南开大学 博弈论简介ppt课件

合集下载

第一章 博弈论概述PPT课件

第一章 博弈论概述PPT课件
博弈论与信息经济学
Game Theory and Information Economics 天津大学管理与经济学部
授课:XXX
1
第一章 博弈论概述 (Game Theory)
授课:XXX
2
一、博弈论的定义
又称对策论,是研究决策主体的行为发生直 接相互作用时的决策以及这种决策的均衡问 题的学科。
➢ 博弈分析的基本假设 (1)个人理性 假设当事人在决策时能够充分考虑他所面临 的局势,并能做出合乎理性的选择。
(2)最大化自己的收益 假设当事人在决策时通常选择使自己收益最
大化的策略。
授课:XXX
12
坦白 抵赖
➢ 博弈问题的基本要素
坦白
(1)局中人(Players)
抵赖
参与对抗的各方;不一定指自然人
若二人均不坦白,则只能因藏有枪支而被判刑1年; 若有一人坦白而另一个不坦白,则坦白者无罪释放,
不坦白者 被判刑10年; 若二人都坦白了,则同判8年。 此二人确系抢劫犯,请分析他们的抉择。

坦白

抵赖
坦白 -8,-8 -10,0
抵赖 0,-10 -1,-1
授课:XXX
均衡解: 二人均坦白
11
相关概念介绍
他的故事被好莱坞拍成了电影《美丽心灵》,该影片获 得了2002年奥斯卡金像奖的四项大奖
授课:XXX
7
2002年 北京国际数学家大会(ICM)
授课:XXX
8
• 主演
罗素·克劳,Russell Crowe
詹妮弗·康纳利, Jennifer Connelly
授课:XXX
9
1. 囚犯困境(Prisoners’ dilemma

博弈论简介PPT

博弈论简介PPT

1.3博弈论的理论体系
核心是策略选择
非合作博弈理论
博 弈 论
承诺的强制力不同 不 完 全 信 息 静 态 博 弈 不 完 全 信 息 动 态 博 弈
合作博弈理论
完 全 信 息 静 态 博 弈
完 全 信 息 动 态 博 弈
核心是利益分配
二、完全信息静态博弈
在博弈论中由抽象出来现实博弈中的最基本要素所构成的模型就 是所谓的策略型,或称标准型博弈。是整个博弈论的基石
多种定义:
(1)以严格的数学模型对人类斗智现象进行规范描述,并加 以数学分析。 (2)博弈论是关于策略相互作用的理论,就是说,它是关于 社会形势中理性行为的理论,其中每个局中人对自己行动的选择必须 以他对其他局中人将如何反应的判断为基础。——豪尔绍尼,1994诺 贝尔经济学奖得主 (3)博弈论研究的是人与人之间利益相互制约下策略选择时 的理性行为及相应结局。
引入市场进入博弈事例:
一种行业有两个相关企业,一个是垄断者(局中人1),另一个 是潜在的进入者(局中人2),局中人1决定是否建立一个新工厂, 而同时局中人 2决定是否进入这一行业。其中存在着不完全信息,局 中人2不知道局中人1的建厂成本是3还是1,而局中人1知道自己的成 本。这样形成的不完全信息博弈局势如下图。
豪尔 绍尼 转换
3.2联合概率分布实例
内容:
两个企业在一种产品市场竞争,它们彼此不清楚对方对 于相关事务的真实力量,而只知道自己的力量,双方力量的 不同会导致双方使用策略不变的情况下最终结局的不同。这 种局势的简化描述为:双方均有两种类型,即力量的强与 弱。
联合概率分布:
强 强 弱 0.3 0.1 弱 0.2 0.4
如果企业1为“强”类型,那么它对企业2的类型判断依据贝叶斯推断 原则有:企业2为“强”类型的概率为0.3/(0.3+0.2)=0.6;企业2为 “弱”类型的概率为0.2/(0.3+0.2)=0.4.而当企业1为“弱”时,它对企业2 类型的主观判断为企业2为强与弱的概率分别为0.2和0.8。以此类推。

