变电站防雷接地保护设计Word
变电站的防雷接地技术模版
变电站的防雷接地技术模版变电站的防雷接地技术在现代电力系统中起着至关重要的作用。
接地系统的质量直接关系到变电站的运行安全和稳定性。
为此,需要采取一系列科学合理的防雷接地措施。
本文将对变电站防雷接地技术进行详细介绍。
1. 变电站的防雷接地目标是提高变电站的防雷能力,保证变电站的设备和人员免受雷电灾害的侵害。
具体来说,防雷接地技术的目标包括以下几个方面:(1) 提供良好的接地条件,降低设备的接地电阻,减小接地电阻对设备的影响。
(2) 合理选择接地电阻的大小,确保接地电阻能够满足工作条件。
(3) 在设计过程中考虑不同变电站的特点,如土壤电阻率、湿度等因素,制定相应的防雷接地方案。
2. 在变电站的防雷接地设计中,地网是一个重要的组成部分。
地网的作用是将雷电流迅速引入地下,避免对设备和人员造成危害。
为了确保地网的效果,应采取以下几个措施:(1) 选择导电性能好的材料,如铜、镀锌钢等,来构建地网。
这样可以降低接地电阻,提高接地效果。
(2) 最大限度地增加地网的接地面积,通过合理布置地网,使地网与大地的接触面积最大化。
(3) 进行接地体的环境电磁兼容性设计,避免雷电流对设备正常运行的干扰。
3. 变电站的防雷接地技术还包括防雷装置的选择和安装。
防雷装置主要有避雷针、避雷器等。
在选择和安装防雷装置时,需要考虑以下几个方面:(1) 根据变电站的环境条件和雷电活动情况,选择合适的防雷装置。
例如,当雷电活动频繁时,应选择灵敏度高的防雷装置。
(2) 避雷器的接地引下线应与变电站的主接地体相连,确保避雷器能够快速将雷电流引入地下。
(3) 避雷器的接地电阻应尽量小,以确保避雷器能够正常工作。
4. 防雷接地技术的设计还应考虑到防雷装置与设备的连接。
具体来说,应采取以下几个措施:(1) 创建一个低阻连接,确保雷电流能够顺利引入地下,而不对设备造成危害。
(2) 合理布置接地引下线,避免交叉干扰,确保防雷装置的正常工作。
(3) 防止接地回路的断开,采取适当的接地保护措施,如设置避雷器来保护接地引下线。
35kv变电站防雷接地保护方案
35kv变电站防雷接地保护方案一、背景与目标随着电力系统的不断发展,35kv变电站的数量逐渐增多,其运行安全问题也日益突出。
雷电是导致变电站故障的重要因素之一,因此,制定一套有效的防雷接地保护方案至关重要。
本方案旨在提高35kv变电站的防雷接地能力,确保其在雷雨天气下的正常运行。
二、方案设计1.避雷针安装在变电站的进出线架构、变压器和开关设备等重要设施上安装避雷针,以防止直击雷对设备造成的损害。
避雷针应选择具有优良导电性能的材料,并按照规范进行安装,以确保其保护效果。
2.接地网设计设计一个覆盖全站的接地网,确保所有设备均能通过低阻抗路径连接到地网。
接地网的设计应考虑以下几点:(1) 确定合理的接地电阻值,以确保地网与大地之间的导电性能良好;(2) 选择合适的接地体材料,如镀锌钢等;(3) 按照规范的施工方法进行接地体的埋设和连接。
3.浪涌保护器设置在变电站的电源、信号等关键部位设置浪涌保护器,以吸收雷电过电压和操作过电压等瞬时能量,保护设备免受雷电冲击。
浪涌保护器的选择应符合设备的额定电压、持续运行电压等参数。
4.合理布线对进出变电站的线路进行合理布线,避免线路交叉跨越或近距离平行排列,减少雷电感应过电压对设备的影响。
同时,对重要设备进行屏蔽措施,如采用屏蔽电缆等。
5.维护与监测定期对防雷接地系统进行检查和维护,确保其正常运行。
同时,安装接地电阻在线监测系统,实时监测地网的电阻值变化,及时发现并处理问题。
三、实施步骤1.调研与设计阶段:对变电站的地形地貌、建筑结构、设备布局等进行详细调研,确定避雷针安装位置、接地网设计方案等。
2.材料采购与施工准备阶段:根据设计方案采购必要的材料和设备,包括避雷针、接地体、浪涌保护器等。
同时,做好现场施工准备工作,如清理场地、准备施工工具等。
3.避雷针安装与接地网施工阶段:按照设计方案和施工规范进行避雷针的安装和接地网的施工。
注意确保避雷针与设备之间的安全距离,以及接地体的埋设深度和连接质量。
10KV变电站防雷接地设计
10KV变电站防雷接地设计随着我国科学技术的发展,特别是计算机技术的进步,电力系统对变电站的更要求也越来越高。
本设计讨论的是10KV变电站电气部分中防雷接地的设计。
首先前期对原始资料进行分析,选择主变压器,在此基础上进行主接线设计,再进行短路计算,选择设备,然后进行防雷接地以及保护、配电装置设计。
标签:防雷避雷器避雷针避雷网接地装置0 引言能源是社会生产力的重要基础,随着社会生产的不断发展,人类使用能源不仅在数量上越来越多,在品种及构成上也发生了很大的变化。
人类对能源质量也要求越来越高。
电力是能源工业、基础工业,在国家建设和国民经济发展中占据十分重要的地位,是实现国家现代化的战略重点。
电能也是发展国民经济的基础,是一种无形的、不能大量存储的二次能源。
电能的发、变、送、配和用电,几乎是在同时瞬间完成的,须随时保持功率平衡。
要满足国民经济发展的要求,电力工业必须超前发展,这是世界发展规律。
因此,做好电力规划,加强电网建设,就尤为重要。
而变电站在改变或调整电压等方面在电力系统中起着重要的作用。
它承担着变换电压、接受和分配电能、控制电力的流向和调整电压的责任。
1防雷设计原则已在输电线路上形成的雷闪过电压,会沿输电线路运动至变电所的母线上,并对于母线有连接的电气设备构成威胁。
在母线上装设避雷器是限制雷电入侵波过电压的主要措施。
三绕组在正常运行时可能存在只有高、中压绕组工作低压绕组开路的情况,这在防雷中带来了需要特别考虑的问题。
在三绕组变压器中,若低压绕组开路,则C2很小(仅为其对地电容),静电分量可能危及低压绕组的绝缘,故应采取防雷措施。
考虑到静电分量将使低压绕组三相的电位同时升高,故只要在任一相绕组直接出口处装设一个避雷器即可。
2避雷器的选择阀式避雷器应按下列条件选择型式:选择避雷器型式时,应考虑被保护电器的绝缘水平和使用特点,10KV 以下配电系统选用配电用普通阀型避雷器。
1、额定电压Un:避雷器的额定电压应与系统额定电压一致。
变电站的防雷接地技术模版
变电站的防雷接地技术模版防雷接地技术是变电站建设中至关重要的一项工作,它关系到电力设备的安全运行和用电质量的稳定。
以下是一个____字的变电站防雷接地技术模板,供参考。
第一章引言1.1 研究背景随着电力设备的不断进步和发展,变电站的规模和复杂程度也在不断增加。
在变电站中,雷击是一个常见的自然灾害,对设备的绝缘强度和继电保护的正常运行都会造成很大的影响。
因此,进行合理的防雷接地工作对于保障变电站的安全运行具有重要意义。
1.2 研究目的本文旨在研究变电站的防雷接地技术,分析其原理和方法,并提出一套完整的防雷接地技术模版,以指导变电站的防雷接地工作。
第二章防雷接地技术原理2.1 雷击特点及危害防雷接地技术的研究首先需要了解雷击特点及其对设备的危害。
雷击是一种高能量的自然现象,其能量可达数百万伏特,数百千安培。
雷电产生的电磁场和电压脉冲会对设备的电气性能产生破坏,甚至会引发火灾和爆炸。
2.2 防雷接地原理防雷接地技术依靠合理布置的接地装置将雷击电流引入地下,分散其能量,降低其危害。
接地系统的主要功能包括:引导和分散雷电能量、保护设备免受过电压的侵害、保护人身安全等。
常见的防雷接地技术包括平面接地、等效接地电阻的控制和良好的接地系统设计等。
第三章防雷接地技术方法3.1 接地系统设计3.1.1 接地体材料选择接地体的材料选择对系统的性能有重要影响。
常见的接地体材料有铜、铝、镀锌钢等。
根据预算和性能要求,选择合适的接地体材料。
3.1.2 接地体形状设计接地体的形状对其导电性能和机械强度有很大的影响。
接地体的形状应尽量接近理想导体,以增加其导电性能。
3.1.3 接地体布置设计接地体的布置设计应考虑到雷电击中的可能性,以保证雷电能够有效地引入地下。
变电站的接地系统应合理布置,保证接地电阻满足要求。
3.2 接地系统施工3.2.1 接地体施工接地体的施工应注意连接接地体和主体设备之间的接触性能和接地电阻。
接地体与地下土壤的接触性能越好,接地电阻越低。
变电所的防雷保护与接地装置的设计
第9章 变电所的防雷保护与接地装置的设计第10章 变电所的防雷保护与公共接地装置的设计10.1 变电所的防雷保护由设计任务书中气象资料得知,化纤工厂所在地区的年雷暴雨日数为20天。
虽然发生雷暴的几率不属于高频地区,但是雷电过电压产生的雷电冲击波对供电系统的危害极大,因此必须对雷电过电压加以防护。
10.1.1 直击雷防护根据GB50057-1994有关规定,在总降压变电所和车间变电所Ⅲ(其所供 负荷为核心负荷,且靠近办公区和生活区,考虑防雷保护)屋顶可装设避 雷带,避雷带采用直径8mm 的圆钢敷设,并经两根引下线(直径8mm)与变 电所公共接地装置相连,引下线应沿建筑物外墙敷设。
10.1.2 雷电波入侵的防护1.35kV 架空线路上,在距总降压变电所1km 的范围内,可架设避雷线。
