高考一轮练习(7.1空间几何体的结构特征及三视图和直观图)
高考数学一轮总复习 第七章 立体几何 第一节 空间几何体的结构及其三视图和直观图练习 文
第一节空间几何体的结构及其三视图和直观图【最新考纲】 1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测法画出它们的直观图.3.会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.1.多面体的结构特征(1)棱柱的侧棱都互相平行,上下底面是全等的多边形.(2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形.(3)棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形.2.旋转体的形成直角三角形(1)三视图的名称几何体的三视图包括:正视图、侧视图、俯视图.(2)三视图的画法①在画三视图时,重叠的线只画一条,挡住的线要画成虚线.②三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体的正投影图.4.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴,y′轴的夹角为45°或135°,z′轴与x′轴和y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴;平行于x轴和z轴的线段在直观图中保持原长度不变;平行于y轴的线段在直观图中长度为原来的一半.1.(质疑夯基)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( )(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( )(3)用斜二测画法画水平放置的∠A时,若∠A的两边分别平行于x轴和y轴,且∠A=90°,则在直观图中,∠A=45°.( )(4)正方体、球、圆锥各自的三视图中,三视图均相同.( )答案:(1)×(2)×(3)×(4)×2.如图,长方体ABCD A′B′C′D′中被截去一部分,其中EH∥A′D′.剩下的几何体是( )A.棱台B.四棱柱C.五棱柱D.简单组合体解析:由几何体的结构特征,剩下的几何体为五棱柱.答案:C3.(2016·邯郸调研)一几何体的直观图如图所示,下列给出的四个俯视图中正确的是( )解析:由于组合体的上部分(五面体)与下部分(长方体)有相同的底面,则几何体在下底面的投影为图形B.答案:B4.(2015·课标全国Ⅱ卷)一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )A.18B.17C.16D.15解析:如图所示,由条件知,截去部分是正三棱锥DABC.设正方体的棱长为a ,则V DABC =a 36,因此剩余部分的体积V 剩=56a 3,故它们的体积之比为15.答案:D5.以边长为1的正方形的一边所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于________.解析:由题意得圆柱的底面半径r =1,母线l =1. 所以圆柱的侧面积S =2πrl =2π. 答案:2π一种思想棱台和圆台是分别用平行于棱锥和圆锥的底面的平面截棱锥和圆锥后得到的,所以在解决棱台和圆台的相关问题时,常“还台为锥”,体现了转化的数学思想.两点注意1.注意空间几何体的不同放置对三视图的影响. 2.画直观图注意平行性、长度两个要素.(1)平行性不变;(2)平行于y 轴的线段长度减半,平行于x 轴、z 轴的线段长度不变. 三条规则——画三视图应遵循的三条规则 1.画法规则:“长对正,宽相等,高平齐”.2.摆放规则:侧视图在正视图的右侧,俯视图在正视图的正下方.3.实虚线的画法规则:可见轮廓线和棱用实线画出,不可见线和棱用虚线画出.一、选择题1.(2014·福建卷)某空间几何体的正视图是三角形,则该几何体不可能是( ) A .圆柱 B .圆锥 C .四面体 D .三棱柱解析:由三视图知识知圆锥、四面体、三棱柱(放倒看)都能使其正视图为三角形,而圆柱的正视图不可能为三角形.答案:A3.已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该正方体的正视图的面积等于( )A.32 B .1 C.2+12D. 2 解析:由于该正方体的俯视图是面积为1的正方形,侧视图是一个面积为2的矩形,因此该几何体的正视图是一个长为2,宽为1的矩形,其面积为 2.答案:D4.(2014·北京卷)在空间直角坐标系O xyz 中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,2).若S 1,S 2,S 3分别是三棱锥D ABC 在xOy ,yOz ,zOx 坐标平面上的正投影图形的面积,则( )A .S 1=S 2=S 3B .S 2=S 1且S 2≠S 3C .S 3=S 1且S 3≠S 2D .S 3=S 2且S 3≠S 1解析:如右图所示。
高考数学(文)一轮复习 7-1空间几何体的结构及其三视图和直观图
2S 直观图).
11
板块一
板块二
板块三
板块四
高考一轮总复习 ·数学(文)
[双基夯实] 一、疑难辨析 判 断 下 列 结 论 的 正 误 . ( 正 确 的 打 “√” , 错 误 的 打 “×”) 1.球的任何截面都是圆.( × ) 2.有一个面是多边形,其余各面都是三角形的几何体 是棱锥.( × ) 3.棱台是由平行于底面的平面截棱锥所得的平面与底 面之间的部分.( √ )
36
板块一
板块二
板块三
板块四
高考一轮总复习 ·数学(文)
触类旁通
平面图形与其直观图的关系
(1)在斜二测画法中,要确定关键点及关键线段,注意
“三变”与“三不变”.
(2)按照斜二测画法得到的平面图形的直观图,其面积与
原图形的面积的关系:S
= 直观图
2 4S
原图形.
37
板块一
板块二
板块三
板块四
高考一轮总复习 ·数学(文)
考向 空间几何体的三视图
命题角度 1 由空间几何体的直观图识别三视图 例 2 “牟合方盖”是我国古代数学家刘徽在研究球的 体积的过程中构造的一个和谐优美的几何体.它由完全相同 的四个曲面构成,相对的两个曲面在同 一个圆柱的侧面上,好似两个扣合(牟合) 在一起的方形伞(方盖).其直观图如图 1, 图 2 中四边形是为体现其直观性所作的 辅助线,当其正视图和侧视图完全相同 时,它的正视图和俯视图分别可能是
中
, ∠ABC
=
2021届高考数学一轮总复习第七章立体几何7.1空间几何体的结构特征三视图和直观图课件苏教版
(2)如图①,在直观图中,过点 A 作 AE⊥BC,垂足为 E,
∵在
Rt△ABE
中,AB=1,∠ABE=45°,∴BE=
2 2.
∵四边形 AECD 为矩形,AD=1,
∴EC=AD=1,∴BC=BE+EC= 22+1.
1.原图形中 x 轴、y 轴、z 轴两两垂直,直观图中,x′轴,y′轴 的夹角为 45°或 135°,z′轴与 x′轴和 y′轴所在平面垂直.
2.原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴;平 行于 x 轴和 z 轴的线段在直观图中保持原长度不变;平行于 y 轴的线段 在直观图中长度变为原来的一半.
所以截面上方部分的侧视图为选项 A 中的图形,故选 A.
方法技巧 三视图问题的常见类型: 1由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观 察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示. 2由几何体的三视图还原几何体的形状.根据俯视图确定几何体的 底面,再根据正视图或侧视图确定几何体的侧面与侧棱的特征,调整虚、 实线对应的棱、面的位置,可确定几何体的形状. 3 由 几何 体的 部分 视图 画 出剩 余的 视图 . 先根 据已 知的 一部 分 视 图,还原、推测直观图的可能形状,再找出其剩下部分视图的可能形状.
1.(2019·浙江卷)祖暅是我国南北朝时代的伟大科学家,他提出的 “幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的 体积公式 V 柱体=Sh,其中 S 是柱体的底面积,h 是柱体的高.若某柱体
的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是( B )
A.158 C.182
高考数学一轮总复习第七章立体几何7.1空间几何体的结构特征及三视图与直观图课时训练理(2021年整
2019年高考数学一轮总复习第七章立体几何7.1 空间几何体的结构特征及三视图与直观图课时跟踪检测理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019年高考数学一轮总复习第七章立体几何7.1 空间几何体的结构特征及三视图与直观图课时跟踪检测理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019年高考数学一轮总复习第七章立体几何7.1 空间几何体的结构特征及三视图与直观图课时跟踪检测理的全部内容。
7。
1 空间几何体的结构特征及三视图与直观图[课时跟踪检测][基础达标]1.某几何体的三视图如图所示,那么这个几何体是( )A.三棱锥B.四棱锥C.四棱台D.三棱台解析:因为正(主)视图和侧(左)视图都为三角形,可知几何体为锥体,又因为俯视图为三角形,故该几何体为三棱锥.答案:A2.(2017年浙江卷)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是( )A.错误!+1 B.错误!+3C。
错误!+1 D.错误!+3解析:由图可知,几何体由半个圆锥与一个三棱锥构成,∵半圆锥的体积V=错误!×(π×12)×3×错误!=错误!,三棱锥的体积V2=错误!×3×错误!=11,∴该几何体的体积V=V1+V2=错误!+1.答案:A3.(2017年全国卷Ⅱ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.π B.错误!C.错误!D.错误!解析: 过圆柱的轴作截面,所得截面如图,则圆柱的底面半径为r=错误!=错误!,所以圆柱的体积为πr2·h=π×错误!2×1=错误!。
2020版高考数学一轮复习第7章立体几何7.1空间几何体的结构及其三视图和直观图学案文
7.1 空间几何体的结构及其三视图和直观图[知识梳理]1.多面体的结构特征2.旋转体的结构特征3.直观图(1)画法:常用斜二测画法.(2)规则①原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴与y′轴的夹角为45°(或135°),z′轴与x′轴(或y′轴)垂直.②原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段的长度在直观图中变为原来的一半.4.三视图(1)几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.(2)三视图的画法①基本要求:长对正,高平齐,宽相等.②画法规则:正侧一样高,正俯一样长,侧俯一样宽;看不到的线画虚线.[诊断自测]1.概念思辨(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( )(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( )(3)用斜二测画法画水平放置的∠A时,若∠A的两边分别平行于x轴和y轴,且∠A=90°,则在直观图中,∠A=45°.()(4)正方体、球、圆锥各自的三视图中,三视图均相同.( )答案(1)×(2)×(3)×(4)×2.教材衍化(1)(必修A2P15T4)如图所示为一个简单几何体的三视图,则其对应的几何体是( )答案 A解析对于A,该几何体的三视图恰好与已知图形相符,故A符合题意;对于B,该几何体的正视图的矩形中,对角线应该是虚线,故不符合题意;对于C,该几何体的正视图的矩形中,对角线应该是从左上到右下的方向,故不符合题意;对于D,该几何体的侧视图的矩形中,对角线应该是虚线,不符合题意.故选A.(2)(必修A2P28T3)如图1所示,是一个棱长为2的正方体被削去一个角后所得到的几何体的直观图,其中DD1=1,AB=BC=AA1=2,若此几何体的俯视图如图2所示,则可以作为其正视图的是( )答案 C解析由直观图和俯视图知,正视图中点D1的射影是B1,侧棱B1B是看不见的,在直观图中用虚线表示.所以正视图是选项C中的图形.故选C.3.小题热身(1)(2017·长沙模拟)如图是一个正方体,A,B,C为三个顶点,D是棱的中点,则三棱锥A-BCD的正视图,俯视图是(注:选项中的上图是正视图,下图是俯视图)( )答案 A解析正视图是等腰直角三角形,且AD棱属于看不见的部分,用虚线表示,俯视图也是等腰直角三角形,且BD棱属于看不见的部分,用虚线表示.故选A.(2)(2017·北京高考)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( )A.3 2 B.2 3 C.2 2 D.2答案 B解析在正方体中还原该四棱锥,如图所示,可知SD为该四棱锥的最长棱.由三视图可知正方体的棱长为2,故SD=22+22+22=2 3.故选B.题型1 空间几何体的结构特征典例下列结论正确的个数是________.(1)有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱;(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥;(3)有两个平面互相平行,其余各面都是梯形的多面体是棱台;(4)直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;(5)若在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线.