方向的夹角为30°,弹簧C水平,则弹簧A、C的伸长量之比为()A.3∶4B.4∶ 3C.1∶2D.2∶16.(多选)如图所示,质量分别为m A、m B的A、B两个楔形物体叠放在一起,B靠在竖直墙壁上,在水平力F的作用下,A、B静止不动,则()A.A物体受力的个数可能为3B.B受到墙壁的摩擦力方向可能向上,也可能向下C.力F增大(A、B仍静止),A对B的压力也增大D.力F增大(A、B仍静止),墙壁对B的摩擦力也增大7.如图所示,一个质量为m的滑块置于倾角为30°的固定粗糙斜面上,一根轻弹簧一端固定在竖直墙上的P点,另一端系在滑块上的Q点,直线PQ与斜面垂直,滑块保持静止.则()A.弹簧可能处于原长状态B.斜面对滑块的摩擦力大小可能为零C.斜面对滑块的支持力大小可能为零D.滑块一定受到四个力作用8.物体B放在物体A上,A、B的上下表面均与斜面平行(如图),当两者以相同的初速度靠惯性沿光滑固定斜面C向上做匀减速运动时( )A.A受到B的摩擦力沿斜面方向向上。
牛顿运动定律应用—整体法和隔离法
m
θ
M
F ( M m)a
θ
①
m
F FN sin ma ② FN cos mg 0 ③
θ
mg
M F
联立①②③式解出使m相对M ⑴整体法和隔离法相结合. 相对滑动的最小推力 ⑵动态分析临界状态,从两个方 ( M m) mg tan 面理解临界状态.
F
M
P 附加题3:如图,一细线的一端固定于倾角为 450的光滑楔形滑块A的顶端P处, 细 线的另 一端拴以质量为m的小球, ⑴.当滑块至少以 a 多大加速度向左运动时,小球对滑块的压力 为零? ⑵.当滑块以加速度a=2g向左运动时, 线中张力多大? a0 解:⑴根据牛顿第二定律得 450
1、物体1、2放在光滑的水平面上,中间以轻质弹簧相连,如图所 示,对物体1、2分施以方向相反的水平力F1、F2,且F1>F2,则弹 簧秤的读数C [ ] A.一定为F1+F2 B.可能为F1+F2 C.一定小于F1,大于F2 D. 一定为F1-F2 用整体法可知加速度方向向左, 对1物体作为对象有弹力F小于F1, 对B物体作为对象有弹力F大于F2
F
再分析B的受力情况:
A B
FNB F FfB
FfB =μFNB=μm2g
FB合 =FAB-FfB=m2a
m2 F FAB =FfB+m2a m1 m2
Ff
FN
AB
G
B
GB
FAB
变式训练2:如图所示,在光滑的水平面上,有等质 量的五个物体,每个物体的质量为m.若用水平推力 F推1号物体,求: (1)它们的加速度是多少? (2)2、3号物体间的相互作用力为多少?
解:因各个物体的加速度相同,可以五个物体整体为研究 对象求出整体的加速度.再以3、4、5号物体为研究对象求 出2、3号物体间的相互作用力. 对整体:F=5ma 对3、4、5号物体:F23=3ma 得 a=F/5m; F1=3F/5
整体法和隔离法的正确用法
整体法和隔离法的正确用法整体法和隔离法是物理学中常用的两种方法,它们在解决复杂系统的运动和相互作用问题时非常有用。
下面将介绍整体法和隔离法的正确用法。
一、整体法整体法是指将多个物体组成的系统作为一个整体进行研究的方法。
这种方法在解决一些涉及多个物体相互作用的问题时非常有效。
整体法的优点是可以减少研究对象的数量,从而简化问题的复杂性。
1. 适用范围整体法适用于以下情况:(1)多个物体组成的系统具有相同的运动状态,可以作为一个整体进行研究;(2)多个物体之间的相互作用力可以忽略不计,或者只考虑它们之间的外部力;(3)需要研究系统整体的力学性质,如加速度、动量等。
2. 解题步骤使用整体法解题的一般步骤如下:(1)明确研究对象,将多个物体组成的系统作为一个整体进行研究;(2)分析整体受到的外力,包括重力、支持力、摩擦力等;(3)根据牛顿第二定律列方程,求出整体的加速度;(4)根据加速度求出各个物体的运动状态,如速度、位移等。
3. 注意事项使用整体法时需要注意以下几点:(1)整体法只能考虑外部力,不能考虑内部相互作用力;(2)如果系统中有多个物体具有不同的运动状态,需要分别对它们进行受力分析;(3)在求解系统的加速度时,需要考虑各个物体之间的相互作用力。
二、隔离法隔离法是指将系统中的各个物体分别进行受力分析的方法。
这种方法在解决一些涉及相互作用力的问题时非常有效。
隔离法的优点是可以清晰地分析各个物体之间的相互作用关系。
1. 适用范围隔离法适用于以下情况:(1)需要研究系统中各个物体之间的相互作用力;(2)系统中各个物体具有不同的运动状态,需要分别进行分析;(3)需要求出各个物体受到的合外力。