2.在35kV 电源进线的终端杆上装设FZ-35型阀式避雷器。
其引下线采用25mm ×4mm 镀锌扁钢,下边与公共接地装置焊接相连,上面与避雷器接地端螺栓相连。
3.在35kV 总降压变电所主变压器的高压侧,装设JYN1-35-102型高压开关柜,其中配有FZ-35型避雷器,靠近主变压器配置,其用来防护雷电 波入侵对主变压器造成的危害。
4.在10kV 车间变电所的高压配电室的母线上,装设GG-1A(F)-54型高压开关柜,其中配有FS-10型避雷器,靠近主变压器配置,其用来防护雷电 波入侵对主变压器造成的危害。
10.2 变电所公共接地装置的设计10.2.1.接地电阻的要求根据GB50057-1994规定,对于1kV 以上的小接地电流系统,公共接地装置的接地电阻应满足以下条件:EE I R 250≤且Ω≤10E R 式中E I 的计算可根据下列经验公式计算:350)35(cab oh N E l l U I += 式中,N U 为电网的额定电压,单位kV ;oh l 为与N U 侧有电联系的架空线路长度,单位为km ;cab l 为与N U 侧有电联系的电缆线路长度,单位为km 。
KV变电所防雷接地保护设计.doc
35KV变电站防雷接地保护设计摘要雷电事故是对变电站、发电厂安全的主要威胁,如何有效、合理对变电站、发电厂采取防雷接地保护措施有着十分重要的意义。
本文就以农村某35KV变电站为研究对象,以国家《防雷接地标准》为依据且结合变电站具体情况,对变电站的防雷接地进行保护设计,具有一定代表性。
首先根据变电站的电气主接线图等实际情况,在了解雷电参数、雷电机理以及学习各种防雷装置的基础上,采用设计避雷针并计算验证其保护范围实现对变电站直击雷的防护;对变电站雷电侵入波的防护实现,则通过选择安装避雷器型号和设计变电站进线段的保护接线。
最后在了解接地基本知识后,计算其接地电阻、最大土壤电阻率、垂直接地体根数等,实现对此35KV变电站的接地保护设计。
关键词:35KV变电站;直击雷防护;雷电侵入波防护;接地保护35KV substation lightning protection design of ground protectionAbstract:Lightning incident on the substation, power plants, the main threat to security, how to effectively and rationally to the substations, power plants, lightning protection grounding protection measures taken is very important.This article on a 35KV substation in rural areas for the study to state "Lightning grounding standards" based on specific conditions and combination of substation, the substation grounding protection lightning protection design, has a certain representation. First of all, according to the main electrical substation wiring diagram of the actual situation, etc., in the understanding of lightning parameters, the mechanism of lightning, as well as learning a variety of lightning protection devices on the basis of the calculation used to verify the design of a lightning rod and its scope of protection to achieve the protection of the substation direct stroke; of Substation lightning invasion wave to achieve the protection, surge arresters are installed by selecting the type and design of substation protection of wiring into the segment.Finally, grounding in the basic knowledge to understand, calculate the grounding resistance, soil resistivity of the largest vertical root number, such as grounding, to achieve this protection 35KV substation grounding design.Key words: 35KV Substation; Direct stroke protection; Invasive wavelightning protection ; Ground Protection目录摘要 (1)目录 (3)第1章前言 (5)1.1课题的提出和意义 (5)1.2国内外研究现状 (6)1.3本课题的主要工作 (6)1.3.1研究目标 (6)1.3.2主要研究内容 (7)1.4变电站防雷接地国家相关标准 (7)1.5本论文涉及的35KV变电站 (8)1.5.1变电站的概况 (8)1.5.2变电站相关参数 (9)1.5.3变电站电气主接线图 (9)第2章雷电与防雷装置 (11)2.1雷电 (11)2.1.1雷电及其放电过程 (11)2.1.2雷电参数 (13)2.1.3雷击过电压产生的机理 (17)2.2防雷装置 (18)2.2.1避雷针 (18)2.2.2避雷线 (20)2.2.3避雷带和避雷网..................................................... 错误!未定义书签。
变电站的防雷及接地保护
变电站的防雷及接地保护避雷针与被保护物之间,应保持足够的安全距离,即Sk>0.3Rsh+0.1h;Sd>0.3Rsh,其中Rsh为避雷装置的冲击接地电阻;h 为被保护物的高度。
条件许可时,Sk与Sd应尽量大。
一般情况下,Sk>5m,Sd>3m。
避雷装置接地电阻不能太大,否则将增加避雷装置的高度,成本增加。
一般土壤工频接地电阻不大于10Ω。
35kV及以下配电装置的构架或房顶,用独立避雷针保护,装设在距离人行道路大于3m,也可采取均压措施,或铺设50~80mm的沥青加碎石层。
60kV及以上配电装置,可将避雷针(线)安装于架构或房顶。
所有被保护的设备均应在避雷针保护范围内。
一、电气装置接地要求1.接地要求(1)一般要求①接地。
为保证人身和设备安全,电气设备外壳宜接地;交流电气设备充分利用自然接地体,但要校验自然接地体的稳定性;直流电路中,不应利用自然接地体作电流电路的接地线或接地体。
②接地电阻。
设计接地装置时,考虑土壤干燥或冻结等因素,保证接地电阻符合要求。
③接地距离。
不同用途和不同电压的电气设备,除另有规定外,用一个总接地体,但电气设备的工作接地和保护接地,应与防雷接地分开,并保持安全距离。
④中性线。
中性点直接接地的供用电系统中,装设能迅速自动切除接地短路故障的保护装置;中性点非直接接地的供用电系统中,装设迅速反映接地故障的信号装置,必要时可装设延时自动切除故障装置。
(2)防静电接地要求①可靠连接。
车间内每个系统设备和管道应可靠连接,接头处接触电阻小于0.03Ω。
②接地连接。
车间内和栈桥上等平行管道,相距约10cm时,每隔20m要互相连接一次;相交或相距近于10cm的管道,应互相连接,管道与金属构架相距10cm处要互相连接。
③气体场所接地。
气体产品输送管干线头尾部和分支线处都应接地;贮存液化气体、液态氮氢化合物及其他有火灾危险的液体贮液罐,贮存易燃气体贮气罐等都应接地。
(3)特殊设备接地要求①接地体。
变电站接地防雷设计
4.3.2 变电站接地4.3.2.1 变电站接地计算假设条件:土壤电阻率取280欧·米,考虑季节系数K=2,土壤电阻率按560欧·米考虑。
变电站最大短路电流为三相短路电流20.45kA ;最大接地短路电流Imax 为单相接地短路电流15.04kA (有效值);最大接地短路电流时,流经变电站接地中性点的最大接地短路电流为3.88 kA (有效值)。
