工程力学中压杆稳定PPT课件

合集下载

压杆的稳定性PPT课件

压杆的稳定性PPT课件
l 2
l 表示把压杆折算成两端铰支的长度,称为相当长度。
称为长度系数,它反映了杆端不同支座情况对临界压力
的影响。
第28页/共68页
支座情况 两端铰支
一端固定 一端自由
一端固定 一端铰支
两端固定
压杆简图
临界压力 公式
2EI
l2
1.0
2EI
2l 2
2
2EI
0.7l 2
0.7
第29页/共68页
约小100倍!杆件先发生失稳现象!
F
第30页/共68页
8.3 压杆的临界应力、经验公式
1 临界应力
压杆处于临界状态时,近似认为压杆横截面上的轴向 正应力临界压力Fcr 与压杆的横截面面积A之比,该正应
力称为临界应力,以 cr 表示。

cr
Fcr A
2EI l2 A
式中,I i2 ,
A
i为截面的惯性半径,是一个与截面形状和尺寸
第13页/共68页
载 荷 更 大 的 状 态
第14页/共68页
压杆的平衡稳定性
F Fcr
临界力
F Fcr
F Fcr
微小横 向力Q
微小横 向力Q
上界
下界
稳定平衡
临界状态
不稳定平衡
稳定的直线平
微弯平衡状态
衡状态
第15页/共68页
压杆的平衡稳定性 F
F FFcr F F F Fcr
当 P Pcr 当 P Pcr
第19页/共68页
8.2 压杆的稳定性分析、欧拉公式
1 两端铰支细长杆的临界压力
如图所示细长等直杆
当压杆在压力F作用下处于临界状态时,杆件发生“微弯” 变形,x截面处的弯矩

第十章压杆稳定ppt课件

第十章压杆稳定ppt课件

2E 0.56 S
②s < 时: cr s
临界应力的特点
•它的实质: 象强度中的比例极限、屈服极限类似,除以 安全因数就是稳定中的应力极限
•同作为常数的比例极限、屈服极限不同,变化 的临界应力依赖压杆自身因素而变
例102 截面为 120mm200mm 的矩形 木柱,长l=7m,材料的弹性模量E = 10GPa,
Fcr
2 EImin
l2
此公式的应用条件:
•理想压杆
•线弹性范围内
•两端为球铰支座
§10-3 不同杆端约束下细长压杆 临界力的欧拉公式
其它端约束情况,分析思路与两端铰支的相同, 并得出了临界力公式
Fcr
2 EImin (l)2
即压杆临界力欧拉公式的一般形式
—长度系数(或约束系数) l—相当长度
•求临界力有两种途径:实验测定及理论计算。
•实验以及理论计算表明:压杆的临界力,与压杆 两端的支承情况有关,与压杆材料性质有关,与 压杆横截面的几何尺寸形状有关,也与压杆的长 度有关。
压杆一般称为柱,压杆的稳定也称为柱的稳 定,压杆的失稳现象是在纵向力作用下,使 杆产生突然弯曲的,在纵向力作用下的弯曲, 称为纵弯曲。
AB杆 l
1
i
l
1.5 cos30
1.732m
i
I A
D4 d4 4 64 D2 d2
D2 d 2 16mm 4

1 1.7 3 2 1 03
16
108 P
AB为大柔度杆
Fcr
2EI
l 2
118kN
n
Fcr FN
118 26.6
4.42 nst
3
AB杆满足稳定性要求

《压杆稳定》课件

《压杆稳定》课件
《压杆稳定》PPT课件
压杆稳定是工程结构中的重要问题,掌握这一原理对于建筑、电力和汽车等 领域都至关重要。
概述
定义
压杆稳定是指结构中的杆件在受压作用下仍能够保持平衡的状态。
原理
受压杆件会发生弯曲和屈曲变形,从而形成侧向支撑力,从而保持杆件的稳定。
应用场景
建筑、桥梁、电力塔和汽车等诸多领域都运用了压杆稳定的原理。
电力工业
电力塔和支架上的压杆稳定设 计,可以防止杆件失去平衡而 导致高压线路的断裂。
总结
1
优缺点
压杆稳定有着较高的稳定性和安全性,但是对材料和结构的要求比较高。
2
发展趋势
随着结构材料和设计技术的不断进步,压杆稳定的设计方法也将日趋完善。
3
应用前景
压杆稳定在建筑、汽车和电力等领域有较广泛的应用前景,是未来工程结构的重 要发展方向。
参考资料
1. 《结构力学》 王兆院 2. 《结构稳定理论》 蔡景达 3. 《Mechanics of Materials》 R.C. Hibbeler
压杆稳定的计算
1
计算模型
压杆稳定的计算通常采用欧拉公式和能量
压力、应力和变形的计算
2
原理来进行分析。
压力、应力和变形是计算压杆稳定所必需
的核心参数。
3
临界负载
临界负载是指杆件失去稳定的负载情况, 其计算方法取决于结构和边界条件。
压杆稳定的优化设计
材料选择
不同材料的强度和刚度各不相同, 选择合适的材料对于杆件的稳定性 至关重要。