举反例.答案0个解析(1)(2)(3)(4)的反例见下面四个图.(5)平行于轴的连线才是母线.空间几何体结构特征有关问题的解题策略1.关于空间几何体的结构特征辨析关键是紧扣各种空间几何体的概念,要善于通过举反例对概念进行辨析,即要说明一个命题是错误的,只需举一个反例即可.2.圆柱、圆锥、圆台的有关元素都集中在轴截面上,解题时要注意用好轴截面中各元素的关系.3.既然棱(圆)台是由棱(圆)锥定义的,所以在解决棱(圆)台问题时,要注意应用“还台为锥”的解题策略.冲关针对训练下列结论正确的是________.①各个面都是三角形的几何体是三棱锥.②若有两个侧面垂直于底面,则该四棱柱为直四棱柱.③四棱锥的四个侧面都可以是直角三角形.④一个平面去截圆锥,得到一个圆锥和一个圆台.答案③解析①错误,如图1;②错误,若两个垂直于底面的侧面平行,则可为斜棱柱;③正确,如图2,底面ABCD为矩形,PD⊥平面ABCD,那么四棱锥P-ABCD四个侧面都是直角三角形;④错误,当截面与底面不平行时,不正确.题型2 空间几何体的直观图典例(2017·桂林模拟)已知正三角形ABC的边长为a,那么△ABC的平面直观图△A′B′C′的面积为( )A.34a2 B.38a2 C.68a2 D.616a2根据平面图形的原图形与直观图的关系求解.解析 如图(1)所示的是△ABC 的实际图形,图(2)是△ABC 的直观图.由图(2)可知A ′B ′=AB =a ,O ′C ′=12OC =34a ,在图(2)中作C ′D ′⊥A ′B ′于D ′,则C ′D ′=22O ′C ′=68a .∴S △A ′B ′C ′=12A ′B ′·C ′D ′=12×a ×68a =616a 2.故选D. [条件探究] 若将典例条件变为“△ABC 的直观图△A 1B 1C 1是边长为a 的正三角形”,则△ABC 的面积是多少?解在△A 1D 1C 1中,由正弦定理a sin45°=xsin120°,得x =62a ,∴S △ABC =12×a ×6a =62a 2. 方法技巧用斜二测画法画直观图的技巧1.在原图形中与x 轴或y 轴平行的线段在直观图中仍然与x ′轴或y ′轴平行. 2.原图中不与坐标轴平行的直线段可以先画出线段的端点再连线.3.原图中的曲线段可以通过取一些关键点,作出在直观图中的相应点,然后用平滑曲线连接.冲关针对训练用斜二测画法画出的某平面图形的直观图如图,边AB 平行于y 轴,BC ,AD 平行于x 轴.已知四边形ABCD的面积为22cm2,则原平面图形的面积为( )A.4 cm2 B.4 2 cm2C.8 cm2 D.8 2 cm2答案 C解析依题意可知∠BAD=45°,则原平面图形为直角梯形,上下底面的长与BC,AD 相等,高为梯形ABCD的高的22倍,所以原平面图形的面积为8 cm2.故选C.题型3 空间几何体的三视图角度1 已知几何体识别三视图E,F,G分别是正方体ABCD-A1B1C1D1的棱典例(2018·湖南长沙三校一模)已知点AA1,CC1,DD1的中点,点M,N,Q,P分别在线段DF,AG,BE,C1B1上.以M,N,Q,P为顶点的三棱锥P-MNQ的俯视图不可能是( )答案 C解析当M与F重合、N与G重合、Q与E重合、P与B1重合时,三棱锥P-MNQ的俯视图为A;当M,N,Q,P是所在线段的中点时,三棱锥P-MNQ的俯视图为B;当M,N,Q,P位于所在线段的非端点位置时,存在三棱锥P-MNQ,使其俯视图为D.不管M,N,P,Q在什么位置,三棱锥P-MNQ的俯视图都不可能是正三角形.故选C.角度2 已知三视图还原几何体A为此几何体所典例(2018·河北名师俱乐部模拟)某几何体的三视图如图所示,记有棱的长度构成的集合,则 ( )A.3∈A B.5∈A C.26∈A D.43∈A答案 D解析由三视图可得,该几何体的直观图如图所示,其中底面是边长为4的正方形,AF ⊥平面ABCD,AF∥DE,AF=2,DE=4,可求得BE的长为43,BF的长为25,EF的长为25,EC的长为4 2.故选D.方法技巧1.已知几何体,识别三视图的技巧已知几何体画三视图时,可先找出各个顶点在投影面上的投影,然后再确定线在投影面上的实虚.2.已知三视图,判断几何体的技巧(1)一般情况下,根据正视图、侧视图确定是柱体、锥体还是组合体.(2)根据俯视图确定是否为旋转体,确定柱体、锥体类型、确定几何体摆放位置.(3)综合三个视图特别是在俯视图的基础上想象判断几何体.提醒:对于简单组合体的三视图,应注意它们的交线的位置,区分好实线和虚线的不同.冲关针对训练(2017·文登市三模)空间几何体的三视图如图所示,则此空间几何体的直观图为( )答案 A解析由已知三视图的上部分是锥体,是三棱锥,三棱锥的底面是等腰三角形,但不是直角三角形,排除B,C.等腰三角形的一个顶点在正方体一条棱的中点,故排除D.故选A.1.(2017·全国卷Ⅰ)某多面体的三视图如图所示,其中正视图和侧视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A .10B .12C .14D .16 答案 B解析 观察三视图可知该多面体是由直三棱柱和三棱锥组合而成的,且直三棱柱的底面是直角边长为2的等腰直角三角形,侧棱长为2.三棱锥的底面是直角边长为2的等腰直角三角形,高为2,如图所示.因此该多面体各个面中共有2个梯形,且这两个梯形全等,梯形的上底长为2,下底长为4,高为2,故这些梯形的面积之和为2×12×(2+4)×2=12.故选B.2.(2016·全国卷Ⅰ)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )A .17π B.18π C.20π D.28π 答案 A解析 由三视图可知,该几何体是一个球被截去18后剩下的部分,设球的半径为R ,则该几何体的体积为78×43πR 3,即283π=78×43πR 3,解得R =2.故其表面积为78×4π×22+3×14×π×22=17π.故选A.3.(2018·山西模拟)某几何体的正(主)视图与俯视图如图所示,若俯视图中的多边形为正六边形,则该几何体的侧(左)视图的面积为( )A.152B .6+ 3 C.32+3 3 D .4 3 答案 A解析 由题图可知该几何体的侧视图如图,则该几何体的侧(左)视图的面积为3×2+12×3×3=152,故选A.4.(2018·济宁模拟)点M ,N 分别是正方体ABCD -A 1B 1C 1D 1的棱A 1B 1,A 1D 1的中点,用过A ,M ,N 和D ,N ,C 1的两个截面截去正方体的两个角后得到的几何体如图1,则该几何体的正视图、侧视图、俯视图依次为图2中的 ( )A.①②③ B.②③④ C.①③④ D.②④③答案 B解析由正视图的定义可知:点A,B,B1在后面的投影点分别是点D,C,C1,线段AN 在后面的投影面上的投影是以D为端点且与线段CC1平行且相等的线段,另外线段AM在后面的投影线要画成实线,被遮挡的线段DC1要画成虚线,正视图为②;同理可得侧视图为③,俯视图为④.故选B.[基础送分提速狂刷练]一、选择题1.一个几何体的三视图如图所示,则该几何体的直观图可以是( )答案 D解析由俯视图是圆环可排除A,B,C,进一步将已知三视图还原为几何体,故选D.2.如图所示,在正方体ABCD-A′B′C′D′中,M,E是AB的三等分点,G,N是CD 的三等分点,F,H分别是BC,MN的中点,则四棱锥A′-EFGH的侧视图为 ( )答案 C解析侧视图中A′E,A′G重合,A′H成为A′N,A′F,A′B重合,侧视图为向左倾斜的三角形.故选C.3.(2017·临沂模拟)如图甲,将一个正三棱柱ABC-DEF截去一个三棱锥A-BCD,得到几何体BCDEF,如图乙,则该几何体的正视图(主视图)是( )答案 C解析由于三棱柱为正三棱柱,故平面ADEB⊥平面DEF,△DEF是等边三角形,所以CD 在后侧面上的投影为AB的中点与D的连线,CD的投影与底面不垂直.故选C.4.(2018·江西景德镇质检)如图所示,正方体ABCD-A1B1C1D1上、下底面中心分别为O1,O2,将正方体绕直线O1O2旋转一周,其中由线段BC1旋转所得图形是( )答案 D解析 由图形的形成过程可知,在图形的面上能够找到直线,在B ,D 中选,显然B 不对,因为BC 1中点绕O 1O 2旋转得到的圆比B 点和C 1点的小.故选D.5.(2017·内江模拟)如图,已知三棱锥P -ABC 的底面是等腰直角三角形,且∠ACB =π2,侧面PAB ⊥底面ABC ,AB =PA =PB =2.则这个三棱锥的三视图中标注的尺寸x ,y ,z 分别是( )A.3,1, 2B.3,1,1 C .2,1, 2 D .2,1,1 答案 B解析 ∵三棱锥P -ABC 的底面是等腰直角三角形,且∠ACB =π2,侧面PAB ⊥底面ABC ,AB =PA =PB =2;∴x 是等边△PAB 边AB 上的高,x =2sin60°=3,y 是边AB 的一半,y =12AB =1,z 是等腰直角△ABC 斜边AB 上的中线,z =12AB =1;∴x ,y ,z 分别是3,1,1.故选B.6.(2017·南昌二模)一个四面体的顶点在空间直角坐标系Oxyz 中的坐标分别是(0,0,0),(1,0,1),(0,1,1),⎝ ⎛⎭⎪⎫12,1,0,绘制该四面体三视图时,按照如图所示的方向画正视图,则得到侧(左)视图可以为( )答案 B解析 满足条件的四面体如下图,依题意投影到yOz 平面为正投影,所以侧(左)视方向如图所示,所以得到侧(左)视图效果如上图.故选B.7.(2018·湖南郴州模拟)一只蚂蚁从正方体ABCD -A 1B 1C 1D 1的顶点A 出发,经正方体的表面,按最短路线爬行到顶点C 1的位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图的是( )A .①② B.①③ C.③④ D.②④ 答案 D解析 由点A 经正方体的表面,按最短路线爬行到达顶点C 1的位置,共有6种路线(对应6种不同的展开方式),若把平面ABB 1A 1和平面BCC 1B 1展到同一个平面内,连接AC 1,则AC 1是最短路线,且AC 1会经过BB 1的中点,此时对应的正视图为②;若把平面ABCD 和平面CDD 1C 1展到同一个平面内,连接AC 1,则AC 1是最短路线,且AC 1会经过CD 的中点,此时对应的正视图为④.而其他几种展开方式对应的正视图在题中没有出现.故选D.8.(2018·山西康杰中学模拟)已知某锥体的正视图和侧视图如图所示,其体积为233,则该锥体的俯视图可能是( )答案 C解析 由正视图得该锥体的高是h =22-12=3,因为该锥体的体积为233,所以该锥体的底面面积是S =23313h=23333=2,A项的正方形的面积是2×2=4,B项的圆的面积是π×12=π,C项的大三角形的面积是12×2×2=2,D项图形不满足三视图“宽相等”原则,所以不可能是该锥体的俯视图.故选C.9.早在公元前三百多年我国已经运用“以度审容”的科学方法,其中商鞅铜方升是公元前344年商鞅督造的一种标准量器,其三视图如图所示(单位:寸),若π取3,其体积为12.6(立方寸),则图中的x为( )A.1.2 B.1.6 C.1.8 D.2.4答案 B解析由三视图知,商鞅铜方升是由一个圆柱和一个长方体组合而成的,利用体积及已知线段长度即可求出x.故其体积为(5.4-x)×3×1+π×⎝⎛⎭⎪⎫122×x=16.2-3x+14πx=12.6,又π=3,故x=1.6.故选B.10.(2018·辽宁六校联考)如图所示是某一容器的三视图,现向容器中匀速注水,容器中水面的高度h随时间t变化的可能图象是( )答案 B解析 根据所给的三视图可知原几何体是倒放的圆锥,设圆锥的底面半径为R ,高为H ,水流的速度是v ,则由题意得vt =13π⎝ ⎛⎭⎪⎫h H 2R 2h .当vt >0时,解得h =33vH 2t πR 2,这是一个幂型函数,所以容器中水面的高度h 随时间t 变化的图象类似于幂函数y =3x 的图象,故选B.二、填空题11.如图所示,正方形O ′A ′B ′C ′的边长为1 cm ,它是水平放置的一个平面图形的直观图,则原图形的周长是________cm.答案 8解析 根据直观图的画法可知,在原几何图形中,OABC 为平行四边形,且有OB ⊥OA ,OB =22,OA =1,所以AB =3.从而原图的周长为8 cm.12.如图,点O 为正方体ABCD -A ′B ′C ′D ′的中心,点E 为平面B ′BCC ′的中心,点F 为B ′C ′的中点,则空间四边形D ′OEF 在该正方体的各个面上的投影可能是 (填出所有可能的序号).答案 ①②③解析 空间四边形D ′OEF 在正方体的平面DCC ′D ′上的投影是①;在平面BCC ′B ′上的投影是②;在平面ABCD 上的投影是③,而不可能出现的投影为④的情况.13.一四面体的三视图如图所示,则该四面体四个面中最大的面积是________.答案 2 3解析 由三视图可知该四面体为D -BD 1C 1,由直观图可知面积最大的面为△BDC 1.在正三角形BDC 1中,BD =22,所以面积S =12×(22)2×32=2 3.14.(2018·大连模拟)某四面体的三视图如图所示.该四面体的六条棱的长度中,最大的是________.答案27解析由三视图可知该四面体为V-ABC,如图所示.其中AE⊥BE,VC⊥平面ABE.EC=CB=2,AE=23,VC=2,所以VB2=VC2+CB2=8,AC2=AE2+EC2=(23)2+22=16,所以VA2=AC2+VC2=16+22=20,VA=20=2 5.AB2=AE2+EB2=(23)2+42=28,所以AB=28=27>25,所以该四面体的六条棱的长度中,最大的为27.三、解答题15.已知正三棱锥V-ABC的正视图、侧视图和俯视图如图所示.(1)画出该三棱锥的直观图;(2)求出侧视图的面积.解 (1)如下图所示.(2)根据三视图间的关系可得BC = 23,∴侧视图中VA = 42-⎝ ⎛⎭⎪⎫23×32×232 =2 3.∴S △VBC =12×23×23=6. 16.已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8,高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6,高为4的等腰三角形.(1)求该几何体的体积V ;(2)求该几何体的侧面积S .解 由正视图和侧视图的三角形结合俯视图可知该几何体是一个底面为矩形,高为4,顶点在底面的射影是矩形中心的四棱锥,如图.(1)V =13×(8×6)×4=64. (2)四棱锥的两个侧面VAD ,VBC 是全等的等腰三角形,取BC 的中点E ,连接OE ,VE ,则△VOE 为直角三角形,VE 为△VBC 边上的高,VE =VO 2+OE 2=4 2.同理侧面VAB 、VCD 也是全等的等腰三角形,AB 边上的高h =42+⎝ ⎛⎭⎪⎫622=5. ∴S 侧=2×⎝ ⎛⎭⎪⎫12×6×42+12×8×5=40+24 2.。