根据公式I = (Imax - In )K f ,(K f 取0.5)求得入地短路电流为5.58kA ,再由公式R=2000/I 可得,变电站接地电阻应不大于0.36欧姆。
根据《电力工程电气设计手册》(电气一次部分)912页表16-8的估算公式:R=0.5×Sρ计算(ρ=560,S=62*44=2728平米),求得变电站复合接地网自身接地电阻为5.36欧姆,大于0.36欧姆,达不到要求,必须采取降阻措施。
因为变电站面积只有62米*44米共2728平方米,站区面积有限,而且变电站四周均为已建设的城市用地,变电站外引接地线非常困难,因此变电站考虑尽量在所址范围内解决接地问题。
4.3.2.2 变电站跨步电压及接触电位允许值计算计算接触电位差和跨步电位差允许值: tt0.17174Ut ρ+=(1)tt7.0174Us ρ+= (2)式中:Ut ——接触电位差,V ; Us ——跨步电位差,V ;ρt ——人脚站立处地表面的土壤电阻率,欧·m ;t ——接地短路(故障)电流的持续时间,s 。
t 取值:为保护动作时间加相应的断路器全分闸时间。
取1.12s 。
ρt 取值:在未做任何提高接触电压和跨步电位允许值的措施之前,变电站的土壤电阻率实测为280欧·m ,考虑季节系数后取560欧·m 。
经计算tt 0.17174Ut ρ+=1.12560*170.174+==254.4(V)(允许值)tt7.0174Us ρ+=1.12560*7.0741+==534.8 (V)(允许值)经校验接触电势与跨步电压不能满足要求。
变电站接地设计及防雷技术示范文本
变电站接地设计及防雷技术示范文本In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of EachLink To Achieve Risk Control And Planning某某管理中心XX年XX月变电站接地设计及防雷技术示范文本使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。
引言变电站接地系统的合理与否是直接关系到人身和设备安全的重要问题。
随着电力系统规模的不断扩大,接地系统的设计越来越复杂。
变电站接地包含工作接地、保护接地、雷电保护接地。
工作接地即为电力系统电气装置中,为运行需要所设的接地;保护接地即为电气装置的金属外壳、配电装置的构架和线路杆塔等,由于绝缘损坏有可能带电,为防止其危及人身和设备的安全而设的接地;雷电保护接地即为为雷电保护装置向大地泄放雷电流而设的接地。
变电站接地网安全除了对接地阻抗有要求外,还对地网的结构、使用寿命、跨步电位差、接触电位差、转移电位危害等提出了较高的要求。
1 变电站接地设计的必要性接地是避雷技术最重要的环节,不管是直击雷,感应雷或其它形式的雷,都将通过接地装置导入大地。
因此,没有合理而良好的接地装置,就不能有效地防雷。
从避雷的角度讲,把接闪器与大地做良好的电气连接的装置称为接地装置。
接地装置的作用是把雷电对接闪器闪击的电荷尽快地泄放到大地,使其与大地的异种电荷中和。
变电站的接地网上连接着全站的高低压电气设备的接地线、低压用电系统接地、电缆屏蔽接地、通信、计算机监控系统设备接地,以及变电站维护检修时的一些临时接地。
35KV变电站防雷接地保护设计
35KV变电站防雷接地保护设计摘要雷电事故是对变电站、发电厂安全的主要威胁,如何有效、合理对变电站、发电厂采取防雷接地保护措施有着十分重要的意义。
本文就以农村某35KV变电站为研究对象,以国家《防雷接地标准》为依据且结合变电站具体情况,对变电站的防雷接地进行保护设计,具有一定代表性。
首先根据变电站的电气主接线图等实际情况,在了解雷电参数、雷电机理以及学习各种防雷装置的基础上,采用设计避雷针并计算验证其保护范围实现对变电站直击雷的防护;对变电站雷电侵入波的防护实现,则通过选择安装避雷器型号和设计变电站进线段的保护接线。
最后在了解接地基本知识后,计算其接地电阻、最大土壤电阻率、垂直接地体根数等,实现对此35KV变电站的接地保护设计。
关键词:35KV变电站;直击雷防护;雷电侵入波防护;接地保护35KV substation lightning protectiondesign of ground protectionAbstract:Lightning incident on the substation, power plants, the main threat to security, how to effectively and rationally to the substations, power plants, lightning protection grounding protection measures taken is very important.This article on a 35KV substation in rural areas for the study to state "Lightning grounding standards" based on specific conditions and combination of substation, the substation grounding protection lightning protection design, has a certain representation. First of all, according to the main electrical substation wiring diagram of the actual situation, etc., in the understanding of lightning parameters, the mechanism of lightning, as well as learning a variety of lightning protection devices on the basis of the calculation used to verify the design of a lightning rod and its scope of protection to achieve the protection of the substation direct stroke; of Substation lightning invasion wave to achieve the protection, surge arresters are installed by selecting the type and design of substation protection of wiring into the segment.Finally, grounding in the basic knowledge to understand, calculate the grounding resistance, soil resistivity of the largest vertical root number, such as grounding, to achieve this protection 35KV substation grounding design.Key words: 35KV Substation; Direct stroke protection; Invasive wavelightning protection ; Ground Protection目录摘要 (1)目录 (3)第1章前言 (5)1.1课题的提出和意义 (5)1.2国内外研究现状 (6)1.3本课题的主要工作 (6)1.3.1研究目标 (6)1.3.2主要研究内容 (7)1.4变电站防雷接地国家相关标准 (7)1.5本论文涉及的35KV变电站 (8)1.5.1变电站的概况 (8)1.5.2变电站相关参数 (9)1.5.3变电站电气主接线图 (9)第2章雷电与防雷装置 (11)2.1雷电 (11)2.1.1雷电及其放电过程 (11)2.1.2雷电参数 (13)2.1.3雷击过电压产生的机理 (17)2.2防雷装置 (18)2.2.1避雷针 (18)2.2.2避雷线 (20)2.2.3避雷器 (21)第3章变电站直击雷的防护 (23)3.1变电站直击雷防护概述 (23)3.2建、构筑物年预计年雷击次数 (23)3.2.1年预计雷击次数计算公式 (23)3.2.2 35KV变电站年预计雷击次数N (24)3.3反击 (24)3.3.1反击的产生 (24)3.3.2反击的防止 (24)3.4 35KV变电站直击雷防护的避雷针设计 (26)3.4.1采用两根等高避雷针进行防护设计 (26)3.4.2采用四根等高避雷针进行防护设计 (27)第4章变电站雷电侵入波防护 (29)4.1变电站对雷电侵入波防护概述 (29)4.2 避雷器的设计 (29)4.2.1避雷器的防护距离 (29)4.2.2避雷器与变压器的最大电气距离 (31)4.3变电站的进线段雷电防护设计 (32)4.3.1进线段防护必要性 (32)4.3.2进线保护段接线设计 (33)4.4运行方式的设计 (35)4.4.1雷雨季节在运行方式上尽量保证母线并列运行 (35)4.4.2电缆进出线有利于降低雷电侵入波的幅值和陡度 (35)第5章接地的基本常识 (37)5.1接地、接地电阻及接地装置 (37)5.1.1接地概念及分类 (37)5.1.2接地电阻与对地电压 (38)5.1.3接地装置 (39)5.1.4接触电压和跨步电压 (39)5.2工频接地电阻、冲击接地电阻和冲击系数 (40)5.3接地体工频接地电阻计算 (41)5.3.1自然接地体及其工频接地电阻计算 (41)5.3.2人工接地体及工频接地电阻计算 (42)第6章变电站的接地设计 (44)6.1变电站接地装置的型式 (44)6.2变电站的接地装置要求 (44)6.2.1接地电阻值的要求 (44)6.2.2变电站主接地网的均压要求及计算 (46)6.3 35KV变电站接地设计 (47)致谢 (51)参考文献 (52)第1章前言1.1课题的提出和意义在现代社会里,电力已成为国民经济和人民生活必不可少的二次能源,它在现代工农业生产、人们日常生活及各个领域中已获得了广泛应用。