《博弈论》课程ppt课件

《博弈论》课程ppt课件

10
图1 进攻与防守的基本式 G={N, S, u},其中N=(1,2), Si={(0,2),(1,1),(2,0)},ui (s1, s2) = ri,i = 1, 2。
守方 (0,2) (1,1) (2,0)
(0,2)
攻方 (1,1)
失败,成功
成功,失败
成功,失败
失败,成功
成功,失败
成功,失败
《博弈论》课程
(一)什么是博弈论
我们首先看几个例子。 例1 石头、剪刀、布
猪八戒
石头 石头 孙悟空 剪刀 布 未定,未定 找水,休息 休息,找水 剪刀 休息,找水 未定,未定 找水,休息 布 找水,休息 休息,找水 未定,未定
2
例2 诺曼底登陆
德军
加来设防 加来登陆 盟军
诺曼底登陆 成功,失败
诺曼பைடு நூலகம்设防 成功,失败
9
例4 进攻与防守 双方争夺一个据点,有两条进攻路线X和Y, 攻方有两个军,而防守方也有两个军,只有 当守方的兵力不少于攻方时,才能击退进攻, 否则据点将会失守。首先可知守方的防守方 案(即策略)为(0,2),(1,1),(2,0),即在X 线路和Y线路驻扎军队数,同样可以到的攻 方的进攻方案(0,2),(1,1)和(2,0)。容易看出, 行动并非策略,策略是行动方案。
正是由于博弈论将博弈如何出现均衡列为核心, 因而博弈论对于各门社会科学而言,就具有了方 法论意义,成为各门学科的有力分析工具。
6
(二)博弈表达的科学式
(1)博弈的策略式
如何将博弈表示成一种便于研究和分析的形式显然 是很重要的。如果用参与者、策略和收益函数来 科学地描述一个博弈,就称为博弈表达的策略式 (或基本式、标准式)。

博弈论及经典案例简介PPT课件

博弈论及经典案例简介PPT课件
⑶ 上策均衡是纳什均衡的一种特殊情况,但纳什均 衡却不一定是上策均衡。
-
纳什均衡的意义
21
纳什均衡是指在对手策略既定的情况下,各自对局者所选择 的策略都是最好的。 合作是有利的“利己策略”。但它必须符合以下黄金律: 按照你愿意别人对你的方式来对别人,但只有他们也按同 样方式行事才行。也就是中国人说的“己所不欲勿施于 人”。但前提是人所不欲勿施于我。
– 博弈的过程就是一个策略上的相互作用过程。这使得任何一方的 行为都必须考虑到对方可能作出的反映。
-
博弈论研究对象 10
博弈论是研究理性的决策主体在其行为发生直接的相 互作用时的策略选择及策略均衡的理论。
博弈分析的关键步骤是找出在别人选择既定的情况 下自己的最优反应策略(给自己带来最大收益的策略)。
论和经济行为”,推动了博弈论在经济管理中的应 用; (5)近年来,由于纳什、泽尔腾、海萨尼获诺贝尔 经济学奖(1994),进一步推动了博弈论的研究。
-
博弈论的产生和发展 12
1. 博弈在中国
-
《学弈》(《孟子•告 子》) :弈秋,通国之善 弈也。使弈秋侮二人弈, 其一人专心致志,惟弈秋 之为听;一人虽听之,一 心以为有鸿鹄将至,思援 弓缴而射之。虽与之俱学, 弗若之矣。为是其智弗若 与?吾曰:非然也。
其次,“纳什均衡”是一种非合作博弈均衡,在现实中 非合作的情况要比合作情况普遍。
所以“纳什均衡”是对冯·诺依曼和摩根斯特恩的合作 博弈理论的重大发展,甚至可以说是一场革命。
-
故事模型
A、B、C三人决斗,每人有2颗子弹,每次发一枪。
A、B、C的命中概率分别为0.3、0.8、1.0。
三人依次发射,两轮后对决结束。
13
博弈又称博戏,是一门古老的游戏。《世 本》说,“乌曹作博”,乌曹乃是夏代著 名之能工巧匠。千百年来,博弈更是与人 们的生活紧紧相连,从博棋到牌戏,从斗 戏到彩票,中华民族的历史长河中就这样 形成了别具风情的博弈文化