2021届高考数学一轮温习第七章立体几何第一节空间几何体的结构特征及三视图与直观图课时作业
第一节空间几何体的结构特征及三视图与直观图课时作业A组——基础对点练1.如图所示,四面体ABCD的四个极点是长方体的四个极点(长方体是虚拟图形,起辅助作用),则四面体ABCD的正视图、侧视图、俯视图是(用①②③④⑤⑥代表图形)( )A.①②⑥B.①②③C.④⑤⑥D.③④⑤解析:正视图应为边长为3和4的长方形,且正视图中右上到左下的对角线应为实线,故正视图为①;侧视图应为边长为4和5的长方形,且侧视图中左上到右下的对角线应为实线,故侧视图为②;俯视图应为边长为3和5的长方形,且俯视图中左上到右下的对角线应为实线,故俯视图为③,故选B.答案:B2.一个几何体的三视图如图所示,其中俯视图为正三角形,则侧视图的面积为( ) A.8 B.43C.4 2 D.4解析:由三视图可知,该几何体是一个正三棱柱,高为4,底面是一个边长为2的正三角形.因此,侧视图是一个长为4,宽为3的矩形,其面积S=3×4=4 3.答案:B3.某几何体的三视图如图所示,则该几何体中最长的棱长为( )A.3 3 B.2 6C.21 D.2 5解析:由三视图得,该几何体是四棱锥PABCD,如图所示,ABCD为矩形,AB=2,BC=3,平面PAD ⊥平面ABCD ,过点P 作PE ⊥AD ,则PE =4,DE =2,所以CE =22,所以最长的棱PC =PE 2+CE 2=26,故选B.答案:B4.某空间几何体的三视图如图所示,则该几何体的表面积为( )A .12+4 2B .18+8 2C .28D .20+8 2解析:由三视图可知该几何体是底面为等腰直角三角形的直三棱柱,如图.则该几何体的表面积为S =2×12×2×2+4×2×2+22×4=20+82,故选D.答案:D5.已知某几何体的三视图如图所示,则该几何体的表面积是( )A .(25+35)πB .(25+317)πC .(29+35)πD .(29+317)π解析:由三视图可知该几何体的直观图如图所示,所以该几何体的表面积为π+π×(1+2)×17+2×π×2×4+4π×222=π+317π+16π+8π=(25+317)π,故选B.答案:B6.(2021·长沙模拟)某几何体的正视图和侧视图均为图甲所示,则在图乙的四个图中可以作为该几何体的俯视图的是( )A .①③B .①③④C .①②③D .①②③④解析:若图②是俯视图,则正视图和侧视图中矩形的竖边延长线有一条和圆相切,故图②不合要求;若图④是俯视图,则正视图和侧视图不相同,故图④不合要求,故选A. 答案:A7.(2021·石家庄市模拟)某几何体的三视图如图所示,则其体积为( )A.3π4B .π+24C.π+12D .3π+24解析:由几何体的三视图知,该几何体的一部份是以腰长为1的等腰直角三角形为底面,高为3的三棱锥,另一部份是底面半径为1,高为3的圆锥的四分之三.所以几何体的体积为13×3π4×3+13×12×1×1×3=3π4+12=3π+24,故选D. 答案:D8.某几何体的三视图如图所示,则该几何体的体积为( )A .16+8πB .8+8πC .16+16πD .8+16π解析:由三视图恢复的几何体是一个长方体与半个圆柱的组合体,如图.其中长方体的长、宽、高别离是4,2,2,半个圆柱的底面半径为2,母线长为4.∴长方体的体积V 1=4×2×2=16, 半个圆柱的体积V 2=12×22×π×4=8π.∴这个几何体的体积是16+8π. 答案:A9.一个半径为2的球体通过切割以后所得几何体的三视图如图所示,则该几何体的表面积为( )A .16πB .12πC .14πD .17π解析:按照三视图可知几何体是一个球体切去四分之一,则该几何体的表面是四分之三球面和两个截面(半圆). 由题意知球的半径是2,∴该几何体的表面积S =34×4π×22+π×22=16π.答案:A10.一个几何体按比例绘制的三视图如图所示(单位:m),则该几何体的体积为( )A.72 m 3 B .92 m 3 C.73m 3 D .94m 3 解析:由三视图可知,几何体为如图所示的几何体,其体积为3个小正方体的体积加三棱柱的体积,所以V =3+12=72(m 3),故选A.答案:A11.球面上有A ,B ,C 三点,球心O 到平面ABC 的距离是球半径的13,且AB =22,AC ⊥BC ,则球O 的表面积是( ) A .81π B .9π C.81π4D .9π4解析:由题意可知,AB 为△ABC 的外接圆的直径,设球O 的半径为R ,则R 2=(R3)2+(2)2,可得R =32,则球的表面积S =4πR 2=9π.故选B.答案:B12.某几何体的三视图如图所示,则该几何体的体积为________.解析:将三视图还原成直观图,取得如图所示几何体,设BC 的中点为G ,连接AG ,DG ,△ABC 是一个边长为2的等边三角形,其高AG = 3.该几何体可以看成一个三棱锥与一个四棱锥组合而成.∴该几何体的体积V =V三棱锥D ABG+V四棱锥A DECG=13×S △ABG ×DG +13×S 四边形DECG×AG =13×12×1×3×2+13×2×1×3= 3.答案: 313.某空间几何体的三视图如图所示,则该几何体的体积为________.解析:由题意取得几何体的直观图如图,即从四棱锥P ABCD 中挖去了一个半圆锥.其体积V =13×2×2×2-12×13×π×12×2=8-π3.答案:8-π314.某零件的正(主)视图与侧(左)视图均是如图所示的图形(实线组成半径为2 cm 的半圆,虚线是等腰三角形的两腰),俯视图是一个半径为2 cm 的圆(包括圆心),则该零件的体积是________.解析:依题意得,零件可视为从一个半球中挖去一个小圆锥所剩余的几何体,其体积为12×4π3×23-13×π×22×1=4π(cm 3).答案:4π cm 3B 组——能力提升练1.若三棱锥S ABC 的底面是以AB 为斜边的等腰直角三角形,AB =SA =SB =SC =2,则该三棱锥的外接球的表面积为( ) A.16π3B .8π3C.43π3D .4π3解析:在等腰直角三角形ABC 中,AB 是斜边且AB =2,取AB 的中点D ,连接CD ,SD .∴CD =AD =BD =1.又SA =SB =SC =2,∴SD ⊥AB ,且SD =3,在△SCD 中,SD 2+CD 2=SC 2,∴SD ⊥CD ,∴SD ⊥平面ABC .∴三棱锥S ABC 的外接球球心在SD 上,记为O ,设球半径为R ,连接OA ,则SO =OA =R ,∴在Rt △AOD 中,AD =1,OD =3-R ,AO =R ,∴12+(3-R )2=R 2⇒R =233,∴三棱锥S ABC 的外接球的表面积S =4πR 2=4π×(233)2=16π3.故选A.答案:A2.一个几何体的三视图如图所示,则该几何体的体积为( )A.163B.203C.152D.132解析:该几何体可视为正方体截去两个三棱锥所得,如图所示,所以其体积为23-13×12×2×2×2-13×12×1×1×1=132.故选D.答案:D3.如图是一个底面半径为1的圆柱被平面截开所得的几何体,截面与底面所成的角为45°,过圆柱的轴的平面截该几何体所得的四边形ABB ′A ′为矩形,若沿AA ′将其侧面剪开,其侧面展开图的形状大致为( )解析:过AB 作平行于底面的半平面α,如图,取截面边界上任一点P ,过P 作PP ′垂直于半平面α,垂足为P ′,延长PP ′交圆柱底面于点P 1,过P作PM ⊥AB ,垂足为M ,连接MP ′,则MP ′⊥AB ,∠PMP ′就是截面与底面所成的角,∠PMP ′=45°,设AB 的中点为O ,连接OP ′.设l AP ′=x ,则∠AOP ′=x1=x ,在Rt △PP ′M 中,PP ′=MP ′,在Rt △OP ′M 中,MP ′=OP ′sin∠MOP ′=sin x ,∴PP ′=sin x ,PP 1=AA ′+sin x ,故选A.答案:A4.如图是一个几何体的三视图,则该几何体任意两个极点间距离的最大值是( )A .4B .5C .3 2D .3 3解析:作出直观图如图所示,通过计算可知AF 最长且|AF |=|BF |2+|AB |2=3 3.答案:D5.高为4的直三棱柱被削去一部份后取得一个几何体,它的直观图和三视图中的侧视图、俯视图如图所示,则该几何体的体积是原直三棱柱的体积的( ) A.34 B .14 C.12D .38解析:由侧视图、俯视图知该几何体是高为二、底面积为12×2×(2+4)=6的四棱锥,其体积为4.易知直三棱柱的体积为8,则该几何体的体积是原直三棱柱的体积的48=12,故选C.答案:C6.(2021·昆明市检测)我国南北朝时期的伟大科学家祖暅在数学上有突出贡献,他在实践的基础上,提出下面的体积计算原理(祖暅原理):“幂势既同,则积不容异”.“幂”是截面面积,“势”是几何体的高.意思是:若两个等高几何体在同高处的截面面积总相等,则这两个几何体的体积相等.现有一旋转体D (如图1所示),它是由抛物线y =x 2(x ≥0),直线y =4及y 轴围成的封锁图形绕y 轴旋转一周形成的几何体,旋转体D 的参照体的三视图如图2所示,利用祖暅原理,则旋转体D 的体积是( )A.16π3B .6πC .8πD .16π解析:由三视图知参照体是一个直三棱柱,其体积V =12×4×4×π=8π,故旋转体D 的体积为8π,故选C. 答案:C7.如图,某三棱锥的正视图、侧视图和俯视图别离是直角三角形、等腰三角形和等边三角形.若该三棱锥的极点都在同一个球面上,则该球的表面积为( )A .27πB .48πC .64πD .81π 解析:由三视图可知该几何体为三棱锥,该棱锥的高VA =4,棱锥底面ABC 是边长为6的等边三角形,作出直观图如图所示.因为△ABC 是边长为6的等边三角形,所之外接球的球心D 在底面ABC 上的投影为△ABC 的中心O ,过D 作DE ⊥VA 于E ,则E 为VA 的中点,连接OD ,OA ,DA ,则DE =OA=23×33=23,AE =12VA =2,DA 为外接球的半径,所以DA =DE 2+AE 2=4,所以外接球的表面积S =4πr 2=64π.故选C. 答案:C8.(2021·天津测试)若一个几何体的表面积和体积相同,则称这个几何体为“同积几何体”.已知某几何体为“同积几何体”,其三视图如图所示,则a =( )A.14+223B .8+223C.12+223D .8+2 2解析:按照几何体的三视图可知该几何体是一个四棱柱,如图所示,可得其体积为12(a +2a )·a ·a =32a 3,其表面积为12·(2a +a )·a ·2+a 2+a 2+2a ·a +2a ·a =7a 2+2a 2,所以7a 2+2a 2=32a 3,解得a =14+223,故选A.答案:A9.(2021·郑州质检)如图所示是一个几何体的三视图,则这个几何体外接球的表面积为( )A .8πB .16πC .32πD .64π解析:还原三视图可知该几何体为一个四棱锥,将该四棱锥补成一个长、宽、高别离为22,22,4的长方体,则该长方体外接球的半径r =222+222+422=22,则所求外接球的表面积为4πr 2=32π.答案:C10.某几何体的三视图如图所示,则该几何体的表面积为( )A .18+2πB .20+πC .20+π2D .16+π 解析:由三视图可知,这个几何体是一个棱长为2的正方体割去了两个半径为一、高为1的14圆柱,其表面积相当于正方体五个面的面积与两个14圆柱的侧面积的和,即该几何体的表面积S =4×5+2×2π×1×1×14=20+π,故选B. 答案:B11.(2021·南昌模拟)某四棱锥的三视图如图所示,则该四棱锥最长的一条侧棱的长度是________.解析:由题意可知该几何体是一个底面为直角梯形的四棱锥,梯形的两底边长别离为4,2,高为3,棱锥的高为2,所以最长侧棱的长度为22+32+42=29.答案:2912.在三棱锥A BCD 中,侧棱AB ,AC ,AD 两两垂直,△ABC ,△ACD ,△ADB 的面积别离为22,32,62,则该三棱锥外接球的表面积为________.解析:设彼此垂直的三条侧棱AB ,AC ,AD 别离为a ,b ,c ,则12ab =22,12bc =32,12ac =62,解得a =2,b =1,c = 3.所以三棱锥A BCD 的外接球的直径2R =a 2+b 2+c 2=6,则其外接球的表面积S =4πR 2=6π.答案:6π13.一个直三棱柱被削去一部份后的几何体ABCDE 及其侧视图、俯视图如图所示,其中侧视图是直角梯形,俯视图是等腰直角三角形.设M 是BD 的中点,点N 在棱DC 上,且MN ⊥平面BDE ,则CN =_____________________________.解析:由题意可得,DC ⊥平面ABC ,所以DC ⊥CB .若MN ⊥平面BDE ,则MN ⊥BD .又因为∠MDN =∠CDB ,所以△DMN ∽△DCB ,所以DN DB =DM DC ,故DN 26=64,解得DN =3,所以CN =CD -DN =1.答案:114.(2021·武汉市模拟)棱长均相等的四面体ABCD 的外接球半径为1,则该四面体的棱长为________.解析:将棱长均相等的四面体ABCD 补成正方体,设正方体的棱长为a ,则正四面体ABCD 的棱长为2a ,正方体的体对角线长为3a ,由3a =2⇒a =233,则2a =263. 答案:263。