变电站接地设计及防雷技术(最新版)
( 安全技术 )单位:_________________________姓名:_________________________日期:_________________________精品文档 / Word文档 / 文字可改变电站接地设计及防雷技术(最新版)Technical safety means that the pursuit of technology should also include ensuring that peoplemake mistakes变电站接地设计及防雷技术(最新版)引言变电站接地系统的合理与否是直接关系到人身和设备安全的重要问题。
随着电力系统规模的不断扩大,接地系统的设计越来越复杂。
变电站接地包含工作接地、保护接地、雷电保护接地。
工作接地即为电力系统电气装置中,为运行需要所设的接地;保护接地即为电气装置的金属外壳、配电装置的构架和线路杆塔等,由于绝缘损坏有可能带电,为防止其危及人身和设备的安全而设的接地;雷电保护接地即为为雷电保护装置向大地泄放雷电流而设的接地。
变电站接地网安全除了对接地阻抗有要求外,还对地网的结构、使用寿命、跨步电位差、接触电位差、转移电位危害等提出了较高的要求。
1变电站接地设计的必要性接地是避雷技术最重要的环节,不管是直击雷,感应雷或其它形式的雷,都将通过接地装置导入大地。
因此,没有合理而良好的接地装置,就不能有效地防雷。
从避雷的角度讲,把接闪器与大地做良好的电气连接的装置称为接地装置。
接地装置的作用是把雷电对接闪器闪击的电荷尽快地泄放到大地,使其与大地的异种电荷中和。
变电站的接地网上连接着全站的高低压电气设备的接地线、低压用电系统接地、电缆屏蔽接地、通信、计算机监控系统设备接地,以及变电站维护检修时的一些临时接地。
如果接地电阻较大,在发生电力系统接地故障或其他大电流入地时,可能造成地电位异常升高;如果接地网的网格设计不合理,则可能造成接地系统电位分布不均,局部电位超过规定的安全值,这会给出运行人员的安全带来威胁,还可能因反击对低压或二次设备以及电缆绝缘造成损坏,使高压窜入控制保护系统、变电站监控和保护设备会发生误动、拒动,酿成事故,甚至是扩大事故,由此带来巨大的经济损失和社会影响。
变电站的防雷接地技术范本(二篇)
变电站的防雷接地技术范本防雷接地技术是变电站建设中非常重要的一部分,它的主要作用是保护变电站设备、线缆和工作人员免受雷击损害,并确保变电站的正常运行。
以下是一个关于变电站防雷接地技术的范本,包括防雷接地原理、接地系统设计和施工要求等内容。
一、防雷接地技术原理1. 雷电的形成及特点雷电是大气中云与地、云与云之间形成的电荷释放过程,产生非常强大且具有瞬时性的电流和电压。
由于变电站的设备和线缆都是导电材料,雷电引发的电流和电压泄漏会对设备和线缆产生严重的损害,甚至可能导致爆炸、火灾等重大事故。
2. 防雷接地的原理防雷接地技术通过将变电站设备和线缆与地面形成良好的电接地,将雷击引导到地下,避免对设备和线缆的损害。
接地系统起到两个作用:一是将雷击电流和电压有效地分散到地下,降低其对设备和线缆的损害;二是提供低阻抗的接地路径,使雷电能够迅速、有效地导入地下,从而保护变电站设备和线缆的安全。
二、防雷接地系统设计1. 接地电阻的计算接地电阻是一个评估接地效果的重要指标。
通常的做法是选择一定规模的变电站,设计接地系统时,根据具体情况,计算出接地体数量、深度和间距,以确保所需的接地电阻不超过设计要求。
计算接地电阻时,要考虑土壤电阻率、接地体的形状和材料等因素。
2. 接地体的设置为了降低接地电阻,保证接地系统的可靠性和稳定性,需要设置足够数量的接地体。
一般情况下,铜材是常用的接地体材料,它具有良好的导电性能和耐腐蚀性。
接地体的形状可以选择直杆形、盘条形、网状等,具体取决于设备和线缆的布置情况以及土壤的特性。
3. 接地体的深度和间距接地体的深度和间距对接地效果有重要影响。
接地体的深度应该能够达到湿度变化区域以下,以确保接地电阻的稳定性。
接地体之间的间距应根据土壤电阻率、接地体形状和数量等因素合理确定,以确保雷电能够被分散到整个接地系统。
4. 接地回线的设计接地回线用于将变电站的设备和线缆与接地体相连接,它的导电性能直接影响接地效果。
35KV变电所防雷接地保护设计
35KV变电站防雷接地保护设计摘要雷电事故是对变电站、发电厂安全的主要威胁,如何有效、合理对变电站、发电厂采取防雷接地保护措施有着十分重要的意义。
本文就以农村某35KV变电站为研究对象,以国家《防雷接地标准》为依据且结合变电站具体情况,对变电站的防雷接地进行保护设计,具有一定代表性。
首先根据变电站的电气主接线图等实际情况,在了解雷电参数、雷电机理以及学习各种防雷装置的基础上,采用设计避雷针并计算验证其保护范围实现对变电站直击雷的防护;对变电站雷电侵入波的防护实现,则通过选择安装避雷器型号和设计变电站进线段的保护接线。
最后在了解接地基本知识后,计算其接地电阻、最大土壤电阻率、垂直接地体根数等,实现对此35KV变电站的接地保护设计。
关键词:35KV变电站;直击雷防护;雷电侵入波防护;接地保护35KV substation lightning protection design of ground protectionAbstract:Lightning incident on the substation, power plants, the main threat to security, how to effectively and rationally to the substations, power plants, lightning protection grounding protection measures taken is very important.This article on a 35KV substation in rural areas for the study to state "Lightning grounding standards" based on specific conditions and combination of substation, the substation grounding protection lightning protection design, has a certain representation. First of all, according to the main electrical substation wiring diagram of the actual situation, etc., in the understanding of lightning parameters, the mechanism of lightning, as well as learning a variety of lightning protection devices on the basis of the calculation used to verify the design of a lightning rod and its scope of protection to achieve the protection of the substation direct stroke; of Substation lightning invasion wave to achieve the protection, surge arresters are installed by selecting the type and design