结构设计
良好的结构设计可以有效地降低压 杆的压力和应力,从而提高其稳定 性。
优化方法
优化方法可以使得压杆在保证结构 强度的同时,达到最佳的性能和稳 定状态。

《工程力学压杆稳定》课件

《工程力学压杆稳定》课件

压杆的应用案例
建筑

机械
压杆广泛应用于建筑领域,提供 结构稳定和支撑。
在机械工程中,压杆用于连接零 部件和传递力量。
通过案例演示,加深对压杆稳定的理解和应用。
桥梁
桥梁结构中的压杆可以增加桥梁 的稳定性和承重能力。
压杆稳定的条件
压杆稳定是杆件不发生屈曲的状态,包括杆件的截面形状、材料性质、长度等因素。
压杆的计算方法
1
确定杆件的受力状态
根据杆件受力情况进行分析。
2
计算杆件的临界压力
使用适当的公式计算杆件的临界压力。
3
判断是否稳定
根据计算结果判断杆件是否稳定。
压杆稳定的公式有等弯曲时压杆稳定公式和弯矩影响时压杆稳定公式。
《工程力学压杆稳定》 PPT课件
以图文并茂的方式介绍《工程力学压杆稳定》,让你轻松学习压杆的定义、 分类、稳定条件、计算方法和应用案例。
目录
1. 压杆的定义和分类 3. 压杆的计算方法
2. 压杆稳定的条件 4. 压杆的应用案例
压杆的定义和分类
压杆是指受到力作用的细长构件,可分为圆杆、方杆、角杆等多个分类。

工程力学压杆稳定ppt课件

工程力学压杆稳定ppt课件

解 (1)圆形截面
直径 惯性半径
D 4 A 4 90 3 0 .8 3 m 5 m 3.8 3 5 1 3 0 m
iI A
D D 4 2 //6 4 4 D 4 3.8 3 4 1 5 3 0 8 .4 1 6 3 0 m
柔度
l 11.2 142
i 8.461 03
P
E P
200190 9.93
200160
因为 14 2 P9.3 9,所以属细长压杆,用欧拉公式计算临界力
F cr 2 lE 2 I 2 20 1精0 9 选1 0 p6 p1 t课.2 件4 2 23 021.8 3 5 1 3 0 48.3 8 KN 35
(2) 正方形截面
截面边长 aA 90 3 0 0 1 3 0 m
p, crp cr22Ep.
2E p
p
2E p
cr
无效
(细长压杆临界柔度)
p
欧拉公式的适用围: p,
有效
cr
2E 2
称大柔度杆(细长压杆 )
例:Q235钢,E20G0P ,p a20M o 0.Pa p
l i
p
2 E 2200103 99 .35100
p
20精0选ppt课件2021
kln (n = 0、1、2、3……)
由 k2 Fcr 可 得 EI
Fcr
n2 2EI
l2
精选ppt课件2021
17
临界载荷:
Fcr
n2 2EI
l2
屈曲位移函数 :y(x)Asinnx
l
临界力 F c r 是微弯下的最小压 力,故取 n = 1。且杆将绕惯性矩最小
的轴弯曲。
最小临界载荷:

《压杆稳定教学》课件

《压杆稳定教学》课件

增加约束
总结词
通过增加支撑、固定或增加附加约束,可以 提高压杆的稳定性。
详细描述
约束是影响压杆稳定性的重要因素。通过增 加支撑、固定或附加约束,可以限制压杆的 自由度,从而增强其稳定性。例如,在压杆 的适当位置增加支撑或固定点,可以减小压 杆的弯曲变形,提高其稳定性。此外,通过 增加附加约束,如套箍或加强筋等,也可以 提高压杆的稳定性。
实验结果与分析
实验结果
通过实验观察和数据记录,得到不同条件下 压杆的稳定性表现。
结果分析
根据实验数据,分析影响压杆稳定性的因素 ,如压杆的材料、截面形状、长度、直径等 。通过对比不同条件下的实验结果,总结出
压杆稳定性的一般规律和特点。
THANKS
感谢观看
REPORTING
稳定性安全系数
通过比较临界载荷与实际载荷的大小,来判断压杆的 稳定性。
稳定性试验
通过试验的方法,对压杆进行稳定性测试,以验证其 在实际使用中的稳定性。
PART 02
压杆的分类与计算
REPORTING
长细比较小的压杆
弹性失稳
当受到垂直于杆轴的压力时,杆件会 弯曲并丧失承载能力。
临界压力
当压杆达到临界压力时,杆件将发生 屈曲。
PART 05
压杆稳定性的实验研究
REPORTING
实验目的与原理
实验目的
通过实验研究,掌握压杆稳定性的基本概念和原理,了解影响压杆稳定性的因 素。
实验原理
压杆稳定性是指细长杆在受到轴向压力时,抵抗弯曲变形的能力。当轴向压力 超过某一临界值时,压杆会发生弯曲变形,丧失稳定性。本实验通过观察不同 条件下压杆的变形情况,分析影响压杆稳定性的因素。
根据欧拉公式计算临界应力:$sigma_{cr} = frac{EI}{A}$
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

端约束情况下的相当长度 l。
29
两杆均为细长杆的杆系如图示,若杆件在ABC面内 因失稳而引起破坏,试求载荷F为最大值时的θ角(设 0<θ<π/2)。设AB杆和BC杆材料截面相同。
细长压杆的失稳往往产生很大的变形甚至导致 整个结构破坏。
16
1875年俄国开伏达河上同名桥,在安装完毕后, 仅当工作车通过时,受压上弦杆发生偏离桁架平面的屈 曲而毁坏。
17
1925年2月13日,修复后的莫济里桥在试车时出现 了问题。幸好桁架落在为试车准备的临时支座上,人 们才可看到斜杆失稳后的情景。
小球在不同 的位置状态 保持平衡状 态的能力不 同。
13
如何判断压杆的稳定与不稳定?
F<Fcr :在扰动作用下,
直线平衡构形转变为弯曲
平衡构形,扰动除去后, 能够恢复到直线平衡构形,
直 线
则称原来的直线平衡构形

是稳定的。



弯弯 曲曲 平平 衡衡 构构 形形
14
如何判断压杆的稳定与不稳定?
F>Fcr :在扰动作用下,
表中将求临界力的欧拉公式写成了同一的形式:
Fcr
π 2 EI
l 2
式中, 称为压杆的长度因数,它与杆端约束情况有关; l
称为压杆的相当长度(equivalent length),它表示某种杆端约束
情况下几何长度为l的压杆,其临界力相当于长度为 l 的两端
铰支压杆的临界力。表13-1的图中从几何意义上标出了各种杆
1
§13-1 压杆稳定性的概念
工程中把承受轴向压力的直杆称为压杆 压杆
2
工程中把承受轴向压力的直杆称为压杆
液压缸顶杆
3
工程中把承受轴向压力的直杆称为压杆
液压缸 顶杆
4
工程中把承受轴向压力的直杆称为压杆 木结构中的压杆
5
工程中把承受轴向压力的直杆称为压杆
脚手架中的压杆
6
工程中把承受轴向压力的直杆称为压杆 桁架中的压杆
Fcr
p 2EI (0.7l)2
p 2EI Fcr (0.5l)2
Fcr
p 2EI (2l)2
p 2EI
Fcr l 2
2长8 度因数μ =1 0.7 =0.5 =2
=1
表13-1中列出了几种典型的理想杆端约束条件下,等截面 细长中心受压直杆的欧拉公式。从表中可见,杆端约束越强,
压杆的临界力也就越高。
7
工程中把承受轴向压力的直杆称为压杆 嫦娥奔月中的压杆
8
高压输电线路保持相间距离的受压构件
9
稳定问题:主要针对细长压杆
课堂讨论:横截面为26mm×1mm的钢尺,求其能承受的 Fmax=?
F
若l取 2c, m 按屈服 s 强 23M 度 5计 Pa算,
Fmax 235 16026 10 6 61N 10
若取 l 30cm,按两端铰接方轴 式向 使压 其 , 力 受
l
当产生明显变 Fma形 x时 180, N
若取 l 10cm ,则产生明显F变 max形 50N 时,
若取 l20cm ,则产生明显Fm 变 a x1形 2.80 时 N
26mm
10
1mm
不稳定平衡
11
2 、 稳定平衡
12
3 、稳定平衡和不稳定平衡
w Asinπ x l
可见此时的挠曲线为半波正弦曲线。
n=1
FPcr
Asin kxAsin πx
ln=2Biblioteka 4FPcrAsik nxAsin 2πx
l
n=3
26
9FPcr Asik nxAsin 3πx
l
用上述方法还可推导出另一些杆端约束条件下压杆临界 力的欧拉公式,如表13-1所示。
27
表13–1 各种支承约束条件下等截面细长压杆临界力的欧拉公式
支承情况
两端铰支
一端固定 另端铰支
两端固定
一端固定 另端自由
两端固定但可沿 横向相对移动
Fcr
Fcr
Fcr
Fcr
Fcr