高考数学(理)一轮复习文档 第七章 立体几何 第1讲 空间几何体的结构特征及三视图和直观图 Word版含答案
第1讲 空间几何体的结构特征及三视图和直观图1.空间几何体的结构特征 (1)多面体的结构特征(1)画法:常用斜二测画法.(2)规则:①原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴,y ′轴的夹角为45°(或135°),z ′轴与x ′轴和y ′轴所在平面垂直.②原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x 轴和z 轴的线段在直观图中保持原长度不变,平行于y 轴的线段长度在直观图中变为原来的一半.3.三视图(1)几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.(2)三视图的画法①基本要求:长对正,高平齐,宽相等.②画法规则:正侧一样高,正俯一样长,侧俯一样宽;看不到的线画虚线.1.辨明三个易误点(1)台体可以看成是由锥体截得的,但一定要强调截面与底面平行.(2)注意空间几何体的不同放置对三视图的影响.(3)几何体展开、折叠问题,要抓住前后两个图形间的联系,找出其中的量的关系.2.由三视图还原几何体的方法3.用斜二测画法画直观图(1)一般在已知原图形中建立直角坐标系,尽量运用图形中原有的垂直直线或图形的对称轴为坐标轴,图形的对称中心为原点,注意两个图形中关键线段长度的关系.(2)一定要注意在原图形中与y轴平行的线段的长度在直观图中变为原来的一半,在由直观图还原时,与y′轴平行的线段的长度要变为原来的二倍.在斜二测画法中,真实图形的面积和直观图的面积之比是22∶1.1.用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是( ) A.圆柱B.圆锥C.球D.圆柱、圆锥、球的组合体C 当用过高线的平面截圆柱和圆锥时,截面分别为矩形和三角形,只有球满足任意截面都是圆面.2.关于空间几何体的结构特征,下列说法不正确的是( )A.棱柱的侧棱长都相等B.棱锥的侧棱长都相等C.三棱台的上、下底面是相似三角形D.有的棱台的侧棱长都相等B 根据棱锥的结构特征知,棱锥的侧棱长不一定都相等.3.若某几何体的三视图如图所示,则这个几何体的直观图可以是( )B 根据选项A、B、C、D中的直观图,画出其三视图,只有B项正确.4.教材习题改编若某几何体的三视图如图所示,则该几何体为________.四棱柱与圆柱组合而成的简单组合体5.在直观图(如图所示)中,四边形O′A′B′C′为菱形且边长为2 cm,则在平面直角坐标系xOy中,四边形ABCO为________,面积为________cm2.由斜二测画法的特点,知该平面图形的直观图的原图,即在平面直角坐标系xOy中,四边形ABCO是一个长为4 cm,宽为2 cm的矩形,所以四边形ABCO的面积为8 cm2.矩形8空间几何体的结构特征(1)下列说法正确的是( )A.有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱B.四棱锥的四个侧面都可以是直角三角形C.有两个平面互相平行,其余各面都是梯形的多面体是棱台D.棱台的各侧棱延长后不一定交于一点(2)以下命题:①以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆面;④一个平面截圆锥,得到一个圆锥和一个圆台.其中正确命题的个数为( )A.0 B.1C.2 D.3【解析】(1)A错,如图1;B正确,如图2,其中底面ABCD是矩形,可证明∠PAB,∠PCB都是直角,这样四个侧面都是直角三角形;C错,如图3;D错,由棱台的定义知,其侧棱必相交于同一点.(2)命题①错,因为这条边若是直角三角形的斜边,则得不到圆锥;命题②错,因为这条腰必须是垂直于两底的腰;命题③对;命题④错,必须用平行于圆锥底面的平面截圆锥才可以.【答案】(1)B (2)B判定与空间几何体结构特征有关命题的方法(1)紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本元素,然后再依据题意判定.(2)通过反例对结构特征进行辨析,即要说明一个命题是错误的,只要举出一个反例即可.给出下列四个命题:①有两个侧面是矩形的棱柱是直棱柱;②侧面都是等腰三角形的棱锥是正棱锥;③侧面都是矩形的直四棱柱是长方体;④若有两个侧面垂直于底面,则该四棱柱为直四棱柱.其中错误的命题的序号是________.认识棱柱一般要从侧棱与底面的垂直与否和底面多边形的形状两方面去分析,故①③都不正确,②中对等腰三角形的腰是否为侧棱未作说明,故也不正确,④平行六面体的两个相对侧面也可能与底面垂直且互相平行,故④也不正确.①②③④空间几何体的三视图(高频考点)空间几何体的三视图是每年高考的热点,题型为选择题或填空题,难度适中,属于中档题.高考对三视图的考查主要有以下三个命题角度:(1)根据几何体的结构特征确认其三视图;(2)根据三视图还原直观图;(3)由空间几何体的部分视图画出剩余部分视图.(1)(2015·高考北京卷)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( )A.1 B. 2C. 3 D.2(2)(2017·东北四市联考(二))如图,在正方体ABCDA1B1C1D1中,P是线段CD的中点,则三棱锥PA1B1A的侧视图为( )【解析】(1)根据三视图,可知几何体的直观图为如图所示的四棱锥VABCD,其中VB⊥平面ABCD,且底面ABCD是边长为1的正方形,VB=1.所以四棱锥中最长棱为VD.连接BD,易知BD=2,在Rt△VBD中,VD=VB2+BD2= 3.(2)如图,画出原正方体的侧视图,显然对于三棱锥PA1B1A,B(C)点均消失了,其余各点均在,从而其侧视图为D.【答案】(1)C (2)D三视图问题的常见类型及解题策略(1)已知几何体,识别三视图的技巧已知几何体画三视图时,可先找到各个顶点在投影面上的投影,然后再确定线在投影面上的实虚.(2)已知三视图,判断几何体的技巧①对柱、锥、台、球的三视图要熟悉.②明确三视图的形成原理,并能结合空间想象将三视图还原为直观图.③遵循“长对正、高平齐、宽相等”的原则.角度一根据几何体的结构特征确认其三视图1.(2017·沈阳市教学质量监测(一))“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图,图中四边形是为体现其直观性所作的辅助线.当其正视图和侧视图完全相同时,它的俯视图可能是( )B 根据直观图以及图中的辅助四边形分析可知,当正视图和侧视图完全相同时,俯视图为B,故选B.角度二根据三视图还原直观图2.某几何体的三视图如图所示,那么这个几何体是( )A.三棱锥B.四棱锥C.四棱台D.三棱台A 因为正视图和侧视图都为三角形,可知几何体为锥形,又因为俯视图为三角形,故该几何体为三棱锥.角度三由空间几何体的部分视图画出剩余部分视图3.(2016·高考天津卷)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为( )B 由几何体的正视图和俯视图可知该几何体为图①,故其侧(左)视图为图②.空间几何体的直观图如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6 cm,O′C′=2 cm,则原图形是( )A.正方形B.矩形C.菱形D.一般的平行四边形【解析】如图,在原图形OABC中,应有OD=2O′D′=2×22=42(cm),CD=C′D′=2 cm,所以OC=OD2+CD2=(42)2+22=6(cm),所以OA=OC,故四边形OABC是菱形,因此选C.【答案】 C若本例中直观图为如图所示的一个边长为1 cm的正方形,则原图形的周长是多少?将直观图还原为平面图形,如图.可知还原后的图形中OB=22,AB=12+(22)2=3,于是周长为2×3+2×1=8(cm).如图,一个水平放置的平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则该平面图形的面积为________.直观图的面积S ′=12×(1+1+2)×22=2+12.故原平面图形的面积S =S ′24=2+ 2.2+ 2——忽视三视图中的虚实线而致误将正方体(如图1所示)截去两个三棱锥,得到如图2所示的几何体,则该几何体的侧视图为( )【解析】 侧视图中能够看到线段AD 1,应画为实线,而看不到B 1C ,应画为虚线.由于AD 1与B1C 不平行,投影为相交线,故应选B .【答案】 B(1)因对三视图的含义认识不到位,区分不清选项A 和B ,而易误选A ;(2)因对三视图的画法要求不明而误选C或D .在画三视图时,分界线和可见轮廓线都用实线画,被遮住的部分的轮廓线用虚线画;(3)解答此类问题时,还易出现画三视图时对个别视图表达不准而不能画出所要求的视图.(2017·河北省五校联盟质量检测)某四面体的三视图如图,则其四个面中最大的面积是( )A .2B .2 2C. 3 D.2 3D 在正方体ABCDA1B1C1D1中还原出三视图的直观图,其是一个三个顶点在正方体的右侧面、一个顶点在左侧面的三棱锥,即为D1BCB1,如图所示,其四个面的面积分别为2,22,22,23,故选D.1.(2017·沈阳质检)如图,网格纸的各小格都是正方形,粗实线画出的是一个凸多面体的三视图(两个矩形,一个直角三角形),则这个几何体可能为( )A.三棱台B.三棱柱C.四棱柱D.四棱锥B 根据三视图的法则:长对正,高平齐,宽相等,可得几何体如图所示.这是一个三棱柱.2.如图所示是水平放置三角形的直观图,点D是△ABC的BC边中点,AB,BC分别与y′轴、x′轴平行,则在原图中三条线段AB,AD,AC中( )A.最长的是AB,最短的是ACB.最长的是AC,最短的是ABC.最长的是AB,最短的是ADD.最长的是AC,最短的是ADB 由条件知,原平面图形中AB⊥BC,从而AB<AD<AC.3.如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下四个命题中,假命题是( )A.等腰四棱锥的腰与底面所成的角都相等B.等腰四棱锥的侧面与底面所成的二面角都相等或互补C.等腰四棱锥的底面四边形必存在外接圆D.等腰四棱锥的各顶点必在同一球面上B 因为“等腰四棱锥”的四条侧棱都相等,所以它的顶点在底面的射影到底面的四个顶点的距离相等,故A 、C 正确,且在它的高所在的直线上必能找到一点到各个顶点的距离相等,故D 正确,B 不正确,如底面是一个等腰梯形时结论就不成立.4.(2017·山西省四校联考)如图是一个体积为10的空间几何体的三视图,则图中x 的值为( )A .2B .3C .4D .5A 根据给定的三视图可知,该几何体对应的直观图是一个长方体和四棱锥的组合体,所以几何体的体积V =3×2×1+13×3×2×x =10,解得x =2.5.(2017·山西省考前质量检测)某几何体的正视图与俯视图如图所示,若俯视图中的多边形为正六边形,则该几何体的侧视图的面积为( )A.152B .6+ 3 C.32+3 3 D .4 3A 侧视图由一个矩形和一个等腰三角形构成,矩形的长为3,宽为2,面积为3×2=6.等腰三角形的底边为3,高为3,其面积为12×3×3=32,所以侧视图的面积为6+32=152.6.(2017·海口市调研测试)一锥体的三视图如图所示,则该棱锥的最长棱的棱长为( )A.33 B.17C.41 D.42C 依题意,题中的几何体是四棱锥EABB1A1,如图所示(其中ABCDA1B1C1D1是棱长为4的正方体,C1E=1),EA=32+42+42=41,EA1=12+42+42=33,EB=32+42=5,EB1=12+42=17,AB=BB1=B1A1=A1A=4,因此该几何体的最长棱的棱长为41,选C.7.有一个长为5 cm,宽为4 cm的矩形,则其直观图的面积为________.由于该矩形的面积S=5×4=20(cm2),所以其直观图的面积S′=24S=52(cm2).5 2 cm28.如图所示的Rt△ABC绕着它的斜边AB旋转一周得到的图形是________.过Rt△ABC的顶点C作线段CD⊥AB,垂足为D,所以Rt△ABC绕着它的斜边AB旋转一周后应得到是以CD作为底面圆的半径的两个圆锥的组合体.两个圆锥的组合体9.已知某空间几何体的三视图如图所示,则该几何体的各侧面图形中,是直角三角形的有________个.由三视图知该几何体是一个四棱锥,它的一个侧面与底面垂直,且此侧面的顶点在底面上的射影为对应底边的中点,易知其有两个侧面是直角三角形.210.已知一个正三棱柱的所有棱长均相等,其侧(左)视图如图所示,那么此三棱柱正(主)视图的面积为________.由正三棱柱的特征及侧(左)视图可得正(主)视图是一个矩形,其中一边的长是侧(左)视图中三角形的高,另一边是棱长.因为侧(左)视图中三角形的边长为2,所以高为3,所以正(主)视图的面积为2 3.2 311.如图,在四棱锥PABCD中,底面为正方形,PC与底面ABCD垂直,图为该四棱锥的正视图和侧视图,它们是腰长为6 cm的全等的等腰直角三角形.(1)根据所给的正视图、侧视图,画出相应的俯视图,并求出该俯视图的面积;(2)求PA.(1)该四棱锥的俯视图为(内含对角线)边长为6 cm的正方形,如图,其面积为36 cm2.(2)由侧视图可求得PD=PC2+CD2=62+62=6 2 cm.由正视图可知AD=6 cm,且AD⊥PD,所以在Rt△APD中,PA=PD2+AD2=(62)2+62=63(cm).12.如图所示,在侧棱长为23的正三棱锥VABC中,∠AVB=∠BVC=∠CVA=40°,过A作截面AEF,求△AEF周长的最小值.如图,将三棱锥沿侧棱VA剪开,并将其侧面展开平铺在一个平面上,则线段AA1的长即为所求△AEF的周长的最小值.取AA 1的中点D , 连接VD ,则VD ⊥AA 1,∠AVD =60°. 在Rt△VAD 中,AD =VA ·sin 60°=3,所以AA 1=2AD =6, 即△AEF 周长的最小值为6.13.(2017·石家庄市教学质量检测(二))一个三棱锥的正视图和俯视图如图所示,则该三棱锥的侧视图可能为( )D 分析三视图可知,该几何体为如图所示的三棱锥,其中平面ACD⊥平面BCD ,故选D .14.如图,三棱锥V ABC 的底面为正三角形,侧面VAC 与底面垂直且VA =VC ,已知其正(主)视图的面积为23,则其侧(左)视图的面积为________.设三棱锥V ABC 的底面边长为a ,侧面VAC 的边AC 上的高为h ,则ah =43,其侧(左)视图是由底面三角形ABC 边AC 上的高与侧面三角形VAC 边AC 上的高组成的直角三角形,其面积为12×32a ×h =12×32×43=33.3315.如图是一个几何体的正视图和俯视图.(1)试判断该几何体是什么几何体; (2)画出其侧视图,并求该平面图形的面积. (1)正六棱锥. (2)其侧视图如图:其中AB =AC ,AD ⊥BC ,且BC 的长是俯视图中的正六边形对边的距离,即BC =3a ,AD 的长是正六棱锥的高,即AD =3a ,所以该平面图形的面积S =12·3a ·3a =32a 2.16.某几何体的三视图如图所示.(1)判断该几何体是什么几何体? (2)画出该几何体的直观图.(1)该几何体是一个正方体切掉两个14圆柱后得到的几何体.(2)直观图如图所示.。