of substation protection of wiring into the segment.Finally, grounding in the basic knowledge to understand, calculate the grounding resistance, soil resistivity of the largest vertical root number, such as grounding, to achieve this protection 35KV substation grounding design.Key words: 35KV Substation; Direct stroke protection; Invasive wavelightning protection ; Ground Protection目录摘要 (1)目录 (3)第1章前言 (5)1.1课题的提出和意义 (5)1.2国内外研究现状 (6)1.3本课题的主要工作 (6)1.3.1研究目标 (6)1.3.2主要研究内容 (7)1.4变电站防雷接地国家相关标准 (7)1.5本论文涉及的35KV变电站 (8)1.5.1变电站的概况 (8)1.5.2变电站相关参数 (9)1.5.3变电站电气主接线图 (9)第2章雷电与防雷装置 (11)2.1雷电 (11)2.1.1雷电及其放电过程 (11)2.1.2雷电参数 (13)2.1.3雷击过电压产生的机理 (17)2.2防雷装置 (18)2.2.1避雷针 (18)2.2.2避雷线 (20)2.2.3避雷带和避雷网........................................................错误!未定义书签。
变电站的防雷接地技术范本(2篇)
变电站的防雷接地技术范本防雷接地技术在变电站的设计和运行中起着至关重要的作用。
良好的防雷接地系统可以有效地保护变电站设备和人员,降低雷击产生的破坏和损失。
下面将介绍几种常见的防雷接地技术范本,供参考。
1. 接地网的设计接地网是变电站防雷接地的主要组成部分,其设计应遵循以下原则:(1)地网形状应尽量接近正方形或长方形,以确保电流均匀分布。
(2)接地网的埋深应足够深,一般不少于1米。
(3)地网的网格尺寸应合理选择,一般取4~6米之间。
(4)地网的水平接地电阻应符合规范要求。
(5)地网内应设置足够多的接地电极,以提高接地效果。
(6)在地网周边设置导体带,以增加接地网的有效接地面积。
2. 接地电阻的降低为了降低接地系统的电阻,可以采取以下措施:(1)增加接地电极的数量和面积,可以通过并联多个接地电极来降低接地电阻。
(2)合理选择接地电极材料,如铜良好的导电性能可以降低接地电阻。
(3)采用混凝土埋地电极或化学接地电极等,可以提供更大的接地面积,从而降低接地电阻。
(4)在接地系统中添加辅助接地电极,如接闪电杆、接电杆等,可以有效地降低接地电阻。
3. 防雷设备的选择和安装防雷设备是变电站防雷接地系统的重要组成部分,正确选择和安装防雷设备可以有效地保护变电站设备和人员。
以下是几种常见的防雷设备和安装要点:(1)避雷针:应选择高效的避雷针,并安装在变电站的高处,如变压器、断路器、电缆等设备的周围。
(2)避雷器:应根据变电站设备的电压等级选择合适的避雷器,并正确安装在电力系统的进出口位置。
(3)避雷阻抗器:应选择合适的避雷阻抗器,并正确接入电力系统,以限制过电压的传播。
(4)接闪装置:应根据变电站设备的特点和雷击频率选择合适的接闪装置,并正确安装在设备上,以保护设备免受雷击的损害。
(5)接地引线:应选择导电性能良好的材料,并正确安装在设备上,以确保设备能够有效地接地。
4. 定期检测和维护为了保证接地系统的正常运行和安全性,需要定期进行接地系统的检测和维护。
220千伏变电站防雷保护设计
原始资料及要求120m80m图0-1 杨村220kV变电站平面图图0-2 110kV线路杆塔图0-3 220kV线路杆塔220千伏变电站防雷保护设计及计算摘要雷电是大自然最宏伟壮观的气体放电现象。
雷电放电所产生的雷电流高达数十乃至数百千安,从而会引发庞大的电磁效应,机械效应和热效应。
变电站作为电力系统的重要组成部份,很容易产生事故,专门是,最近几年来随着经济的进展,对于电力系统的稳固性有很高的要求。
因此,要求有靠得住的防雷办法。
本设计是针对220kV变电站的防雷保护进行设计及计算,按照变电站雷击事故来源不同,提出了相应的解决方案:1、雷电直击变电站设备和线路,解决方式:采用四支等高避雷针别离安装在变电站的双侧墙上,距四个墙角的距离均为20m,针高33.77m。
接地装置选用五根长2.5米,外径为0.050米,壁厚4毫米,理论重量为4.54kg/m 的钢管。
2、沿线路传入变电站的雷电波,解决方式:设计入侵波保护。
经计算220kV侧及110kV侧都采用2km的进线段,其中220kV侧' 1.50/a kv m=。
=,110kV侧'0.82/a kv m3、由于输电线路是电力系统的大动脉,担负着将发电厂和通过变电所后的电力输送到各地域用电中心的重任。
所以,对其也应该进行保护。
对输电线路防雷性能计算。
其结果为:110kV线路平原雷击跳闸率为,山区雷击跳闸率为;220kV线路平原雷击跳闸率为,山区雷击跳闸率为。
关键词:防雷,接地装置,入侵波,雷击跳闸率THE AVOIDING FORM THUNDER STOKE ANDCOUNT OF POWER SYSTEMABSTRACTThe thunder is to be turned on electricity to the building of the ground and the nature of the earth by the cloud(take the bank of clouds of the electricity) of, it will break to the building or equipments creation is the greatest view in the world . The power flow flow made by thunder will be about tens, even hundreds A,change relatively system have become more reliability . So we need successful protection.It has two aspects about source of transformer thunder stoke , we make the solution following it:1.Thunder stoke on transformer transmission line and device . The designed transformer pointed the thunder stoke directing. As designing four lighting rob in the wall of the choose four same lighting rob is m to protect . The join-ground devices choose 5 steel tubes , the length of which is 2.5 m,the diameter of which is 50 mm , the thickness of steel tube outer is 4 mm and the theory weight is 4.54 kg/m.2.Thunder electric wave along the line . Avoid form attacking wave design . By counting 220kv side and 110kv side all use 2 km,there into 110kv side a' is m, and 220kv side a' is 1.50km/m3.Because the lines are important for the system . Will transmit the power made by the station to the local of 110kv line is on plain area; the thunder stoke ratio of 110kv line is on mountains area. The thunder stoke ratio of 220kv line is on plain area; the thunder stoke ratio of 220kv line is on mountains area.My graduation design is about the avoiding form