大学课程《博弈论及其应用》PPT课件:第一章

大学课程《博弈论及其应用》PPT课件:第一章
2021/11/19
• 博弈方:两个嫌疑犯A和 B。 • 策略: 每个嫌疑犯的行动集是(坦白,不坦白)。 • 收益:对应于每种策略组合,有相应的收益结果。 • 策略组合:嫌疑犯A和B从可以选择的策略中选择并实施,有四种
情况(括号中前面是A的策略,后面是B的策略)。 • 每个策略组合对应下的A的结果,从优到劣,依次为: • (坦白,不坦白),结果是A被释放; • (不坦白,不坦白),A被判刑1年; • (坦白,坦白),各被判5年; • (不坦白,坦白),A被判8年。 • 同理,每个策略组合对应下的B的结果,从优到劣,依次为: • (不坦白,坦白)、(不坦白,不坦白)、(坦白,坦白)、(坦白,不坦
第一章 博弈概述
2021/11/19
第一节 海滩占位问题
我们来到海滩。夏天很多游客喜欢在在海边晒太阳,游泳。海滩有 月牙形,弧形,绵延数公里。为了研究问题方便,我们姑且把海滩 的长度抽象定为1,[0,1]区间就表示海滩的长度。 A和B是两个小商 贩,出售无差异的补给品,同质同价,同一品牌的矿泉水,面包等 。“*”表示游客均匀的分布在海滩上,游客就近购买补给品。在 沙滩上应该如何分布两个小商贩的位置呢?
• A猎兔,B猎兔,鹿逃掉,A收益一只兔子,B收益一只兔子。
• 可见,每个猎人的期望,不能由自己决定,要看对方的策略选择 ,是能够捉得到鹿,依赖对方的选择,如果对方选择捉兔子,而 你选择猎鹿,这个策略组合,对你而言,是最差的选择,也是最 坏的策略。
2021/11/19
第三节 博弈论是什么
• 博弈论:就是关于包含相互依存情况中理性行为的研究。 • 博弈的三要素: • 博弈方----参与博弈但利益不完全一致者。有二人博弈与多人博弈
的故事,它的重要性在大量情形中体现,参与者面临着与故事中嫌 疑犯面临的同样的动机。

博弈论完整版PPT课件

博弈论完整版PPT课件

ac 3
纳什均衡利润为:
Π1NE
Πቤተ መጻሕፍቲ ባይዱ
NE 2
(a c)2 9
.
31
q2 a-c
(a-c)/2 (a-c)/3
.
19
理性共识
0-阶理性共识:每个人都是理性的,但不知道其 他人是否是理性的;
1-阶理性共识:每个人都是理性的,并且知道其 他人也是理性的,但不知道其他人是否知道自己 是理性的;
2-阶理性共识:每个人都是理性的,并且知道其
他人也是理性的,同时知道其他人也知道自己是
理性的;但不知道其他人是否知道自己知道他们
国外经济学教科书改写,加入大量博弈论内容
博弈论进入主流经济学,反映了:
经济学的研究对象越来越转向个体放弃了有些没有微观基础的假设
经济学的研究对象越来越转向人与人之间行为的相互影响和作用
经济学越来越重视对信息的研究
传统微观经济学的工具是数学(微积分、线性代数、统计学),而
博弈论是一种新的数学。以前只有陆军,现在有了空军,其差异
不完全信息
静态
纳什均衡
(纳什)
贝叶斯纳什均衡
(海萨尼)
.
动态
子博弈精练纳什均衡
(泽尔腾)
精练叶贝斯纳什均衡
(泽尔腾等)
9
博弈的分类
根据参与人是否合作
根据参与人的多少
根据博弈结果
根据行动的先后次序
两人博弈 多人博弈
静态博弈 动态博弈
合作博弈 非合作博弈
零和博弈 常和博弈 变和博弈
根据参与人对其他参与人的
4-阶理性:C相信R相信C相信R相信C是理性的,C会将R1从R的战略空间 中剔除, C不会选择C3;
5-阶理性:R相信C相信R相信C相信R相信C是理性的,R会将C3从C的战