l l 0.7l l 0.5l
l 2l l 0.5l
稳 时
B
B
B

D

线

C
C

A
A
A
C— 挠曲 C、D— 挠
线拐点 曲线拐点
C— 挠曲线拐点
临界力Fcr 欧拉公式
p 2EI Fcr l 2
令k2=Fcr /EI,将挠曲线近似微分方程(a)改写成
wk2w0
(b)
该二阶常系数线性微分方程(b)的通解为
w A sikn x B ck ox s
(c)
此式中有未知量A和B以及k。
23
(a)
24
w A sikn x B ck ox s
(c)
将边界条件x=0,w=0代入式(c)得 B=0。于是根据(c)式并利用边界条件 x=l,w=0得到
本节以两端球形铰支(简称两端铰支) 的细长中心受压杆件(图a)为例,推导出 求临界力的欧拉(L.Euler)公式。
(a)
21
(a)
(b)
22
在图a所示微弯状态下,两端 铰支压杆任意x截面的挠度(侧向 位移)为w,该截面上的弯矩为 M(x)=Fcrw(图b)。杆的挠曲线 近似微分方程为
E w I M x F cw r (a)
直线平衡构形转变为弯曲
平衡构形,扰动除去后,

不能恢复到直线平衡构形, 线
则称原来的直线平衡构形

是不稳定的。
衡 构

弯弯 曲曲 平平 衡衡 构构 形形
15
稳定性:压杆在外力作用下保持其直线平衡构形的能力。
失稳与屈曲? 在扰动作用下,直线平衡构形转变为弯曲平衡
构形,扰动去除之后,不能恢复到直线平衡构形的过 程,称为失稳或屈曲。
Asikn l 0
注意到已有B=0,故上式中的A不可能等于 零,否则(c)式将成为w≡ 0而压杆不能保持 微弯状态,也就是杆并未达到临界状态。由 此可知,欲使(c)成立,则必须sinkl=0
满足此条件的kl为
k l0, π, 2π,
或即
Fcrl 0,π,2π, EI
由于
Fcr EI
l
0 意味着临界力Fcr
=0,也就是杆根本未受
轴向压力,所以这不是真实情况。在kl≠0的解中,最小解 kl
=p 相应于最小的临界力,这是工程上最关心的临界力。
从而得到求两端铰支细长中心压杆临界力的欧拉公式:
Fcr
π
2 EI l2
且杆将绕惯性矩最小的轴弯曲。
25
此时杆的挠曲线方程可如下导出。前已求得B=0,且取
kl=p,以此代入式(c)得
左图桥下侧面观察,右图桥上看:长15.372米的 斜杆一根鼓出1.46米,另一根鼓出0.905米。
18
2000年10月25日上午10时许南京电视台演播厅工 程封顶,由于脚手架失稳,模板倒塌,造成6人死亡, 35人受伤,其中一名死者是南京电视台的摄象记者。
19
工程事故平面示意图改进的脚手架
20
§13-2 细长压杆的临界力
相关文档
最新文档