2. 解题步骤使用隔离法解题的一般步骤如下:(1)明确研究对象,将系统中的各个物体分别作为研究对象;(2)对每个物体进行受力分析,包括重力、支持力、摩擦力等;(3)根据牛顿第二定律列方程,求出各个物体的加速度;(4)根据加速度求出各个物体的运动状态,如速度、位移等。
隔离法和整体法
隔离法和整体法隔离法和整体法是两种常用的解决问题的思维方法。
隔离法是通过分解问题,将其拆分为多个独立的部分来解决;整体法则是将问题作为一个整体来考虑和解决。
本文将分别介绍隔离法和整体法的概念、应用场景以及优缺点。
一、隔离法隔离法是指将一个复杂的问题分解为多个相对独立的部分,然后分别解决每个部分的方法。
通过将问题进行隔离,我们可以更加集中精力解决每个独立的部分,从而提高解决问题的效率。
在实际应用中,我们可以将隔离法运用于各种领域。
例如,在软件开发中,一个复杂的功能可以被拆分为多个子功能,每个子功能独立开发和测试,最后再进行整合。
在项目管理中,可以将整个项目分解为多个阶段或任务,每个阶段或任务分配给不同的团队或个人负责。
这样可以有效地提高工作的并行性和协作效率。
隔离法的优点是可以使问题更加清晰明确,减少了复杂度,易于解决。
同时,通过将问题分解为多个部分,可以提高工作的并行性和解决问题的效率。
然而,隔离法也存在一些缺点。
例如,分解问题可能导致信息的丢失或不完整,从而影响解决问题的准确性。
此外,对于某些问题,隔离法可能会导致解决方案的整体性差,不够综合。
二、整体法整体法是指将一个问题作为一个整体来考虑和解决。
在运用整体法解决问题时,我们需要从整体的角度思考问题的本质、关联和影响,综合各个方面的因素,找出最优解决方案。
整体法在很多领域都有广泛的应用。
例如,在企业管理中,整体法强调整个企业的战略规划、组织结构、人力资源等各个方面的协同作用,以实现企业目标的最大化。
在市场营销中,整体法要求将产品设计、定价、推广和渠道管理等因素考虑在内,以达到市场竞争的优势。
在生态保护中,整体法强调人与自然的平衡和协调,以实现生态环境的可持续发展。
整体法的优点是可以从全局的角度思考问题,考虑各个方面的因素,并找出最优解决方案。
与隔离法相比,整体法更加综合和细致。
然而,整体法也存在一些挑战和局限。
例如,整体法需要对问题有全面的了解和把握,需要考虑的因素较多,可能需要投入更多的时间和资源。
整体法、隔离法的应用
(一)整体法、隔离法的应用方法概述:1、当物体间相对静止,具有共同的对地加速度时,就可以把它们作为一个整体,通过对整体所受的合外力列出整体的牛顿第二定律方程(若合力为零则列平衡方程)。
2、当需要计算物体之间(或一个物体各部分之间)的相互作用力时,就必须把各个物体(或一个物体的各个部分)隔离出来,根据各个物体(或一个物体的各个部分)的受力情况,画出隔离体的受力图,列出牛顿第二定律方程(若合力为零则列平衡方程)。
许多具体问题中,常需要交叉运用整体法和隔离法,有分有合,从而可迅速求解。
1、如图所示,有半径均为r,重均为G的两个光滑小球,放在圆柱形圆筒内,圆筒的半径为R,且R<2r,求两球之间的压力及圆筒底部所受的压力。
2、如上图所示,平板重300N,滑轮重不计,要使整个装置静止,则P物重力的最小值是多少?3、如图右,一固定斜面上两个质量相同的小物块A和B紧挨着匀速下滑,A与B的接触面光滑。
已知A与斜面之间的动摩擦因数是B与斜面之间动摩擦因数的2倍,斜面倾角为α。
B与斜面之间的动摩擦因数是()A.23tanαB.23cotα C.tanα D.cotα4.如图所示,质量分别为m和2m的两物体A、B叠放在一起,放在光滑的水平地面上,已知A、B间的最大摩擦力为A物体重力的μ倍,若用水平力分别作用在A或B上,使A、B保持相对静止做加速运动,则作用于A、B上的最大拉力F A与F B之比为多少?5.如图所示,在水平桌面上有三个质量均为m的物体A、B、C叠放在一起,水平拉力F作用在物体B上,使三个物体一起向右运动,则:(1)当三个物体一起向右匀速运动时,A与B、B与c、C与桌面之间的摩擦力大小;(2)当三个物体一起向右以加速度a匀加速运动时,A与B、B与C、C与桌面之间的摩擦力大小。
6、如图所示,置于光滑水平面上的木块A和B,其质量为m A和m B。
当水平F作用于A左端上时,两物体一起作加速运动,其A、B间相互作用力大小为N1;当水平力F作用于B右端上时,两物体一起做加速度运动,其A、B间相互作用力大小为N2。
整体法和隔离法在平衡问题中的应用
A. tan C. 2 tan
B.