精品课程《博弈论》PPT课件(全)

精品课程《博弈论》PPT课件(全)
人博弈 两人博弈有多种可能性,博弈方的利益方向可
能一致,也可以不一致
三、多人博弈
三个博弈方之间的博弈 可能存在“破坏者”:其策略选择对自身的利
益并没有影响,但却会对其他博弈方的利益产 生很大的,有时甚至是决定性的影响。申办奥 运会是典型例子。 多人博弈的表示有时与两人博弈不同,需要多 个得益矩阵,或者只能用描述法
动态博弈、重复博弈。
静态博弈:所有博弈方同时或可看作同时选择 策略的博弈 —田忌赛马、猜硬币、古诺模型
动态博弈:各博弈方的选择和行动又先后次序 且后选择、后行动的博弈方在自己选择、行 动之前可以看到其他博弈方的选择和行动 —弈棋、市场进入、领导——追随型市场 结构
重复博弈:同一个博弈反复进行所构成的博弈, 提供了实现更有效略博弈结果的新可能 —长期客户、长期合同、信誉问题
博弈论
孔融四届时,有一夛,父亭乘了冩丢梨回宛,
陶谦吏亸叹孜癿时俳,又问亸:“亵绉泶孜癿 觇
店看,佝觏为叴小梨刁算叾?”孔融回答该: “我丌
过觑了一次梨,哏哏単因此爱抋了我一辈子, 社伕
乔绎了我杳高癿荣觋。奝杸抂觑出癿遲丢多梨 看俺
昤道徇成本,简直就昤一本万利唲!
阿克洛夫:买卖
主对于要交易的“旧 车”存在信息不对称, 买主通常不愿意出高 价,这样持有好车的 买主只好退出市场, 市场上都剩下“坏 车”,买主则越来越 不愿意光顾,旧车市 场萎缩直至消失。
20 (q1 q2 q3)
0
i P qi [20 q1 q2 q3 ] qi
No Q 20
Q 20
Image
q1
q2
q3
P
1
2
3
4
8
6
2
8
16

《博弈论的基本概念》课件

《博弈论的基本概念》课件

智猪博弈
• 总结词:描述大猪和小猪在食槽附近争夺食物的策略博弈。
• 详细描述:在智猪博弈中,一个大猪和一个小猪共同生活在一个猪圈里,食槽位于猪圈的一端。每次食物被放入食槽时 ,大猪和小猪都有两种选择:冲向食槽或继续等待。如果大猪选择冲向食槽,小猪的最佳策略是等待,因为大猪吃掉大 部分食物后,小猪可以享用剩余的食物。相反,如果小猪选择冲向食槽,大猪的最佳策略也是等待,因为小猪可能无法 抢到任何食物。因此,无论大猪如何选择,小猪的最佳策略都是等待;同样地,无论小猪如何选择,大猪的最佳策略也 是等待。
合作博弈
特征
强调合作、协议和联盟,目标是实现共同利益。
应用领域
国际关系、商业合作、团队协作等。
非合作博弈
特征
强调竞争、自利和策略互动,目标是实现个人利益。
应用领域
市场竞争、个人决策、政治选举等。
动态博弈
特征
强调行动的顺序和信息传递,策略和 行动需考虑时间因素。
应用领域
商业竞争、投资决策、谈判策略等。
《博弈论的基本概念》ppt课件
目录
• 博弈论简介 • 博弈论的基本类型 • 博弈论的基本概念 • 博弈论的经典案例 • 博弈论的未来发展
01
博弈论简介
博弈论的定义
01
博弈论:研究决策主体在相互影 响、相互作用的环境中如何进行 决策,以及这种决策的均衡结果 的学科。
02
博弈论强调参与者之间的互动关 系,通过数学模型和理论分析来 研究策略选择和均衡结果。
应用领域:拍卖机制设计、保险市场 分析、医疗资源分配等。

03
博弈论的基本概念
参与者
01
02
03
参与者
在博弈中,参与者是决策 的主体,可以是个人或组 织。

博弈论(第一章)