thunder stoke of substation . The main part of graduation design talk falls into three parts .Keyword : avoiding form thunder stoke , the join-ground device , attacking wave , the thunder stoke ratio目录摘要 (I)ABSTRACT (II)1 绪论 (1)2直击雷的防护 (2)避雷针的介绍和计算原理 (3)2.1.1避雷针的保护范围计算公式 (4)2.1.2避雷针的计算 (7)接地装置的设计 (13)2.2.1接地装置的介绍 (13)2.2.2地装置的计算 (15)2.2.3接地装置的选择与安装 (17)3入侵波的防护 (19)进线段的设计 (19)3.1.1进线段保护介绍 (19)3.1.2进线段的计算 (21)避雷器原理介绍及选择 (23)3.2.1避雷器的原理介绍 (23)3.2.2避雷器的选择与安装 (26)4 输电线路防雷性能计算 (32)线路防雷介绍 (32)4.1.1输电线路的耐雷性能和雷击跳闸率 (33)4.1.2雷击线路的三种情形 (34)4.1.3线路的雷击跳闸率 (38)输电线路防雷性能计算 (39)110kV线路雷击跳闸率计算 (39)220kV线路雷计算击跳闸率 (42)结论 (48)附录 (49)致谢 (52)参考文献 (53)1 绪论雷电放电作为一种壮大的自然力的暴发是难以制止的,产生的雷电过电压可高达数十,乃至数百千伏,如不采取防护办法,将引发电力系统故障,造成大面积停电。
220千伏变电站防雷保护设计
原始资料及要求120m80m图0-1 杨村220kV变电站平面图图0-2 110kV线路杆塔图0-3 220kV线路杆塔220千伏变电站防雷保护设计及计算摘要雷电是大自然最宏伟壮观的气体放电现象。
雷电放电所产生的雷电流高达数十乃至数百千安,从而会引发庞大的电磁效应,机械效应和热效应。
变电站作为电力系统的重要组成部份,很容易产生事故,专门是,最近几年来随着经济的进展,对于电力系统的稳固性有很高的要求。
因此,要求有靠得住的防雷办法。
本设计是针对220kV变电站的防雷保护进行设计及计算,按照变电站雷击事故来源不同,提出了相应的解决方案:1、雷电直击变电站设备和线路,解决方式:采用四支等高避雷针别离安装在变电站的双侧墙上,距四个墙角的距离均为20m,针高33.77m。
接地装置选用五根长2.5米,外径为0.050米,壁厚4毫米,理论重量为4.54kg/m 的钢管。
2、沿线路传入变电站的雷电波,解决方式:设计入侵波保护。
经计算220kV侧及110kV侧都采用2km的进线段,其中220kV侧' 1.50/a kv m=。
=,110kV侧'0.82/a kv m3、由于输电线路是电力系统的大动脉,担负着将发电厂和通过变电所后的电力输送到各地域用电中心的重任。
所以,对其也应该进行保护。
对输电线路防雷性能计算。
其结果为:110kV线路平原雷击跳闸率为,山区雷击跳闸率为;220kV线路平原雷击跳闸率为,山区雷击跳闸率为。
关键词:防雷,接地装置,入侵波,雷击跳闸率THE AVOIDING FORM THUNDER STOKE ANDCOUNT OF POWER SYSTEMABSTRACTThe thunder is to be turned on electricity to the building of the ground and the nature of the earth by the cloud(take the bank of clouds of the electricity) of, it will break to the building or equipments creation is the greatest view in the world . The power flow flow made by thunder will be about tens, even hundreds A,change relatively system have become more reliability . So we need successful protection.It has two aspects about source of transformer thunder stoke , we make the solution following it:1.Thunder stoke on transformer transmission line and device . The designed transformer pointed the thunder stoke directing. As designing four lighting rob in the wall of the choose four same lighting rob is m to protect . The join-ground devices choose 5 steel tubes , the length of which is 2.5 m,the diameter of which is 50 mm , the thickness of steel tube outer is 4 mm and the theory weight is 4.54 kg/m.2.Thunder electric wave along the line . Avoid form attacking wave design . By counting 220kv side and 110kv side all use 2 km,there into 110kv side a' is m, and 220kv side a' is 1.50km/m3.Because the lines are important for the system . Will transmit the power made by the station to the local of 110kv line is on plain area; the thunder stoke ratio of 110kv line is on mountains area. The thunder stoke ratio of 220kv line is on plain area; the thunder stoke ratio of 220kv line is on mountains area.My graduation design is about the avoiding form thunder stoke of substation . The main part of graduation design talk falls into three parts .Keyword : avoiding form thunder stoke , the join-ground device , attacking wave , the thunder stoke ratio目录摘要 (I)ABSTRACT (II)1 绪论 (1)2直击雷的防护 (2)避雷针的介绍和计算原理 (3)2.1.1避雷针的保护范围计算公式 (4)2.1.2避雷针的计算 (7)接地装置的设计 (13)2.2.1接地装置的介绍 (13)2.2.2地装置的计算 (15)2.2.3接地装置的选择与安装 (17)3入侵波的防护 (19)进线段的设计 (19)3.1.1进线段保护介绍 (19)3.1.2进线段的计算 (21)避雷器原理介绍及选择 (23)3.2.1避雷器的原理介绍 (23)3.2.2避雷器的选择与安装 (26)4 输电线路防雷性能计算 (32)线路防雷介绍 (32)4.1.1输电线路的耐雷性能和雷击跳闸率 (33)4.1.2雷击线路的三种情形 (34)4.1.3线路的雷击跳闸率 (38)输电线路防雷性能计算 (39)110kV线路雷击跳闸率计算 (39)220kV线路雷计算击跳闸率 (42)结论 (48)附录 (49)致谢 (52)参考文献 (53)1 绪论雷电放电作为一种壮大的自然力的暴发是难以制止的,产生的雷电过电压可高达数十,乃至数百千伏,如不采取防护办法,将引发电力系统故障,造成大面积停电。
220千伏变电站防雷保护设计
原始资料及要求120m80m图0-1 杨村220kV变电站平面图图0-2 110kV线路杆塔图0-3 220kV线路杆塔220千伏变电站防雷保护设计及计算摘要雷电是大自然最宏伟壮观的气体放电现象。
雷电放电所产生的雷电流高达数十乃至数百千安,从而会引发庞大的电磁效应,机械效应和热效应。
变电站作为电力系统的重要组成部份,很容易产生事故,专门是,最近几年来随着经济的进展,对于电力系统的稳固性有很高的要求。