1 2
tan
D. 与 无关
B F θA
4、如图所示,固定在水平地面上的物体P,左侧是光 滑圆弧面,一根轻绳跨过物体P顶点上的小滑轮,一 端系有质量为m=4 kg的小球,小球与圆心连线跟水平 方向的夹角θ=60°,绳的另一端水平连接物块3,三 个物块重均为50 N,作用在物块2的水平力F=20 N,
aa
aa
左
右
b
b b
A
B
C
a
b
b
D
12、如图所示,a、b两个质量相同的球用线连接,a 球用线挂在天花板上,b球放在光滑斜面上,系统保持 静止(线的质量不计),以下图示哪个是正确的( )
13、如图所示两块相同的竖直木板A、B之间有质
量均为m的四块相同的砖,用两个大小均为F的水
平力压木板,使砖静止不动,设所有接触面间的摩
B.N=(ma+mb)g,N1≠N2
C.mag<N<(ma+mb)g,N1=N2 D.mag<N<(ma+mb)g,N1≠N2
11、用轻质线把两个质量未知的小球悬挂起来,如右图所 示今对小球a持续施加一个水平向左的恒力,并对小球b持 续施加一个水平向右的同样大的恒力,最后达到平衡。表
示平衡状态的图可能是:( A )
v
Q
P
B F θA
整体法和隔离法在平衡问 题中的应用
1、整体法:就是把两个或更多的物体组成的系统 作为研究对象。当研究外力对系统的作用时,一般选
用整体法。因为不用考虑系统内力,所以这种方法更
简便。
2、隔离法:把其中一个物体从系统中隔离出来作 为研究对象。在分析系统内各物体(各部分)间的相互 作用时,一般选用隔离法,一般情况下隔离受力较少
牛顿第二定律的应用之整体法与隔离法
碰撞问题
总结词
碰撞问题是指两个或多个物体在短时间 内发生高速碰撞,导致物体运动状态发 生急剧变化的问题。通过牛顿第二定律 ,可以求解碰撞后的运动状态和运动规 律。
VS
详细描述
碰撞问题中,物体之间的相互作用力会在 极短的时间内使物体的运动状态发生急剧 变化。通过分析碰撞过程中物体的受力情 况和运动状态的变化,结合牛顿第二定律 ,可以求解碰撞后物体的速度、加速度和 位移等物理量的变化。
牛顿第二定律只适用于惯性参考系,即没有加速度的参考系。在非惯性参考系中,物体的运动规律会 受到额外的力作用,这些力无法通过牛顿第二定律来描述。
在研究天体运动、相对论效应等非惯性参考系问题时,需要使用更复杂的理论框架,如广义相对论。
只适用于单一物体的运动状态改变问题
牛顿第二定律适用于描述单一物体在 受到外力作用时运动状态的改变,不 适用于涉及多个物体相互作用的问题。
05
牛顿第二定律的局限性
只适用于宏观低速物体
牛顿第二定律只适用于描述宏观低速物体的运动规律,对于微观高速的粒子运动,如光子、电子等,需要使用量子力学和相 对论等其他理论。
在宏观低速的范围内,牛顿第二定律能够很好地描述物体的加速度与作用力之间的关系,但在高速或微观领域,这种描述会 失效。
只适用于惯性参考系
适用条件
当多个物体之间的相互作用力远大于 外界对整体的作用力时,使用整体法 更为简便。
在分析物体的加速度和受力情况时, 如果多个物体之间的运动状态相同或 相近,整体法也适用。
应用实例
当一个斜面静止在水平地面上时,可以将斜面和斜面上放置 的物体视为一个整体,分析受到的重力和地面对整体的静摩 擦力,从而得出斜面是否会滑动。
总结词
连接体问题是指两个或多个物体通过相互作用力而连接在一起的问题。通过整体法和隔离法,可以求解连接体的 运动状态和运动规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、隔离法:把所研究对象从整体中隔离出 来进行研究,最终得出结论的方法称为隔离法。 采用隔离物体法一般用来求内力,能排除与研 究对象无关的因素,使事物的特征明显地显示 出来,从而进行有效的处理。
.