博弈论(第一章)

博弈的表述方法的例题
例:囚徒困境博弈的集合表示:G=((坦白,不坦白), (坦 白,不坦白);(-5,-5),(0,-8),(-8, 0),(-1,-1)) 例:在两个公司竞争出售同一产品的博弈中,两个公司是两 个博弈方,两个公司的各自销售量q1,q2是策略空间,
两个公司的所获利润u1(q1,q2),u2(q1,q2)是得
①用损益矩阵表示 例1:故事齐威王与大将田忌赛马,赛马的规则是这样的,每次 双方各出三匹马,一对一比赛三场,每一场的输方要赔1000斤 铜给赢方,齐威王的三匹马和田忌的三匹马按实力都可以分为 上,中,下三等,但齐威王的上,中,下三匹马分别比田忌的 上,中,下三匹马略胜一筹,由于总是同等次的马进行比赛, 因此田忌都是连输三场。实际上,田忌的上马尽管不如齐威王 的上马,却比齐威王的中马和下马要好,而田忌的中马比齐威 王的下马要好一些。因此,田忌的谋士孙膑为田忌出了个主意, 用自己的下马对齐威王的上马,上马对齐威王的中马,中马对 齐威王的下马。这样,二胜一负,田忌反而能赢齐威王1000斤 铜,试写出其标准式表述。
你能否写出上述问题的矩阵形式?
(3)囚徒困境的应用
③ 假定你是一个公司的采购人员,考虑向两家供应商采 购100万只零件,每只零件的成本为6元。如果你分别 向两家供应商各订购50万只,则每个供应商就会把价 格定在10元。你可以设计一个采购策略,以便在两家 供应商之间制造出囚徒困境的情形,从而给自己带来 好处。如何取定这样的采购政策,并写出其矩阵的表 达形式。同时,考虑你的采购策略的使用条件是什么?
低价
80, 80 100, 20
20, 100 50, 50
(3)囚徒困境的应用
② 公共产品的供给也可以看作是一个囚徒困境问题,如 果大家都出钱兴办公用事业,所有的人福利都会增加。 问题是,如果我出钱你不出钱,我得不偿失,而如果 你出钱我不出钱,我可以占你的便宜。所以每个人的 最优选择都是“不出钱”,但是这种状态使得所有人 的福利得不到提高。

《博弈论入门》课件

《博弈论入门》课件

博弈论的研究方法与工具
了解博弈论的研究方法和工具对于深入理解和应用博弈论至关重要。
博弈论中的常见概念与术语
学习博弈论需要了解一些常见的概念和术语,例如博弈矩阵、纳什均衡、最 优策略等。
博弈论的经典案例分析
通过分析博弈论的经典案例,我们可以更好地理解和应用博弈论的原理。
博弈论在实际决策中的应用
实际决策中经常涉及到多个参与者的利益博弈,博弈论可以帮助我们找到最优决策策略。
总结与展望
通用于实 际生活和决策中。
《博弈论入门》PPT课件
博弈论是一门研究决策和策略的学科,适用于各种领域,从经济学到政治学, 从生物学到计算机科学。
博弈论基础知识介绍
在这一部分中,我们将探讨博弈论的基本概念和原理,包括博弈模型、策略 和解的概念。
博弈论的应用领域
博弈论在现实生活中有许多应用,包括经济学、政治学、社会学、生物学、 医学等领域。