因此,要求有靠得住的防雷办法。
本设计是针对220kV变电站的防雷保护进行设计及计算,按照变电站雷击事故来源不同,提出了相应的解决方案:1、雷电直击变电站设备和线路,解决方式:采用四支等高避雷针别离安装在变电站的双侧墙上,距四个墙角的距离均为20m,针高33.77m。
接地装置选用五根长2.5米,外径为0.050米,壁厚4毫米,理论重量为4.54kg/m 的钢管。
2、沿线路传入变电站的雷电波,解决方式:设计入侵波保护。
经计算220kV侧及110kV侧都采用2km的进线段,其中220kV侧' 1.50/a kv m=。
=,110kV侧'0.82/a kv m3、由于输电线路是电力系统的大动脉,担负着将发电厂和通过变电所后的电力输送到各地域用电中心的重任。
所以,对其也应该进行保护。
对输电线路防雷性能计算。
其结果为:110kV线路平原雷击跳闸率为,山区雷击跳闸率为;220kV线路平原雷击跳闸率为,山区雷击跳闸率为。
关键词:防雷,接地装置,入侵波,雷击跳闸率THE AVOIDING FORM THUNDER STOKE ANDCOUNT OF POWER SYSTEMABSTRACTThe thunder is to be turned on electricity to the building of the ground and the nature of the earth by the cloud(take the bank of clouds of the electricity) of, it will break to the building or equipments creation is the greatest view in the world . The power flow flow made by thunder will be about tens, even hundreds A,change relatively system have become more reliability . So we need successful protection.It has two aspects about source of transformer thunder stoke , we make the solution following it:1.Thunder stoke on transformer transmission line and device . The designed transformer pointed the thunder stoke directing. As designing four lighting rob in the wall of the choose four same lighting rob is m to protect . The join-ground devices choose 5 steel tubes , the length of which is 2.5 m,the diameter of which is 50 mm , the thickness of steel tube outer is 4 mm and the theory weight is 4.54 kg/m.2.Thunder electric wave along the line . Avoid form attacking wave design . By counting 220kv side and 110kv side all use 2 km,there into 110kv side a' is m, and 220kv side a' is 1.50km/m3.Because the lines are important for the system . Will transmit the power made by the station to the local of 110kv line is on plain area; the thunder stoke ratio of 110kv line is on mountains area. The thunder stoke ratio of 220kv line is on plain area; the thunder stoke ratio of 220kv line is on mountains area.My graduation design is about the avoiding form thunder stoke of substation . The main part of graduation design talk falls into three parts .Keyword : avoiding form thunder stoke , the join-ground device , attacking wave , the thunder stoke ratio目录摘要 (I)ABSTRACT (II)1 绪论 (1)2直击雷的防护 (2)避雷针的介绍和计算原理 (3)2.1.1避雷针的保护范围计算公式 (4)2.1.2避雷针的计算 (7)接地装置的设计 (13)2.2.1接地装置的介绍 (13)2.2.2地装置的计算 (15)2.2.3接地装置的选择与安装 (17)3入侵波的防护 (19)进线段的设计 (19)3.1.1进线段保护介绍 (19)3.1.2进线段的计算 (21)避雷器原理介绍及选择 (23)3.2.1避雷器的原理介绍 (23)3.2.2避雷器的选择与安装 (26)4 输电线路防雷性能计算 (32)线路防雷介绍 (32)4.1.1输电线路的耐雷性能和雷击跳闸率 (33)4.1.2雷击线路的三种情形 (34)4.1.3线路的雷击跳闸率 (38)输电线路防雷性能计算 (39)110kV线路雷击跳闸率计算 (39)220kV线路雷计算击跳闸率 (42)结论 (48)附录 (49)致谢 (52)参考文献 (53)1 绪论雷电放电作为一种壮大的自然力的暴发是难以制止的,产生的雷电过电压可高达数十,乃至数百千伏,如不采取防护办法,将引发电力系统故障,造成大面积停电。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
毕业论文题目名称:35KV变电站防雷接地保护设计系部名称:班级:学号:学生姓名:毛毛指导教师:年月35KV变电站防雷接地保护设计摘要雷电事故是对变电站、发电厂安全的主要威胁,如何有效、合理对变电站、发电厂采取防雷接地保护措施有着十分重要的意义。
本文就通过对35KV变电站为研究对象,以国家《防雷接地标准》为依据且结合变电站具体情况,对变电站的防雷接地进行保护设计,具有一定代表性。
首先根据变电站的电气主接线图等实际情况,在了解雷电参数、雷电机理以及学习各种防雷装置的基础上,采用设计避雷针并计算验证其保护范围实现对变电站直击雷的防护;对变电站雷电侵入波的防护实现,则通过选择安装避雷器型号和设计变电站进线段的保护接线。
最后在了解接地基本知识后,计算其接地电阻、最大土壤电阻率、垂直接地体根数等,实现对此35KV变电站的接地保护设计。
关键词:35kV变电站;直击雷防护;雷电侵入波防护;接地保护目录摘要............................................................... .......................................................目录............................................................... .......................................................