高考数学一轮复习第七章空间几何体的结构特征及三视图与直观图学案理含解析北师大版
高考数学一轮复习第七章:第一节空间几何体的结构特征及三视图与直观图命题分析预测学科核心素养从近五年的考查情况来看,空间几何体的三视图是高考的重点,多以三视图为背景考查几何体的结构特征,一般是选择题、填空题,难度中等.通过空间几何体的结构、三视图考查学生的直观想象核心素养.授课提示:对应学生用书第134页知识点一简单几何体(1)简单旋转体的结构特征:①圆柱可以由矩形绕其任一边旋转得到;②圆锥可以由直角三角形绕其直角边旋转得到;③圆台可以由直角梯形绕直角腰或等腰梯形绕上下底中点连线旋转得到,也可由平行于圆锥底面的平面截圆锥得到;④球可以由半圆或圆绕直径旋转得到.(2)简单多面体的结构特征:①棱柱的侧棱都平行且相等,上下底面是全等的多边形;②棱锥的底面是任意多边形,侧面是有一个公共点的三角形;③棱台可由平行于棱锥底面的平面截棱锥得到,其上下底面是相似多边形.•温馨提醒•1.认识棱柱、棱锥、棱台、圆柱、圆锥、圆台的结构特征时,易忽视定义,可借助于几何模型强化对空间几何体的结构特征的认识.2.台体可以看成是由锥体截得的,但一定强调截面与底面平行.1.下列说法正确的是()A.棱柱的侧面都是矩形B.棱柱的侧棱都相等C.棱柱的棱都平行D.棱柱的侧棱总与底面垂直解析:由棱柱的定义知,棱柱的侧面都是平行四边形,不一定都是矩形,故A不正确;因为平行四边形的对边相等,故侧棱都相等,所以B正确;对选项C,侧棱都平行,但底面多边形的边(也是棱)不一定平行,所以错误;棱柱的侧棱可以与底面垂直也可以不与底面垂直,故D不正确.故选B.答案:B2.如图,长方体ABCD-A′B′C′D′中被截去一部分,其中EH∥A′D′,剩下的几何体是()A.棱台B.四棱柱C.五棱柱D.六棱柱解析:长方体ABCD-A′B′C′D截去图中部分后,因为EH∥A′D′,所以FG∥A′D′,所以剩下的几何体是五棱柱ABFEA′DCGHD′.答案:C知识点二直观图(1)画法:常用斜二测画法.(2)规则:①原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴和y′轴所在平面垂直.②原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.•温馨提醒•直观图与原图形面积的关系S直观图=24S原图形(或S原图形=22S直观图).1.下列说法正确的是()A.相等的角在直观图中仍然相等B.相等的线段在直观图中仍然相等C.正方形的直观图是正方形D.若两条线段平行,则在直观图中对应的两条线段仍然平行解析:由直观图的画法规则知,角度、长度都有可能改变,而线段的平行性不变.答案:D2.如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6,O′C′=2,则原图形OABC 的面积为( )A .242B .12 2C .48 2D .20 2解析:由题意知原图形OABC 是平行四边形,且OA =BC =6,设平行四边形OABC 的高为OE ,则OE ×12×22=O ′C ′,∵O ′C ′=2,∴OE =42,∴S ▱OABC =6×42=242.答案:A知识点三 三视图(1)几何体的三视图包括主视图、左视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.说明:主视图也称正视图,左视图也称侧视图. (2)三视图的画法①基本要求:长对正,高平齐,宽相等.②画法规则:主左一样高,主俯一样长,左俯一样宽;看不到的线画虚线. • 温馨提醒 •1.画三视图时,能看见的线和棱用实线表示,不能看见的线和棱用虚线表示. 2.一物体放置的位置不同,所画的三视图可能不同.1.(易错题)沿一个正方体三个面的对角线截得的几何体如图所示,则该几何体的左视图为( )解析:给几何体的各顶点标上字母,如图1.A ,E 在侧投影面上的投影重合,C ,G 在侧投影面上的投影重合,几何体在侧投影面上的投影及把侧投影面展平后的情形如图2所示,故正确选项为B .答案:B2.如图为一个几何体的三视图,则该几何体是()A.四棱柱B.三棱柱C.长方体D.三棱锥解析:将三视图还原为直观图,如图所示,该几何体为三棱柱.答案:B授课提示:对应学生用书第135页题型一空间几何体的结构特征1.下列结论正确的是()A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:A错误.如图所示,由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不是棱锥.B错误.如图,若△ABC不是直角三角形,所得几何体不是圆锥;若△ABC是直角三角形,但旋转轴不是直角边,所得的几何体也不是圆锥.C错误.若六棱锥的所有棱长都相等,则底面多边形是正六边形.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长.D正确.答案:D2.设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体;②底面是矩形的平行六面体是长方体;③直四棱柱是直平行六面体;④棱台的相对侧棱延长后必交于一点.其中真命题的序号是_________.解析:命题①符合平行六面体的定义,故命题①是正确的.底面是矩形的平行六面体的侧棱可能与底面不垂直,故命题②是错误的.因为直四棱柱的底面不一定是平行四边形,故命题③是错误的.命题④由棱台的定义知是正确的.答案:①④空间几何体概念辨析题的常用方法定义法紧扣定义,由已知构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本元素,根据定义进行判定反例法通过反例对结构特征进行辨析,即要说明一个结论是错误的,只要举出一个反例即可题型二空间几何体的直观图1.如图所示为一个平面图形的直观图,则它的实际形状为()A.平行四边形B.梯形C.菱形D.矩形解析:由斜二测画法可知在原四边形ABCD中DA⊥AB并且AD∥BC,AB∥CD,故四边形ABCD为矩形.答案:D2.(2021·桂林模拟)已知正三角形ABC的边长为a,那么△ABC的平面直观图△A′B′C′的面积为()A.34a2B.38a2C.68a2D.616a2解析:如图①、②为所示的平面图形和直观图.由②可知,A′B′=AB=a,O′C′=12OC=34a,在图②中作C′D′⊥A′B′于D′,则C′D′=22O′C′=68a.∴S△A′B′C′=12A′B′·C′D′=12×a×68a=616a2.答案:D画几何体的直观图一般采用斜二测画法,其规则可以用“斜”(两坐标轴成45°或135°)和“二测”(平行于y轴的线段长度减半,平行于x轴和z轴的线段长度不变)来掌握.对直观图的考查有两个方向,一是已知原图形求直观图的相关量,二是已知直观图求原图形中的相关量.题型三空间几何体的三视图空间几何体的三视图是考查重点,主要在选择题、填空题中考查,归纳起来常考角度有:(1)由空间几何体判定三视图.(2)由三视图还原几何体.(3)空间几何体的三视图的计算问题.考法(一)由空间几何体判定三视图[例1](2021·宜宾模拟)已知棱长都为2的正三棱柱ABC-A1B1C1的直观图如图.若正三棱柱ABC-A1B1C1绕着它的一条侧棱所在直线旋转,则它的左视图可以为()[解析]由题知,四个选项的高都是2.若左视图为A,则中间应该有一条竖直的实线或虚线;若左视图为C,则其中两条侧棱重合,不应有中间竖线;若左视图为D,则长度应为3,而不是1.[答案] B由空间几何体判定三视图的方法(1)根据三视图的有关定义和规则先确定主视图,再确定俯视图,最后确定左视图.(2)被遮住的轮廓线应为虚线,若相邻两个物体的表面相交,表面的交线是它们的分界线;对于简单的组合体,要注意它们的组合方式,特别是它们的交线位置.考法(二)由三视图还原几何体[例2](2020·高考全国卷Ⅱ)如图是一个多面体的三视图,这个多面体某条棱的一个端点在主视图中对应的点为M,在俯视图中对应的点为N,则该端点在左视图中对应的点为()A.E B.FC.G D.H[解析]由三视图还原几何体,如图所示,由图可知,M点在左视图中对应的点为E.[答案] A熟练掌握规则几何体的三视图是由三视图还原几何体的基础,在明确三视图画法规则的基础上,按以下步骤可轻松解决此类问题:考法(三)空间几何体三视图的有关计算问题[例3](2021·衡阳模拟)如图,正方体ABCD-A1B1C1D1的顶点A,B在平面α上,AB=2.若平面A1B1C1D1与平面α所成角为30°,由如图所示的俯视方向,正方体ABCD-A1B1C1D1在平面α上的俯视图的面积为()A.2 B.1+ 3C.2 3 D.2 2[解析]由题意得AB在平面α内,且平面α与平面ABCD所成的角为30°,与平面B1A1AB所成的角为60°,故所得的俯视图的面积S=2×(2cos 30°+2cos 60°)=2(cos 30°+cos 60°)=1+3.[答案] B在求解有关计算问题时,一定要注意抓住三视图的要求,避免数据读错,导致失误.[题组突破]1.(2021·福州模拟)如图为一圆柱切削后的几何体及其主视图,则相应的左视图可以是()解析:圆柱被不平行于底面的平面所截,得到的截面为椭圆,结合主视图,可知左视图最高点在中间.答案:B2.(2021·武汉市高三二调)某几何体的三视图如图所示,则从该几何体的所有顶点中任取两个顶点,它们之间距离的最大值为()A. 3 B. 6C.2 3 D.2 6解析:由三视图知,该几何体是一个四棱柱,记为四棱柱ABCD-A1B1C1D1,将其放在如图所示的长方体中,底面ABCD是边长为1的正方形,四棱柱的高为1,连接AC1,观察图形可知,几何体中两顶点间距离的最大值为AC1的长,即22+12+12=6.答案:B3.若某几何体的三视图如图所示,则这个几何体的直观图可以是()解析:选项A的主视图、俯视图不符合要求,选项B的主视图、左视图不符合要求,选项C 的俯视图不符合要求,通过观察,选项D满足要求.答案:D空间几何体应用中的核心素养直观想象——空间几何体的创新应用[例](2019·高考全国卷Ⅱ)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图①).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图②是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有个面,其棱长为.[解析]先求面数,有如下两种方法.法一:由“半正多面体”的结构特征及棱数为48可知,其上部分有9个面,中间部分有8个面,下部分有9个面,共有2×9+8=26(个)面.法二:一般地,对于凸多面体顶点数(V)+面数(F)-棱数(E)=2.(欧拉公式)由题图知,棱数为48的半正多面体的顶点数为24.故由V+F-E=2,得面数F=2+E-V=2+48-24=26.再求棱长.作中间部分的横截面,由题意知该截面为各顶点都在边长为1的正方形上的正八边形ABCDEFGH,如图,设其边长为x,则正八边形的边长即为棱长.连接AF,过H,G分别作HM⊥AF,GN⊥AF,垂足分别为M,N,则AM =MH =NG =NF =22x . 又AM +MN +NF =1,∴22x +x +22x =1. ∴x =2-1,即半正多面体的棱长为2-1.[答案] 26 2-1通过直观想象,化空间图形为平面问题是求解此题的关键.[对点训练](2020·高考全国卷Ⅰ)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A .5-14B .5-12C .5+14D .5+12解析:设正四棱锥的底面正方形的边长为a ,高为h ,侧面三角形底边上的高(斜高)为h ′.由已知得h 2=12ah ′. 又∵h ′2=h 2+⎝⎛⎭⎫a 22,∴h ′2=12ah ′+14a 2, ∴⎝⎛⎭⎫h ′a 2-12×h ′a -14=0,解得h ′a =5+14(负值舍去). 答案:C。
高考一轮课件(7.1空间几何体的结构特征及三视图和直观图)
出以下a,b,c,d四种不同的三视图,其中可以正确表示这个正三
棱柱的三视图的有( )
(A)1个
(B)2个
(C)3个
(D)4个
【解析】选D.根据正三棱柱的位置,以及画三视图的规则,容易 得出4种不同的三视图都正确.
【互动探究】若本例题(3)中的四棱锥P-ABCD为正四棱锥,且主 视图和左视图是边长为1的正三角形,求该四棱锥的侧棱长. 【解析】如图,由条件知,正四棱锥的底边AB=1,高 PO 3 .