《博弈论教程》课件

《博弈论教程》课件

博弈论的应用领域
经济学
博弈论在经济学中广泛应用于 市场行为、产业组织、贸易政
策等领域。
政治学
博弈论在政治学中用于研究国 际关系、政治制度、选举行为 等领域。
社会学
博弈论在社会学中用于研究社 会结构、社会互动、社会行为 等领域。
计算机科学
博弈论在计算机科学中用于人 工智能、机器学习、网络安全
等领域。
应用场景
保险市场、拍卖、投资决策等。
04
纳什均衡
纳什均衡的定义
纳什均衡是指在博弈中,所有参与者 的最优策略组合,即在这种策略组合 下,每个参与者都认为没有更好的选 择。
纳什均衡是一种非合作博弈的解概念 ,适用于各种博弈类型,如囚徒困境 、智猪博弈等。
纳什均衡的求解方法
迭代法
通过不断迭代每个参与者的最优策略,逐步逼近纳什均衡。
03
博弈论应用
04
市场进入博弈中,企业通常会选 择不同的策略,如快速进入、缓 慢进入或等待观察等。这些策略 的选择会影响到企业的收益和市 场格局。
结论
市场进入博弈可以帮助企业制定 出最优的市场进入策略,以最大 化自身的收益。
价格战博弈
总结词
价格战博弈是博弈论中研究企业之间价格竞争的 模型。
博弈论应用
03
市场竞争、个人决策、政治选举等。
完全信息博弈
定义
参与者拥有完全的信息,即每个 参与者都了解其他参与者的策略 和收益。
特点
信息对称、策略空间明确。
应用场景
金融市场、体育比赛等。
不完全信息博弈
定义
参与者之间存在信息不对称,即某个参与者 对其他参与者的策略和收益不完全了解。
特点
不确定性、信息不完全、策略空间的模糊性。

南开大学经济学讲义第九章 博弈论与行为

南开大学经济学讲义第九章  博弈论与行为
但其背后的行为规则却可能大不相同合作可以是由于双方都信奉仁厚的恕道主义也可能是因为双方都是理性流氓还可能是因为双方都一冷血报复作威胁
博弈论与行为
要想在现代社会做一个有文化的人,你必须对 博弈论有一个大致了解。 ——保罗· 萨缪尔森(Paul Samuelson)
南开大学国际商学院 卿志琼
一、博弈论与主流经济学
20世纪60年代,Selten( 1965)和海萨尼 (Harsanyi,1967-1968)把不完全信息引入博 弈论。 20世纪70年代中期以后,博弈论才开始成为主 流一部分。1994年获得诺奖三位:纳什、泽尔 腾和海萨尼。


二、博弈论的基本概念



参与人:指博弈中选择行动以最大化自己效用 的决策主体(个人、团体)。 行动:参与人的决策变量。 战略:是参与人选择行动的规则,它告诉参与 人在什么时候选择什么行动。 信息:是参与人在博弈中的知识,特别是有关 其他参与人(对手)的特征和行动的知识。 支付函数:参与人从博弈中获得的效用水平, 它是所有参与人战略或行动的函数。
2
沙 特 的 产 量
4
42
2 46 26
44 24
32
22
4 52




四、纳什均衡:完全信息静态博弈 假设有n个人参与博弈,给定其他人的战略条件 下,每个人选择自己的最优战略,所有参与人 选择的战略一起构成一个战略组合(strategy profile)。 纳什均衡是这样一种战略组合,这种战略组合 由所有参与人的最优战略组成。即,给定别人 战略的情况下,没有任何单个参与人有积极性 选择其他战略,从而没有任何人有积极性打破 这种均衡。 协议自动实施角度理解:给定别人遵守协议的 情况下,没有人有积极性偏离协议规定自己的 行为规则。用实例说明。