第1章前言........................................................................... . (5)1.1课题的提出和意义......................................................................... (5)1.2国内外研究现状......................................................................... (6)1.3本课题的主要工作......................................................................... (6)1.3.1研究目标......................................................................... (6)1.3.2主要研究内容......................................................................... (7)1.4变电站防雷接地国家相关标准 (7)1.5本论文涉及的35KV变电站....................................................................... (8)1.5.1变电站的概况......................................................................... (8)1.5.2变电站相关参数......................................................................... (9)1.5.3变电站电气主接线图.........................................................................9第2章雷电与防雷装置........................................................................... (11)2.1雷电......................................................................... (11)2.1.1雷电及其放电过程......................................................................... (11)2.1.2雷电参数......................................................................... (13)2.1.3雷击过电压产生的机理.........................................................................172.2防雷装置......................................................................... (18)2.2.1避雷针......................................................................... (18)2.2.2避雷线......................................................................... (20)2.2.3避雷带和避雷网.....................................................2.2.4避雷器......................................................................... (21)第3章变电站直击雷的防护........................................................................... . (23)3.1变电站直击雷防护概述......................................................................... (23)3.2建筑物年预计年雷击次数 (23)3.2.1年预计雷击次数计算公式 (23)3.2.2 35KV变电站年预计雷击次数N (24)3.3反击......................................................................... (24)3.3.1反击的产生......................................................................... (24)3.3.2反击的防止......................................................................... (24)3.4 35KV变电站对直击雷防护的设计 (26)3.4.1采用两根等高避雷针进行防护设计 (26)3.4.2采用四根等高避雷针进行防护设计 (27)第4章变电站雷电侵入波防护........................................................................... (29)4.1变电站对雷电侵入波防护概述 (29)4.2 35KV变电站对雷电侵入波的防护 (29)4.2.1避雷器的防护距离......................................................................... (29)4.2.2变电站的雷电侵入波防护接线.............................4.2.3变电站的进线段雷电防护 (32)4.3雷电侵入波防护要素....................................................4.3.1避雷器与35KV变压器的最大电气距离.............4.3.2雷雨季节在运行方式上尽量保证母线并列运行 (35)4.3.3电缆进出线有利于降低雷电侵入波的幅值和陡度 (35)第5章接地的基本常识........................................................................... ...............5.1接地、接地电阻及接地装置 (3)75.1.1接地概念及分类........................................................................... . (37)5.1.2接地电阻与对地电压........................................................................... .. 385.1.3接地装置........................................................................... . (39)5.1.4接触电压和跨步电压........................................................................... .. 395.2工频接地电阻、冲击接地电阻和冲击系数 (40)5.3接地体工频接地电阻计算........................................................................... . 415.3.1自然接地体及其工频接地电阻计算 (41)5.3.2人工接地体及工频接地电阻计算 (42)第6章变电站的接地........................................................................... . (44)6.1变电站接地装置的型式........................................................................... .. (44)6.2变电站的接地装置要求........................................................................... .. (44)6.2.1接地电阻值的要求........................................................................... (44)6.2.2变电站主接地网的均压要求及计算 (46)6.3 35KV变电站接地设计......................................................................... .. (47)致谢........................................................................... ..................................................参考文献........................................................................... . (52)第1章前言1.1课题的提出和意义在现代社会里,电力已成为国民经济和人民生活必不可少的二次能源,它在现代工农业生产、人们日常生活及各个领域中已获得了广泛应用。