2
则在正方形ABCD内, OB 2 AB 2 ,
2 2
故侧棱长 PB PO 2 OB2 3 2 5 .
1
(2)立体图形直观图的画法
立体图形与平面图形相比多了一个z轴,其直观图中对应于z轴
水平 z′轴 的是_______,平面x′O′y′表示_____平面,平面y′O′z′和 平行性 直立 x′O′z′表示_____平面,平行于z轴的线段,在直观图中_______ 长度 和_____都不变.
4.三视图
⑥棱台的侧棱延长后交于一点.
其中正确命题的序号是( (A)①②③④ (C)③④⑤⑥ )
(B)②③④⑤ (D)①②③④⑤⑥
(2)给出下列命题:
①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是
圆柱的母线;
②在圆台的上、下底面的圆周上各取一点,则这两点的连线是
圆台的母线;
③圆柱的任意两条母线所在的直线是互相平行的.
【解析】选C.由几何体的结构特征可知,该几何体一定是球体.
3.一个几何体的主视图和左视图如图所示,则这个几何体的俯
视图不可能是(
)
【解析】选D.∵该几何体的主视图和左视图都是正方形,∴其
一轮复习课时训练§7.1:空间几何体的结构特征及其三视图和直观图
第七章§1:空间几何体的结构特征及其三视图和直观图(与一轮复习课件对应的课时训练)满分100,训练时间45钟一、选择题:本大题共5小题,每小题8分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.一个长方体去掉一个小长方体,所得几何体的正视图与侧视图分别如图所示,则该几何体的俯视图为2.如图所示,下列几何体各自的三视图中,有且仅有两个视图相同的是A .①②B .①③C .①④D .②④3.下图为水平放置的正方形ABCO ,它在直角坐标系xOy 中点B 的坐标为(2,2),则在用斜二测画法画出的正方形的直观图中,顶点B ′到x ′轴的距离为A .12B .22C .1D . 2 4.某简单几何体的一条对角线长为a ,在该几何体的正视图、侧视图与俯视 图中,这条对角线的投影都是长为2的线段,则a 等于 A . 2 B . 3 C .1 D .25.一个正方体内接于一个球,过球心作截面,其截面图形可能是A .①④B .②③C .①②③D .②③④二、填空题:本大题共3小题,每小题8分,共24分.6.正视图为一个三角形的几何体可以是________(写出三种).7.如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为__________.8.下面关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱;②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;③若四个侧面两两全等,则该四棱柱为直四棱柱;④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱.其中,真命题的编号是______(写出所有真命题的编号).三、解答题:本大题共2小题,共36分.解答应写出文字说明、证明过程或演算步骤.9.(本小题满分18分)用一个平行于圆锥底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3 cm,求圆台的母线长.10.(本小题满分18分)已知圆台侧面的母线长为2a,母线与轴的夹角为30°,一个底面的半径是另一个底面半径的2倍,求两底面的半径与两底面面积之和.参考答案及其解析一、选择题:本大题共5小题,每小题8分,共40分.1.解析:正视图中小长方形在左上方,对应俯视图应该在左侧,排除B、D两项,侧视图中小长方形在右上方,对应俯视图应该在下方,排除A项,故选C项.答案:C2.解析:正方体的正视、侧视、俯视图都为正方形;圆锥的正视、侧视、俯视图依次为:三角形、三角形、圆;三棱台的正视、侧视、俯视图依次为梯形、梯形、三角形;正四棱锥的正视、侧视、俯视图依次为:三角形、三角形、正方形.故选D项.答案:D3.解析:如图,在平面直观图中,B′C′=1,∠B′C′D′=45°,所以B′D′=2 2.答案:B4.解析:可构造一对角线长为a的长方体,设其长、宽、高分别为x,y,z,则x2+y2=2,y2+z2=2,z2+x2=2,相加得2(x2+y2+z2)=2a2=6,得a= 3.答案:B5.解析:画出一个正方体内接于球的直观图,逐一考查可得.答案:C二、填空题:本大题共3小题,每小题8分,共24分.6.解析:利用所学锥体、台体、柱体依次选择易得答案.答案:三棱锥、圆锥、三棱柱.(其他正确答案也可)7.解析:由几何体的三视图知,几何体为正方体的一个面和一个侧棱构成的四棱锥,其最长棱为正方体的对角线,因正方体棱长为2,因此最长棱为2 3.答案:2 38.解析:①错,必须是两个相邻的侧面;②正确;③错,反例,可以是斜四棱柱;④正确,对角线两两相等,则此两对角线所在的平行四边形为矩形.答案:②④三、解答题:本大题共2小题,共36分.9.(本小题满分18分)解:设圆台的母线长为l ,截得圆台的上、下底面半径分别为r,4r.根据相似三角形的性质得33+l =r 4r , 解得l =9 cm.所以圆台的母线长为9 cm.10.(本小题满分18分)解:如图所示,设圆台上底面半径为r ,则下底面半径为2r ,且∠ASO =30°,在Rt △SO ′A ′中,r SA ′=sin30°, ∴SA ′=2r.在Rt △SOA 中,2r SA=sin30°,∴SA =4r. ∴SA -SA ′=AA ′,即4r -2r =2a ,r =a.∴S =S 1+S 2=πr 2+π(2r)2=5πr 2=5πa 2.故圆台上底面半径为a ,下底面半径为2a ,两底面面积之和为5πa 2.。
高考数学一轮温习空间几何体的结构及三视图和直观图基础知识检测文
空间几何体的结构及三视图和直观图基础热身1.给出下列命题:①各个面都是三角形的几何体是三棱锥;②圆台也可看成是圆锥被平行于底面的平面所截得截面与底面之间的部份;③若四棱柱有两个侧面垂直于底面,则该四棱柱为直四棱柱;④圆柱的任意两条母线所在的直线是彼此平行的.其中正确的是( )A.①② B.②③ C.①③ D.②④2.下列说法中正确的是( )A.彼此垂直的两条直线的直观图仍然是彼此垂直的两条直线B.梯形的直观图可能是平行四边形C.矩形的直观图可能是梯形D.正方形的直观图可能是平行四边形3.一个锥体的主视图和左视图.K39-1所示,下面选项中,不可能是....该锥体的俯视图的是( )K394.在一个几何体的三视图中,主视图和左视图.K39-3所示,则相应的左视图可以为( )图K39-3 图K39-4能力提升5..K39-5,直观图所表示的平面图形是( )A.正三角形B.锐角三角形C.钝角三角形D.直角三角形6.一个长方体去掉一个小长方体,所得几何体的主视图与左视图别离.K39-6所示,则该几何体的俯视图为( )K39-6K39-7.已知某一空间几何体的主视图与左视图.K39-8所示,则在下列①②③④⑤对应图形中,可以是该几何体的左视图的图形有( )-A.①②③⑤ B.②③④⑤C.①②④⑤ D.①②③④8.设计一个杯子,其三视图.K39-10所示,此刻向杯中匀速注水,杯中水面的高度h随时间t转变的图像是( )图K39-10图K39-11图K39-12-12是长和宽别离相等的两个矩形.给定下列三个命题:①存在三棱柱,其主视图、俯视图.K39-12;②存在四棱柱,其主视图、俯视图.;③存在圆柱,其主视图、俯视图..其中真命题的个数是( )A.3 B.2 C.1 D.010.对于一个底边在x轴上的三角形,采用斜二测画法作出其直观图,其直观图的面积是原三角形面积的________.-13,点O为正方体ABCD-A′B′C′D′的中心,点E为面B′BCC′的中心,点F为B′C′的中点,则空间四边形D′OEF在该正方体的各个面上的正投影可能是________(填出所有可能的序号).图K39-1312.已知一几何体的三视图.K39-14,主视图和左视图都是矩形,左视图为正方形,在该几何体上任意选择4个极点,它们可能是如下各类几何形体的4个极点,这些几何形体是(写出所有正确结论的编号)________.-14①矩形;②不是矩形的平行四边形;③有三个面为直角三角形,有一个面为等腰三角形的四面体;④每一个面都是直角三角形的四面体.13..K39-15是由大小相同的长方体木块堆成的几何体的三视图,则此几何体共由________块木块堆成.图K39-1514.(10分)一几何体的表面展开图.K39-16,则这个几何体是哪一种几何体?选择适当的角度,画出它水平放置时的直观图与三视图.并计算该几何体的最长的一条棱的长.图K39-1615.(13分)有一块多边形菜地,它的水平放置的平面图形的斜二测直观图是直角梯形(.K39-17所示),∠A′B′C′=45°,D′C′⊥A′D′,A′B′=A′D′=1 m,若平均每1 m2菜地所产生的经济效益是300元,则这块菜地所产生的总经济效益是多少元?(精准到1元)图K39-17难点突破16.(12分)某几何体的一条棱长为7,在该几何体的主视图中,这条棱的投影是长为6的线段,在该几何体的左视图与俯视图中,这条棱的投影别离是长为a和b的线段,求a+b 的最大值.答案解析【基础热身】1.D [解析] ①是错误的,由两个结构相同的三棱锥叠放在一路组成的几何体,各面都是三角形,但它不是棱锥;对于③,构造斜四棱柱ABCD-A1B1C1D1,其中侧面A1ABB1和D1DCC1都垂直于底面ABCD,故③不正确;按照圆柱、圆台的概念和性质可知,②④两个命题是正确的,故选D.2.D [解析] 直观图不能保证垂直关系,故A错;平行性不变,B错;由斜二测画法知矩形的直观图为平行四边形,C错;由直观图的斜二测画法知,D正确.故选D.3.C [解析] 由主视图和左视图可知该锥体的长和宽均为1,C中的宽为正三角形的高,显然不为1,故不可能是该锥体的俯视图的是C.4.D [解析] 由主视图和俯视图知该几何体的直观图是由一个半圆锥和一个三棱锥组合而成的,.,故左视图选D.【能力提升】5.D [解析] A′C′,B′C′在直观图中别离与y′轴,x′轴平行,则在原图中AC,BC别离与y轴,x轴平行,所以AC与BC垂直.6.C [解析] 从主视图可以看出去掉的小长方体在原长方体的左上位置,从左视图可以看出去掉的小长方体在原长方体的右上位置,所以其俯视图只有C符合.7.D [解析] 图⑤的俯视图长宽不等,与主视图和左视图反映的信息不符,其他图形都知足要求,故选D.8.B [解析] 由三视图可知杯子是圆柱形的,由于圆柱形的杯子上下、大小相同,所以当向杯中匀速注水时,其高度随时间的转变是相同的,反映在图像上,选项B符合题意.9.A [解析] ①可以是放倒的三棱柱,所以正确;容易判断②正确;③可以是放倒的圆柱,所以也正确.[解析] 设原三角形底边上的高的长度为h,按照斜二测画法,在直观图中,其长度变成h2,而且与x轴夹角为45°,设此时直观图中三角形的高为h1,则h1=h2sin45°=24h.而底边长度不变,故面积变成原来的24.11.①②③[解析] 空间四边形D′OEF在正方体的面DCC′D′及其对面ABB′A′上的正投影是①;在面BCC′B′及其对面ADD′A′上的正投影是②;在面ABCD及其对面A′B′C′D′上的正投影是③,故填①②③.12.①③④[解答] .,长方体为几何体的直观图.被选择的四个点为B1、B、C、C1时,可知①正确;被选择B、A、B1、C时,可知③正确;被选择A、B、D、D1时,可知④正确.13.5 [解析] 按照题意可知,几何体的最底层有4块长方体,第2层有1块长方体,一共有5块.14.[解答] 该几何体为四棱锥,底面是正方形,有一条侧棱VA与底面ABCD垂直,直观图.(1)所示.主视图、左视图、俯视图别离是等腰直角三角形、等腰直角三角形、正方形,则三视图.(2)所示.该几何体的最长的一条棱的长为VC=62+622=6 3.15.[解答] 在直观图中,过A′点作A′E⊥B′C′,垂足为E,则在Rt△A′B′E中,A′B′=1 m ,∠A ′B ′E =45°,∴B ′E =22m. 而四边形A ′EC ′D ′为矩形,A ′D ′=1 m ,∴B ′C ′=B ′E +EC ′=⎝ ⎛⎭⎪⎫22+1m.由此可还原图形,在原图形中,AD =1 m ,AB =2 m ,BC =⎝⎛⎭⎪⎫22+1m ,且AD ∥BC ,AB ⊥BC ,∴这块菜地的面积为S =12(AD +BC )·AB =12×1+1+22×2=⎝⎛⎭⎪⎫2+22(m 2), 所以这块菜地所产生的总的经济效益是300S ≈300(2+=≈812(元).【难点冲破】16.[解答] 把几何体放到长方体中,使得长方体的对角线恰好为几何体的已知棱,设长方体的对角线A 1C =7,则它的主视图投影长为A 1B =6,左视图投影长为A 1D =a ,俯视图投影长为A 1C 1=b ,则a 2+b 2+(6)2=2·(7)2,即a 2+b 2=8, 又a +b 2≤a 2+b 22,∴a +b ≤4.从而a +b 的最大值为4.。
[广东理数一轮]7.1空间几何体的结构三视图及直观图
三视图的形成
物体向投影面投影所得到的图形称为视图。 如果物体向三个互相垂直的投影面分别投影,所得到 的三个图形摊平在一个平面上,则就是三视图。
• 三视图 • 主视图——从正面看到的图 • 左视图——从左面看到的图 • 俯视图——从上面看到的图 • 画物体的三视图时,要符合如下原则: • 位置:主视图 左视图 • 俯视图 • 大小:长对正,高平齐,宽相等.