《博弈论》课程课件

《博弈论》课程课件
无独有偶,在古今中外的战争中,破釜沉舟这 种策略经常被运用,例如阿兹台克帝国的征服 者科尔特斯就是采用这种策略征服美洲大陆的。
破釜沉舟这种策略实际上有很多的变种。
36
3、企业应该在什么时候诚实 这里我们考虑一个所谓的诚信企业的动态博 弈,
占便宜 到诚信公司 顾客 不到诚信公司 诚信公司赚1000元 顾客损失2000元
25
这个模型是这样的:
第一个模型 假设:地球是圆的 已知:光线是按直线行走的(现实中观 察到的事实) 那么:在港口的人,首先看到远方驶来 船只的船桅,并逐渐看到船的下部(与现实 中观察到的事实相符)
26
第二个模型
假设:地球是平的 已知:光线是按直线行走的(现实中观 察到的事实) 那么:在港口的人,首先看到的是整个 船身(与现实中观察到的事实相悖)
18
博弈论在研究的过程中有两个基本前提假设 一是,理性人假设。 二是,博弈结构对参与者是公共知识。特别
是,参与者满足完美回忆。
19
例6 旅行者困境 两个旅行者在旅游圣地买了两个花瓶,但在 回程途中被航空公司打碎。航空公司知道花 瓶大约值100元,但并不清楚花瓶的确切价 格。于是,航空公司要求两位旅客各自写下 花瓶的价格,并按照两个旅客中所写的最低 价格进行赔偿(航空公司认为写最低价格的 旅客讲的是真话),为了鼓励旅客讲真话, 规定对讲真话的旅客奖励2元,对讲假话的旅 客罚款2元。容易证明,在理性人的假设下, 这个游戏唯一的结果是两人都写0。
22
表 1 博弈的分类和均衡概念
完全信息 静态 非完全信息
完全信息静态博弈 非完全信息静态博弈 (纳什均衡) (贝叶斯均衡)
完全信息动态博弈 非完全信息动态博弈 动态 (子博弈精炼均衡) (序列均衡)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
博弈论简介
ppt课件
1
第一节 博弈论的基本概念
一、市场竞争中的博弈 二、现代经济学与博弈论 三、博弈论的基本概念
ppt课件
2
一、市场竞争中的博弈
在现实经济生活中,许多产业市场是寡 头断市场。寡头垄断市场是指少数几家大厂 商生产一个产业中的全部或大部分产品,从 而形成对一个产业的控制的产业市场。
在分析寡头垄断市场中的企业决策行为 时,就必须把各种决策者之间的策略相互作 用纳入到经济模型中,这就是一种博弈分析。
3、每个参与人的得益函数:ui(s1, …, si…,sn),i=1,2,3, …,n。
用G={S1,…,Sn;u1, …,un}代表战 略式表述博弈。
ppt课件
16
(三)博弈的得益矩阵表示
一个博弈被称为有限博弈,如果:第一,参与人 的个数是有限的; 第二,每个参人可选择的策略个数是有限的。 有限博弈的策略式表达及其求解可以方便地用得益 矩阵直观地给出。
ppt课件
12
第二节 博弈的种类
一、完全信息静态博弈 (一)完全信息静态博弈定义
所谓完全信息静态博弈指的是各博弈方同 时决策,或者决策行动虽有先后,但后行动者 不知道先行动者的具体行动是什么且各博弈方 对博弈中各种策略组合情况下所有参与人相应 的得益都完全了解的博弈。
ppt课件
13
(二)博弈的策略式表达
在博弈论中,一个博弈可以用两种不同 的方式来表达: 一种是策略式表达:另一种是扩展式表达. 策略式表达更适合于静态博弈,而扩展式 表达更适合于讨论动态博弈。
ppt课件
14
策略式表达又称为标准式表达,在这种表 达中,所有参人同时选择自己的策略,所有参 与人选择的策略一起决定每个参与人的得益。
值得强调的是,这里参与人同时选择的是 “策略”,而不是“行动”。
然而在现实生活中,这两个假设在许多情况下 是不能被满足。
ppt课件
4
1994年诺贝尔经济学奖授予了三位博弈论专家纳什、 泽尔腾和海萨尼。 1996年诺奖授予两位博弈论与信息经济学研究专家莫里 斯、维克瑞; 2001年诺奖授予阿克洛夫、斯彭斯、斯蒂格利茨,表彰 他们在柠檬市场、信号传递和信号甄别等非对称信息 理论研究中的开创性贡献。 2005年诺奖授予有以色列和美国双重国籍的罗伯特·奥 曼和美国人托马斯·谢林,以表彰他们在博弈论领域 作出的贡献。
动态博弈指的是参与人的行动有先后顺序, 且后行动者能够观察到先行动者所选择的 行动的博弈。
ppt课件
10
2、从参与人对其他参与人的各种特征信息 的获得差异来分,博弈可分为完全信息博弈和不 完全信息博弈。
完全信息指的是每一个参与人对所有其他参 与人的特征,如策略集合及得益函数都有准确完 备的知识;否则就是不完全信息。
将上述两个角度的划分结合起来,我们就得 到四种不同类型的博弈,这就是:完全信息静态 博弈,完全信息动态博弈,不完全信息静态博弈 和不完全信息动态博弈。
ppt课件
11
博弈的分类和均衡
行动次序
信息
静态
完全信息
纳什均衡 纳什
动态
子博弈精练 纳什均衡 泽尔腾
不完全信息
贝叶斯均衡 精炼贝叶斯均衡
海萨尼
泽尔腾等
5、得益是参与人在博弈结束后从博弈中获得 的效用,一般是所有参与人的策略或行动的函数, 这是每个参与人最关心的东西;
6、均衡是所有参与人的最优策略或行动的组 合;均衡结果是指博弈结束后博弈分析者感兴趣 的一些要素的集合,如在各参与人的均衡策略作 用下,各参与人最终的行动或效用集合。
上述要素中,参与人、行动、结果统称为博 弈规则,博弈分析的目的就是使用博弈规则来决 定均衡。
ppt课件
17
著名的“囚徒困境”的例