三 .解题方法:当几个物体的加速度相同时可以看着一个整体,
可以用整体法解题。
(1)已知外力求内力。
.
分析: 物体A和B加速度相同, 求它们之间的相互作用力, 采取先整体后隔离的方法,
先求出它们共同的加速度, 然后再选取A或B为研究对象, 求出它们之间的相互作用力.
选取A和B整体为研究对象, 共同加速度a为:
F2
F1
a F1 F2 mm
再选取物体B为研究对象, 受力分析如图所示,
F2
FN
FN=mg/cosθ
FN
F合=mgtanθ
θ
由牛顿第二定律可得:a= F合/m =gtanθ
对整体,由牛顿第二定律可得:
F合
m
F=(M+m)a=(M+m)gtanθ
F
[答案]BDF
M θ
mg
.
课程小结
(1)解答问题时,决不能把整体法和隔离法对立起来, 而应该把这两种方法结合起来,从具体问题的实际 情况出发,灵活选取研究对象,恰当选择使用隔离和 整体法.
的,在它的斜面上有一质量为m的物体,
在用水平力推斜面体沿水平面向左运动过
程中,物体与斜面体恰能保持相对静止,
m
则下列说法中正确的是( )
F
A.斜面体对物体的弹力大小为mgcosθ
B.斜面体对物体的弹力大小为mg/cosθ C.物体的加速Βιβλιοθήκη 大小为gsinθθM
D.水平推力大小为(M+m)gtanθ
.
[解析]隔离m,由平行四边形定则可得:
(2)在使用隔离法解题时,所选取的隔离对象可以使连接 体中的某一部分物体,也可以使连接体中的某一个物体(包 含两个或两个以上的单个物体),而这“某一部分”的选取, 也应根据问题的实际情况,灵活处理.
.
.
整体法与隔离法解连接体问题
.
知识点
1、整体法和隔离法的区别 2、应用整体法的条件(重点) 3、如何应用整体法隔离法解题(难点) 4、整体法隔离法应用的注意事项
.
课程内容
一、整体法:在研究物理问题时,把所研究的 对象作为一个整体来处理的方法称为整体法。 采用整体法不需要考虑内力的影响,可以避免 对整体内部进行繁锁的分析,常常使问题解答 更简便、明了。
先整体分析,计算加速度,然后隔离分析计算内力。
例1 如图所示, 两个质量相同的物体A和B紧靠再一起, 放在
a 光滑的水平面上, 如果他们分别受到水平推力F1和F2, 而且F1>
FA2,.
则A施于B的作用力大小为(
F1
)
B. F2 C. (F1+ F2) / 2 D. (F1- F2) / 2
F1 A B F2
T
联立解得:T=mF/(M+m)
.
(2)已知内力求外力。
先隔离分析计算加速度,然后
整体分析,计算外力。
例2 如图所示, A、B、C三物体
A
的质量分别为m1、m2、m3 , 带有
F 滑轮的 C 放在光滑的水平面上,
细绳质量及一切摩擦均不计, 为
使三物体无相对运动, 试求水平
推力F的大小?
C B
.
解 设系统运动的加速度为a , 绳的弹力为T, 先隔离分析.
根据牛顿第二定律: FN - F2 ma
FN
F2
ma
F2
m F1 F2 2m
F1
F2 2
.
.
变式1:物块m和M用轻绳连接,在M上施加恒力 F,使两物
块作匀加速直线运动,地面光滑。求绳中张力。
解:(1)由牛顿第二定律,
对整体可得:F=(M+m)a
F
m
F M
隔离m可得:T=ma
T
: 对B, 由平衡条件得: T m2 g ①
mg
对A, 由牛顿第二定律得: T m1a ②
T
由 ① ②得: a m2 g.
m1
F
再取整体研究, 由牛顿第二定律:
F
(m1
m2
m3
)a
(m1
m2
m3
)
m2 m1
g.
.
变式:如图所示,倾角为θ的斜面体置于
水平面上,其质量为M,它的斜面是光滑