按照底面多边形的边数可分为三棱锥,四棱锥,五棱锥…
S E A B C D
(5)正棱锥的定义:
底面是正多边形,顶点在底面上的射影是 底面正多边形的中心,这样的棱锥是正棱 锥. S
O
3、棱台: (1)定义: 用一个平行于棱锥底面的平面去截棱锥 ,底面与截面之间的部分,这样的几何 体叫棱台。 (2)棱台的上下底面、侧面、侧棱、顶点、高 (3)棱台的表示: 用表示顶点的字母表示. 如棱台ABCD—A1B1C1D1 (4)棱台的分类: 按照底面多边形的边数 可分为三棱台,四棱台, 五棱台……
斜二测画法的 步骤: (1)画轴: (2)平行处理: (3)长度处理:
3、用斜二侧画法画水平放置的图形的直观图; 例1、用斜二侧画法画水平放置的正六边形的 直观图
y
o
x
x′
直棱柱的直观图的画法
E’ F’ A’
z’
B’ y’
D’ C’
E F A O’
D C x’ B
正棱锥的直观图的画法
S
z’
y’ D E A O’ B C x’
1cm 1cm
主视图
侧视图
2cm
2cm
俯视图
根据三视图想象物体原形, 画出物体 的实物草图,并求体积.
1cm 1cm
主视图
2020版高考数学一轮复习第七章立体几何第一节空间几何体的结构特征及三视图和直观图学案文(含解析)
第一节空间几何体的结构特征及三视图和直观图2019考纲考题考情1.空间几何体的结构特征2.空间几何体的三视图(1)三视图的形成与名称空间几何体的三视图是用平行投影得到的,这种投影下与投影面平行的平面图形留下的影子与平面图形的形状和大小是完全相同的,三视图包括正视图、侧视图、俯视图。
(2)三视图的画法①在画三视图时,重叠的线只画一条,挡住的线要画成虚线。
②三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线。
3.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,基本规则是:(1)原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴、y ′轴的夹角为45°(或135°),z ′轴与x ′轴、y ′轴所在平面垂直。
(2)原图形中平行于坐标轴的线段,直观图中还是平行于坐标轴的线段。
平行于x 轴和z 轴的线段长度在直观图中保持不变,平行于y 轴的线段长度在直观图中变为原来的一半。
1.台体可以看成是由锥体截得的,易忽视截面与底面平行且侧棱延长后必交于一点。
2.三视图的基本要求 (1)长对正,高平齐,宽相等。
(2)在绘制三视图时,分界线和可见轮廓线都用实线画出,被遮挡的部分的轮廓线用虚线表示出来,即“眼见为实、不见为虚”。
在三视图的判断与识别中要特别注意其中的虚线。
3.斜二测画法中的“三变”与“三不变”“三变”⎩⎪⎨⎪⎧坐标轴的夹角改变,与y 轴平行的线段的长度变为原来的一半,图形改变。
“三不变”⎩⎪⎨⎪⎧平行性不改变,与x ,z 轴平行的线段的长度不改变,相对位置不改变。
一、走进教材1.(必修2P 8A 组T 1(1)改编)在如图所示的几何体中,是棱柱的为________。
(填写所有正确的序号)答案③⑤2.(必修2P15练习T1改编)已知如图所示的几何体,其俯视图正确的是( )解析由俯视图定义易知选项C符合题意。
故选C。
答案 C二、走近高考3.(2018·全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图所示。
高考数学一轮复习专题训练—空间几何体的结构、三视图和直观图
空间几何体的结构、三视图和直观图考纲要求1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构;2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图;3.会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.知识梳理1.空间几何体的结构特征(1)多面体的结构特征名称棱柱棱锥棱台图形底面互相平行且全等多边形互相平行且相似相交于一点,但不侧棱平行且相等延长线交于一点一定相等侧面形状平行四边形三角形梯形(2)旋转体的结构特征名称圆柱圆锥圆台球图形互相平行且相等,相交于一点延长线交于一点母线垂直于底面轴截面矩形等腰三角形等腰梯形圆侧面展开图矩形扇形扇环2.直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴、y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.3.三视图(1)几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.(2)画出的三视图要长对正,高平齐,宽相等.1.常见旋转体的三视图(1)球的三视图都是半径相等的圆.(2)水平放置的圆锥的正视图和侧视图二者为全等的等腰三角形.(3)水平放置的圆台的正视图和侧视图二者为全等的等腰梯形.(4)水平放置的圆柱的正视图和侧视图二者为全等的矩形.2.在绘制三视图时,分界线和可见轮廓线都用实线画出,被遮挡的部分的轮廓线用虚线表示出来,即“眼见为实、不见为虚”.在三视图的判断与识别中要特别注意其中的虚线.3.直观图与原平面图形面积间关系S直观图=24S原图形.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.()(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.()(3)菱形的直观图仍是菱形.()(4)正方体、球、圆锥各自的三视图中,三视图均相同.()答案(1)×(2)×(3)×(4)×解析(1)反例:由两个平行六面体上下组合在一起的图形满足条件,但不是棱柱.(2)反例:如图所示的图形满足条件但不是棱锥.(3)用斜二测画法画水平放置的菱形的直观图是平行四边形,但邻边不一定相等,(3)错误.(4)球的三视图均相同,而圆锥的正视图和侧视图相同,且为等腰三角形,其俯视图为圆心和圆,正方体的三视图不一定相同.2.在如图所示的几何体中,是棱柱的为________(填写所有正确的序号).答案③⑤解析由棱柱的定义可判断③⑤属于棱柱.3.如图,长方体ABCD-A′B′C′D′被截去一部分,其中EH∥A′D′.剩下的几何体是()A.棱台B.四棱柱C.五棱柱D.六棱柱答案 C解析由几何体的结构特征,剩下的几何体为五棱柱.4.(2021·兰州一中调研)如图,一个水平放置的平面图形的直观图是一个底角为45°的等腰梯形,已知直观图OA′B′C′的面积为4,则该平面图形的面积为()A. 2 B.4 2C.8 2 D.2 2答案 C解析由S原图形=22S直观图,得S原图形=22×4=8 2.5.(2018·全国Ⅲ卷)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()答案 A解析由题意知,在咬合时带卯眼的木构件中,从俯视方向看,榫头看不见,所以是虚线,结合榫头的位置知选A.6.设四面体ABCD各棱长均相等,S为AD的中点,Q为BC上异于中点和端点的任一点,则△SQD在四面体的面上的射影不可能是()答案 A解析设BC的中点为P,则由题意可知DP⊥BC且平面ADP⊥平面BDC,从而S在平面BCD上的射影在DP上,△SQD在面BCD上的射影为选项C,同理△SQD在面ABC、面ACD上的射影分别为选项B、D,故选A.考点一空间几何体的结构特征1.给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A.0 B.1 C.2 D.3答案 A解析①不一定,只有当这两点的连线平行于轴时才是母线;②不一定,当以斜边所在直线为旋转轴时,其余两边旋转一周形成的面所围成的几何体不是圆锥,如图所示,它是由两个同底圆锥组成的几何体;③错误,棱台的上、下底面相似且是对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.2.以下四个命题中,真命题为()A.侧面都是等腰三角形的棱锥是正棱锥B.底面是矩形的平行六面体是长方体C.直四棱柱是直平行六面体D.棱台的侧棱延长后必交于一点答案 D解析A中等腰三角形的腰不一定是侧棱,A是假命题,B中,侧棱与底面矩形不一定垂直,B是假命题,C中,直四棱柱的底面不一定是平行四边形,C不正确,根据棱台的定义,选项D是真命题.3.若四面体的三对相对棱分别相等,则称之为等腰四面体,若四面体的一个顶点出发的三条棱两两垂直,则称之为直角四面体,以长方体ABCD-A1B1C1D1的顶点为四面体的顶点,可以得到等腰四面体、直角四面体的个数分别为()A.2,8 B.4,12 C.2,12 D.12,8答案 A解析因为矩形的对角线相等,所以长方体的六个面的对角线构成2个等腰四面体.因为长方体的每个顶点出发的三条棱都是两两垂直的,所以长方体中有8个直角四面体.感悟升华 1.关于空间几何体的结构特征辨析关键是紧扣各种几何体的概念,要善于通过举反例对概念进行辨析,即要说明一个命题是错误的,只需举一个反例.2.圆柱、圆锥、圆台的有关元素都集中在轴截面上,解题时要注意用好轴截面中各元素的关系.3.既然棱(圆)台是由棱(圆)锥定义的,所以在解决棱(圆)台问题时,要注意“还台为锥”的解题策略.考点二空间几何体的三视图【例1】(1)(2020·全国Ⅱ卷)如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为()A.E B.FC.G D.H(2)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在侧视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.217 B.2 5 C.3 D.2答案(1)A(2)B解析(1)根据三视图可得直观图如图所示,图中的点U在正视图中对应的点为M,在俯视图中对应的点为N,所以该端点在侧视图中对应的点为E.(2)由三视图可知,该几何体为如图①所示的圆柱,该圆柱的高为2,底面周长为16.画出该圆柱的侧面展开图,如图②所示,连接MN,则MS=2,SN=4,则从M到N的路径中,最短路径的长度为MN=MS2+SN2=22+42=2 5.感悟升华 1.由直观图确定三视图,一要根据三视图的含义及画法和摆放规则确认.二要熟悉常见几何体的三视图.2.由三视图还原到直观图要抓住关键几点:(1)根据俯视图确定几何体的底面.(2)根据正视图或侧视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置.(3)确定几何体的直观图形状.(4)要熟悉柱、锥、台、球的三视图,明确三视图形成原理.【训练1】(1)如图所示,在正方体ABCD-A1B1C1D1中,E为棱BB1的中点,过点A,E,C1的平面截去该正方体的上半部分,则剩余几何体的侧视图为()(2)(2021·邯郸检测)一个几何体的三视图如图所示,则该几何体的最长棱长为()A.2 2 B.2 5 C.2 6 D.4 2答案(1)C(2)C解析(1)如图(1)所示,过点A,E,C1的截面为AEC1F,则剩余几何体的侧视图为选项C 中的图形.(2)由三视图知,该几何图是如图(2)所示的四棱锥A-BCC1B1.易知AC1为最长棱,因此AC1=42+22+22=2 6.考点三空间几何体的直观图角度1水平放置的直观图【例2】已知等腰梯形ABCD中,上底CD=1,腰AD=CB=2,下底AB=3,以下底所在直线为x轴,则由斜二测画法画出的直观图A′B′C′D′的面积为________.答案2 2解析如图(1)和(2)的实际图形和直观图所示.图(1)图(2) 因为OE=22-1=1,由斜二测画法可知O′E′=1 2,E′F=24,D′C′=1,A′B′=3,则直观图A′B′C′D′的面积S′=1+32×24=22.感悟升华 1.画几何体的直观图一般采用斜二测画法,其规则可以用“斜”(两坐标轴成45°或135°)和“二测”(平行于y轴的线段长度减半,平行于x轴和z轴的线段长度不变)来掌握.2.按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积的关系:S直观图=24S 原图形.【训练2】 如图,一个水平放置的平面图形的直观图(斜二测画法)是一个底角为45°、腰和上底长均为2的等腰梯形,则这个平面图形的面积是( )A .2+ 2B .1+ 2C .4+2 2D .8+4 2答案 D解析 由已知直观图根据斜二测画法规则画出原平面图形,如图所示.由于O ′D ′=2,D ′C ′=2, ∴OD =4,DC =2,过D ′作D ′H ⊥A ′B ′,易知A ′H =2sin 45°= 2. ∴AB =A ′B ′=2A ′H +DC =22+2.故平面图形的面积S =DC +AB 2·AD =4(2+2).角度2 几何体的直观图中计算【例3】 (2020·新高考山东卷)已知直四棱柱ABCD -A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以D 1为球心,5为半径的球面与侧面BCC 1B 1的交线长为__________. 答案2π2解析 如图,连接B 1D 1,易知△B 1C 1D 1为正三角形,所以B 1D 1=C 1D 1=2.分别取B 1C 1,BB 1,CC 1的中点M ,G ,H ,连接D 1M ,D 1G ,D 1H ,则易得D 1G =D 1H =22+12=5,D 1M ⊥B 1C 1,且D 1M = 3. 由题意知G ,H 分别是BB 1,CC 1与球面的交点.在侧面BCC 1B 1内任取一点P ,使MP =2,连接D 1P ,则D 1P =D 1M 2+MP 2=32+22=5,连接MG ,MH ,易得MG =MH =2,故可知以M 为圆心,2为半径的圆弧GH 为球面与侧面BCC 1B 1的交线.由∠B 1MG =∠C 1MH =45°知∠GMH =90°,所以GH ︵的长为14×2π×2=2π2. 感悟升华 1.本题求解的关键是明确球面与侧面BCC 1B 1交线的位置,从而转化为以M 为圆心,以MH =2为半径的圆弧GH ︵的计算.2.