警察抓住了两个罪犯,但是警察局却缺乏足 够的证据指证他们所犯的罪行。如果罪犯中至少 有一人供认犯罪,就能确认罪名成立。为了得到 所需的口供,警察将这两名罪犯分别关押防止他 们串供或结成攻守同盟,并分别跟他们讲清了他 们的处境和面临的选择:如果他们两人都拒不认 罪,则他们会被以较轻的妨碍公务罪各判一年徒 刑;如果两人中有一人坦白认罪,则坦白者立即 释放而另一人将重判10年徒刑;果两人都坦白认 罪,则他们将被各判8年监禁。问:两个罪犯会 如何选择(即是坦白还是抵赖)?
在静态博弈中,于参与人只选择一次,所以 策略就等同于行动了。而在动态博弈中,策略 是参与人在各个阶段的行动的全面计划。
ppt课件
15
更为准确地讲,战略式表述给出:
1 、 博 弈 的 参 与 人 集 合 : i∈Γ , Γ=(1,2,…, n);
2、每个参与人的战略空间:Si 1,2,3,…,n;
i=
ppt课件
8
(三)博弈的分类
根据参与人的多少,可将博弈分为两人博弈 或多人博弈;
根据参与人是否合作,可将博弈分为合作博 弈或非合作博弈;
根据博弈结果的不同,又可分为零和博弈、 常和博弈与变和博弈。
ppt课件
9
1、从行动的先后次序来分,博弈可以
分为静态博弈和动态博弈。
静态博弈指在博弈中,参与人同时选择行 动,或虽非同时但后行动者并不知道前行 动者采取了什么具体行动;
ppt课件
3
二、现代经济学与博弈论
从现代的观点来看,经济学是研究人的决策 行为的学问。
理性人是指有一个很好定义的偏好,在面临给 定的约束条件下能最大化自己偏好的人,不考虑竞 争对手的决策。
价格理论有两个基本假定:1、市场参与人的 数量足够多,从而市场是竞争性的;2、参与人之 间不存在信息不对称问题(完全竞争、完全信息)。
1、参与人指的是博弈中选择行动以最大化自 己效用的决策主体(可以是个人,也可以是团体);
2、行动是指参与人在博弈进程中轮到自己选 择时所作的某个具体决策;
3、策略是指参与人选择行动的规则,即在博 弈进程中,什么情况下选择什么行动的预先安排;
ppt课件
7
4、信息指的是参与人在博弈中所知道的关于 自己以及其他参与人的行动、策略及其得益函数 等知识;
ppt课件
5
三、博弈论的基本概念
(一)博弈论的定义
博弈论,英文为Game theory,是研究相 互依赖、相互影响的决策主体的理性决策行为 以及这些决策的均衡结果的理论。 一些相互依赖、相互影响的决策行为及其结果 的组合称为博弈(Game)。
ppt课件
6
(二)博弈的组成要素

一个博弈一般由以下几个要素组成,包括: 参与人、行动、信息、策略、得益、结果、均衡 等。
相关文档
最新文档