题目考查直四棱柱的结构特征与直观图,核心素养是直观想象和数学运算.【训练3】 (2020·全国Ⅰ卷)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.5-14 B .5-12 C .5+14 D .5+12答案 C解析 如图,设正四棱锥的底面边长BC =a ,侧面等腰三角形底边上的高PM =h ,则正四棱锥的高PO =h 2-a 24,∴以PO 的长为边长的正方形面积为h 2-a 24, 一个侧面三角形面积为12ah , ∴h 2-a 24=12ah ,∴4h 2-2ah -a 2=0. 则a =(5-1)h ,∴h a =5+14.A 级 基础巩固一、选择题1.下列说法中,正确的是( )A .棱柱的侧面可以是三角形B .若棱柱有两个侧面是矩形,则该棱柱的其他侧面也是矩形C .正方体的所有棱长都相等D .棱柱的所有棱长都相等答案 C解析 棱柱的侧面都是平行四边形,选项A 错误;其他侧面可能是平行四边形,选项B 错误;棱柱的侧棱与底面边长并不一定相等,选项D 错误;易知选项C 正确.2.如图为一圆柱切削后的几何体及其正视图,则相应的侧视图可以是( )答案 B解析由圆柱切削后的几何体及其正视图知,截得的截面为椭圆,结合正视图,可知侧视图应该是从实物图的左边正投影,右边的轮廓线为不可见轮廓,故用虚线表示,故选B. 3.一个菱形的边长为4 cm,一内角为60°,用斜二测画法画出的这个菱形的直观图的面积为()A.2 3 cm2B.2 6 cm2C.4 6 cm2D.8 3 cm2答案 B解析直观图的面积为24×32×42=26(cm2).4.如图为某个几何体的三视图,根据三视图可以判断这个几何体为()A.圆锥B.三棱椎C.三棱柱D.三棱台答案 C解析由三视图可知,该几何体是一个横放的三棱柱,故选C.5.在一个密闭透明的圆柱筒内装一定体积的水,将该圆柱筒分别竖直、水平、倾斜放置时,指出圆柱桶内的水平面可以呈现出的几何形状不可能是()A.圆面B.矩形面C.梯形面D.椭圆面或部分椭圆面答案 C解析将圆柱桶竖放,水面为圆面;将圆柱桶斜放,水面为椭圆面或部分椭圆面;将圆柱桶水平放置,水面为矩形面,所以圆柱桶内的水平面可以呈现出的几何形状不可能是梯形面.6.某几何体的正视图和侧视图均为如图所示的图形,则在下面的四个图中可以作为该几何体的俯视图的是()A .①③B .①④C .②④D .①②③④答案 A 解析 由正视图和侧视图知,该几何体为球与正四棱柱或球与圆柱体的组合体,故①③正确.7.如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,底面ABCD 是平行四边形,∠ACB =90°,AB =2,P A =BC =1,则此几何体的侧视图的面积是( )A.14B .1 C.32 D .12答案 D解析 由题知,BC ⊥AC ,BC ⊥P A ,又AC ∩P A =A ,∴BC ⊥平面P AC ,∴该几何体的侧视图为直角三角形,两直角边长分别等于P A 的长与AC的长,∵AB =2,BC =1,∴AC =1=P A ,∴侧视图的面积S =12×1×1=12. 8.已知某四面体的三视图如图所示,正视图、侧视图、俯视图是全等的等腰直角三角形,则该四面体的四个面中直角三角形的个数为( )A .4B .3C .2D .1解析在棱长为1的正方体中作出该几何体的直观图,记为四面体D-ABC,如图,由图可知在此四面体中,△ABC,△DAB,△DAC,△DBC都是直角三角形.二、填空题9.如图是水平放置的正方形ABCO,在直角坐标系xOy中,点B的坐标为(2,2),则由斜二测画法画出的正方形的直观图中,顶点B′到x′轴的距离为________.答案2 2解析利用斜二测画法作正方形ABCO的直观图如图,在坐标系x′O′y′中,|B′C′|=1,∠x′C′B′=45°.过点B′作x′轴的垂线,垂足为点D′.在Rt△B′D′C′中,|B′D′|=|B′C′|sin 45°=1×22=22.10.下列结论正确的是________(填序号).①各个面都是三角形的几何体是三棱锥②夹在圆柱的两个平行截面间的几何体还是一个旋转体③棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥④圆锥的顶点与底面圆周上任意一点的连线都是母线解析 如图1知,①不正确.如图2,两个平行平面与底面不平行时,截得的几何体不是旋转体,则②不正确.若六棱锥的所有棱长都相等,则底面多边形是正六边形.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长,③错误.由圆锥母线的概念知,④正确.11.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的楔体,下底面宽3丈、长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知该楔体的正视图和俯视图如图中粗实线所示,则该楔体的侧视图的周长为________丈.答案 8解析 由题意可知该楔体的侧视图是等腰三角形,它的底边长为3丈,相应高为2丈,所以腰长为22+⎝⎛⎭⎫322=52(丈),所以该楔体侧视图的周长为3+2×52=8(丈). 12.如图,一立在水平地面上的圆锥形物体的母线长为4 m ,一只小虫从圆锥的底面圆上的点P 出发,绕圆锥表面爬行一周后回到点P 处.若该小虫爬行的最短路程为4 3 m ,则圆锥底面圆的半径等于________ m.答案 43 解析 圆锥顶点记为O ,把圆锥侧面沿母线OP 展开成如图所示的扇形,由题意OP =4,PP ′=43,则cos ∠POP ′=42+42-4322×4×4=-12, 又∠POP ′为△POP ′一内角,所以∠POP ′=2π3. 设底面圆的半径为r ,则2πr =2π3×4,所以r =43. B 级 能力提升13. “牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图1,图2中四边形是为体现其直观性所作的辅助线.当其正视图和侧视图完全相同时,它的正视图和俯视图分别可能是( )图1图2A.a,b B.a,c C.c,b D.b,d答案 A解析当正视图和侧视图完全相同时,“牟合方盖”相对的两个曲面正对前方,正视图为一个圆,俯视图为一个正方形,且两条对角线为实线,故选项A正确.14.(2021·江西重点中学联考)现有编号为①、②、③的三个棱锥(底面水平放置),俯视图分别为图1、图2、图3,则至少存在一个侧面与此底面互相垂直的三棱锥的编号是()A.①②B.①③C.①②③D.②③答案 A解析还原出空间几何体,编号为①的三棱锥的直观图如图(1)的三棱锥P-ABC,平面P AC⊥平面ABC,平面PBC⊥平面ABC,满足题意;编号为②的三棱锥的直观图如图(2)的三棱锥P-ABC,平面PBC⊥平面ABC,满足题意;编号为③的三棱锥的直观图如图(3)的三棱锥P-ABC,不存在侧面与底面互相垂直,所以满足题意的编号是①②.15.一个几何体的三视图如图所示,在该几何体的各个面中,面积最小的面的面积为________.答案4 2解析由三视图可知该几何体的直观图如图所示,由三视图特征可知,P A⊥平面ABC,DB⊥平面ABC,AB⊥AC,P A=AB=AC=4,DB=2,则易得S△P AC=S△ABC=8,S△CPD=12,S梯形ABDP=12,S△BCD=12×42×2=4 2.16.(2019·全国Ⅱ卷)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图①).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图②是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1,则该半正多面体共有________个面,其棱长为________.答案262-1解析依题意知,题中的半正多面体的上部分有9个面,中间部分有8个面,下部分为9个面,共有9+8+9=26(个)面,因此题中的半正多面体共有26个面.注意到该半正多面体的俯视图的轮廓是一个正八边形,设题中的半正多面体的棱长为x,则22x+x+22x=1,解得x=2-1,故题中的半正多面体的棱长为2-1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时提升作业(四十二)
一、选择题
1.以下四个命题:①正棱锥的所有侧棱相等;②直棱柱的侧面都是全等的矩形;③圆柱的母线垂直于底面;
④用经过旋转轴的平面截圆锥,所得的截面一定是全等的等腰三角形.其中,真命题的个数为( )
(A)4 (B)3 (C)2 (D)1
2.下列几何体各自的三视图中,有且仅有两个视图相同的是( )
(A)①②(B)①③(C)①④(D)②④
3.(2013·沈阳模拟)一个锥体的主视图和左视图如图所示,下面选项中,不可能是
该锥体的俯视图的是( )
4.如图,△ABC为正三角形,AA′∥BB′∥CC′,CC′⊥平面ABC且3AA′=错误!未找到引用源。
BB′=CC′=AB,则多面体ABC-A′B′C′的主视图是( )
5.(2013·宁波模拟)一个水平放置的平面图形的斜二测直观图是直角梯形(如图所示),∠ABC=45°,AB=AD=1,DC⊥BC,则这个平面图形的面积为( )
(A)错误!未找到引用源。
+错误!未找到引用源。
(B)2+错误!未找到引用源。
(C)错误!未找到引用源。
+错误!未找到引用源。
(D)错误!未找到引用源。
+错误!未找到引用源。
6.一个正方体截去两个角后所得几何体的主视图、左视图如图所示,则其俯视
图为( )
7.(2013·西安模拟)一只蚂蚁从正方体ABCD-A1B1C1D1的顶点A处出发,经正方体的表面,按最短路线爬行到达顶点C1位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的主视图是( )
(A)①②(B)①③(C)②④(D)③④
二、填空题
8.等腰梯形ABCD,上底CD=1,腰AD=CB=错误!未找到引用源。
,下底AB=3,以下底所在直线为x轴,则由斜
二测画法画出的直观图A′B′C′D′的面积为.
9.(2013·临沂模拟)已知某个几何体的三视图如图所示,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是错误!未找到引用源。
cm3,则主视图中的h等于cm.
10.(2013·合肥模拟)一个三棱锥的主视图和左视图及其尺寸如图所示,则该三棱锥的俯视图的面积
为.
三、解答题
11.(能力挑战题)如图所示,为了制作一个圆柱形灯笼,先要制作4个全等
的矩形骨架,总计耗用9.6米铁丝.再用S平方米塑料片制成圆柱的侧面和
下底面(不安装上底面).
(1)当圆柱底面半径r取何值时,S取得最大值?并求出该最大值(结果精确
到0.01平方米).
(2)若要制作一个如图放置的、底面半径为0.3米的灯笼,请作出灯笼的三视图(作图时,不需考虑骨架等因素).
答案解析
1.【解析】选B.由正棱锥的定义可知所有侧棱相等,故①正确;由于直棱柱的底面的各边不一定相等,故侧面矩形不一定全等,因此②不正确;由圆柱母线的定义可知③正确;结合圆锥轴截面的作法可知④正确.综上,正确的命题有3个.
2.【解析】选D.在各自的三视图中,①正方体的三个视图都相同;②圆锥的两个视图相同;③三棱台的三个视图都不同;④正四棱锥的两个视图相同,故选D.
【变式备选】正三棱柱(底面为正三角形的直棱柱)ABC-A
1B1C1如图所示,以四边
形ABB1A1为水平面,四边形BCC1B1的前面为正前方画出的三视图正确的是
( )
【解析】选A.矩形BCC1B1的前面为正前方,故主视图为矩形,左侧为△ABC,所以左视图为三角形.俯视图为两个有公共边的矩形,公共边为CC1在面ABB1A1内的投影,故选A.
3.【解析】选C.当俯视图为A,B时表示底面为等腰直角三角形,且过直角顶点的棱与底面垂直的三棱锥.当俯视图为D时,表示底面为正方形,且有一条侧棱与底面垂直的四棱锥.故选C.
【方法技巧】由直观图画三视图的技巧
(1)可以想象将一几何体放在自己面前,然后从正前方,左侧及上面观察该几何体,进而得到主视图、左视图和俯视图.
(2)在画三视图时,要注意看得见的轮廓线画成实线,看不见的轮廓线画成虚线.
4.【解析】选D.由AA′∥BB′∥CC′及CC′⊥平面ABC,知AA′⊥平面ABC,
BB′⊥平面ABC.又CC′=错误!未找到引用源。
BB′=3AA′,且△ABC为正三角形,故主视图应为D中的图形.
5.【解析】选B.如图将直观图ABCD还原后为直角梯形
A′BCD′,其中
A′B=2AB=2,BC=1+错误!未找到引用源。
,A′D′=AD=1,
∴S=错误!未找到引用源。
×(1+1+错误!未找到引用源。
)×2=2+错误!未
找到引用源。
.
6.【解析】选C.依题意可知该几何体的直观图如图所示,故其俯视图应为C.
7.【解析】选C.依题意得,题中提供的选项中,图②④可以表示正方体及蚂蚁最短爬行路线的主视图,选C.
8.【解析】如图所示,∵OE=错误!未找到引用源。
=1,
∴O′E′=错误!未找到引用源。
,E′F′=错误!未找到引用源。
,
∴直观图A′B′C′D′的面积为S′=错误!未找到引用源。
×(1+3)×错误!未找到引用源。
=错误!未找到引用源。
.
答案:错误!未找到引用源。
9.【解析】由三视图可知,该几何体是一个四棱锥,且底面是一个边长为20cm的正方形,所以V=错误!未找到引用源。
×20×20×h=错误!未找到引用源。
,∴h=20(cm).
答案:20
10.【解析】由题意可知,该三棱锥的俯视图是一个底边长为2,高为1的三角形,则其面积为1.
答案:1
11.【思路点拨】(1)根据条件确定圆柱的高与底面半径的关系,转化为函数问题解决.(2)结合实物图画出三视图即可.
【解析】(1)设圆柱的高为h,由题意可知,
4(4r+2h)=9.6,即2r+h=1.2.
S=2πrh+πr2=πr(2.4-3r)
=3π[-(r-0.4)2+0.16],其中0<r<0.6.
∴当半径r=0.4米时,S max=0.48π≈1.51(平方米).
(2)由r=0.3及2r+h=1.2,得圆柱的高h=0.6(米).则灯笼的三视图为:。